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Abstract

Exponential histograms, with bins of the form
{(

ρk−1, ρk
]}

k∈Z, for
ρ > 1, straightforwardly summarize the quantiles of streaming data sets
(Masson et al (2019)). While they guarantee the relative accuracy of their
estimates, they appear to use only logn values to summarize n inputs. We
study four aspects of exponential histograms—size, accuracy, occupancy,
and largest gap size—when inputs are i.i.d. Exp (λ) or i.i.d. Pareto (ν, β),
taking Exp (λ) (or, Pareto (ν, β)) to represent all light- (or, heavy-) tailed
distributions. We show that, in these settings, size grows like logn and
takes on a Gumbel distribution as n grows large. We bound the missing
mass to the right of the histogram and the mass of its final bin and show
that occupancy grows apace with size. Finally, we approximate the size of
the largest number of consecutive, empty bins. Our study gives a deeper
and broader view of this low-memory approach to quantile estimation.

1 Introduction
Modern organizations collect tons of data, and yet storage is expensive. A great
deal of research has thus gone into the invention of techniques for distilling the
data into summaries. The idea is to selectively throw away most of the data
while keeping enough of it to accurately approximate the answers to future ques-
tions. (Cormode & Yi (2020) gives an overview.) Of the many possible questions
and data types, we consider the approximation of numerical quantiles.1

Say we have multiple data centers, each summarizing the data it receives.
The approach we discuss solves the following problem: 1. When a new numeri-
cal input value Xn reaches a data center, it should immediately incorporate it
into its summary. 2. If we supply 0 ≤ q ≤ 1 to a data center, it should imme-
diately respond with a provably-accurate approximation of the qth quantile of
X1, X2, . . . , Xn. 3. If we supply the system a list of centers, it should quickly

∗Author contact: plabo@alumni.stanford.edu.
1This is a challenging task. Munro & Paterson (1980) shows that computing an inner order

statistic in one pass requires O (n) space.
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build a summary of the data summarized by those centers. This summary must
guarantee accurate quantile estimation for the data it summarizes; it need not
summarize new data received by the data centers following its assembly.

An exponential histogram is a pair (B, ρ), where ρ > 1 and

Bn,k :=

n∑
i=1

1{ρk−1<Xi≤ρk}, for n ≥ 1 and k ∈ Z,

gives the number of data values X1, X2, . . . , Xn that fall into bin k,
(
ρk−1, ρk

]
.2

In practical settings, one keeps a separate counter for n—and does not index
by it. We assume that Pr (Xi > 0) = 1. In settings with positive and negative
Xi, two exponential histograms, and a counter if Pr (Xi = 0) > 0, suffice. Note
that: 1. Incorporating new data value Xn requires only Bn,k ← Bn−1,k + 1, for
k =

⌈
logρXn

⌉
. 2. See below. 3. Combining exponential histograms that use

the same ρ requires only the summing of corresponding entries, the combined
histogram retaining the accuracy of its progenitors.

In considering accuracy, let us assume for a moment that Xi
iid∼ F . Then,

(Bn,j)j∈Z ∼ Multinomial
(
n,
(
F
(
ρj
)
− F

(
ρj−1

))
j∈Z

)
, (1)

so that, in particular,

Bn,k

n
∼

Binomial
(
n, F

(
ρk
)
− F

(
ρk−1

))
n

n−→
∞

F
(
ρk
)
− F

(
ρk−1

)
, (2)

where convergence occurs with probability one by the strong law of large num-
bers. By the same reasoning, we have

1

n
B̄n,k :=

1

n

k∑
j=−∞

Bn,j ∼
Binomial

(
n, F

(
ρk
))

n

n−→
∞

F
(
ρk
)
. (3)

That is to say, the accumulation of data leads to the accurate approximation
of probabilities

(
F
(
ρj
))

j∈Z. Further, the expected error in approximations (2)
and (3) is O (1/

√
n).

While statements (1) to (3) are true of any histogram (modulo replacing ρk
with general ck), one might ask, what makes exponential histograms special?
For one thing, their size: §2 shows that exponential histograms require only log n
space to store a sample of size n from the light-tailed Exp (λ) or the heavy-tailed
Pareto (ν, β). For another, their accuracy: The literature on quantile estimation
uses two measures of accuracy (e.g., Greenwald & Khanna (2001); Cormode et
al (2021)). For X̂q an estimate of the qth quantile and X(1) ≤ X(2) ≤ · · · ≤ X(n)

the order statistics of the Xi, absolute and relative accuracy guarantee that∣∣∣X(⌊1+(n−1)q⌋) − X̂q

∣∣∣ ≤ ϵn and (4)∣∣∣X(⌊1+(n−1)q⌋) − X̂q

∣∣∣ ≤ ϵX(⌊1+(n−1)q⌋), (5)

21{S} equals one if statement S is true; zero otherwise.
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for 0 < ϵ < 1, e.g., ϵ = 0.01, and X(⌊1+(n−1)q⌋) the (lower) qth quantile. Which
is better? In many cases, X(⌊1+(n−1)q⌋) ≪ n with high probability; e.g., for Xi

i.i.d. Exp (1), EX(n) ∼ log n, as n→∞. In others, X(⌊1+(n−1)q⌋) ≫ n with high
probability; e.g., for Xi i.i.d. Pareto (1, 1), EX(n) =∞. The distribution of the
expected data plays a role in weighing (4) against (5); usually (5) wins.

Exponential histograms give quantile estimates satisfying relative accuracy
guarantee (5) (Masson et al (2019)). To see this note that:

Fact 1.1. If 0 < a < b < ∞, then argminθ∈[a,b] maxx∈[a,b]
|x−θ|

x = 2ab
a+b , which

implies that minθ∈[a,b] maxx∈[a,b]
|x−θ|

x = b−a
a+b .

Proof. This is Hartmann & Schlossnagle (2020) Proposition 3.16. For a ≤ θ ≤ b,

max
x∈[a,b]

|x− θ|
x

= max

{
|a− θ|
a

,
|b− θ|
b

}
= max

{
θ

a
− 1, 1− θ

b

}
since 1−θ/x grows in x. Because θ/a−1 increases in θ from 0 while 1−θ/b decreases
in θ to 0, the above maxima is smallest when θ/a−1 = 1−θ/b; i.e., the minimizing
θ is 2ab/(a+b), which gives minθ∈[a,b] maxx∈[a,b]

|x−θ|/x = (b−a)/(a+b).

Applying Fact 1.1, we fix 0 < ϵ < 1 and let ρ := (1+ϵ)/(1−ϵ).3 Then, ∀j ∈ Z,

min
θ∈[ρj−1,ρj ]

max
x∈[ρj−1,ρj ]

|x− θ|
x

=
ρj − ρj−1

ρj−1 + ρj
=
ρ− 1

ρ+ 1
= ϵ.

Furthermore, for 0 ≤ q ≤ 1, find kq ∈ Z such that X(⌊1+(n−1)q⌋) ∈
(
ρkq−1, ρkq

]
.

Then, X̂q := 2ρkq−1ρkq

ρkq−1+ρkq
= 2ρkq

ρ+1 approximates X(⌊1+(n−1)q⌋) and satisfies (5).

1.1 Heavy- and Light-Tailed Data Distributions
This paper studies how data of different distributions populate the bins of an
exponential histogram. While we focus on the Exp (λ) and Pareto (ν, β) settings,
the implications of our analysis go beyond these constraints. For example, if
X ∼ Pareto (ν, β), then fX−1 (x) = βνβxβ−1 on (0, 1/ν). Putting ν = β = 1
gives 1/X ∼ Uniform (0, 1). Although we do not focus on Uniform (0, 1), many
of the results for Uniform (0, 1), in particular size, match those for Pareto (1, 1).

Following Foss et al (2013) we call a distribution:

heavy-tailed ⇐⇒ ∀t > 0,

∫ ∞

−∞
etxf (x) dx =∞ (6)

light-tailed ⇐⇒ ∃t > 0, such that
∫ ∞

−∞
etxf (x) dx <∞, (7)

where we assume the existence of density function f . Put another way, we callX
heavy-tailed (light-tailed) if its moment generating function EetX is infinite for
all t > 0 (is finite for some t > 0). We take exemplars Exp (λ) and Pareto (ν, β)

3In practice, one picks 0 < ϵ < 1 first and then sets ρ := (1+ϵ)/(1−ϵ). We use “ρ” for ratio.

3



Name Exp (λ) Pareto (ν, β) Gumbel (µ, σ)
Support (0,∞) (ν,∞) R
Location — ν > 0 µ ∈ R

Rate/Scale λ > 0 β > 0 σ > 0

fX (x) λe−λx (β/x) (ν/x)
β 1

σ e
−
(

x−µ
σ +e−

x−µ
σ

)
FX (x) 1− e−λx 1− (ν/x)

β
e−e− (x−µ)/σ

EX 1/λ β > 1: νβ
β−1 µ+ γσ

Var (X) 1/λ2 β > 2: ν2β
(β−1)2(β−2)

π2σ2

6

Skew (X) 2 β > 3: 2(1+β)
β−3

√
β−2
β

12
√
6ζ(3)/π3

EetX t < λ: λ
λ−t ∞ Γ (1− σt) eµt

Table 1: Probability distributions of interest. For X ∼ Pareto (1, β), EX = ∞
when β ≤ 1, Var (X) =∞ when β ≤ 2, and Skew (X) =∞ when β ≤ 3. The γ
and ζ (3) in the Gumbel mean and skewness are Euler and Apéry’s constants.

to stand in for all light- and heavy-tailed distributions (Table 1). As Theorem
2.6 of Foss et al (2013) points out, a distribution F is heavy-tailed if and only
if lim supx→∞ (1− F (x)) etx = ∞, for all t > 0; i.e., “heavy-tailed” is a tail
property.

That said, from the histogram’s perspective, heavy-tailed Pareto (1, 1) looks
exactly like compactly-supported Uniform (0, 1). In both settings F−1

Size (q) ∼
logρ n − logρ (− log q) (see Theorem 2.5). Why is this? Two things: 1. Larger
and larger bins to the right soften Pareto (1, 1)’s creation of extreme outliers.
2. The exponential histogram has countably many smaller and smaller bins to
the left. With EU(1) = 1/(n+1) = 1−EU(n), we expect Ui i.i.d. Uniform (0, 1) to
occupy bins

{
−
⌊
logρ (n+ 1)

⌋
, . . . ,−1, 0

}
. Exponential histograms are blessed

with (cursed with) larger and larger (smaller and smaller) bins to the right (to
the left).

As the above correctly suggests, the study of exponential histograms touches
on extreme value theory (Resnick (1987); Haan & Ferreira (2006)). Standardized
sizes of exponential histograms holding i.i.d. Exp (λ) or i.i.d. Pareto (ν, β) data
belong to the Gumbel domain of attraction (Propositions 2.3 and 2.7), whereas
Exp (λ) and Pareto (ν, β) themselves belong to the Gumbel and Fréchet domains
of attraction (see page 83 of Durrett (2005)). The maxima of n i.i.d. Pareto (ν, β)
variables has a heavy tail, which the logarithm in the size attenuates. Finally,

Fact 1.2. Fixing µ, b ∈ R and σ, a > 0, we note that, if X ∼ Gumbel (µ, σ),
then aX + b ∼ Gumbel (aµ+ b, aσ).

Proof. Fixing y ∈ R and noting that X ∼ Gumbel (µ, σ), we have

Pr (aX + b ≤ y) = Pr

(
X ≤ y − b

a

)
= exp

(
− exp

(
−y − (aµ+ b)

aσ

))
,

which implies that aX + b ∼ Gumbel (aµ+ b, aσ).

4



0 1 2 3 4 5 6

0
5

10
15

count vs estimate

estimate

co
un
t

-
----------------------------------------------------------------------------------------------------------------------------------------------------------------
-
-
-
-----
-
---------
-
----
-
-------------
-
------------------
-
-
-
-
-
----
----
-
-
---------
-
---
-
--

-

----
--
-
-
--
--

-

-
-

-
-
-
-
---
-
-
-
-
------
-
-
----
-
--

-

-
-
--

--

-
-
-
---
---
--
-
-
-
-
-

-

-

-
-
-
-
-
-

-

--
--
-
--

-

-

-

-
-

-
-

-

-
-
-

-

-

-

-
---

-
-

-

--
-
-
--

--
-

-

-

-

--

-

-

-

-

-

-
-
-

-
-

-

-
-
-
--

-

-

-

-

-

-
-

-

-

-

-

-

-
-

-

-

-

-

-

-

-

-
-

-

-

-
--

-

-

-

-

-

-

-

-
-

-

-

-

--

-
-

-

-

-

-

-

-

-

-
-

-

-

-
-

--
-
--

--

-
-

-

-
-

-

-

-

-

-

-

-
--

-

-
-

-

-

-

-

-

-
-

-

-

-

-
-
--

-

-

-

-
-
-
-
-
-

-

-

-

-

-
--
-

-

--

--

-

-

-
-

-

-
---
-
-

-

-

-

--
--
-

-

-
-
---

-
----
--
-
-
-

-400 -300 -200 -100 0 100

0
5

10
15

count vs index

index
co
un
t

-
----------------------------------------------------------------------------------------------------------------------------------------------------------------

-
-
-
-----
-
---------
-
----
-
-------------
-
------------------
-
-
-
-
-
----
----
-
-
---------
-
---
-
--

-

----
--
-
-
--
--

-

-
-

-
-
-
-
---
-
-
-
-
------
-
-
----
-
--

-

-
-
--

--

-
-
-
---
---
--
-
-
-
-
-

-

-

-
-
-
-
-
-

-

--
--
-
--

-

-

-

-
-

-
-

-

-
-
-

-

-

-

-
---

-
-

-

--
-
-
--

--
-

-

-

-

--

-

-

-

-

-

-
-
-

-
-

-

-
-
-
--

-

-

-

-

-

-
-

-

-

-

-

-

-
-

-

-

-

-

-

-

-

-
-

-

-

-
--

-

-

-

-

-

-

-

-
-

-

-

-

--

-
-

-

-

-

-

-

-

-

-
-

-

-

-
-

--
-
--

--

-
-

-

-
-

-

-

-

-

-

-

-
--

-

-
-

-

-

-

-

-

-
-

-

-

-

-
-
--

-

-

-

-
-
-
-
-
-

-

-

-

-

-
--
-

-

--

--

-

-

-
-

-

-
---
-
-

-

-

-

--
--
-

-

-
-
---

-
----
--
-
-
-

(a) Exp (1) data with expected bin counts EB1000,j = 1000
{
e−ρj−1 − e−ρj

}
.
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(b) Pareto (1, 1) data with expected bin counts EB1000,j = 1000
{
ρ−j+1 − ρ−j

}
.

Figure 1: Exponential histograms with ρ = 1.01
0.99 ≈ 1.02. Panels on the left (on

the right) show B1000,j versus 2ρj
/(ρ+1) (versus j). Red curves give EB1000,j .

1.2 Our Contributions
Recent work on estimating quantiles on data streams includes Shrivastava et al
(2004); Chambers et al (2006); Tibshirani (2008); Agarwal et al (2013); Karnin
et al (2016); Masson et al (2019); Dunning & Ertl (2019); Cormode et al (2021).
Agarwal et al (2013); Karnin et al (2016) develop compactors (sequences of
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Symbol Definition Additional Notes
γ = 0.57721 . . . limn→∞ (

∑n
k=1

1/k − log n) Euler’s constant
ζ (3) = 1.20205 . . .

∑∞
k=1

1/k3 Apéry’s constant
an ∼ bn limn→∞ an/bn = 1 Asymptotically equivalent
Γ (x), x > 0

∫∞
0
tx−1 exp (−t) dt Gamma function

B (x, y), x, y > 0
∫ 1

0
tx−1 (1− t)y−1

dt = Γ(x)Γ(y)
Γ(x+y) Beta function

ψ (x), x > 0 d
dx log Γ (x) ∼ log x− 1

2x Digamma function
ψm (x), x > 0 dm

dxmψ (x) = dm+1

dxm+1 log Γ (x) Polygamma function
Li2 (x), x > 0

∫ x

1
log t
1−t dt Dilogarithm function

sinh−1 (x), x ∈ R log
(
x+
√
x2 + 1

)
Inverse hyperbolic sine

W0 (x), x ≥ 0 w such that wew = x Lambert W principal branch
W−1 (x), x ∈ [−1/e, 0) w such that wew = x Lambert W −1 branch
L (X) The distribution of X L stands for “law”
X ∼ F L (X) = F X has distribution F
X

·∼ F L (X) ≈ F Approximate distribution
A

L
= B A and B have same distribution Equality in distribution

Skew (X) E
[
{(X−EX)/

√
Var(X)}3

]
Skewness (asymmetry) of X

An =⇒ B Pr (An ≤ x)→ Pr (B ≤ x) ,∀x Convergence in distribution

Table 2: Conventions. Our definition of convergence in distribution assumes
continuous F (x) := Pr (B ≤ x). When this does not hold, we have convergence
in distribution if Pr (An ≤ x)→ Pr (B ≤ x) for all continuity points x of F (x).

length-2m buffers that, using coin flips, pass their even or odd order statistics
to the next buffer) for absolute-error-guaranteed quantile estimation, as in (4).
Cormode et al (2021) develop this further, presenting compactor-based sketches
for relative-error-guaranteed quantile estimation, as in (5). While the Cormode
et al (2021) approach requires space

O

(
log

3/2 (ϵn)

ϵ

√
log

(
log (ϵn)

δϵ

))
(8)

to summarize n data points, with error probability bounded by 0 < δ < 1 and
0 < ϵ < 1 as in (5), the exponential histogram-based approach of Masson et al
(2019) has F−1

Size (q) ∼ logρ n− logρ (− log q) under Exp (λ) or Pareto (ν, 1) sam-
pling (see Theorems 2.1 and 2.5) and is computationally-simpler, and therefore
less error-prone. While Masson et al (2019) shows that exponential histograms
give relatively accurate estimates (see Fact 1.1), their size result only apply in
the light-tailed Exp (λ) setting—not in the heavy-tailed Pareto (ν, β) setting.4

Exponential histograms are a simple, low-memory method for relative-error-
guaranteed quantile estimation. We corroborate and extend Masson et al (2019).
Each of sections 2–5 spends part of its time in the Exp (λ) setting and part of its

4Pareto (ν, β), with EetX = ∞ for all t > 0, is not sub-exponential, i.e., does not fulfill (7).
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time in the Pareto (ν, β) setting (Figure 1). Section 2 gives quantile functions for
histogram size and shows that size is approximately Gumbel-distributed. Sec-
tion 3 quantifies upper edge precision, a concern in industrial settings. Section
4 shows that the number of occupied bins grows apace with size, and section 5
shows that the length of the largest block of empty bins is a small fraction of the
total number of empty bins. Table 2 presents notation, and section 6 concludes.

2 Size
When we write size or histogram size, we mean

⌈
logρX(n)

⌉
−
⌈
logρX(1)

⌉
+ 1

=
∣∣{⌈logρX(1)

⌉
,
⌈
logρX(1)

⌉
+ 1, . . . ,

⌈
logρX(n)

⌉}∣∣ ,
that is, the number of consecutive bins when we count from the one containing
X(1) to the one containingX(n). We assume that n ≥ 2. For ease of computation
we drop the ceiling functions and focus on

Mn :=
logX(n) − logX(1)

log ρ
+ 1, An :=

logX(n) − log ν

log ρ
+ 1, (9)

so that w.p.1 size ∈ {⌊Mn⌋ , ⌊Mn⌋+ 1}. As we study how size grows with n, we
simply take size to be Mn. In the Pareto (ν, β) setting, if one feels certain that
X(1) occupies the left-most bin, or, if one wishes to start counting from

⌈
logρ ν

⌉
,

then An measures size. When using exponential histograms, one might wish to
amortize memory allocation as in §17.1 of Cormen et al (2001).

2.1 The Exponential Setting

This section characterizes L (Mn) when X1, X2, . . . , Xn
iid∼ Exp (λ). Note that:

Theorem 2.1. For n ≥ 2, X1, X2, . . . , Xn
iid∼ Exp (λ), and Mn in (9), we have

FMn (µ) = (n− 1)B

(
ρµ−1 + n− 1

ρµ−1 − 1
, n− 1

)
(10)

fMn
(µ) =

nρµ−1FMn
(µ) log ρ

(ρµ−1 − 1)
2

{
ψ

(
nρµ−1

ρµ−1 − 1

)
− ψ

(
ρµ−1 + n− 1

ρµ−1 − 1

)}
(11)

F−1
Mn

(q) ∼ logρ

(
n log (n− 1) + log (1/q)

log (1/q)

)
+ 1 ∼ logρ n− logρ (− log q) , (12)

for µ > 1 and 0 < q < 1. The asymptotic results in (12) hold as either or both
n → ∞ and q → 1−. The first asymptotic result in (12) also holds as q → 0+

while n remains fixed.

Proof. The proof, which uses (2.3.3) of David & Nagaraja (2003), appears in
Appendix A.
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= (Mn − 1) log ρ, when n =

100 and λ = 1. L (Wn) and L (Mn) do not depend on λ. The dashed curve
gives (rescaled) fWn

in (45). The curves on the right give FWn
(F̃−1

Wn
(q)) versus

0 < q < 1 and 1 ≤ log10 n ≤ 8, for F̃−1
Wn

the left-most approximation of F−1
Wn

on
the right-hand side of (46). Theorem 2.1 shows that limn→∞ FWn

(F̃−1
Wn

(q)) = q.

Figure 2 shows L (Wn) = L ((Mn − 1) log ρ) and FWn

(
F̃−1
Wn

(q)
)
. Note:

1. L (Wn) and L (Mn) do not depend on λ (cf. Rényi (1953) for L
(
X(i)

)
).

2. For most values of n and q, FWn

(
F̃−1
Wn

(q)
)
≤ q =⇒ F̃−1

Wn
(q) ≤ F−1

Wn
(q).

3. F−1
Mn

(q) grows like logρ n plus the quantile function for Gumbel (0, 1/log ρ).

The following lemma gives wide bounds for EMn and Var (Mn):

Lemma 2.2. For n ≥ 2, X1, X2, . . . , Xn
iid∼ Exp (λ), Mn in (9), and

λ1 :=
n log n

n− 1
∼ log n

λ2 :=
n
{
log2 (n− 1) + π2

/3 + 2Li2

(
n

n−1

)}
n− 1

∼ log2 n

δ1 :=
n (n− 2)

{
π
(√

2n− 1− 1
)
− 2 tan−1

(
n−1√
2n−1

)}
2
√
(2n− 1) (2n− 3) (n− 1)

∼ π
√
2n

4

δ2 :=
4n (n− 2)

{
log
(
n−1
4

)
+ 2 sinh−1

(
1√
n−1

)}
√
2n− 3 (n− 1)

∼ 2
√
2n log n,

8
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Figure 3: The moments of Wn := log (X(n)/X(1)) under exponential sampling.
Both axes use the log scale. The range formulae (in gray) come from Lemma
2.2. We truncate variance lower bounds at 1. Simulations (in black) use 1000
repetitions. The asymptotic formulae (in red) come from Proposition 2.3.

we have

{EMn − 1} log ρ ∈ [λ1, λ1 + δ1] ∈̃

[
log n,

π
√
2n

4

]

Var (Mn) log
2 ρ ∈

[
λ2 − (λ1 + δ1)

2
, λ2 + δ2 − λ21

]
∈̃
[
−π

2n

8
, 2
√
2n log n

]
,

where ∈̃ indicates asymptotic upper and lower bounds as n becomes large.

Proof. The proof, which uses bounds for the beta function provided by Cerone
(2007), appears in Appendix A.

The widths of the intervals for EMn and Var (Mn) in Lemma 2.2 grow large
as n → ∞ (see Figure 3, which truncates variance lower bounds at one). That
said, the following proposition provides excellent asymptotic approximations.

Proposition 2.3. For X1, X2, . . . , Xn
iid∼ Exp (λ) and Mn in (9), we have

Yn := (Mn − 1) log ρ− log n− log log n =⇒ Gumbel (0, 1) (13)

as n→∞, which implies that, for n large,

Mn
·∼ Gumbel

(
1 +

log n+ log log n

log ρ
,

1

log ρ

)
(14)

EMn ∼ 1 + γ +
log n+ log log n

log ρ
∼ log n

log ρ
(15)

Var (Mn) ∼
π2

6 log2 ρ
, and Skew (Mn) ∼

12
√
6ζ (3)

π3
. (16)

9



Proof. We start with (13). Fixing y ∈ R, we have

Pr (Yn ≤ y) = Pr

(
Mn ≤ 1 +

y + log n+ log log n

log ρ

)
(17)

= (n− 1)B

(
1 +

n

eyn log n− 1
, n− 1

)
(18)

∼
Γ
(
1 + n

eyn logn−1

)
(n− 1)

n
eyn log n−1

−→ e−e−y

, (19)

where (18) uses (10) and (19) uses a well-known approximation of limx→∞B (c, x)
and the continuity of Γ at 1. This, with Fact 1.2, proves (13) and (14). Results
(15) and (16) use well-known properties of Gumbel (µ, σ) (Table 1).

Remark 2.4. One can repurpose the proof above to show that, for y ∈ R,
limn→∞ Pr (Wn − log n ≤ y) = 0, which implies that Wn − log n → ∞ in prob-
ability, as n → ∞. That is, convergence in distribution relies on the log log n
term in the standardization of Wn = (Mn − 1) log ρ ( cf. (53)).

Proposition 2.3 shows that, while EMn grows like logρ n, as n→∞, Var (Mn)
is asymptotically bounded (Figure 3, red and black curves). Past a certain point,
as Mn grows, its variance does not. This is also a property of certain occupancy
counts (see Theorems 4.1 and 4.2, which come from Karlin (1967) and Bogachev
et al (2008)).

2.2 The Pareto Setting

We now characterize L (Mn) when X1, X2, . . . , Xn
iid∼ Pareto (ν, β). Note that:

Theorem 2.5. For n ≥ 2, X1, . . . , Xn
iid∼ Pareto (ν, β), and Mn in (9), we have

FMn (µ) =
(
1− ρ−β(µ−1)

)n−1

(20)

fMn
(µ) = β (n− 1)

(
1− ρ−β(µ−1)

)n−2

ρ−β(µ−1) log ρ (21)

F−1
Mn

(q) = 1− 1

β log ρ
log
(
1− q1/(n−1)

)
∼ log n− log (− log q)

β log ρ
, (22)

for µ > 1 and 0 < q < 1, where the asymptotic result holds as either or both
n→∞ and q → 1−.

Proof. The proof, which uses (2.3.3) of David & Nagaraja (2003), appears in
Appendix A.

The Pareto (ν, β) setting—unlike the Exp (λ) setting (see Lemma 2.2 and
Proposition 2.3)—permits direct computation of EMn and Var (Mn).

10



Proposition 2.6. For X1, . . . , Xn
iid∼ Pareto (ν, β) with n ≥ 2 and Mn in (9),

we have EetMn = (n− 1) etB (1− t/β log ρ, n− 1), for t < β log ρ, so that

EMn = 1 +
ψ (n) + γ

β log ρ
∼ log n

β log ρ

Var (Mn) =
π2

6 − ψ1 (n)

β2 log2 ρ
∼ π2

6β2 log2 ρ

Skew (Mn) =
2ζ (3) + ψ2 (n)[
π2

6 − ψ1 (n)
]3/2 ∼ 12

√
6ζ (3)

π3
,

where the asymptotic results hold as n→∞.

Proof. The proof, which uses Theorem 2.5, appears in Appendix A.

Note that, as n→∞,
F−1
Pareto(ν,β),Mn

(q) ⪋ F−1
Exp(λ),Mn

(q)

EPareto(ν,β)Mn ⪋ EExp(λ)Mn

VarPareto(ν,β) (Mn) ⪋ VarExp(λ) (Mn)

 ⇐⇒ β ⪌ 1 (23)

(Theorems 2.1 and 2.5; Propositions 2.3 and 2.6). If we dial up (down) the size
of Pareto outliers, an exponential histogram of Pareto (ν, β) data becomes larger
(smaller) than one of Exp (λ) data, and size has a larger (smaller) variance. It
seems strange to conclude that a histogram of Exp (λ) values is larger than a
histogram of Pareto (ν, β) values, but see our discussion of Uniform (0, 1) in §1.1.
We turn to the asymptotic distribution of Mn under Pareto (ν, β) sampling.

Proposition 2.7. For X1, X2, . . . , Xn
iid∼ Pareto (ν, β) and Mn as in (9), we

have (Mn − 1) (β log ρ) − log n =⇒ Gumbel (0, 1) as n → ∞, which implies
that, for n large,

Mn
·∼ Gumbel

(
1 +

log n

β log ρ
,

1

β log ρ

)
,

so that EMn ∼ logn
β log ρ , Var (Mn) ∼ π2

6β2 log2 ρ
, and Skew (Mn) ∼ 12

√
6ζ(3)
π3 .

Proof. Fixing y ∈ R we note that

Pr ((Mn − 1) (β log ρ)− log n ≤ y) = Pr

(
Mn ≤ 1 +

y + log n

β log ρ

)
(24)

=

(
1− e−y

n

)n−1
n−→
∞

e−e−y

, (25)

where (25) uses (20). This proves the first result. The second uses Fact 1.2.

Comparing Propositions 2.3 and 2.7, we see that the Exp (λ) setting needs
the log log n term to place Mn into the Gumbel domain of attraction while the
Pareto (ν, β) setting does not (see Remark 2.4). We finally consider L (An):
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Theorem 2.8. For X1, X2, . . . , Xn
iid∼ Pareto (ν, β) and An in (9), we have

FAn
(a) =

(
1− ρ−β(a−1)

)n
(26)

fAn
(a) = nβ

(
1− ρ−β(a−1)

)n−1

ρ−β(a−1) log ρ (27)

F−1
An

(q) = 1−
log
(
1− q1/n

)
β log ρ

∼ log n− log (− log q)

β log ρ
, (28)

for a > 1, 0 < q < 1, where the asymptotic result holds as either or both n→∞
and q → 1−. This gives EetAn = netB (1− t/β log ρ, n) , for t < β log ρ, so that

EAn = 1 +
ψ (n+ 1) + γ

β log ρ
∼ log n

β log ρ
(29)

Var (An) =
π2

6 − ψ1 (n)

β2 log2 ρ
∼ π2

6β2 log2 ρ
(30)

Skew (An) =
2ζ (3) + ψ2 (n) +

2
n3[

π2

6 − ψ1 (n)
]3/2 ∼ 12

√
6ζ (3)

π3
. (31)

Finally, we have (An − 1)β log ρ − log n =⇒ Gumbel (0, 1) as n → ∞, which
implies that, for n large,

An
·∼ Gumbel

(
1 +

log n

β log ρ
,

1

β log ρ

)
, (32)

so that EAn ∼ logn
β log ρ , Var (An) ∼ π2

6β2 log2 ρ
, and Skew (An) ∼ 12

√
6ζ(3)
π3 .

Proof. See Theorem 2.5 and Propositions 2.6–2.7. Another approach to (32):
the logρ (Xi/ν) are i.i.d. Exp (β log ρ) and Z(n) − log n =⇒ Gumbel (0, 1), as
n→∞, for Z1, Z2, . . . , Zn i.i.d. Exp (1) (see page 83 of Durrett (2005)).

We note that FMn
(µ) = FAn−1

(µ) (see (20) and (26)): One loses a degree of
freedom in approximating ν with X(1). To summarize, as n → ∞, the Exp (λ)
and Pareto (ν, β) settings give similar results, modulo 1/β terms in Pareto (ν, β)
expressions, so that row-wise expressions below are asymptotically-equivalent:

F−1
Exp(λ),Mn

(q) βF−1
Pareto(ν,β),Mn

(q) logρ n− logρ (− log q)

EExp(λ)Mn βEPareto(ν,β)Mn logρ n

VarExp(λ) (Mn) β2VarPareto(ν,β) (Mn) (π/
√
6 log ρ)

2
.

3 Accuracy
Section 1 presents two takes on accuracy: (3) gives n−1B̄n,k → F

(
ρk
)

w.p.1 as
n→∞ while (4) and following argue that∣∣∣X(⌊1+(n−1)q⌋) − X̂q

∣∣∣ ≤ ϵX(⌊1+(n−1)q⌋),
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Figure 4: DKW bands for Exp (1) and Pareto (1, 1) data. Panels show: the
CDF in red; the empirical CDF for n = 1000 simulated data points in navy; the
DKW confidence bands in gray; and inferred quantile intervals in green. The
inferred intervals for q = 0.999 continue to +∞. We use α = 0.05 and ρ = 1.01

0.99 .

for X̂q the exponential histogram estimate and 0 < ϵ < 1. The former presents
the proximity of an estimate and a population quantity; the latter presents the
proximity of two estimates. We extend the former view of accuracy. In particu-
lar, we present well-known confidence bands for CDF F and suggest that these
provide information about F−1 (see Figure 4). Noting that organizations are of-
ten interested in extreme quantiles, we also approximate the largest and second
largest quantile one can estimate under Exp (λ) and Pareto (ν, β) sampling.

For the empirical CDF F̂n (x) :=
1
n

∑n
i=1 1{Xi≤x} and δ > 0, the Dvoretzky-

Kiefer-Wolfowitz (DKW) inequality gives

Pr

(
sup
x∈R

∣∣∣F̂n (x)− F (x)
∣∣∣ > δ

)
≤ 2e−2nδ2

when X1, . . . , Xn
iid∼ F (Dvoretzky et al (1956); Massart (1990)). With supx∈R
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inside Pr (·), the DKW inequality gives 1− α confidence bands for (F (x))x∈R,
namely, F̂n (x)±

√
log (2/α)/ (2n), which become wider (more narrow) as α→ 0+

(as n→∞). Observing that{
k ∈ Z :

∣∣∣∣ 1nB̄n,k − F
(
ρk
)∣∣∣∣ > δ

}
⊂
{
x ∈ R :

∣∣∣F̂n (x)− F (x)
∣∣∣ > δ

}
,

we have

Pr

(
sup
k∈Z

∣∣∣∣ 1nB̄n,k − F
(
ρk
)∣∣∣∣ > δ

)
≤ Pr

(
sup
x∈R

∣∣∣F̂n (x)− F (x)
∣∣∣ > δ

)
,

so that 1
n B̄n,k ±

√
log (2/α)/ (2n) gives 1−α confidence bands for

(
F
(
ρk
))

k∈Z.
Figure 4 shows 95% confidence bands for Exp (1) and Pareto (1, 1). Both

circumscribe their CDF, an outcome one expects 9025 times out of 10,000.
What do such bands tell us about F−1? While these are not confidence bands
for F−1, they are illustrative, e.g., we expect an interval for F−1 (0.999) to look
like (C,∞). With a DKW-type inequality for∫ ∞

−∞

∣∣∣F̂n (x)− F (x)
∣∣∣ dx =

∫ 1

0

∣∣∣F̂−1
n (q)− F−1 (q)

∣∣∣ dq
(something like Schmid & Trede (1996); Johnson & Killeen (1983)) one could
derive confidence bands for both (F (x))x∈R and

(
F−1 (q)

)
q∈[0,1]

.5

3.1 The Exponential Setting
Organizations guard against extreme events, e.g., high latency, high error rate,
extreme heat, and excessive traffic. Say latency has an exponential distribution.
We consider the following: If an organization uses an exponential histogram to
store latency data, will it be able to accurately estimate extreme quantiles like
F−1 (0.99999)? The concern here is not accuracy per se, but estimability.

We bound both the expected mass to the right of the histogram and the
expected mass in the right-most bin. That is, for final bin ⌈Jn⌉, we bound

plast := Pr
(
ρ⌈Jn⌉−1 < X ≤ ρ⌈Jn⌉

)
and ptail := Pr

(
X > ρ⌈Jn⌉

)
, (33)

for X,X1, X2, . . . , Xn
iid∼ Exp (λ) and Jn := logρX(n).

Theorem 3.1. For X,X1, X2, . . . , Xn
iid∼ Exp (λ), Jn := logρX(n), and plast

and ptail in (33), we have

plast ≤ nB (1 + 1/ρ, n)− nB (1 + ρ, n) ∼ Γ (1 + 1/ρ)

n1/ρ
− Γ (1 + ρ)

nρ
(34)

Γ (1 + ρ)

nρ
∼ nB (1 + ρ, n) ≤ ptail ≤

1

n+ 1
∼ 1

n
, (35)

where the limits hold as n→∞.
5Rosenkrantz (2000); Aldor-Noiman et al (2013) give confidence bands for the quantile

function in the i.i.d. normal setting. If we thought the data were normal, we could use these.
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Exp (λ) Pareto (ν, 1)
log10 n plast qmax plast qmax

1 7.3× 10−3 0.9127160 3.6× 10−3 0.9108911
2 1.7× 10−3 0.9909028 4.0× 10−4 0.9902951
3 2.6× 10−4 0.9991236 4.0× 10−5 0.9990208
4 3.5× 10−5 0.9999163 4.0× 10−6 0.9999020
5 4.5× 10−6 0.9999920 4.0× 10−7 0.9999902
6 5.4× 10−7 0.9999992 4.0× 10−8 0.9999990
7 6.4× 10−8 0.9999999 4.0× 10−9 0.9999999
8 7.3× 10−9 1.0000000 4.0× 10−10 1.0000000

Table 3: Rounded upper bounds for plast and qmax := 1− ptail (see (33)) when
ρ = 1.01

0.99 ≈ 1.0202. See (34) and (35) for Exp (λ) and (36) for Pareto (ν, β).

Proof. The proof appears in Appendix B.

Table 3 bounds the expected mass of the last bin and the largest quantile we
can hope to estimate under Exp (λ) sampling when ρ = 1.01

0.99 and 1 ≤ log10 n ≤ 8.
We see that plast ≲ 1/n and qmax := 1 − ptail ≲ 1 − 1/n. For ρ fixed we have
plast = O

(
n−1/ρ

)
and ptail = O (1/n).

3.2 The Pareto Setting

We turn to the setting in which X,X1, X2, . . . , Xn
iid∼ Pareto (ν, β).

Theorem 3.2. For X,X1, X2, . . . , Xn
iid∼ Pareto (ν, β), Jn := logρX(n), and

plast and ptail in (33), we have

plast ≤
ρβ − 1/ρβ

n+ 1
and

1/ρβ

n+ 1
≤ ptail ≤

1

n+ 1
. (36)

Proof. The proof, which uses Theorem 2.8, appears in Appendix B.

Table 3 bounds plast and qmax under Pareto (ν, 1) sampling when ρ = 1.01
0.99 and

1 ≤ log10 n ≤ 8. In this setting plast ≲ 4/100n and we again have qmax ≲ 1− 1/n.
The mass of the last bin increases as β or ρ increase, i.e., as outliers become
scarce or as bin sizes increase (so that ϵ increases). For β and ρ fixed, both plast
and ptail are O (1/n).

4 Occupancy
In this section and the next we adopt a new mental picture. Our histogram now
becomes an infinite (or, in Exp (λ)’s case, doubly-infinite) sequence of probabil-
ity urns (or, buckets). Each value Xn ∼ F becomes a ball thrown independently
into an urn, the nth ball falling into urn k with probability

pk := Pr
(
ρk−1 < X ≤ ρk

)
,
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for X ∼ F . While
∑

k∈Z pk = 1, we let Yi :=
⌈
logρXi

⌉
, for i ≥ 1, so that i.i.d.

Yi ∼ (pj) summarize the urn indices of the i.i.d. Xi ∼ F . We say bin k ∈ Z is
occupied at time n ≥ 1 if Bn,k > 0.

Occupancy,

Kn :=
∑
j∈Z

1{Bn,j>0} =
∑
j∈Z

∞∑
r=1

1{Bn,j=r} =:
∞∑
r=1

Kn,r, (37)

the number of occupied bins, is bounded above by size, i.e., Kn ≤ Mn. Kn,r

gives the number of bins that summarize r of the X1, X2, . . . , Xn. Our goal in
studying occupancy (and gap sizes in §5) is to determine whether one wastes a
significant amount of space by storing (an amortized superset of) the counts{

Bn,Y(1)
, Bn,Y(1)+1, . . . , Bn,Y(n)

}
. (38)

We approximate the number of non-zero Bn,k in (38). This section and the next
confirm that, for Exp (λ) and Pareto (ν, β), one does not waste significant space
in storing the full list of counts in (38)—our hunch going into this analysis.

Occupancy in the presence of an infinite number of urns is an area of endur-
ing concern in applied probability—work bookended by Karlin (1967)’s seminal
insights and Gnedin et al (2007)’s excellent review. We review two, key results
below, which sections 4.1 and 4.2 then apply. Regarding EKn we have:

Theorem 4.1. For Yi i.i.d. with support Z+ := {1, 2, . . .}, let pk := Pr (Y1 = k)
and assume that p1 ≥ p2 ≥ · · · . For x > 0 let α (x) := max {k ≥ 1 : pk ≥ 1/x}.
If α is slowly-varying ( i.e., α (cx) ∼ α (x) for each fixed c > 0, as x→∞), then
EKn ∼ α (n), as n→∞.

Proof. Please see Theorem 1′ in section 2 of Karlin (1967). Put “γ = 0.”

Decrouez et al (2018) gives finite-n bounds for EKn. For Var (Kn) we have:

Theorem 4.2. For Yi i.i.d. with support Z+ := {1, 2, . . .}, let pk := Pr (Y1 = k)
and assume that p1 ≥ p2 ≥ · · · . Let vn := Var (Kn). Then,

1. (vn)
∞
n=1 approaches a finite limit ⇐⇒ limj→∞

pj+k

pj
= 1

2 for some k ≥ 1,
in which case limn→∞ vn = k;

2. (vn)
∞
n=1 is bounded ⇐⇒ lim supj→∞

pj+k

pj
≤ 1

2 for some k ≥ 1. Then,

kmin := inf

{
k ≥ 1 : lim sup

j→∞

pj+k

pj
≤ 1

2

}
provides an asymptotically sharp bound for lim supn→∞ vn.

Proof. Please refer to Theorems 1.1 and 1.2 of Bogachev et al (2008).
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4.1 The Exponential Setting
In applying Theorems 4.1–4.2 to Exp (λ) data, we encounter the following mis-
match: these theorems call for a singly-infinite sequence of urns with decreasing
probabilities while Exp (λ) produces a doubly-infinite sequence of urns with
increasing and then decreasing probabilities.6 For X ∼ Exp (λ), x > 0, and

κλ,ρ := 1 + logρ

(
log ρ

λ (ρ− 1)

)
= argmax

−∞<y<∞
Pr
(
ρy−1 < X ≤ ρy

)
(39)

= argmax
−∞<y<∞

{
exp

(
−λρy−1

)
− exp (−λρy)

}
, (40)

we therefore split F (x) = Pr (X ≤ x) into two parts:

F (x) = F0 (x) Pr (X ≤ κλ,ρ) + F1 (x) Pr (X > κλ,ρ)

= F0 (x)
(
1− ρ−

ρ
ρ−1

)
+ F1 (x) ρ

− ρ
ρ−1 ,

where

F0 (x) :=


0 if x ≤ 0
1−e−λx

1−ρ
− ρ

ρ−1
if 0 < x < ρ log ρ

λ(ρ−1)

1 if x ≥ ρ log ρ
λ(ρ−1)

(41)

F1 (x) :=

{
0 if x ≤ ρ log ρ

λ(ρ−1)

1− e−λ(x− ρ log ρ
λ(ρ−1) ) if x > ρ log ρ

λ(ρ−1) .
(42)

We analyze F0 and F1 separately and then stitch the results so-obtained back
together. Regarding EKn we have:

Proposition 4.3. Note that:

1. If X1, X2, . . . , Xn
iid∼ F0 in (41), then, as n→∞,

EKn ∼ logρ

(
n log ρ

1− ρ−
ρ

ρ−1

)
+

1

log ρ
W0

−
(
1− ρ−

ρ
ρ−1

)√
ρ

(ρ− 1)n

 ∼ logρ n.

2. If X1, X2, . . . , Xn
iid∼ F1 in (42) and ηρ,n := log (n log ρ) + ρ log ρ

ρ−1 , then, as
n→∞,

EKn ∼ logρ

(
−ρ− 1

log ρ
W−1

(
−ρ

− ρ
ρ−1

n log ρ

))

≤ logρ

(
ρ− 1

log ρ

(
ηρ,n +

√
2 (ηρ,n − 1)

))
∼ logρ logρ n.

6Pr
(
ρk−1 < X ≤ ρk

)
is unimodal ⇐= − logρ X ∼ Gumbel

(
logρ λ, 1

log ρ

)
, X ∼ Exp (λ).
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(a) Occupancy counts and expected counts. Box plots show simulated Kn for 103 data sets
with 1 ≤ log10 n ≤ 8. Red curves use the full approximations of EKn in Proposition 4.3. Blue
curves use summary approximations logρ n (outer panels) and logρ logρ n (central panel).
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(b) The variance of occupancy counts. Green curves give the variances of box plots in Figure
5a. Gray lines give bounds

(⌈
logρ 2

⌉
, 1,

⌈
logρ 2

⌉
+ 1

)
= (35, 1, 36) from Proposition 4.4.

Figure 5: Occupancy in the Exp (1) setting (Propositions 4.3–4.4). Left panels
sample from F0 in (41) with λ = 1; middle panels sample from F1 in (42) with
λ = 1; right panels sample from Exp (1). Histograms use ρ = 1.01/0.99 ≈ 1.02.

3. If X1, X2, . . . , Xn
iid∼ Exp (λ), then

EKn

{
≈ E0Kn0

+ E1Kn1

≲ logρ n as n→∞,

where “Eb” indicates expectation with respect to Fb in (41) or (42) and

n0 := n×
(
1− ρ−

ρ
ρ−1

)
and n1 := n× ρ−

ρ
ρ−1

give the expected numbers of values below and above cutoff ρκλ,ρ = ρ log ρ
λ(ρ−1) .

Proof. The proof, which uses Theorem 4.1, appears in Appendix C.

Figure 5a shows good correspondence between our approximations of EKn

and simulated occupancy counts, especially under F0 and F1. Under F , approxi-
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mations E0Kn0 +E1Kn1 and logρ n under- and overshoot occupancy. Regarding
Var (Kn) we have:

Proposition 4.4. Letting Z+ := {1, 2, . . .}, we note that:

1. If X1, X2, . . . , Xn
iid∼ F0 in (41), then

logρ 2 ∈ Z+ =⇒ lim
n→∞

Var (Kn) = logρ 2

logρ 2 ∈ R\Z+ =⇒ lim sup
n→∞

Var (Kn) ≤
⌈
logρ 2

⌉
.

2. If X1, X2, . . . , Xn
iid∼ F1 in (42), then lim supn→∞ Var (Kn) ≤ 1.

3. If X1, X2, . . . , Xn
iid∼ Exp (λ), then, as n→∞,

Var (Kn)

{
≈ Var0 (Kn0

) + Var1 (Kn1
)

≲ log2ρ n,

where Varb (X) := Eb [(X − EbX)] takes the variance using Fb in (41) or
(42) and

n0 := n×
(
1− ρ−

ρ
ρ−1

)
and n1 := n× ρ−

ρ
ρ−1

give the expected numbers of values below and above cutoff ρκλ,ρ = ρ log ρ
λ(ρ−1) .

Note finally that lim supn→∞ {Var0 (Kn0) + Var1 (Kn1)} ≤
⌈
logρ 2

⌉
+ 1.

Proof. The proof, which uses Theorem 4.2, appears in Appendix C.

Figure 5b compares our approximations of lim supn→∞ Var (Kn) with the
variances of simulated occupancies. Simulations corroborate our analytic results
for F0 and F1,

⌈
logρ 2

⌉
and 1. Simulations also show that our analytic result

for Exp (λ), log2ρ n, is not tight. In fact,
⌈
logρ 2

⌉
+ 1, the bound suggested

by lim supn→∞ {Var0 (Kn0
) + Var1 (Kn1

)}, works well. The variance result in
Proposition 2.3 provides corroborating evidence.

Comparing Propositions 2.3 and 4.3 we see that both EMn and EKn are
∼ logρ n—an asymptotically insignificant number of bins are empty. That said,
how many bins are empty? The following bounds the mean number as n→∞.

Theorem 4.5. Let Eb represent expectation with respect to Fb in (41) or (42),
p0 := 1− ρ−

ρ
ρ−1 , and n→∞. Then, for empty cell count En :=Mn −Kn,

E0Mn ≲ logρ

(
nρ log ρ
(ρ−1)p0

)
+ γ

log ρ + 1 =⇒ E0En ≲ logρ

(
ρ

ρ−1

)
+ γ

log ρ + 1

E1Mn ≲ logρ

(
(ρ−1)(γ+logn)

ρ log ρ + 1
)
+ 1 =⇒ E1En ≲ logρ

(
3
2

)
.

These results imply that EEn ≲ logρ

(
3ρ

2(ρ−1)

)
+ γ

log ρ +1 in the Exp (λ) setting.

Proof. The proof, which uses Proposition 4.3, appears in Appendix C.

Note in particular that, with ρ = 1.01
0.99 , E0En ≲ 226 and E1En ≲ 21. Under

Exp (λ), as the number of summarized values grows large, the expected number
of empty bins is bounded above by 247 (see Figure 6). That said, bounds on
the expected number of empty bins grow large as ρ→ 1+.
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(a) Under F0 in (41).
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(b) Under F1 in (42).

Figure 6: The number of (empty) bins versus 1 ≤ log10 n ≤ 6 under F0 and F1

in (41) and (42). We use ρ = 1.01
0.99 . See Theorem 4.5 for the asymptotic bounds.

4.2 The Pareto Setting

For Xi
iid∼ Pareto (ν, β), we have bin indices Yi

iid∼ Geometric (1− 1/ρβ), so that:

Theorem 4.6. For Z+ := {1, 2, . . .}, X1, X2, . . . , Xn
iid∼ Pareto (ν, β), and empty

bin count En :=Mn −Kn, we note that:

1. When n→∞:

EKn ∼ 1 +
logρ ((1− 1/ρβ)n)

β
, EEn ∼

1

β

[
logρ

(
1

1− 1/ρβ

)
+

γ

log ρ

]
.

2. Letting ξβ,ρ := 1
β logρ 2, we have:

ξβ,ρ ∈ Z+ =⇒ lim
n→∞

Var (Kn) = ξβ,ρ

ξβ,ρ ∈ R /Z+ =⇒ lim sup
n→∞

Var (Kn) ≤ ⌈ξβ,ρ⌉ .

Proof. The proof, which uses Theorems 4.1 and 4.2, appears in Appendix C.

The results given above mirror those for Exp (λ). 1. The number of empty
bins is bounded as n→∞ (cf. Theorem 4.5). We expect 225 empty bins when
β = 1 and ρ = 1.01

0.99 . 2. The expected number of empty bins is not bounded
in β or ρ. If either or both of these become smaller (i.e., if we increase outlier
magnitude or histogram accuracy), we increase the expected number of occupied
and empty bins. 3. Finally, VarPareto(ν,β) (Kn), VarPareto(ν,β) (Mn) (Proposition
2.6), and it appears VarExp(λ) (Kn) (Figure 5b) plateau as n→∞.
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5 Longest Gap
While occupancy grows apace with size under Exp (λ) and Pareto (ν, β) sampling
(§4), this section looks more closely at missingness. In particular we consider

Ln := length of the longest gap in
{
Y(1), Y(1) + 1, . . . , Y(n)

}
,

where a gap is a contiguous sequence of empty bins. The largest gap eats up only
a fraction of the empty bins, e.g., 5ELn ≈ EEn in the Exp (λ) and Pareto (ν, 1)
settings when ρ = 1.01/0.99 (§5.1–§5.2).

The excellent paper by Grübel & Hitczenko (2009) shows that the asymptotic
fate of Ln depends on and implies properties for {Pr(Y1≥k+1)/Pr(Y1≥k)}k≥0.

Theorem 5.1. For k ≥ 0 and Y1, Y2, . . . i.i.d. with support N := {0, 1, . . .}, let
pk := Pr (Y1 = k) and qk :=

∑∞
j=k pj = Pr (Y1 ≥ k). Then,

1.
∑∞

k=0
qk+1

qk
<∞ ⇐⇒ Pr (limn→∞ Ln = 0) = 1;

2. limk→∞
qk+1

qk
= 0 ⇐⇒ limn→∞ Pr (Ln = 0) = 1;

3. limk→∞
qk+1

qk
= 1 =⇒ Pr (limn→∞ Ln =∞) = 1.

Proof. Please refer to Theorems 1, 2, and 3 of Grübel & Hitczenko (2009).

While Theorem 5.1 does not consider the setting limk→∞ qk+1/qk = r ∈ (0, 1),
Theorem 5.2 (also from Grübel & Hitczenko (2009)) considers this setting’s
exemplar, the geometric distribution.

Theorem 5.2. If Y1, Y2, . . . are i.i.d. with Pr (Yi = k) = (1− p)k p, for 0 < p <
1 and k ≥ 0, we have

Pr
(
V ≤ (l − 1) τp

)
≤ Pr (Ln ≤ l) ≤ Pr

(
V n ≤ (l + 1) τp

)
, (43)

for n, l ≥ 1, where τp := − log (1− p) and

V n := max {V1, V2, . . . , Vn−1} ↑ max
1≤i<∞

Vi =: V ,

for independent Vi ∼ Exp (i), so that, for v > 0, Pr
(
V n ≤ v

)
=
∏n−1

i=1

(
1− e−iv

)
and Pr

(
V ≤ v

)
=
∏∞

i=1

(
1− e−iv

)
. Further, there is a subsequence {nm}∞m=1

such that L (Lnm
) approaches a non-degenerate distribution as m→∞.

Proof. Please refer to Theorem 5 of Grübel & Hitczenko (2009), which specifies
a family of (subsequence, limiting distribution) pairs indexed by η ∈ [0, 1].

The upper and lower bounds for {Pr (Ln ≤ l)}n,l≥1 in (43) provide upper
and lower bounds for ELn and Var (Ln), which we summarize in the following
lemma. Figure 7 compares the derived bounds with simulated data.
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Figure 7: The largest gaps in Geometric (p) samples. Each box plot summarizes
103 data sets of size n = 104. Lemma 5.3 bounds ELn and Var (Ln). Red and
blue curves give upper and lower bounds for ELn. The purple curve sums the
upper bounds for ELn and

√
Var (Ln). Axes use the log scale. Skewness at

times places the median (bold horizontal line) below the lower bounds for ELn.

Lemma 5.3. For {Yi}∞i=1 i.i.d. with Pr (Yi = k) = (1− p)k p, for 0 < p < 1, we
note that

ELn ∈

[
(1− p)2

p
− (1− p)2n

1− (1− p)n
,
1.5

p
+ 1

]

EL2
n ∈

[
2 (1− p)2

p2
− 2 (1− p)2n

(1− (1− p)n)2
,
3.3

p2
+

3

2p
+ 2

]

Var (Ln) ∈

0, 3.3
p2

+
3

2p
+ 2−

(
(1− p)2

p
− (1− p)2n

1− (1− p)n

)2
 ,

so that

as n→∞ as p→ 0+ as p→ 1−

ELn ∈̃
[
(1−p)2

p , 1.5
p + 1

]
,

[
n−1
np ,

1.5
p

]
, [0, 2.5] ,

EL2
n ∈̃

[
2(1−p)2

p2 , 3.3
p2 + 3

2p + 2
]
,
[
2n2(1−p)2−2

n2p2 , 3.3
p2

]
, [0, 6.8] ,

Var (Ln) ∈̃
[
0, 2.3

p2 + 5.5
p

]
,

[
0, 2.3n2+2n−1

n2p2

]
, [0, 6.8] ,

where ∈̃ indicates asymptotic upper and lower bounds.

Proof. The proof, which uses Theorem 5.2, appears in Appendix D.
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5.1 The Exponential Setting
Our analysis here (as in §4.1) hinges on splitting the Exp (λ) CDF into two parts:
F0 and F1 ((39)–(42)). Note that, under F0, bin masses are nearly geometric.

Conjecture 5.4. If X1, X2, . . . , Xn
iid∼ F0 in (41), then, as n→∞,

ELn ∈̃
[

1

ρ (ρ− 1)
,
2.5ρ− 1

ρ− 1

]
and Var (Ln) ∈̃

[
0,
ρ (7.8ρ− 5.5)

(ρ− 1)
2

]
,

where ∈̃ indicates asymptotic upper and lower bounds.

Proof. The basic idea is that the independent Yi are nearly Geometric (1− 1/ρ).
If they were Geometric (1− 1/ρ), the result would follow (Lemma 5.3). To see
that the Yi are nearly Geometric (1− 1/ρ), we recall the proof of Proposition 4.4
part 1, which gives, for k ≤ 0,

pk := Pr
(
ρκλ,ρ+k−1 < X1 ≤ ρκλ,ρ+k

)
=
ρ−

ρk

ρ−1 − ρ−
ρk+1

ρ−1

1− ρ−
ρ

ρ−1

∼ ρ−
ρk+1/2

ρ−1 ρk log ρ

1− ρ−
ρ

ρ−1

,

as k → −∞. This then implies that pk−1/pk ∼ ρ−1+ρk−1/2

, which approaches 1/ρ
(very quickly) as k → −∞.

Do Theorem 5.2’s conclusions apply more generally to qk for which qk+1/qk →
r ∈ (0, 1)? Perhaps (Grübel & Hitczenko (2009)). Simulations support Con-
jecture 5.4 and the weak dependence of Lemma 5.3’s intervals on n (Figure 8).
Turning to F1 we have:

Proposition 5.5. If X1, . . . , Xn
iid∼ F1 in (42), then Pr (limn→∞ Ln = 0) = 1.

Proof. The proof, which uses Theorem 5.1, appears in Appendix D.

In the Exp (λ) setting with ρ = 1.01
0.99 we expect a longest gap of length [48, 77]

bins to the left of 1.01/λ. The longest gap subsumes perhaps 20% of the empty
bins (see §4.1), and its length has standard deviation ≤ 79 bins (Figure 8). We
expect the longest gap to become longer and its length more variable as ρ (and
ϵ) becomes smaller. On the other hand, the largest gap above 1.01/λ has length
zero and EX(n) ∼ γ+logn

λ , as n→∞ (see page 83 of Durrett (2005)).

5.2 The Pareto Setting
Recall that, in the Pareto (ν, β) setting, the bin masses are geometric, yielding:

Proposition 5.6. If X1, X2, . . . , Xn
iid∼ Pareto (ν, β), then

as n→∞ as β → 0+ as β →∞
ELn ∈̃

[
1

ρβ(ρβ−1)
, 2.5ρβ−1

ρβ−1

]
,
[

n−1
n(ρβ−1)

, 1.5
ρβ−1

]
, [0, 2.5] ,

Var (Ln) ∈̃
[
0,

ρβ(7.8ρβ−5.5)
(ρβ−1)2

]
,

[
0, 2.3n2+2n−1

n2(ρβ−1)2

]
, [0, 6.8] ,
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Figure 8: Largest gap size when Xi
iid∼ F0. Box plots show 103 data sets of

size 1 ≤ log10 n ≤ 7. Blue and red lines give the bounds for ELn in Conjecture
5.4. The purple line sums the upper bounds for ELn and

√
Var (Ln). We use

ρ = 1.01
0.99 ≈ 1.02. Simulations bolster the veracity of our claim in Conjecture 5.4.

where ∈̃ indicates asymptotic upper and lower bounds.

Proof. Apply Lemma 5.3 noting that Yi
iid∼ Geometric (1− 1/ρβ) (cf. (106)).

In the Pareto (ν, 1) setting with ρ = 1.01
0.99 and n → ∞, we expect a longest

gap of length [48, 77] bins, subsuming perhaps 20% of the empty bins (see §4.2).
The length of the longest gap has standard deviation ≤ 79 bins. The longest
gap becomes longer and its length more variable as ρ or β become smaller, i.e.,
as we increase histogram precision or outlier size.

6 Conclusions
Table 4 compares results for Exp (λ) and Pareto (ν, β). Having observed n data
points, we expect we will be able to approximate something at least as large as
the (1− 1/n)th quantile of Exp (λ) or Pareto (ν, β). Note further that

F−1
Pareto(ν,β),Size (q) ⪋ F−1

Exp(λ),Size (q)

EPareto(ν,β) [Occupancy] ⪋ EExp(λ) [Occupancy]

EPareto(ν,β) [Largest Gap] ⪋ EExp(λ) [Largest Gap]
VarPareto(ν,β) (Largest Gap) ⪋ VarExp(λ) (Largest Gap)

 ⇐⇒ β ⪌ 1

The above pairs of values differ only with respect to the Pareto β parameter.
For results that differ beyond setting β = 1:
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Exp (λ) Pareto (ν, β)

F−1
Size (q) logρ n− logρ (− log q) β−1

(
logρ n− logρ (− log q)

)
L (Size) Gumbel

(
1 + logn+log logn

log ρ , 1
log ρ

)
Gumbel

(
1 + logn

β log ρ ,
1

β log ρ

)
Pr (Largest Bin) e1/ρΓ (1 + 1/ρ)n−1/ρ

(
ρβ − 1/ρβ

)
n−1

Pr (Right Tial) n−1 n−1

E [Occupancy] logρ n β−1 logρ n

E [#Empty] logρ

(
3ρ

2(ρ−1)

)
+ γ

log ρ + 1 1
β

[
logρ

(
1

1−1/ρβ

)
+ γ

log ρ

]
Var (Occupancy) “

⌈
logρ 2

⌉
+ 1”

⌈
β−1 logρ 2

⌉
E [Largest Gap] “ (2.5ρ− 1)/ (ρ− 1)”

(
2.5ρβ − 1

)/ (
ρβ − 1

)
Var (Largest Gap) “ρ (7.8ρ− 5.5)

/
(ρ− 1)

2 ” ρβ
(
7.8ρβ − 5.5

)/(
ρβ − 1

)2
Table 4: Key results and simulation-supported conjectures, which use quotes.
F−1
Size (q) and L (Size) give large-n approximations; the remaining rows give

large-n upper bounds. Except for L (Size), Pr (Largest Bin), E [#Empty], and
Var (Occupancy), the Exp (λ) results equal Pareto (ν, β) results with β = 1.

• LExp(λ) (Size) has a log log n term LPareto(ν,1) (Size) lacks (Remark 2.4);

• Exp (λ) (of course) puts more mass on its final bin than Pareto (ν, 1);

• EExp(λ) [#Empty]− logρ (3/2)− 1 = EPareto(ν,1) [#Empty]; and

• VarExp(λ) (Occupancy)− 1 = VarPareto(ν,1) (Occupancy).

Of the eight Pareto values that depend on β, only Pr (Largest Bin) grows larger
as β grows larger. This makes sense: larger β means fewer Pareto outliers.

In the end, we see that, if we set β = 1 and ignore Pr (Largest Bin), exponen-
tial histograms holding Exp (λ) and Pareto (ν, β) data have remarkably similar
properties. While Pareto (ν, β) is heavy-tailed to the right, relative to the his-
togram Exp (λ) is (in some sense) heavy-tailed to the left. While Pareto (ν, β)
avoids overly small values, Exp (λ)—like Uniform (0, 1) (see §1.1)—does not.

Relative-error-guaranteed exponential histograms work well on Exp (λ) and
Pareto (ν, β) data. 1. Sizes grow like logρ n. 2. Missing masses to the right of
the largest bin decrease like 1/n. 3. Numbers of unused bins plateau with n. 4.
Longest gaps occupy a small fraction of the total number of empty bins. The
Cormode et al (2021) approach to relative-error-guaranteed quantile estimation
uses a much more involved algorithm—one that requires more space (see (8)).

Exponential histograms probably efficiently store many types of data. Take,
e.g., Cauchy data. While this setting calls for two histograms: H(−∞,0) and
H(0,∞), we imagine four: H(−∞,−1), H[−1,0), H(0,1], and H(1,∞). We expect
H[−1,0), H(0,1], and a histogram holding Uniform (0, 1) values to have similar
size, accuracy, occupancy, and gap sizes. We expect H(−∞,−1), H(1,∞), and a
histogram holding Pareto (1, 1) values to have similar size, accuracy, occupancy,
and gap sizes. In particular, we expect total size to be O (log n), as n→∞.
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A Proofs for Section 2
Theorem 2.1. For n ≥ 2, X1, X2, . . . , Xn

iid∼ Exp (λ), and Mn in (9), we have

FMn (µ) = (n− 1)B

(
ρµ−1 + n− 1

ρµ−1 − 1
, n− 1

)
(10)

fMn (µ) =
nρµ−1FMn (µ) log ρ

(ρµ−1 − 1)
2

{
ψ

(
nρµ−1

ρµ−1 − 1

)
− ψ

(
ρµ−1 + n− 1

ρµ−1 − 1

)}
(11)

F−1
Mn

(q) ∼ logρ

(
n log (n− 1) + log (1/q)

log (1/q)

)
+ 1 ∼ logρ n− logρ (− log q) , (12)

for µ > 1 and 0 < q < 1. The asymptotic results in (12) hold as either or both
n → ∞ and q → 1−. The first asymptotic result in (12) also holds as q → 0+

while n remains fixed.

Proof. Letting Wn := logX(n) − logX(1), we start by showing that

FWn
(w) = (n− 1)B

(
1 +

n

ew − 1
, n− 1

)
(44)

fWn (w) =
newFWn (w)

(ew − 1)
2

{
ψ

(
new

ew − 1

)
− ψ

(
1 +

n

ew − 1

)}
(45)

F−1
Wn

(q) ∼ log

(
n log (n− 1)

log 1/q
+ 1

)
∼ log n− log (− log q) , (46)

for w > 0 and 0 < q < 1, where the asymptotic results hold in the settings
described in the theorem statement. Letting Yi := logXi, for 1 ≤ i ≤ n, and
fixing y ∈ R, we note that

FYi (y) = Pr (Yi ≤ y) = Pr (Xi ≤ ey) = 1− exp (−λey) ,

which gives fYi (y) = λ exp (−λey + y). Equation (2.3.3) of David & Nagaraja
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(2003) then gives

FWn (w) = nλ

∫ ∞

−∞
e−λey+y

[
e−λey − e−λeyew

]n−1

dy (47)

= n

∫ ∞

0

e−z
[
e−z − e−zew

]n−1

dz (48)

= n

n−1∑
j=0

(
n− 1

j

)
(−1)n−1−j

∫ ∞

0

e−z[(n−1−j)ew+j+1]dz (49)

= n

n−1∑
j=0

(
n−1
j

)
(−1)n−1−j

(n− 1− j) ew + j + 1
= n

n−1∑
i=0

(
n−1
i

)
(−1)i

iew + n− i
(50)

= 2F1

(
− (n− 1) ,

n

ew − 1
; 1 +

n

ew − 1
; 1

)
(51)

= (n− 1)B

(
1 +

n

ew − 1
, n− 1

)
, (52)

where (49) uses the binomial theorem, (50) uses i = n − 1 − j, and (52) uses
an identity for the hypergeometric function 2F1.7 This gives (44), and so also
(45). To see (46) note that

lim
y→∞

yB

(
1 +

log (1/q)

log y
, y

)
= lim

y→∞

yΓ
(
1 + log(1/q)

log y

)
y1+

log(1/q)
log y

= q (53)

lim
q→0+

yB

(
1 +

log (1/q)

log y
, y

)
= lim

q→0+

yΓ (y)(
1 + log(1/q)

log y

)y = 0 (54)

lim
q→1−

yB

(
1 +

log (1/q)

log y
, y

)
= yB (1, y) = 1, (55)

for y > 0, where (53)–(54) use a well-known approximation for limy→∞B (c, y)
and (53) and (55) use the continuity of Γ and log and B at 1. Setting

1 +
n

ew − 1
= 1 +

log (1/q)

log (n− 1)
(56)

and solving for w yields (46); i.e., we have (44)–(46). Results (10)–(12) follow
by noting that Mn = Wn/log ρ + 1, so that FMn

(µ) = FWn
((µ− 1) log ρ), which

completes the proof.

Lemma A.1 helps us prove Lemma 2.2.

Lemma A.1. For x, y > 1 and A (x) := x−1
x
√
2x−1

, we have 0 ≤ 1/xy−B (x, y) ≤

A (x)A (y) ≤ A
(
(3+

√
5)/2
)2 ≈ 0.09017.

7See https://functions.wolfram.com/07.23.03.0002.01.
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Proof. This is Theorem 7 on page 80 of Cerone (2007).

Lemma 2.2. For n ≥ 2, X1, X2, . . . , Xn
iid∼ Exp (λ), Mn in (9), and

λ1 :=
n log n

n− 1
∼ log n

λ2 :=
n
{
log2 (n− 1) + π2

/3 + 2Li2

(
n

n−1

)}
n− 1

∼ log2 n

δ1 :=
n (n− 2)

{
π
(√

2n− 1− 1
)
− 2 tan−1

(
n−1√
2n−1

)}
2
√
(2n− 1) (2n− 3) (n− 1)

∼ π
√
2n

4

δ2 :=
4n (n− 2)

{
log
(
n−1
4

)
+ 2 sinh−1

(
1√
n−1

)}
√
2n− 3 (n− 1)

∼ 2
√
2n log n,

we have

{EMn − 1} log ρ ∈ [λ1, λ1 + δ1] ∈̃

[
log n,

π
√
2n

4

]

Var (Mn) log
2 ρ ∈

[
λ2 − (λ1 + δ1)

2
, λ2 + δ2 − λ21

]
∈̃
[
−π

2n

8
, 2
√
2n log n

]
,

where ∈̃ indicates asymptotic upper and lower bounds as n becomes large.

Proof. Letting Wn := logX(n)− logX(1), we first prove a related result for Wn.
Using (44) and Lemma A.1 and starting with EWn we have

EWn =

∫ ∞

0

{1− FWn (w)} dw (57)

=

∫ ∞

0

{
1− (n− 1)B

(
1 +

n

ew − 1
, n− 1

)}
dw (58)

≥ n
∫ ∞

0

dw

ew + n− 1
= λ1 (59)

and

EWn − λ1 ≤
n (n− 2)√
2n− 3

∫ ∞

0

1

ew + n− 1

√
ew − 1

ew + 2n− 1
dw = δ1. (60)

Now turning to EW 2
n and again using (44) and Lemma A.1 we have

EW 2
n = 2

∫ ∞

0

w {1− FWn
(w)} dw (61)

≥ 2n

∫ ∞

0

w

ew + n− 1
dw = λ2 (62)
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and

EW 2
n − λ2 ≤

2n (n− 2)√
2n− 3

∫ ∞

0

w

ew + n− 1

√
ew − 1

ew + 2n− 1
dw (63)

=
2n (n− 2)√

2n− 3

∫ ∞

1

log z

z (z + n− 1)

√
z − 1

z + 2n− 1
dz (64)

≤ 2n (n− 2)√
2n− 3

∫ ∞

1

log z
√
z (z + n− 1)

3/2
dz = δ2. (65)

Combining (57) through (65) yields bounds for Var (Wn) = EW 2
n−(EWn)

2, and
noting that Mn = Wn/log ρ + 1 gives the desired result.

Lemma A.2 helps us prove Theorem 2.5.

Lemma A.2. For e−m < q < 1 (so that 0 < − log q < m), we have

− log q

m
≤ q−1/m − 1 ≤ − log q

m+ log q
.

Proof. This follows from the inequality x + 1 ≤ ex ≤ (1− x)−1, for |x| < 1. If
we let ex = q−1/m, i.e., x = − log q

m ∈ (0, 1), then the result follows.

Theorem 2.5. For n ≥ 2, X1, . . . , Xn
iid∼ Pareto (ν, β), and Mn in (9), we have

FMn
(µ) =

(
1− ρ−β(µ−1)

)n−1

(20)

fMn (µ) = β (n− 1)
(
1− ρ−β(µ−1)

)n−2

ρ−β(µ−1) log ρ (21)

F−1
Mn

(q) = 1− 1

β log ρ
log
(
1− q1/(n−1)

)
∼ log n− log (− log q)

β log ρ
, (22)

for µ > 1 and 0 < q < 1, where the asymptotic result holds as either or both
n→∞ and q → 1−.

Proof. Letting Wn := logX(n) − logX(1), we start by showing that

FWn
(w) =

(
1− e−βw

)n−1
(66)

fWn
(w) = (n− 1)β

(
1− e−wβ

)n−2
e−βw (67)

F−1
Wn

(q) = −
log
(
1− q1/(n−1)

)
β

∼ log n− log (− log q)

β
, (68)

for w > 0 and 0 < q < 1, where the asymptotic results hold in the settings
described in the theorem statement. Letting Yi := logXi, for 1 ≤ i ≤ n, and
fixing y > log ν, we note that

FYi (y) = Pr (Yi ≤ y) = Pr (Xi ≤ ey) = 1− (ν/ey)
β
,
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which gives fYi (y) = (ν/ey)
β
β. Equation (2.3.3) of David & Nagaraja (2003)

then gives

FWn
(w) = nβ

∫ ∞

log ν

(ν/ey)
β
[
(ν/ey)

β − (ν/ey+w)
β
]n−1

dy (69)

= nβ
(
1− e−βw

)n−1
∫ 1

0

xβn−1dx =
(
1− e−βw

)n−1
, (70)

where (70) uses transformation x = ν/ey. This gives (66), (67), and the first part
of (68). The second part of (68) follows from Lemma A.2 withm = n−1. Results
(20) through (22) then follow from (66) through (68) because Mn = Wn/log ρ+1,
so that FMn

(µ) = FWn
((µ− 1) log ρ), which completes the proof.

Proposition 2.6. For X1, . . . , Xn
iid∼ Pareto (ν, β) with n ≥ 2 and Mn in (9),

we have EetMn = (n− 1) etB (1− t/β log ρ, n− 1), for t < β log ρ, so that

EMn = 1 +
ψ (n) + γ

β log ρ
∼ log n

β log ρ

Var (Mn) =
π2

6 − ψ1 (n)

β2 log2 ρ
∼ π2

6β2 log2 ρ

Skew (Mn) =
2ζ (3) + ψ2 (n)[
π2

6 − ψ1 (n)
]3/2 ∼ 12

√
6ζ (3)

π3
,

where the asymptotic results hold as n→∞.

Proof. Using (21) in Theorem 2.5 we have

EetMn = (n− 1)β log ρ

∫ ∞

1

etµ
(
1− ρ−β(µ−1)

)n−2

ρ−β(µ−1)dµ

= (n− 1) et
∫ 1

0

x−t/(β log ρ) (1− x)n−2
dx

= (n− 1) etB (1− t/β log ρ, n− 1) .

The remaining statements follow by taking EMk
n = dk

dtk
EetMn

∣∣∣
t=0

, for k ≥ 1,
and noting that ψ (x) ∼ log x, ψ1 (x) ∼ 1/x, and ψ2 (x) ∼ −1/x2, as x→∞.

B Proofs for Section 3
Theorem 3.1. For X,X1, X2, . . . , Xn

iid∼ Exp (λ), Jn := logρX(n), and plast
and ptail in (33), we have

plast ≤ nB (1 + 1/ρ, n)− nB (1 + ρ, n) ∼ Γ (1 + 1/ρ)

n1/ρ
− Γ (1 + ρ)

nρ
(34)

Γ (1 + ρ)

nρ
∼ nB (1 + ρ, n) ≤ ptail ≤

1

n+ 1
∼ 1

n
, (35)

where the limits hold as n→∞.

32



Proof. For x ∈ R we first note that

FJn (x) = Pr (X ≤ ρx)n = (1− exp (−λρx))n (71)

fJn (x) = nλ (1− exp (−λρx))n−1
ρx exp (−λρx) log ρ (72)

as in Theorem 2.8. Using (72) and y ∈
{
e−λρx−1

, e−λρx

, e−λρx+1
}

we then have

Ee−λρJn−1

= nρ

∫ 1

0

yρ (1− yρ)n−1
dy = nB (1 + 1/ρ, n)

Ee−λρJn
= n

∫ 1

0

y (1− y)n−1
dy = nB (2, n) =

1

n+ 1

Ee−λρJn+1

=
n

ρ

∫ 1

0

y
1/ρ
(
1− y1/ρ

)n−1

dy = nB (1 + ρ, n) ,

which, because
(
ρ⌈z⌉−1, ρ⌈z⌉

]
⊂
(
ρz−1, ρz+1

]
, for z ∈ R, leads to

Pr
(
ρ⌈Jn⌉−1 < X ≤ ρ⌈Jn⌉

)
≤ Pr

(
ρJn−1 < X ≤ ρJn+1

)
(73)

= E
[
e−λρJn−1

− e−λρJn+1
]

(74)

= nB (1 + 1/ρ, n)− nB (1 + ρ, n) (75)

∼ Γ (1 + 1/ρ)

n1/ρ
− Γ (1 + ρ)

nρ
, (76)

where (76) uses B (c, n) ∼ Γ (c)n−c as n → ∞. This gives (34); (35) uses a
similar argument.

Theorem 3.2. For X,X1, X2, . . . , Xn
iid∼ Pareto (ν, β), Jn := logρX(n), and

plast and ptail in (33), we have

plast ≤
ρβ − 1/ρβ

n+ 1
and

1/ρβ

n+ 1
≤ ptail ≤

1

n+ 1
. (36)

Proof. Theorem 2.8 gives EetJn = nνt/log ρB (1− t/β log ρ, n), for t < β log ρ.
Then, because

(
ρ⌈x⌉−1, ρ⌈x⌉

]
⊂
(
ρx−1, ρx+1

]
, for x ∈ R, we have

Pr
(
ρ⌈Jn⌉−1 < X ≤ ρ⌈Jn⌉

)
≤ Pr

(
ρJn−1 < X ≤ ρJn+1

)
(77)

= E
[
(ν/ρJn−1)

β − (ν/ρJn+1)
β
]

(78)

= νβ
(
ρβ − 1/ρβ

)
Ee−βJn log ρ (79)

= n
(
ρβ − 1/ρβ

)
B (2, n) =

ρβ − 1/ρβ

n+ 1
. (80)

where (80) uses EetJn at t = −β log ρ, bounding plast. Bounds for ptail follow in
a similar manner.
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C Proofs for Section 4
Lemma C.1 helps us prove Proposition 4.3.

Lemma C.1. If X ∼ Binomial (n, p), then E [log (X + 1)] ≤ log (np+ 1) and
E [log (log (X + 1) + 1)] ≤ log (log (np+ 1) + 1).

Proof. We note first that both

f1 (x) := − log (x+ 1) and
f2 (x) := − log (log (x+ 1) + 1)

are convex. Then, by Jensen’s inequality, we have Efi (X) ≥ fi (EX) = fi (np),
for i = 1, 2. Dividing each inequality through by −1 gives the desired result.

Proposition 4.3. Note that:

1. If X1, X2, . . . , Xn
iid∼ F0 in (41), then, as n→∞,

EKn ∼ logρ

(
n log ρ

1− ρ−
ρ

ρ−1

)
+

1

log ρ
W0

−
(
1− ρ−

ρ
ρ−1

)√
ρ

(ρ− 1)n

 ∼ logρ n.

2. If X1, X2, . . . , Xn
iid∼ F1 in (42) and ηρ,n := log (n log ρ) + ρ log ρ

ρ−1 , then, as
n→∞,

EKn ∼ logρ

(
−ρ− 1

log ρ
W−1

(
−ρ

− ρ
ρ−1

n log ρ

))

≤ logρ

(
ρ− 1

log ρ

(
ηρ,n +

√
2 (ηρ,n − 1)

))
∼ logρ logρ n.

3. If X1, X2, . . . , Xn
iid∼ Exp (λ), then

EKn

{
≈ E0Kn0

+ E1Kn1

≲ logρ n as n→∞,

where “Eb” indicates expectation with respect to Fb in (41) or (42) and

n0 := n×
(
1− ρ−

ρ
ρ−1

)
and n1 := n× ρ−

ρ
ρ−1

give the expected numbers of values below and above cutoff ρκλ,ρ = ρ log ρ
λ(ρ−1) .

Proof. Parts 1 and 2 use Theorem 4.1; part 3 uses Lemma C.1. Note that:
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1. When Xi
iid∼ F0 in (41), we have

pk := Pr
(
ρκλ,ρ+k−1 < X1 ≤ ρκλ,ρ+k

)
=
ρ−

ρk

ρ−1 − ρ−
ρk+1

ρ−1

1− ρ−
ρ

ρ−1

, (81)

for k ≤ 0. By the mean value theorem there is a k∗ ∈ (k, k + 1) such that

ρ−
ρk

ρ−1 − ρ−
ρk+1

ρ−1

1− ρ−
ρ

ρ−1

=
ρ−

ρk
∗

ρ−1 ρk
∗
log2 ρ

(ρ− 1)
(
1− ρ−

ρ
ρ−1

) .
Note in particular that, for any ρ > 1,

lim
k→−∞

ρ−
ρk

ρ−1 − ρ−
ρk+1

ρ−1

ρ−
ρk+1/2

ρ−1 ρk log ρ

= 1, (82)

which implies that

ρ−
ρk

ρ−1 − ρ−
ρk+1

ρ−1

1− ρ−
ρ

ρ−1

∼ ρ−
ρk+1/2

ρ−1 ρk log ρ

1− ρ−
ρ

ρ−1

, (83)

as k → −∞. We therefore have α (x) := −min {k ≤ 0 : pk ≥ 1/x}

∼ −min

k ≤ 0 :
ρ−

ρk+1/2

ρ−1 ρk log ρ

1− ρ−
ρ

ρ−1

≥ 1/x


∼ logρ

(
x log ρ

1− ρ−
ρ

ρ−1

)
+

1

log ρ
W0

−
(
1− ρ−

ρ
ρ−1

)√
ρ

x (ρ− 1)

 ,

which, citing Theorem 4.1 and noting that limx→∞W0 (−c/x) = 0, gives
the desired result.

2. When Xi
iid∼ F1 in (42), we have

pk := Pr
(
ρκλ,ρ+k−1 < X1 ≤ ρκλ,ρ+k

)
= ρ−

ρk−ρ
ρ−1 − ρ−

ρk+1−ρ
ρ−1 , (84)

for k ≥ 1. By the mean value theorem there is a k∗ ∈ (k, k + 1) such that

ρ−
ρk−ρ
ρ−1 − ρ−

ρk+1−ρ
ρ−1 =

ρ−
ρk

∗
−ρ

ρ−1 ρk
∗
log2 ρ

ρ− 1
. (85)

Letting k∗ := k + ϵ =: k + 1 − δ, for 0 < ϵ, δ < 1, and taking the ratio of
the two sides of (85), we note that

ρ− 1

log2 ρ

ρ
ρk+ϵ−ρk

ρ−1 − ρ
ρk+1−δ−ρk+1

ρ−1

ρk+ϵ

 ≈ ρ− 1

log2 ρ

ρ
ϵρk log ρ

ρ−1 − ρ−
δρk+1 log ρ

ρ−1

ρk+ϵ

 ,
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by Taylor series expansion, which implies that the expression above ap-
proaches zero as k grows if ϵ = O (1/ρk) and infinity otherwise, giving

ρ−
ρk−ρ
ρ−1 − ρ−

ρk+1−ρ
ρ−1 ≈ ρ−

ρk−ρ
ρ−1 ρk log2 ρ

ρ− 1
.

In this setting we therefore have α (x) := max {k ≥ 1 : pk ≥ 1/x}

≈ max

k ≥ 1 :
ρ−

ρk−ρ
ρ−1 ρk log2 ρ

ρ− 1
≥ 1/x


∼ logρ

(
−ρ− 1

log ρ
W−1

(
−ρ

− ρ
ρ−1

x log ρ

))

≤ logρ

(
ρ− 1

log ρ

(
ηρ,x +

√
2 (ηρ,x − 1)

))
,

where the last step uses Theorem 1 of Chatzigeorgiou (2013) and ηρ,x :=

log (x log ρ) + ρ log ρ
ρ−1 . Theorem 4.1 then gives the result.

3. When Xi
iid∼ Exp (λ), we let

Nn :=

n∑
j=1

1{Xj≤ ρ log ρ
λ(ρ−1)} ∼ Binomial

(
n, 1− ρ−

ρ
ρ−1

)
(86)

be the number of X1, X2, . . . , Xn that fall below ρ log ρ
λ(ρ−1) and note that

EKn = E [E [Kn|Nn]] = E0KNn + E1Kn−Nn (87)
≈ E0Kn0 + E1Kn1 , (88)

where “Eb” gives expectation with respect to Fb and (88) substitutes the
means of Nn and n−Nn in for their values in (87). Continuing we have

EKn =

n∑
j=0

(
n

j

)(
1− ρ−

ρ
ρ−1

)j
ρ−

ρ(n−j)
ρ−1 (E0Kj + E1Kn−j) (89)

≲ E
[
logρ (Nn + 1)

]
+ E

[
logρ

(
logρ (n−Nn + 1) + 1

)]
(90)

≤ logρ

(
n
(
1− ρ−

ρ
ρ−1

)
+ 1
)
+ logρ

(
logρ

(
nρ−

ρ
ρ−1 + 1

)
+ 1
)

(91)

∼ logρ

(
n
(
1− ρ−

ρ
ρ−1

))
+ logρ logρ

(
nρ−

ρ
ρ−1

)
∼ logρ n, (92)

where (90) uses parts 1 and 2 and (91) uses Lemma C.1.

Lemma C.2 helps us prove Proposition 4.4.
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Lemma C.2. If X ∼ Binomial (n, p), then E
[
log2 (X + 1)

]
≲ log2 (np+ 1) and

E
[
log2 (log (X + 1) + 1)

]
≲ log2 (log (np+ 1) + 1), for 0 < p < 1 and n→∞.

Proof. For x ≥ 0 and

f1 (x) := log2 (x+ 1)

f2 (x) := log2 (log (x+ 1) + 1) ,

we note that

f ′′1 (x) ⪌ 0 ⇐⇒ x ⪋ e− 1 ≈ 1.71828

f ′′2 (x) ⪌ 0 ⇐⇒ x ⪋ x0 ≈ 0.63788,

which implies that f1 and f2 are concave for x ≥ 2 and x ≥ 1. Assuming that
n ≥ 3 we therefore have

Ef1 (X) = np (1− p)n−1
log2 2 +

n∑
j=2

(
n

j

)
pj (1− p)n−j

f1 (j) (93)

≤ np (1− p)n−1
log2 2 + θn,pf1

(
np

θn,p

(
1− (1− p)n−1

))
, (94)

where (94) uses Jensen’s inequality, θn,p := 1− (1− p)n − np (1− p)n−1, and

E [X|X ≥ 2] =
np

θn,p

(
1− (1− p)n−1

)
.

Sending n→∞ gives the result. A similar proof gives the second statement.

Proposition 4.4. Letting Z+ := {1, 2, . . .}, we note that:

1. If X1, X2, . . . , Xn
iid∼ F0 in (41), then

logρ 2 ∈ Z+ =⇒ lim
n→∞

Var (Kn) = logρ 2

logρ 2 ∈ R\Z+ =⇒ lim sup
n→∞

Var (Kn) ≤
⌈
logρ 2

⌉
.

2. If X1, X2, . . . , Xn
iid∼ F1 in (42), then lim supn→∞ Var (Kn) ≤ 1.

3. If X1, X2, . . . , Xn
iid∼ Exp (λ), then, as n→∞,

Var (Kn)

{
≈ Var0 (Kn0

) + Var1 (Kn1
)

≲ log2ρ n,

where Varb (X) := Eb [(X − EbX)] takes the variance using Fb in (41) or
(42) and

n0 := n×
(
1− ρ−

ρ
ρ−1

)
and n1 := n× ρ−

ρ
ρ−1

give the expected numbers of values below and above cutoff ρκλ,ρ = ρ log ρ
λ(ρ−1) .

Note finally that lim supn→∞ {Var0 (Kn0
) + Var1 (Kn1

)} ≤
⌈
logρ 2

⌉
+ 1.
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Proof. Parts 1 and 2 use Theorem 4.2; part 3 uses Lemma C.2. Note that:

1. As in (81) and (83) we note that

pj =
ρ−

ρj

ρ−1 − ρ−
ρj+1

ρ−1

1− ρ−
ρ

ρ−1

∼ ρ−
ρj+

1/2

ρ−1 ρj log ρ

1− ρ−
ρ

ρ−1

for j → −∞, which gives limj→−∞ pj−1/pj = limj→−∞ ρ−1+ρj−1/2

= 1/ρ, so
that, for k ≥ 1,

lim
j→−∞

pj−k

pj
= lim

j→−∞

k∏
i=1

pj−k+i−1

pj−k+i
=

k∏
i=1

lim
j→−∞

pj−k+i−1

pj−k+i
=

1

ρk
.

The stated results then follow from parts 1 and 2 of Theorem 4.2.

2. As in (84) we note that pj = ρ−
ρj−ρ
ρ−1 −ρ−

ρj+1−ρ
ρ−1 , so that pj+1

pj
= 1−ρ−ρj+1

ρρj−1
→

0 as j →∞. The stated result then follows from part 2 of Theorem 4.2.

3. Define Nn as in (86). Assume for simplicity that n0 and n1 are integers.
Let R0 :=

(
0, ρ log ρ

λ(ρ−1)

]
and R1 :=

(
ρ log ρ
λ(ρ−1) ,∞

)
. We imagine two scenarios:

(a) We have

X0,1, X0,2, . . . , X0,n0
∼ F0

X1,1, X1,2, . . . , X1,n1
∼ F1,

for Fb in (41) and (42), where all n = n0 + n1 random variables are
independent. Letting K(b)

nb be the number of occupied cells in Rb, we
note that K(0)

n0 and K(1)
n1 are independent and the number of occupied

cells in R0 ∪R1 is Kn := K
(0)
n0 +K

(1)
n1 , so that

Var (Kn) = Var
(
K(0)

n0

)
+Var

(
K(1)

n1

)
= Var0 (Kn0) + Var1 (Kn1) .

(b) When X1, X2, . . . , Xn
iid∼ Exp (λ), we have Var (Kn)

= Var (E [Kn|Nn]) + E [Var (Kn|Nn)] (95)
≤ Var (E0 [KNn |Nn] + E1 [Kn−Nn |Nn]) (96)
+ E [Var0 (KNn |Nn) + Var1 (Kn−Nn |Nn)] (97)

≲ Var
{
logρ (Nn + 1) + logρ

(
logρ (n−Nn + 1) + 1

)}
(98)

≲ log2ρ

((
1− ρ−

ρ
ρ−1

)
n+ 1

)
∼ log2ρ (n) (99)

where (96) uses Kn = K
(0)
Nn

+K
(1)
n−Nn

and Cov
(
K

(0)
Nn
,K

(1)
n−Nn

∣∣∣Nn

)
≤

0 almost surely; (98) uses Proposition 4.3 and parts 1 and 2 above;
and (99) uses Cov

(
logρ (Nn + 1) , logρ

(
logρ (n−Nn + 1) + 1

))
≤ 0,

Var (X) ≤ E
[
X2
]
, and Lemma C.2.
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Lemmas C.3 and C.4 help us prove Theorem 4.5.

Lemma C.3. For X1, X2, . . . , Xn
iid∼ F0 in (41), p0 := 1− ρ−

ρ
ρ−1 , and n→∞,

− log

(
nλX(1)

p0

)
=⇒ Gumbel (0, 1) .

Proof. For x ∈ R and n large enough we have

Pr

(
− log

(
nλX(1)

p0

)
≤ x

)
= Pr

(
X1 ≥

p0e
−x

nλ

)n

=

exp
(
−p0e

−x

n

)
− (1− p0)

p0

n

=

(
1− e−x

n
+O

(
1

n2

))n
n−→
∞

e−e−x

.

Lemma C.4. For X1, X2, . . . , Xn
iid∼ F1 in (42) and n→∞, we have

λX(n) −
ρ log ρ

ρ− 1
− log n =⇒ Gumbel (0, 1) .

Proof. For x ∈ R and n large enough we have

Pr

(
λX(n) −

ρ log ρ

ρ− 1
− log n ≤ x

)
= Pr

(
X1 ≤

x+ log n+ ρ log ρ
ρ−1

λ

)n

=

(
1− e−x

n

)n
n−→
∞

e−e−x

.

Theorem 4.5. Let Eb represent expectation with respect to Fb in (41) or (42),
p0 := 1− ρ−

ρ
ρ−1 , and n→∞. Then, for empty cell count En :=Mn −Kn,

E0Mn ≲ logρ

(
nρ log ρ
(ρ−1)p0

)
+ γ

log ρ + 1 =⇒ E0En ≲ logρ

(
ρ

ρ−1

)
+ γ

log ρ + 1

E1Mn ≲ logρ

(
(ρ−1)(γ+logn)

ρ log ρ + 1
)
+ 1 =⇒ E1En ≲ logρ

(
3
2

)
.

These results imply that EEn ≲ logρ

(
3ρ

2(ρ−1)

)
+ γ

log ρ +1 in the Exp (λ) setting.
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Proof. We start with

E0Mn ≤ logρ

(
ρ log ρ

λ (ρ− 1)

)
− E0

[
logρX(1)

]
+ 1 (100)

∼ logρ

(
ρ log ρ

λ (ρ− 1)

)
+ logρ

(
nλ

p0

)
+

γ

log ρ
+ 1 (101)

= logρ

(
nρ log ρ

(ρ− 1) p0

)
+

γ

log ρ
+ 1, (102)

where (100) uses (9) and (41) and (101) uses Lemma C.3. This, along with part
1 of Proposition 4.3, gives the bound for E0En. Turning to F1 we have

E1Mn ≤ E1

[
logρX(n)

]
− logρ

(
ρ log ρ

λ (ρ− 1)

)
+ 1 (103)

∼ logρ

(
ρ log ρ

λ (ρ− 1)
+
γ + log n

λ

)
− logρ

(
ρ log ρ

λ (ρ− 1)

)
+ 1 (104)

= logρ

(
(ρ− 1) (γ + log n)

ρ log ρ
+ 1

)
+ 1, (105)

where (103) uses (9) and (42) and (104) uses Lemma C.4. Using Chatzigeorgiou
(2013)’s upper bound for W−1, we then have

W−1

(
−ρ

− ρ
ρ−1

n log ρ

)
≤ −1−

√
2ζρ,n −

2ζρ,n
3

,

where ζρ,n := log (n log ρ) + ρ log ρ
ρ−1 − 1. This, along with part 2 of Proposition

4.3, gives the bound for E1En. The final statement follows from the first two
and EEn = E [E0 [ENn

|Nn] + E1 [En−Nn
|Nn]], with Nn as in (86).

Theorem 4.6. For Z+ := {1, 2, . . .}, X1, X2, . . . , Xn
iid∼ Pareto (ν, β), and empty

bin count En :=Mn −Kn, we note that:

1. When n→∞:

EKn ∼ 1 +
logρ ((1− 1/ρβ)n)

β
, EEn ∼

1

β

[
logρ

(
1

1− 1/ρβ

)
+

γ

log ρ

]
.

2. Letting ξβ,ρ := 1
β logρ 2, we have:

ξβ,ρ ∈ Z+ =⇒ lim
n→∞

Var (Kn) = ξβ,ρ

ξβ,ρ ∈ R /Z+ =⇒ lim sup
n→∞

Var (Kn) ≤ ⌈ξβ,ρ⌉ .

Proof. Without loss of generality we assume bins
{(
νρk−1, νρk

]}
k≥1

, so that
the smallest bin is not truncated. For k ≥ 1 we then have

pk := Pr
(
νρk−1 < X1 ≤ νρk

)
= ρ−β(k−1)

(
1− ρ−β

)
; (106)

i.e., the Yi are i.i.d. Geometric (1− 1/ρβ), with support k ≥ 1. Then,
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1. Theorem 4.1 gives the first result: Note that, for x > 0,

α (x) := max {k ≥ 1 : pk ≥ 1/x} =
logρ ((1− 1/ρβ)x)

β
+ 1.

The second result then follows from Proposition 2.6 with ψ (n) ∼ log n.

2. Theorem 4.2 gives the result: For j, k ≥ 1, pj+k

pj
= 1

2 =⇒ k =
logρ 2

β .

D Proofs for Section 5
Lemma D.1 helps us prove Lemma 5.3.

Lemma D.1. For n ≥ 1 and 0 < p < 1, (1−p)2n

1−(1−p)n ∼
1
np and (1−p)2n

(1−(1−p)n)2
∼ 1

n2p2

as p→ 0+.

Proof. Using induction on n ≥ 1, we note that (1−p)2

1−(1−p) = 1
p − 2 + p ∼ 1

p as
p→ 0+. Then, assuming that the result holds for n ≥ 1, we note that

lim
p→0+

1− (1− p)n

1− (1− p)n+1 = lim
p→0+

n (1− p)n−1

(n+ 1) (1− p)n
=

n

n+ 1
(107)

by L’Hôpital’s rule, so that

(1− p)2n+2

1− (1− p)n+1 ∼
(
1− 2p+ p2

np

)(
1− (1− p)n

1− (1− p)n+1

)
∼ 1

(n+ 1) p

as p→ 0+. The second result follows in the same way, requiring two applications
of L’Hôpital’s rule at the step analogous to (107).

Lemma 5.3. For {Yi}∞i=1 i.i.d. with Pr (Yi = k) = (1− p)k p, for 0 < p < 1, we
note that

ELn ∈

[
(1− p)2

p
− (1− p)2n

1− (1− p)n
,
1.5

p
+ 1

]

EL2
n ∈

[
2 (1− p)2

p2
− 2 (1− p)2n

(1− (1− p)n)2
,
3.3

p2
+

3

2p
+ 2

]

Var (Ln) ∈

0, 3.3
p2

+
3

2p
+ 2−

(
(1− p)2

p
− (1− p)2n

1− (1− p)n

)2
 ,
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so that

as n→∞ as p→ 0+ as p→ 1−

ELn ∈̃
[
(1−p)2

p , 1.5
p + 1

]
,

[
n−1
np ,

1.5
p

]
, [0, 2.5] ,

EL2
n ∈̃

[
2(1−p)2

p2 , 3.3
p2 + 3

2p + 2
]
,
[
2n2(1−p)2−2

n2p2 , 3.3
p2

]
, [0, 6.8] ,

Var (Ln) ∈̃
[
0, 2.3

p2 + 5.5
p

]
,

[
0, 2.3n2+2n−1

n2p2

]
, [0, 6.8] ,

where ∈̃ indicates asymptotic upper and lower bounds.

Proof. The proof uses Theorem 5.2 and Lemma D.1. We focus on ELn. Bounds
for EL2

n use the same argument and give bounds for Var (Ln) = EL2
n − (ELn)

2.
Note that ELn =

∑∞
l=1 (1− Pr (Ln ≤ l))

≤
∞∑
l=1

(
1−

∞∏
i=1

(
1− (1− p)(l−1)i

))
(108)

=

∞∑
l=1

(
1− exp

( ∞∑
i=1

log
(
1− (1− p)(l−1)i

)))
(109)

=

∞∑
l=1

1− exp

− ∞∑
i=1

∞∑
j=1

(1− p)(l−1)ij

j

 (110)

=

∞∑
l=1

1− exp

− ∞∑
j=1

(1− p)(l−1)j

j
(
1− (1− p)(l−1)j

)
 (111)

≤
∞∑
l=1

1− exp

− ∞∑
j=1

(1− p)(l−1)j

j
(
1− (1− p)l−1

)
 (112)

=

∞∑
l=1

(
1−

(
1− (1− p)l−1

) 1

1−(1−p)l−1

)
(113)

≤
∞∑
l=1

(
1.51 (1− p)l−1 ∧ 1

)
(114)

≤ 1 +
1

2p
+

151

100

∞∑
l=⌈1/2p⌉+1

(1− p)l−1 (115)

≤ 1 +
1

2p
+

151

100p
√
e
, (116)

where (108) uses Theorem 5.2; (111) uses Fubini’s theorem; (114) uses

1− (1− x)
1

1−x ≤ min (1.51x, 1) , for x := (1− p)l−1 ∈ (0, 1) ;

and (115) and (116) use log(100/151)
log(1−p) ≤

1
2p and (1− p)⌈1/2p⌉ ≤ 1√

e
, for 0 < p < 1.
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With 151
100

√
e
≈ 0.9159, ELn ≤ 1 + 1.5

p . Similarly, ELn =
∑∞

l=1 (1− Pr (Ln ≤ l))

≥
∞∑
l=1

(
1−

n−1∏
i=1

(
1− (1− p)(l+1)i

))
(117)

=

∞∑
l=1

(
1− exp

(
n−1∑
i=1

log
(
1− (1− p)(l+1)i

)))
(118)

=

∞∑
l=1

1− exp

− n−1∑
i=1

∞∑
j=1

(1− p)(l+1)ij

j

 (119)

=

∞∑
l=1

1− exp

− ∞∑
j=1

(1− p)(l+1)j − (1− p)(l+1)jn

j
(
1− (1− p)(l−1)j

)
 (120)

≥
∞∑
l=1

1− exp

− ∞∑
j=1

(1− p)(l+1)j

j
+

∞∑
j=1

(1− p)(l+1)jn

j

 (121)

=

∞∑
l=1

(
1− 1− (1− p)l+1

1− (1− p)(l+1)n

)
=

∞∑
l=1

(
(1− p)l+1 − (1− p)(l+1)n

1− (1− p)(l+1)n

)
(122)

≥
∞∑
l=1

(1− p)l+1 −
∞∑
l=1

(1− p)(l+1)n
=

(1− p)2

p
− (1− p)2n

1− (1− p)n
, (123)

where (117) uses Theorem 5.2. We therefore have upper and lower bounds for
ELn. Bounds for EL2

n = 2
∑∞

l=1 l (1− Pr (Ln ≤ l)) use the same argument and
lead to bounds for Var (Ln) = EL2

n−(ELn)
2. Limiting results then follow, using

Lemma D.1 for the p→ 0+ setting, which completes the proof.

Proposition 5.5. If X1, . . . , Xn
iid∼ F1 in (42), then Pr (limn→∞ Ln = 0) = 1.

Proof. Without loss of generality (if κλ,ρ ∈ R\Z), we consider an exponential
histogram with bins

{(
ρκλ,ρ+k−1, ρκλ,ρ+k

]}∞
k=1

, so that

pk := Pr (Y1 = k) = Pr
(
ρκλ,ρ+k−1 < X1 ≤ ρκλ,ρ+k

)
= ρ−

ρk−ρ
ρ−1 − ρ−

ρk+1−ρ
ρ−1

qk :=

∞∑
j=k

pj = Pr (Y1 ≥ k) = Pr
(
X1 ≥ ρκλ,ρ+k−1

)
= ρ−

ρk−ρ
ρ−1 .

Now, because ρ > 1, we see that

qk+2/qk+1

qk+1/qk
=
qkqk+2

q2k+1

=
1

ρ(ρ−1)ρk −→ 0

as k →∞, so that the ratio test and Theorem 5.1 part 1 give the result.
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