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Biological motors, as counterpart of heat engines, are driven by a chemical gradient to output
mechanical work and play critical roles in biological functions, such as the ATP synthesis. Its ther-
modynamic efficiency, along with power, are two vital criteria for evaluating the performance of
these motors. In this letter, we investigate a model of a microscopic chemical engine and assess
the constraint relation between power and efficiency for the cycle with finite operation time. Our
model demonstrates a general constraint relation between power and efficiency, and predicts that
the efficiency at maximum power in the large friction regime is half of the maximum quasi-static effi-
ciency, i.e., 1/2. These findings shall provide new direction to optimize the operation of microscopic
biological motors.

Biological rotary motors, driven by ion concentration
gradient, play important roles in living organisms to con-
vert the free energy stored in the ionic gradient into me-
chanical energy to realize biological functions via ther-
modynamic cycles. For instance, ATP synthase with the
F0- and F1-motor, is responsible for the synthesis of a
major portion of ATP [1–15], which is the universal en-
ergy currency in living organisms. F0-motor, undergoing
mechanical rotation driven by the chemical potential dif-
ference of positively charged ions (e.g. H+ or Na+), pro-
vides the primordial driving force in the ATP synthase.

The performance of the F0-motor is typically charac-
terized by two quantities, thermodynamic efficiency and
power. Thermodynamic efficiency is defined as the frac-
tion of mechanical energy converted from the chemical
free energy. And the power, measuring the mechanical
work output per unit of time, is another crucial quantity
in circumstances of changing energy request from the bi-
ological system. For instance, the instantaneous energy
consumption power of a mouse can fluctuate from over
100kJ/day to around 20kJ/day [16]. This raises the ques-
tion how the changing power affects the efficiency of the
biological motors [17–19]. To address this question, the
efficiency and power of such motors should be evaluated
under the perspective of finite-time thermodynamics.

In this letter, we investigate the performance of a ro-
tary motor resembling the F0-motor in the ATP synthase
of Propionigenium modestum [5, 9]. The performance of
the motor is tuned by varying both its angular velocity
and its inside potential. Our analysis reveals the exis-
tence of a trade-off relation between power and efficiency
for this motor. Such trade-off relation between power and
efficiency is a fundamental characteristic of such finite-
time motors.

Fig. 1 illustrates the current rotary motor, consisting
of a rotor and a stator. The rotor has a ring structure
made up of several c-subunits [6], represented by yellow
blocks. Theses subunits feature negatively charged ionic
binding sites, depicted by light blue and dark red circles.
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Figure 1. The rotary motor model consisting of a rotor and
a stator. The rotor has a ring structure composed of multiple
c-subunits, depicted by yellow blocks. Each subunit contains
a negatively charged ionic binding site with the light blue
representing the unbound state with negative charge and dark
red as the neutralized bounded state. The rotation coordinate
of the rotor is denoted as θ, where a clockwise rotation is
defined as the positive direction. The stator interacts with the
rotor through a fixed charge, represented by the large orange
circle, located at θ = 0. This charge provides an attractive
inside potential Φ(θ) for the negatively charged sites. The
motor is in contact with both a high chemical potential (µH)
reservoir (red shaded region) with the angular width Θ, and
a low chemical potential ( µL) reservoir (blue shaded region)
simultaneously.

The charge of the sites can be neutralized by binding
with one positively charged ion. The light blue and dark
red colors on these sites correspond to the bound and
unbound states respectively. The rotor’s coordinate is
denoted by θ, with clockwise rotation defined as the pos-
itive direction.

The rotor interacts with the stator via a fixed charge
(the large orange circle), located at θ = 0, which pro-
vides an attractive inside potential Φ(θ) for the nega-
tively charged sites. The exact form of the inside po-
tential Φ(θ) is obtained from the Coulomb interaction
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between charges on the rotor and stator as

Φ(θ) = − E√
δ2 + 2(1 + δ)(1− cos θ)

+ Φ0, (1)

where δ = 0.1 reflects the distance between the stator
charge and the ring, and E and Φ0 are selected to ensure
that Φ(Θ) = −Φ(0) = V/2. Detailed discussion on the
potential is shown in the Supplemental Materials.

The motor is in contact with two chemical reservoirs
simultaneously: a high-potential chemical reservoir with
chemical potential µH (the region 0 ≤ θ < Θ with red
shadow around the motor) and a low-potential chemical
reservoir with chemical potential µL (the region Θ < θ ≤
2π with blue shadow around the motor). Here, Θ is the
angular width of the high potential reservoir. During the
rotation, the binding sites alternate their contact between
the high and low potential reservoirs.

When the motor reaches a steady cyclic rotation with
a constant angular velocity ω, all the binding sites ex-
hibit the same dynamics. To investigate the motor’s
performance, we examine the behavior of one specific
binding site. The average binding number of negative
charge for the binding site of interest is denoted by n
with 0 ≤ n ≤ 1. When the site is in equilibrium with a
reservoir, the average binding number n = n(0) is deter-
mined by the reservoir’s chemical potential µ(θ) and the
external inside potential Φ(θ) as

n(0)(θ) =
1

1 + eβ[Eb−Φ(θ)−µ(θ)]
, (2)

where β = (kBT )
−1 is the inverse temperature of the

reservoirs, and Eb is the energy of a neutralized site.
The ion exchange process between the binding site and

the chemical reservoirs is described by a chemical reac-
tion

unbound site +H+ ⇌ bound site.

The change rate of the average binding number n is pro-
portional to the difference in particle number from equi-
librium

dn

dt
= −

(
n− n(0)

)
/τr, (3)

where τr is the timescale of relaxation between the bind-
ing site and the reservoir. Here, we have assumed the
same timescale τr for the relaxation in the two chemical
reservoirs. Replacing the variable t in Eq. (3) with the
angular coordinate θ = θ0 + ωt, we obtain the evolution
equation of n(θ) as

dn

dθ
= − 1

ωτr

(
n− n(0)(θ)

)
, (4)

with a periodic boundary condition n(θ) = n(θ + 2π).
The effect of finite operation time is characterized by the
dimensionless coefficient ωτr.

The internal energy of the site is U = nEb+(1−n)Φ(θ)
with its differential change dU = [Eb − Φ(θ)]dn + (1 −
n)Φ′(θ)dθ. The first term is the energy change caused
by the particle number relaxation into the reservoirs,
and the second term represents the mechanical work
Wmech =

∫ π

−π
(1 − n)Φ′(θ)dθ. Additionally, we include

a linear dissipation Wdiss = 2πγω with the linear friction
coefficient γ to account for the resistance torque propor-
tional to the angular velocity ω. And the net work output
per cycle is

Wnet = Wmech −Wdiss. (5)

The thermodynamic efficiency of the cycle is the ratio
of the net work output Wnet with respect to free energy
decrease ∆F ,

η =
Wnet

∆F
, (6)

where the free energy decrease for the chemical reservoirs
is ∆F = (µH − µL)∆n with ∆n = n(Θ) − n(0) as the
average number of particles transferred from the higher
potential chemical reservoir to the lower one. And the
average power is obtained as the average mechanical en-
ergy output rate per cycle

P = Wnet/τcycle, (7)

where τcycle = 2π/ω is the period of the rotation.
In the quasi-static limit with ωτr → 0, the efficiency

is an increasing function of the inside potential depth
V ≡ Φ(Θ)− Φ(0) as

η(0)(V ) =
kBT

µH − µL

αΘHα0L

αΘH − α0L

(
ln

α0L

α0H
− ln

αΘL

αΘH

)
,

(8)
where αΘH ≡ 1 + exp(V/2 − Eb + µH),αΘL ≡ 1 +
exp(V/2−Eb+µL), α0H ≡ 1+exp(−V/2−Eb+µH) and
α0L ≡ 1+exp(−V/2−Eb+µL). The detailed calculation
is shown in the Supplemental Materials. The upper limit
of quasi-static efficiency η(0)(V ) is obtained as η(0) → 1
with V → ∞, representing that all the free energy drawn
from the reservoirs is converted into mechanical work.
Nevertheless, such quasi-static cycles are impractical be-
cause the power output of a quasi-static cycle drops to 0,
as the time span per cycle τcycle approaches infinity with
ω → 0.

To acquire a finite output power, the motor rotates
with a non-zero angular velocity ω. In Fig. 2, the
curves show the average binding number n(θ) (in Fig.
2(a)) and the cumulative net work output Wnet(θ) =∫ θ

−π
(dWmech−dWdiss) (in Fig. 2(b)) as functions of rota-

tional coordinates θ for the range of −π < θ < π. In the
calculation, we set the width Θ = π/5 and the dissipation
coefficient γ/(τrkBT ) = 0.5. The blue solid curve repre-
sents the quasi-static situation, and the green dashed and
the red dash-dotted curve correspond to the angular ve-
locity ωτr = π/10 and π/3 respectively. The red-shaded



3

Figure 2. The average binding number n and the cumulative
net work output Wnet as functions of θ within finite operation
time. (a) The average binding number n(θ). (b) The cumu-
lative net work output Wnet(θ). The horizontal coordinates
are the same for the two subfigures. The parameters are fixed
as follows: V = 5kBT , µH = 10kBT , µL = 0, Eb = 5kBT ,
and γ/(τrkBT ) = 0.5. The blue solid curve shows the quasi-
static situation with ω → 0, and the finite time situations
with ωτr = π/10, π/3 are shown in green dashed curve and
red dash-dotted curve. The increasing of angular velocity
causes the decreasing of total work output per cycle, which
is reflected by the final value of the curves Wnet(π). The red
shaded region (0 ≤ θ < Θ) represents the system in contact
with the high potential chemical reservoir.

areas illustrate the region where the binding site is in con-
tact with the high-potential chemical reservoir. For the
increasing angular velocity ω, the relaxation processes in
the two chemical potential reservoirs become inadequate,
and in turn result in the decrease of the output work as
illustrated Fig. 2(b).

For fixed inside potential depth V , the output power
depends on the angular velocity. To identify the opti-
mal angular velocity ω that yields the maximum output
power for a motor with a specified inside potential depth
V , we examine the power and efficiency as functions of
the angular velocity ω, as shown in Fig. 3(a) and (b) for
different inside potential depths V = 5kBT (red squares)
10kBT (purple diamonds) and 20kBT (orange triangles).
For fixed values of V , the curves show maximum output
power at a optimal angular velocity ω, and the efficiency
η decreases monotonically with respect to the angular
velocity ω. The non-monotonic change of power and the
monotonic decrease of efficiency highlight a constraint re-
lation between the two quantities, and the possibility to
find the optimal cycle with high efficiency for a certain
power.

To determine the constraint relation, we search for the
maximum efficiency achievable for a specified power out-
put. The power and efficiency of 104 cycles are calcu-
lated with different combinations of angular velocity ω
and inside potential depth V , and the results are plot-

Figure 3. The constraint relation between the output power
P and the efficiency. (a-b) The power and efficiency of finite-
time cycles with respect to the angular velocity ω. The red
squares, purple diamonds and orange triangles show the data
with inside potential depth V = 5, 10, and 20kBT respec-
tively. (c) The constraint relation between power and effi-
ciency. We randomly selected 104 different sets of ω and V ,
and evaluate the power and efficiency for each set. The blue
circles represent data for different sets of ω and V . The gray
shaded region enclosed by the black dashed line represents
an envelope of the blue circles, illustrating the constraint re-
lation between the power and efficiency. And the data for
fixed V are shown with the same markers in (a-b), respec-
tively. The green pentagram indicates the maximum power
with P (max) = 0.080kBT/τr and η(MP) = 0.32.

ted in Fig. 3(c). Each blue circle represents the power
and efficiency of a combination of ω and V . The gray
shaded region enclosed by the black dashed line repre-
sents an envelope of the blue circles, illustrating the con-
straint relation between the power and efficiency. The
corresponding data in Fig. 3(a) and (b) with fixed inside
potential depth V are plotted with the same markers in
Fig. 3(c). The point with global maximum power is de-
noted by a green pentagram, featuring a maximum power
P (max) ≈ 0.080kBT/τr, and a corresponding efficiency,
η(MP) = 0.32. The parameters at the maximum power
are V (MP) = 8.2kBT and ω(MP)τr = 0.054π. Referring
to Fig. 3(c), we can determine the optimal efficiency for
any achievable power.

The efficiency at maximum power for the rotary mo-
tor depends on the friction coefficient γ. We present the
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Figure 4. Efficiency at maximum power in large dissipation
limit. (a) Dependence of the efficiency at maximum power
and the corresponding optimal angular velocity on the friction
coefficient γ. The blue circles indicate the efficiency at maxi-
mum power η(MP) as a function of γ, and the orange triangles
show the corresponding angular velocity ω(MP)τr. With the
increase of friction coefficient, the optimal angular velocity
ω(MP)τr approaches 0 while the efficiency at maximum power
approaches the theoretical bound η = 1/2. (b) The logarith-
mic plot of optimum angular velocity ω(MP)τr with respect to
γ. The black solid line represents the theoretical prediction
in Eq. (9).

numerical results of the optimal angular velocity ω(MP)

(orange triangles) , and the efficiency at maximum power
η(MP)(γ) (blue circles) as functions of the friction coeffi-
cient γ in Fig. 4(a). In the large dissipation limit γ → ∞,
the optimal angular velocity ω(MP) approaches 0, and
the efficiency at maximum power approaches 1/2, repre-
sented by the black dashed line. Such limit is proved in

the Supplemental materials. To the first order of 1/γ, we
obtain the optimal angular velocity and the correspond-
ing efficiency as

ω(MP) = (µH−µL)/4πγ+o(1/γ), η(MP) = 1/2+o(1/γ).
(9)

The theoretical results are in agreement with the numer-
ical results in the limit with large γ. We note that the
efficiency at maximum power has been examined in vari-
ous models [18, 20–24] for chemical engines. The leading
term with 1/2 for the efficiency at maximum power seems
universal. Here, we provide an exact proof for such term
in the rotary motor.

We would like to mention that much attention have
been drawn to the thermodynamic properties of the mi-
croscopic chemical engines [17, 19, 25–35] with most of
them concentrating on the F1 motor and the interaction
between the F1 and F0 parts. Yet the thermodynamic
cycle for the F0 portion is seldom explored, especially
for its dynamic impact on power and efficiency. In this
letter, we have evaluated the constraint relation between
the power and efficiency of a biological rotary motor op-
erating at a constant angular velocity, considering various
parameters such as the angular velocity, the depth of the
inside potential and the friction coefficient. The efficiency
at maximum power approaches 1/2 in the limit with large
dissipation coefficient. We anticipate that this research
will inspire additional investigations into the thermody-
namics of microscopic motors.

This work is supported by the Innovation Pro-
gram for Quantum Science and Technology (Grant
No. 2023ZD0300700), and the National Natural Science
Foundation of China (Grant Nos. U2230203, U2330401,
and 12088101).
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This supplemental material provides detailed derivations and discussions related to the main text. In Section I, we
determine the efficiency of a biological rotary motor operating in the quasi-static limit. In Section II, we derive the
form of the inside potential used in the main text based on Coulomb’s law. In Section III, we discuss the condition
for maximizing the output power in the limit of the dissipation coefficient γ approaching infinity.

MAXIMUM QUASI-STATIC EFFICIENCY

In this section, we derive the efficiency of the biological rotary motor in the quasi-static limit with ω → 0. During the
infinitely slow rotation, the binding site is always in equilibrium with the reservoir, and the average binding number
as a function of θ is n(0)(θ) =

(
1 + eβ(Eb−Φ(θ)−µ(θ))

)−1
, where µ(θ) = µH (µ(θ) = µL) for 0 < θ ≤ Θ (Θ < θ ≤ 2π).

The energy dissipated due to the friction Wdiss is 0 in this quasi-static limit. The net work output of a cycle in the
quasi-static limit is then obtained as

W
(0)
net = −

∫ 2π

0

(1− n(θ)) Φ′(θ)dθ

= kBT

(
ln

1 + eβ(Φ(0)−Eb+µL)

1 + eβ(Φ(0)−Eb+µH)
− ln

1 + eβ(Φ(Θ)−Eb+µL)

1 + eβ(Φ(Θ)−Eb+µH)

)
. (S1)

We conclude that the quasi-static work is determined by the values of Φ(θ) at the edges of the channel, i.e., Φ(0) and
Φ(Θ).

The number of particles transferred in a quasi-static cycle is

∆n(0) =
1

1 + e−β(Φ(Θ)−Eb+µH)
− 1

1 + e−β(Φ(0)−Eb+µL)
. (S2)

From Equations (S1) and (S2) , the quasi-static efficiency is obtained as

η =
W

(0)
net

(µH − µL)∆n(0)
=

kBT

µH − µL
×

[
1 + eβ(Φ(Θ)−Eb+µH)

] [
1 + eβ(Φ(0)−Eb+µL)

]

eβ(Φ(Θ)−Eb+µH) − eβ(Φ(0)−Eb+µL)

×
(
ln

1 + eβ(Φ(0)−Eb+µL)

1 + eβ(Φ(0)−Eb+µH)
− ln

1 + eβ(Φ(Θ)−Eb+µL)

1 + eβ(Φ(Θ)−Eb+µH)

)
. (S3)

In Fig. S1(a), we evaluate the quasi-static efficiency as a function of Φ(Θ) and Φ(0), where the relevant parameters
are chosen as µH − Eb = 5kBT , and µL − Eb = −5kBT . For the case Φ(Θ) → ∞ and Φ(0) → −∞, the efficiency
approaches the upper bound of 100%.

As shown in Fig. S1(a), for fixed depth of the inside potential V ≡ Φ(Θ)−Φ(0), the maximum quasi-static efficiency
is reached with Φ(θ) = −Φ(0) = V/2. The quasi-static efficiency η(0) as a function of V is written as

η(V ) =
kBT

µH − µL
×

[
1 + eβ(V/2−Eb+µH)

] [
1 + eβ(−V/2−Eb+µL)

]

eβ(V/2−Eb+µH) − eβ(−V/2−Eb+µL)

×
(
ln

1 + eβ(−V/2−Eb+µL)

1 + eβ(−V/2−Eb+µH)
− ln

1 + eβ(V/2−Eb+µL)

1 + eβ(V/2−Eb+µH)

)
.

This function is illustrated in Fig. S1(b). As V increases, the quasi-static efficiency approaches an upper limit of 1.
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Figure S1. Quasi-static efficiency of biological rotary motor. (a) Quasi-static efficiency as a function of the value of inside
potential Φ(Θ) and Φ(0). The efficiency approaches the upper bound 100% when Φ(Θ) → ∞ and Φ(0) → −∞. Notably, for
fixed depth V ≡ Φ(Θ)−Φ(0), the maximum quasi-static efficiency is reached with Φ(θ) = −Φ(0) = V/2. (b) The efficiency for
quasi-static cycles is shown as a function of the depth V . As V increases, the efficiency approaches it’s upper limit.

FORM OF THE INSIDE POTENTIAL

In this section, we derive the form of inside potential Φ(θ) induced by the Coulomb interaction between the stator
charge and the binding site. In Figure. S2, we denote the radius of rotor by R, and the distance between the stator
charge and the center of the rotor by (1 + δ)R. The distance between the binding site and the stator charge with
respect to the rotation coordinate θ is acquired as r = R

√
δ2 + 2(1− cos θ)δ + 2(1− cos θ). The potential energy of

the Coulomb interaction between the stator charge and the unbounded binding site is

Φ(θ) = −E
r
+Φ0. (S4)

Where Φ0 defines the potential energy of infinity, and E ≡ q1q2/(4πϵ) with q1, q2 the charge for the binding site and
stator charge, ϵ the permittivity of the medium. In the main text, we choose δ = 0.1, and the parameters E and Φ0

are determined by the equations Φ(0) = −V/2 and Φ(Θ) = V/2.
The plot of attractive inside potential Φ(θ) is illustrated in Fig. S3 for V = 5kBT . The red shaded region

(0 ≤ θ < Θ) represents the system in contact with the high potential chemical reservoir.

EFFICIENCY AT MAXIMUM POWER FOR LARGE DISSIPATION

In this section, we maximize the output power under the assumption of large dissipation γ → ∞. For such case,
the angular velocity should be small, i.e., ωτr ≪ 1 to ensure positive power output. Therefore, we treat ωτr as a
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Figure S2. A sketch of the structure of the microscopic rotor. The radius of the rotor is denoted by R, and the distance
between the center of the rotor and the stator is (1+ δ)R. Together with Coulomb’s law, we obtain the form of inside potential
as Eq. (S4).

Figure S3. The inside potential Φ as a function of the angular position θ. The potential Φ(θ) is induced by the Coulomb
interaction with a minimum at θ = 0. We set Φ(0) = −V/2 and Φ(Θ) = V/2. In the plot, we have used the parameters with
the depth of the inside potential as V = 5kBT and Θ = π/5.

perturbation parameter and expand the solution of Eq. (4) in the main text to the first order of ωτr as

n(θ) =

{
n(0)(θ, µH)− ωτr

d
dθn

(0)(θ, µH), 0 < θ ≤ Θ,

n(0)(θ, µL)− ωτr
d
dθn

(0)(θ, µL), Θ < θ ≤ 2π.
(S5)

The analytical expression for the mechanical work is given by Wmech = −
∫ 2π

0
n(θ)Φ′(θ)dθ = W (0) − ωτrW

(1). Here,
W (0) represents the quasi-static work as shown in Eq. (S1), and W (1) is an integral defined by

W (1) = −β

∫ Θ

0

eβ(Eb−Φ(θ)−µH)

[
1 + eβ(Eb−Φ(θ)−µH)

]2 [Φ′(θ)]
2
dθ − β

∫ 2π

Θ

eβ(Eb−Φ(θ)−µL)

[
1 + eβ(Eb−Φ(θ)−µL)

]2 [Φ′(θ)]
2
dθ.

Meanwhile, the particle number transferred during the finite time process is given by ∆n = ∆n(0) − ωτr∆n(1), where

∆n(1) =
eβ(Eb−Φ(Θ)−µH)

[
1 + eβ(Eb−Φ(Θ)−µH)

]2Φ′(Θ).

Taking the friction into account, we get Wnet = W (0)−ω(τrW
(1)+2πγ). The corresponding output power is P (ω, V ) =

ωW (0) − ω2(τrW
(1) + 2πγ). To ensure P > 0, there is 0 < ωτr < W (0)/(W (1) + 2πγ/τr). With γ → ∞, we have

ωτr → 0, which is in agreement with the assumption that ωτr being the perturbation parameter.
To maximize the output power of the cycle, we firstly optimize the angular velocity ω for fixed inside potential

depth V . The maximum of P with respect to ω is reached as

P (max)(V ) = max
ω

(P (ω, V )) =
[
W (0)

]2
/(4τrW

(1) + 2πγ), (S6)

with ω(MP)(V ) = W (0)/(2τrW
(1) + 4πγ). Thus, the efficiency at this optimal angular velocity is

η(MP)(V ) =
W (0) − ω(MP)(V )(τrW

(1) + 2πγ)

(µH − µL)
(
∆n(0) − ω(MP)(V )τr∆n(1)

) =
W (0)/2

(µH − µL)
(
∆n(0) −W (0)τr∆n(1)/(2τrW (1) + 4πγ)

)
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With the situation that γ → ∞ , we keep the quantities to the first order of 1/γ

P (max)(V ) ≈
[
W (0)

]2
/2πγ, ω(MP)(V ) ≈ W (0)/4πγ. (S7)

And

η(MP)(V ) ≈ W (0)(V )/2

(µH − µL)∆n(0)(V )

(
1 +

∆n(1)(V )

4π∆n(0)(V )

W (0)τr
γ

)
.

Then we optimize P (max)(V ) with respect to V . From Eq. (S7), the maximum of P (max)(V ) is achieved at the
maximum of W (0)(V ). By setting Φ(θ) = −Φ(0) = V/2, the quasi-static work in Eq. (S1) is rewritten as a function
of V as

W (0)(V ) = kBT

(
ln

1 + eβ(−V/2−Eb+µL)

1 + eβ(−V/2−Eb+µH)
− ln

1 + eβ(V/2−Eb+µL)

1 + eβ(V/2−Eb+µH)

)
. (S8)

Whose upper limit is achieved only when V → ∞ as W
(0)
max = µH − µL. Thus, when V → ∞, the power also achieve

it’s universal maximum as

Pmax =
[
W (0)

max

]2
/2πγ = (µH − µL)

2/2πγ.

The efficiency at this maximum power is obtained as

η(MP) → 1

2
+ O(1/γ2), ω(MP) → (µH − µL)/4πγ.

The first order term for 1/γ of η(MP) vanishes for limV→∞ ∆n(1)(V ) = 0. Thus, under the limit of large dissipation
γ → ∞, there is η(MP) → 1/2 to the first order of 1/γ.


