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PRODUCTS OF COMMUTATORS IN MATRIX RINGS

MATEJ BREŠAR, EUSEBIO GARDELLA, AND HANNES THIEL

Abstract. Let R be a ring and let n ≥ 2. We discuss the question of whether
every element in the matrix ring Mn(R) is a product of (additive) commutators
[x, y] = xy − yx, for x, y ∈ Mn(R). An example showing that this does not
always hold, even when R is commutative, is provided. If, however, R has
Bass stable rank one, then under various additional conditions every element
in Mn(R) is a product of three commutators. Further, if R is a division
ring with infinite center, then every element in Mn(R) is a product of two
commutators. If R is a field and a ∈ Mn(R), then every element in Mn(R) is
a sum of elements of the form [a, x][a, y] with x, y ∈ Mn(R) if and only if the
degree of the minimal polynomial of a is greater than 2.

1. Introduction

By the commutator of elements a and b in a ring we will always mean the additive
commutator [a, b] = ab− ba. The second and third named authors recently showed
that if a unital ring S is generated by its commutators as an ideal, then there
exists a natural number N such that every element a ∈ S is a sum of N products

of pairs of commutators, that is, a =
∑N

i=1[bi, ci][di, ei] for some bi, ci, di, ei ∈ S;
see [GT23, Theorem 3.4]. The minimal such N , denoted ξ(S), was computed or
estimated for various classes of rings and C∗-algebras. In particular, for any unital,
possibly noncommutative ring R, the ringMn(R) of n-by-nmatrices overR satisfies
ξ(Mn(R)) ≤ 2 for every n ≥ 2; see [GT23, Theorem 5.4].

This paper is mainly concerned with the question of whether every matrix
in Mn(R) is actually the product of (two or more) commutators rather than a
sum of double products. The fundamental case where R = F is a field was treated
quite a while ago by Botha who proved that every matrix in Mn(F ) is a product
of two commutators [Bot97, Theorem 4.1], that is to say, ξ(Mn(F )) = 1 for every
field F and every n ≥ 2 (for fields of characteristic 0 this was proved earlier in
[Wu89]). We will be interested in more general rings.

Our problem can be placed in a more general context. Over the last years, there
has been a growing interest in images of noncommutative polynomials in matrix
algebras. We refer the reader to the recent survey [KBMRY20] on this topic. Note
that the condition that ξ(Mn(R)) = 1 can be reformulated as saying that the
image of the polynomial f = [X1, X2][X3, X4] on Mn(R) is the whole Mn(R), and
the aforementioned result by Botha confirms the L’vov-Kaplansky conjecture for f ;
this conjecture states that the image of any multilinear polynomial on Mn(F ) is a
vector subspace.
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Let us present the main results of this paper. In Section 2, we provide an example
showing the nontriviality of our problem. The following is a simplified version of
Theorem 2.2.

Example A. There exist a commutative, unital ring R and a matrix a ∈ M2(R)
that cannot be written as a product of commutators.

Together with the aforementioned result from [GT23], Example A shows that
there exist rings R such that ξ(M2(R)) = 2. This answers [GT23, Question 5.7].

Section 3 is primarily devoted to matrix algebras over algebras having Bass stable
rank one. The following is a combination of Theorem 3.7 and Theorem 3.9.

Theorem B. Let A be a unital algebra over an infinite field, and assume that A
has Bass stable rank one. Let n ≥ 3. Then the following statements hold:

(1) Every matrix in GLn(A) is a product of three commutators.
(2) If A is right K-Hermite, then every matrix in Mn(A) is a product of three

commutators.

We also prove that if A is any unital algebra over an infinite field and n ≥ 3, then
every triangular matrix in Mn(A) is a product of two commutators (Theorem 3.3).
This is needed in the proof of Theorem B, but is of independent interest.

Matrix rings over division rings are the topic of Section 4. The following is
Theorem 4.4.

Theorem C. Let D be a division ring with infinite center and let n ≥ 2. Then
every matrix a ∈ Mn(D) is a product of two commutators.

The assumption that the center is infinite is unnecessary if either n = 2 (Proposition 4.2)
or if a is singular (Proposition 4.7). Its necessity in general is left open.

The final Section 5 studies a variation of the problem from the preceding sections:
We consider only commutators with a fixed element (that is, values of an inner
derivation), but allow for sums of their products rather than only products. The
following is Theorem 5.4.

Theorem D. Let F be a field, let n ≥ 2, and let a ∈ Mn(F ). Then every matrix
in Mn(F ) is a sum of matrices of the form [a, x][a, y] with x, y ∈ Mn(F ) if and only
if the degree of the minimal polynomial of a is greater than 2.

2. Matrices that are not products of commutators

In this section, we exhibit an example of a commutative, unital ring such that
not every 2-by-2 matrix over this ring is a product of (finitely many) commutators;
see Theorem 2.2.

Let C be a commutative algebra over a field F . We denote by sl2(C) ⊆ M2(C)
the space of trace zero matrices. Note that the commutator of any two matrices from
M2(C) belongs to sl2(C). For the case C = F , Albert and Muckenhoupt [AM57]
(extending earlier work of Shoda [Sho37, Satz 3] in characteristic 0) showed that
the converse also holds, that is, a matrix over a field is a commutator if and only if
it has trace zero.

In the following result, we consider the case where C = F .

Lemma 2.1. Let s1, s2, . . . , sn ∈ sl2(F ) satisfy

s1s2 · · · sn = 0.



PRODUCTS OF COMMUTATORS IN MATRIX RINGS 3

Let t1k, t2k, t3k, t4k ∈ sl2(F ), for k = 1, . . . , n, be any trace zero matrices, and set

r1 = t11s2 · · · sn + s1t12s3 · · · sn + · · ·+ s1 · · · sn−1t1n,

r2 = t21s2 · · · sn + s1t22s3 · · · sn + · · ·+ s1 · · · sn−1t2n,

r3 = t31s2 · · · sn + s1t32s3 · · · sn + · · ·+ s1 · · · sn−1t3n,

r4 = t41s2 · · · sn + s1t42s3 · · · sn + · · ·+ s1 · · · sn−1t4n.

Then {r1, r2, r3, r4} ⊆ M2(F ) is a linearly dependent set over F .

Proof. Set R = {r1, r2, r3, r4}. The proof is by induction on n. If n = 1, then
ri = ti1 for all i = 1, . . . , 4. Thus R ⊆ sl2(F ) must be linearly dependent since
dimF (sl2(F )) = 3.

We may thus assume that the lemma is true for all positive integers less than n.
If s1 is invertible, then s2 · · · sn = 0 and hence the induction hypothesis implies
that s−1

1 R is linearly dependent, so R is linearly dependent too. We may therefore
assume that s1 is not invertible, and, analogously, we may assume that sn is not
invertible.

Being 2×2 matrices with trace zero with zero determinant, s1 and sn have square
zero, which implies that s1risn = 0 for all i = 1, . . . , 4. If R was linearly indepen-
dent, then it would follow that s1M2(F )sn = {0}, which is possible only if s1 = 0
or sn = 0. Assume that s1 = 0. Then rk = tk1s2 · · · sn for k = 1, 2, 3, 4. Set
x = s2 · · · sn. Then r1, r2, r3, r4 ∈ sl2(F )x, which is at most three-dimensional.
Thus R is linearly dependent, which is a contradiction. The case sn = 0 is analo-
gous, and in either case we deduce that R is linearly dependent. �

Given a nonunital F -algebra B, recall that its (minimal) unitization is the F -
algebra C = B ⊕ F with product given by (a, λ)(b, µ) = (µa+ λb + ab, λµ) for all
a, b ∈ B and all λ, µ ∈ F .

Theorem 2.2. Let C0 be a 4-dimensional F -algebra with zero multiplication, and
let {c1, c2, c3, c4} be a basis for C0. Let C be the unitization of C0. Then the matrix
a = [ c1 c2

c3 c4 ] ∈ M2(C) cannot be written as a product of elements in sl2(C). In
particular, a cannot be written as a product of commutators in M2(C).

Proof. Arguing by contradiction, suppose that there exist t1, t2, . . . , tn ∈ sl2(C)
such that

a = t1t2 · · · tn.

For each k = 1, . . . , n, there are t1k, . . . , t4k ∈ M2(F ) and t0k ∈ F such that

tk = t0k + c1t1k + c2t2k + c3t3k + c4t4k.

Applying the trace τ of M2(C) to the identity above, and using that tk ∈ sl2(C)
yields the identity

0 = t0k + c1τ(t1k) + c2τ(t2k) + c3τ(t3k) + c4τ(t4k)

in C. Since {1, c1, c2, c3, c4} is a linearly independent set in C, it follows that each
tik belongs to sl2(F ). Moreover, a = t1t2 · · · tn implies that

t01t02 · · · t0n = 0.

For i, j = 1, 2, let eij ∈ M2(C) be the corresponding matrix unit. Writing each
matrix tj in the basis {1, c1, c2, c3, c4} and using that cicj = 0, the identity a =
t1t2 · · · tn can be seen to imply

e11 =t11t02 · · · t0n + t01t12t03 · · · t0n + · · ·+ t01 · · · t0n−1t1n,

e12 =t21t02 · · · t0n + t01t22t03 · · · t0n + · · ·+ t01 · · · t0n−1t2n,

e21 =t31t02 · · · t0n + t01t32t03 · · · t0n + · · ·+ t01 · · · t0n−1t3n,

e22 =t41t02 · · · t0n + t01t42t03 · · · t0n + · · ·+ t01 · · · t0n−1t4n.



4 MATEJ BREŠAR, EUSEBIO GARDELLA, AND HANNES THIEL

As the set {e11, e12, e21, e22} is linearly independent in M2(F ), this contradicts
Lemma 2.1. Therefore the matrices t1, . . . , tn do not exist, as desired. �

3. Matrices over algebras with Bass stable rank one

Given an algebra A over an infinite field and n ≥ 3, we show that every tri-
angular n-by-n matrix over A is a product of two matrices with zero diagonal
(Proposition 3.1), and hence a product of two commutators; see Theorem 3.3. As
an application, we show that every element in a von Neumann algebra of type In
is a product of two commutators; see Example 3.4.

If A has Bass stable rank one, we deduce that every invertible matrix over A is a
product of three commutators; see Theorem 3.7. If A is a right K-Hermite ring with
Bass stable rank one, then every matrix over A is a product of three commutators;
see Theorem 3.9.

Proposition 3.1. Let R be a unital ring, and let n ≥ 3. Then every upper trian-
gular matrix in Mn(R) is the product of two matrices with zero diagonals. More
precisely, if a = (aj,k)j,k ∈ Mn(R) is upper triangular, then a = bc for the matrices
b = (bj,k)j,k ∈ Mn(R) and c = (cj,k)j,k ∈ Mn(R) given by

bj,k =



















aj,n, if j ≥ 2, k = 1

1, if j = 1, k = 2

aj,k−1, if k ≥ 3

0, else

,

and all entries of c zero except

c2,1 = a1,1, c2,n = a1,n, c1,n = c3,2 = c4,3 = . . . = cn,n−1 = 1.

Similarly, every lower triangular matrix in Mn(R) is the product of two matrices
with zero diagonals.

Proof. The result for upper triangular matrices is proved by executing a matrix
multiplication, and the result for lower triangular matrices is shown analogously.
We omit the details and instead indicate the factorizations for the cases n = 3 and
n = 4.

In M3(R), we have:




a11 a12 a13
0 a22 a23
0 0 a33



 =





0 1 a12
a23 0 a22
a33 0 0









0 0 1
a11 0 a13
0 1 0



 .

In M4(R), we have








a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44









=









0 1 a12 a13
a24 0 a22 a23
a34 0 0 a33
a44 0 0 0

















0 0 0 1
a11 0 0 a14
0 1 0 0
0 0 1 0









.

�

The next result is well known, but we could not locate a precise reference.

Lemma 3.2. Let n ≥ 2, and let R be a unital ring containinig central elements
a1, . . . , an ∈ R such that the pairwise differences aj − ak for j 6= k are invertible
in R. Then every n-by-n matrix with zero diagonal is a commutator in Mn(R).
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Proof. Consider the diagonal matrix a with diagonal entries a1, . . . , an. Given a
matrix b = (bjk)j,k ∈ Mn(R), the commutator [a, b] is the matrix (cjk)j,k with
entries cjk = (aj − ak)bjk for j, k = 1, . . . , n. We illustrate the case n = 3:









a1 0 0
0 a2 0
0 0 a3



 ,





b11 b12 b13
b21 b22 b23
b31 b32 b33









=





0 (a1 − a2)b12 (a1 − a3)b13
(a2 − a1)b21 0 (a2 − a3)b23
(a3 − a1)b31 (a3 − a2)b32 0



 .

Now, given a matrix c = (cjk)j,k ∈ Mn(R) with zero diagonal, consider the
matrix b with entries bjj = 0 for j = 1, . . . , n and bjk := (aj − ak)

−1cjk for j 6= k.
Then c = [a, b]. �

Theorem 3.3. Let A be a unital algebra over an infinite field, and let n ≥ 3. Then
every upper (lower) triangular matrix in Mn(A) is the product of two commutators.

Proof. By Proposition 3.1, every triangular matrix is the product of two matrices
with zero diagonal. Since A is an algebra over an infinite field, the assumptions of
Lemma 3.2 are satisfied and it follows that every matrix over A with zero diagonal
is a commutator. �

For a topological space X , we write C(X) for the algebra of all continuous
functions X → C endowed with pointwise operations. Recall that a space X is said
to be extremally disconnected (also called a Stonean space), if the closure of every
open set in X is open (and hence clopen).

Example 3.4. Let n ≥ 3, and let A be an AW ∗-algebra of type In in the sense
of [Ber72, Definition 18.2]. (This includes all von Neumann algebras of type In,
that is, von Neumann algebras such that every irreducible representation acts on a
Hilbert space of dimension n.) We will argue that every element in A is a product
of two commutators.

It is a standard fact in C*-algebra theory that there is an extremally disconnected
compact Hausdorff space X such that A ∼= Mn(C(X)). Given a ∈ Mn(C(X)), by
a result of Deckard and Pearcy [DP63, Theorem 2] there exists a unitary u ∈
Mn(C(X)) such that uau∗ is upper triangular. (A more conceptual proof of this
result was given in [Azo74, Corollary 6].) If n ≥ 3, then it follows from Theorem 3.3
that uau∗ is a product of two commutators, and consequently so is a itself.

The result also holds for n = 2, and in fact for arbitrary von Neumann algebras
of type I, but the proof is more complicated since one needs to control the norm of
the elements going into the commutators. This will appear in forthcoming work of
the second and third named authors; see [GT24].

We say that a matrix (ajk)j,k ∈ Mn(R) has zero trace if a11 + . . . + ann = 0.
The following result is well known; see, for example, [KP14, Theorem 4].

Theorem 3.5. Let R be a unital ring, and n ≥ 2. Then every triangular matrix
in Mn(R) with zero trace is a commutator.

A unital ring R is said to have Bass stable rank one if for all a, b ∈ R such that
R = Ra+Rb, there exists c ∈ R such that R = R(a+cb). In other words, whenever
a and b generate R as a left ideal, then there exists an element c ∈ R such that
a + cb is left invertible. For more details and an overview on the theory of Bass
stable rank, we refer to [Vas84, Che11].

Two matrices a, b ∈ Mn(R) over a unital ring R are said to be similar if
a = vbv−1 for some v ∈ GLn(R). In [VW90], Vaserstein and Wheland showed
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that every invertible matrix over a ring with Bass stable rank one is a product
of three triangular matrices, and similar to a product of two triangular matrices.
Combined with Theorem 3.3, one can immediately deduce that invertible matri-
ces over suitable rings are products of four commutators. Using a more refined
argument, we show that products of three commutators suffice; see Theorem 3.7.

Lemma 3.6. Let R be a unital ring of Bass stable rank one, let n ≥ 2, and let
a ∈ GLn(R). Then there exist b, c ∈ GLn(R) such that b is lower triangular, c is
upper triangular with all diagonal entries equal to 1, and a is similar to bc.

Proof. By [VW90, Theorem 1], there exist x, y, z ∈ GLn(R) such that a = xyz, and
such that x and z are lower triangular, and y is upper triangular. From the proof
of [VW90, Theorem 1] we see that we can arrange that y and z have all diagonal
entries equal to 1. Set b := zx and c := y. Then b is lower triangular, and c is
upper triangular with all diagonal entries equal to 1. Further, a is similar to the
matrix zaz−1 = (zx)y = bc. �

Theorem 3.7. Let A be a unital algebra over an infinite field, and assume that A
has Bass stable rank one. Then for n ≥ 3, every matrix in GLn(A) is a product of
three commutators.

Proof. Let a ∈ GLn(A). Use Lemma 3.6 to find b, c ∈ GLn(A) such that b is lower
triangular, c is upper triangular with all diagonal entries equal to 1, and a is similar
to bc. It suffices to show that bc is a product of three commutators, since then so
is a.

Since A is an algebra over an infinite field, we can find invertible elements
λ1, . . . , λn ∈ A such that λ1 + . . . + λn = 0. Let e ∈ Mn(A) denote the diagonal
matrix with diagonal entries λ1, . . . , λn. Then ec is upper triangular with diagonal
λ1, . . . , λn. Thus ec has trace zero, and is therefore a commutator by Theorem 3.5.
Further, be−1 is lower triangular (not necessarily with trace zero), and therefore is
a product of two commutators by Theorem 3.3. Thus, bc = (be−1)(ec) is a product
of three commutators. �

There are different notions of a ‘left (right) Hermite ring’ in the literature, some
meaning that every finitely generated, stably free left (right) R-module is free (see,
for example, [Lam06, Definition I.4.6]), and some referring to the notion studied
by Kaplansky in [Kap49]. Following Lam, [Lam06, Definition I.4.23], we say that
a (not necessarily commutative) ring R is right K-Hermite (the ’K’ standing for
Kaplansky) if for every 1-by-2 matrix

(

x y
)

∈ M1,2(R) there exists Q ∈ GL2(R)

such that
(

x y
)

Q =
(

z 0
)

for some z ∈ R. Equivalently, for every rectangular
matrix a ∈ Mm,n(R) there exists an invertible matrix v ∈ Mn(R) such that av is
lower triangular; see [Kap49, Theorem 3.5]. Similarly, a ring R is left K-Hermite
if for every rectangular matrix a ∈ Mm,n(R) there exists an invertible matrix w ∈
Mm(R) such that wa is upper triangular.

The next result is analogous to Lemma 3.6, with the only difference that we ob-
tain a result for all matrices (not only invertible matrices), and the lower triangular
matrix b may thus not be invertible.

Lemma 3.8. Let R be a unital, right K-Hermite ring of Bass stable rank one,
let n ≥ 2, and let a ∈ Mn(R). Then there exist b, c ∈ Mn(R) such that b is lower
triangular, c is upper triangular with all diagonal entries equal to 1, and a is similar
to bc.

Proof. By [Kap49, Theorem 3.5], there exist a lower triangular matrix x ∈ Mn(R)
and y ∈ GLn(R) such that a = xy. We now apply [VW90, Theorem 1] for y and
obtain u, v, w ∈ GLn(R) such that y = uvw, and such that u and w are lower
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triangular, and v is upper triangular. From the proof of [VW90, Theorem 1] we see
that we can arrange that v and w have all diagonal entries equal to 1.

Set b := wxu and c := v. Then b is lower triangular, and c is upper triangular
with all diagonal entries equal to 1. Further, a is similar to the matrix waw−1 =
w(xuvw)w−1 = (wxu)v = bc. �

Theorem 3.9. Let A be a unital algebra over an infinite field, and assume that A
is right K-Hermite and has Bass stable rank one. Then for n ≥ 3, every matrix in
Mn(A) is a product of three commutators.

Proof. This is analogous to the proof of Theorem 3.7. �

Question 3.10. Can the assumption that A is an algebra over an infinite field be
removed in Theorem 3.7 or Theorem 3.9? Do these results hold for n = 2?

Remark 3.11. Chen and Chen showed in [CC04, Theorem 2.2] that a unital
ring R is right K-Hermite and has Bass stable rank one if and only if every matrix
a ∈ Mn(R) admits a factorization a = bcd in Mn(R) with b and d lower triangular,
c upper triangular and all diagonal entries of c and d equal to 1.

Let us point out a few instances to which the above results are applicable. The
first one is extremely easy, but we will need it in the next section.

Example 3.12. Every division ring D is right K-Hermite and has Bass stable rank
one. The latter is obvious since D has no proper nonzero left ideals. To prove the
former, take x, y ∈ D. We want to find an invertible matrix Q ∈ M2(D) such that
(

x y
)

Q =
(

z 0
)

for some z ∈ D. If x 6= 0, one may take Q =
(

1 −x−1y
0 1

)

. If

x = 0, one may take Q = ( 0 1
1 0 ). It follows that D is right K-Hermite.

The next example is more general.

Example 3.13. A unital ring is said to be (von Neumann) regular if for every
x ∈ R there exists y ∈ R such that x = xyx. If one can always arrange y to be
invertible, then R is said to be unit-regular. We refer to [Goo79] for more details.

A regular ring has Bass stable rank one if and only if it is unit-regular; see
[Goo79, Proposition 4.12]. Further, every unit-regular ring is right K-Hermite; this
follows from [MM82, Theorem 9] as noted in the introduction of [AGOP97].

Thus, if R is a unit-regular ring that is an algebra over an infinite field, and n ≥ 3,
then every matrix in Mn(R) is a product of three commutators by Theorem 3.9.

Example 3.14. A unital C∗-algebra A is said to have stable rank one if GL(A) is
norm-dense in A; see [Rie83]. By [HV84], A has stable rank one if and only if A
has Bass stable rank one (as a ring). Further, every C∗-algebra is an algebra over
the infinite field of complex numbers. Therefore, Theorem 3.7 applies to invertible
matrices of size at least 3-by-3 over C∗-algebras of stable rank one. In some cases,
one has A ∼= Mn(B) for some n ≥ 3 and some other C∗-algebra B (which then au-
tomatically has stable rank one as well) and then Theorem 3.7 applies to invertible
elements in A itself. For example, every invertible element in a UHF-algebra is a
product of three commutators.

Many naturally occurring simple, unital C∗-algebras have stable rank one. This
includes all finite, nuclear, classifiable C∗-algebras [Rør04]; many finite, nuclear,
non-classifiable C∗-algebras [EHT09, Vil98, Tom08]; reduced group C∗-algebras
of free products [DHR97]; and crossed products of minimal homeomorphisms on
infinite, compact, metric spaces [AL22].

The comparison theory of positive elements and Hilbert modules is particularly
well-developed for C∗-algebras of stable rank one [Thi20, APRT22].
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4. Matrices over division rings

In this section, we show that every matrix over a division ring with infinite
center is a product of two commutators; see Theorem 4.4. We also show that every
singular matrix over an arbitrary division ring is a product of two commutators;
see Proposition 4.7.

Lemma 4.1. Let D be a division ring, and let r, s, t ∈ D. Then the matrix a =
( r s
t −r ) ∈ M2(D) is a commutator in M2(D). More precisely, there exist b ∈ GL2(D)

and c ∈ M2(D) such that a = [b, c].

Proof. Case 1: We have r = 0 and s, t 6= 0. Then
(

0 s

t 0

)

=

[(

0 −s

t 0

)

,

(

1 0
0 0

)]

and the matrix
(

0 −s
t 0

)

is invertible.
Case 2: We have s = 0. Then

(

r 0
t −r

)

=

[(

1 0
1 1

)

,

(

0 −r

0 −t

)]

and the matrix ( 1 0
1 1 ) is invertible.

Case 3: We have t = 0. This is analogous to case 2.
Case 4: We have r, s, t 6= 0. Then

(

r s

t −r

)

=

[(

0 −srt−1

r 0

)

,

(

0 −1
0 −tr−1

)]

and the matrix
(

0 −srt−1

r 0

)

is invertible. �

Next, we consider arbitrary 2-by-2 matrices over a division ring.

Proposition 4.2. Let D be a division ring, and let a ∈ M2(D). Then there exist
b, c, d, e ∈ M2(D) such that a = [b, c][d, e], and such that [b, c] and d are invertible.
In particular, every matrix in M2(D) is a product of two commutators.

Proof. Let a = ( r s
t u ) ∈ M2(D).

Case 1: We have s, t 6= 0. Then

a =

(

r s

t u

)

=

(

0 −st−1

1 0

)(

t u

−ts−1r −t

)

and the first matrix is invertible. By Lemma 4.1, both matrices appearing in the
factorization above are commutators of a matrix in GL2(D) and a matrix in M2(D).

Case 2: We have s = 0 and t 6= 0. Then

a =

(

r 0
t u

)

=

(

1 −(u− r)t−1

0 −1

)(

u (u− r)t−1u

−t −u

)

and the first matrix is invertible. Again by Lemma 4.1, both matrices are commu-
tators of a matrix in GL2(D) and a matrix in M2(D).

Case 3: We have s 6= 0 and t = 0. This is analogous to case 2.
Case 4: We have s = t = 0. Then

a =

(

r 0
0 u

)

=

(

0 1
1 0

)(

0 u

r 0

)

and the first matrix is invertible. Once again by Lemma 4.1, both matrices are
commutators of a matrix in GL2(D) and a matrix in M2(D). �

Lemma 4.3. Let D be a division ring containing at least three elements, let n ≥ 2,
and let 1n ∈ Mn(D) denote the identity matrix. Then there exist b, c, d, e ∈ Mn(D)
such that 1n = [b, c][d, e], and such that [b, c] and d are invertible.
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Proof. For n = 2 this follows from Proposition 4.2, so we consider the case n = 3.
Since D contains at least three elements, we can choose x ∈ D \ {0, 1}. Then

y := x− 1 is not zero. We have








0 0 −x

1 0 0
0 y 0



 ,





0 0 1
0 0 0
0 −1 0







 =





0 1 0
0 0 1
1 0 0





and the matrix
(

0 0 −x
1 0 0
0 y 0

)

is invertible. Similarly, we see that
(

0 0 1
1 0 0
0 1 0

)

is an (invert-

ible) commutator in M3(D). Since 13 =
(

0 1 0
0 0 1
1 0 0

)(

0 0 1
1 0 0
0 1 0

)

, this establishes the case

n = 3.
In preparation for the general case, let us fix matrices b2, c2, d2, e2 ∈ M2(D) and

b3, c3, d3, e3 ∈ M3(D) satisfying

12 =
[

b2, c2
][

d2, e2
]

and 13 =
[

b3, c3
][

d3, e3
]

,

and such that
[

b2, c2
]

,
[

b3, c3
]

, d2 and d3 are invertible. Given n ≥ 4, find k, l ≥ 0
with n = 2k + 3l. Let b ∈ Mn(D) be the block-diagonal matrix with k blocks b2
and l blocks b3. Define c, d, e ∈ Mn(D) similarly. It is then easy to check that
1n = [b, c][d, e], and that [b, c] and d are invertible, thus finishing the proof. �

Theorem 4.4. Let D be a division ring with infinite center. Then every matrix in
Mn(D) for n ≥ 2 is a product of two commutators.

Proof. For every (not necessarily infinite) field F , every matrix in Mn(F ) for n ≥ 2
is a product of two commutators; see [Bot97, Theorem 4.1]. Thus, we may assume
that D is noncommutative.

We verify the following stronger result by induction over n: For all a ∈ Mn(D),
there exist b, c, d, e ∈ Mn(D) such that a = [b, c][d, e], and such that [b, c] and d are
invertible.

The case n = 2 follows from Proposition 4.2. Assume that the result holds for
some n ≥ 2, and let us verify it for n+ 1.

Let a ∈ Mn+1(D). If a is central, then the result follows from Lemma 4.3.
Thus, we may assume that a is noncentral. Then, by [AR94, Proposition 1.8], a
is similar to a matrix whose (1, 1)-entry is zero. (Note that the global assumption
of [AR94] that division rings are finite-dimensional over their centers is not used
in the proof of [AR94, Proposition 1.8].) Since the desired conclusion is invariant
under similarity, we may assume, without loss of generality, that a11 = 0. Let
b ∈ M1,n(D), c ∈ Mn,1(D) and x ∈ Mn(D) satisfy

a =

(

0 b

c x

)

.

Since D is noncommutative, there exist a nonzero commutator d ∈ D. By the
inductive assumption, we have x = y[v, w] for an invertible commutator y ∈ Mn(D)
and v ∈ GLn(D) and w ∈ Mn(D). Then

a =

(

0 b

c x

)

=

(

d 0
0 y

)(

0 d−1b

y−1c [v, w]

)

.

The matrix
(

d 0
0 y

)

is an invertible commutator in Mn+1(D). It remains to verify

that
(

0 d−1b

y−1c [v,w]

)

is the commutator of some matrix in GLn+1(D) and a matrix in

Mn+1(D). For this, we will need a result of [Coh73], and we first recall some of its
terminology.

An element λ ∈ D is called a left eigenvalue of v if there exists a nonzero
ξ ∈ Mn,1(D) such that vξ = ξλ, and λ is called a right eigenvalue if there exists a
nonzero η ∈ M1,n(D) such that ηv = λη. The set of all left and right eigenvalues is
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called the spectrum of v; see [Coh73]. By [Coh73, Proposition 2.5], an element λ in
the center Z(D) ofD belongs to the spectrum of v if and only if v−λ is singular (λ is
called a ‘singular eigenvalue’ of z). Further, by [Coh73, Theorem 2.4], the spectrum
of v contains at most finitely many conjugacy classes. Consequently, there are at
most finitely many λ ∈ Z(D) such that v − λ is singular.

Using that Z(D) is infinite, we obtain a nonzero λ ∈ Z(D) such that v − λ is
invertible. We then have

(

0 d−1b

y−1c [v, w]

)

=

[(

λ 0
0 v

)

,

(

0 d−1b(λ− v)−1

(v − λ)−1y−1c w

)]

and ( λ 0
0 v ) is invertible. This proves the inductive step and finishes the proof. �

Recall that a division ring that is finite-dimensional over its center is called a
central division algebra. Since every finite division ring is a field, Theorem 4.4 along
with [Bot97, Theorem 4.1] yields the following result.

Corollary 4.5. Let D be a central division algebra. Then every matrix in Mn(D)
for n ≥ 2 is a product of two commutators.

The comparison of Proposition 4.2 and Theorem 4.4 raises the following ques-
tion:

Question 4.6. Can the assumption that D has infinite center be removed in
Theorem 4.4?

For n = 2, the answer is “yes” by Proposition 4.2. The next proposition provides
another such instance.

Proposition 4.7. Every singular matrix over a division ring is a product of two
commutators.

Proof. Let D be a division ring, let n ≥ 2, and let a ∈ Mn(D) be non-invertible. By
Proposition 4.2, we may assume that n ≥ 3. We may also assume that D contains
at least three elements, since otherwise D is a field and then every matrix over D
is a product of two commutators by [Bot97, Theorem 4.1].

Since D is a right K-Hermite ring and has Bass stable rank one by Example 3.12,
we can apply Lemma 3.8 and deduce that a is similar to the product bc for a lower
triangular matrix b and an upper triangular matrix c with all diagonal entries equal
to 1. Since the statement is invariant under similarity, we may assume that a = bc.
Further, since a = bc is not invertible, using that D is a division ring it follows that
at least one of the diagonal entries of b is zero. Without loss of generality, upon
taking a similar matrix we may assume that bnn = 0.

Using that D contains at least three elements and n ≥ 3, we can choose nonzero
e1, . . . , en−1 ∈ D such that e1 + . . . + en−1 = 0. Let e ∈ Mn(D) be the diagonal
matrix with diagonal entries e1, . . . , en−1, 1. Then a = bc = (be−1)(ec), and the
matrix be−1 is lower diagonal with diagonal entries b1,1e

−1
1 , . . . , bn−1,n−1e

−1
n−1, bnn.

Similarly, ec is upper diagonal with diagonal entries e1, . . . , en−1, 1.
Let b′ be equal to the matrix be−1, except with the (n, n)-entry replaced by

−
∑n−1

j=1 bj,je
−1
j ; and let c′ be equal to the matrix ec, except with the (n, n)-entry

replaced by 0. Then a = b′c′, and b′ and c′ are triangular matrices with zero trace,
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therefore commutators by Theorem 3.5. The factorization is:

a =

















b11 0 0 · · · 0

b21 b22 0
...

...
. . .

bn−1,1 . . . bn−1,n−1 0
bn,1 . . . bn,n−1 0































1 c1,2 c1,3 · · · c1,n
0 1 c2,3 · · · c2,n
...

. . .
...

0 . . . 1 cn−1,n

0 . . . 0 1















=

















b11e
−1
1 0 0 · · · 0

∗ b22e
−1
2 0

...
...

. . .

∗ . . . bn−1,n−1e
−1
n−1 0

∗ . . . ∗ 0































e1 ∗ ∗ · · · ∗
0 e2 ∗ · · · ∗
...

. . .
...

0 . . . en−1 ∗
0 . . . 0 1















=











b11e
−1
1 0 · · · 0
...

. . .
...

∗ . . . bn−1,n−1e
−1
n−1 0

∗ . . . ∗ −
∑n−1

j=1 bjje
−1
j





















e1 ∗ · · · ∗
...

. . .
...

0 . . . en−1 ∗
0 . . . 0 0











.

�

5. Commutators with a fixed element

In this section, we consider the more general problem of presenting elements in
matrix algebras by commutators with a fixed matrix a. This is obviously consid-
erably more demanding than allowing arbitrary commutators, so we will restrict
ourselves to matrices over a field F . Our goal is to prove Theorem D from the
introduction.

We remark that if a matrix a ∈ Mn(F ) has rank k, then any commutator
[a, x], with x ∈ Mn(F ), has rank at most 2k. The same is therefore true for
any product [a, x1] · · · [a, xm], with xi ∈ Mn(F ). In order to represent every matrix
in Mn(F ) by commutators [a, x], their products are thus insufficient and we are
forced to involve sums of products. Motivated by the invariant ξ from [GT23,
Definition 5.1] (see the introduction), we are particularly interested in sums of
products of two commutators. Another motivation is the result by Mesyan [Mes06,
Theorem 15] which states that every trace zero matrix can be written as a sum of
two commutators with fixed matrices.

Our approach is based on the concept of a derivation. Recall that a linear map D

from an algebra A to itself is called a derivation if D(xy) = D(x)y + xD(y) for all
x, y ∈ A. For any a ∈ A, the map x 7→ [a, x] is a derivation. Such derivations are
called inner. The problem that we address can obviously be formulated in terms
of inner derivations.

Let us start with an observation which is implicit in Herstein’s paper [Her78].
Let A be any algebra and let D : A → A be a derivation. A straightforward
verification shows that for all x, y, z ∈ A, we have

xD3(y)z = D
(

xD2(y)z
)

−D(x)D (D(y)z)−D (xD(y))D(z) + 2D(x)D(y)D(z).

Accordingly, if D3 6= 0, then the subalgebra D(A) generated by the image of D

contains a nonzero ideal of A. In particular, D(A) is equal to the whole algebra A

if A is simple. More precisely, the above formula shows that every element in A is
a sum of products of at most three elements from the image of D.

It should be remarked that the assumption that D3 6= 0 is necessary. Indeed,
every element a ∈ A such that a2 = 0 gives rise to the inner derivation D(x) = [a, x]
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which, as can be easily checked, satisfies D3 = 0 and aD(A)a = {0}. The latter

implies that D(A) cannot be equal to A if a 6= 0 and A is simple.
The above observation, however, does not help us if we wish to present every

element in A as a sum of products of exactly two elements from the image of an
(inner) derivation D. A slightly more sophisticated approach is necessary to tackle
this problem. We start with the following result.

Lemma 5.1. Let D be a derivation of an algebra A, and let b, c ∈ A satisfy
D(b)c = 0. Then

xD(b)D(c)z = D(xb)D(cz)−D(x)D(bcz)

for all x, z ∈ A. Therefore, if D(b)D(c) 6= 0 and A is simple, then every element
in A is a sum of elements of the form D(x)D(y) with x, y ∈ A.

Proof. Note that D(b)c = 0 implies

D(xb)D(cz) = D(x)bcD(z) + xD(b)D(c)z +D(x)bD(c)z

and

D(bcz) = bD(c)z + bcD(z),

from which the formula from the statement of the lemma follows. If D(b)D(c) 6= 0,
then this formula implies that the ideal of A generated by D(b)D(c) is contained
in the set of sums of elements of the form D(x)D(y) with x, y ∈ A. Therefore, this
set is equal to A if A is simple. �

Lemma 5.1 raises the question of when do there exist elements b, c ∈ A such that
D(b)c = 0 and D(b)D(c) 6= 0. In light of our goal, we are interested in the case
where D is an inner derivation and A = Mn(F ). We will consider a somewhat more
general situation in Lemma 5.3. To this end, we need a result of general interest
which is almost certainly known. However, we were unable to find a reference that
would cover vector spaces over arbitrary fields. We therefore provide a proof which
was shown to us by Clément de Seguins Pazzis, who kindly allowed us to include
it here.

Recall that an endomorphism a of an F -vector space V is said to be algebraic
if there exists a nonzero polynomial p ∈ F [X ] with coefficients in F such that
p(a) = 0. Moreover, the degree of a is the smallest degree of such a polynomial.

Lemma 5.2. Let n be a natural number. An endomorphism a of a vector space V

(over any field) is algebraic of degree at most n if and only if the set {v, av, . . . , anv}
is linearly dependent for every v ∈ V .

Proof. It suffices to prove the ‘if’ part. Thus, assume that the set {v, av, . . . , anv}
is linearly dependent for each v ∈ V . Denote by Vv the linear span of this set, and
by pv the minimal polynomial of the restriction of a to Vv. Pick v0 ∈ V such that
pv0 has maximal degree. Our goal is to show that pv0(a) = 0. Since the dimension
of Vv0 is at most n by our assumption, this will prove the result.

Fix v ∈ V and let us show that pv0(a)v = 0. Let ã denote the restriction of a
to Vv0 + Vv, and let p̃ be the minimal polynomial of ã. Since Vv0 ⊆ Vv0 + Vv, pv0
divides p̃. If p̃ was equal to pw for some w ∈ V , then it would follow, in view of the
choice of v0, that pv0 = p̃ and hence pv0(a)v = 0, as desired.

The fact that p̃ is really equal to pw for some w ∈ V follows by examining
the Frobenius canonical form of ã. Indeed, ã can be represented in some basis as
a block-diagonal matrix with blocks being companion matrices whose associated
polynomials form a sequence that is non-increasing with respect to the divisibility
relation. The first polynomial in the sequence is the minimal polynomial p̃, and,
denoting the degree of p̃ by d, the first d vectors in the basis are w, aw, . . . , ad−1w
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for some w ∈ Ṽ . Since these vectors are linearly independent, the degree of pw is
at least d. On the other hand, pw divides p̃ since w ∈ Ṽ . Therefore, p̃ = pw. �

Lemma 5.3. Let A be the algebra of all endomorphisms of the vector space V . Let
a ∈ A and let D be the inner derivation given by D(x) = [a, x]. If a is not algebraic
of degree at most 2, then there exists an element b ∈ A such that D(b)b = 0 and
D(b)2 6= 0.

Proof. In light of our assumption, Lemma 5.2 shows that there exists v ∈ V such
that a2v does not lie in the linear span of {v, av}. Therefore, there is a linear
functional f on V such that f(v) = f(av) = 0 and f(a2v) = 1. Let b be the rank
one endomorphism defined by bu = f(u)v for all u ∈ V . Observe that b2 = bab = 0
and ba2b = b. Consequently, D(b)b = ab2 − bab = 0 and D(b)2 = (ab − ba)2 =
−ba2b = −b 6= 0. �

We are now ready to prove the main result of the section. We note that the
number of summands needed in statement (2) is at most n2, since this is the linear
dimension of Mn(F ). It is conceivable that the smallest number of summands
needed may be related to the degree of the minimal polynomial of the matrix a,
but we have not explored this any further.

Theorem 5.4. Let F be a field, let n ≥ 2, and let a ∈ Mn(F ). The following two
conditions are equivalent:

(1) The degree of the minimal polynomial of a is greater than 2.
(2) Every element in Mn(F ) can be written as a sum of elements of the form

[a, x][a, y] with x, y ∈ Mn(F ).

Proof. Let us show that (1) implies (2). Condition (1) can be read as saying that a
is not algebraic of degree at most 2. If we denote by D the inner derivation given
by D(c) = [a, c] for c ∈ Mn(F ), then by Lemma 5.3 there exists an element b ∈ A

such that D(b)b = 0 and D(b)2 6= 0.
Since D(b)2 6= 0, and since the algebra Mn(F ) is simple, we find a natural

number M and elements rj , sj ∈ Mn(F ) for j = 1, . . . ,M such that

1 =

M
∑

j=1

rjD(b)2sj .

Given x ∈ Mn(F ), it follows from Lemma 5.1 that

x =

M
∑

j=1

xrjD(b)2sj =

M
∑

j=1

(

D(xrjb)D(bsj)−D(x)D(b2sj)
)

=

M
∑

j=1

(

[a, xrjb][a, bsj] + [a, x][a,−b2sj ]
)

.

This proves (2).
In order to show the converse, assume that (1) does not hold and let us show

that (2) does not hold either. The case where the degree of the minimal polynomial
of a is 1 is trivial, so we may assume that it is equal to 2. Let F̄ denote the algebraic
closure of F and let λ, µ ∈ F̄ satisfy (a−λ1n)(a−µ1n) = 0. Using at the first step
that λ1n and µ1n commute with all the elements of Mn(F ), for all x, y ∈ Mn(F )
we get

[a, x][a, y] = [(a− λ1n), x][(a − µ1n), y]

= (a− λ1n)x(a − µ1n)y − (a− λ1n)xy(a− µ1n) + x(a− λ1n)y(a− µ1n).
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This implies that

(a− µ1n)[a, x][a, y](a− λ1n) = 0.

Denoting by S the set of sums of elements of the form [a, x][a, y], we thus have

(a− µ1n)S(a− λ1n) = {0}.

Assuming that S = Mn(F ), it follows that (a − µ1n)eij(a − λ1n) = 0 for every
matrix unit eij in Mn(F ), which in turn implies that

(a− µ1n)zijeij(a− λ1n) = 0

for every zij ∈ F̄ . Thus, we deduce that (a − µ1n)Mn(F̄ )(a − λ1n) = {0}. How-
ever, this is impossible since a− µ1n and a− λ1n are nonzero matrices of Mn(F̄ ).
Therefore, S 6= Mn(F ). �
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