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Abstract. Translating notions and results from category theory to the
theory of computability models of Longley and Normann, we introduce
the Grothendieck computability model and the first-projection-simula-
tion. We prove some basic properties of the Grothendieck computability
model, and we show that the category of computability models is a type-
category, in the sense of Pitts. We introduce the notion of a fibration and
opfibration-simulation, and we show that the first-projection-simulation
is a split opfibration-simulation.

1 Introduction

The important role of category theory in computability theory has been empha-
sised by Cockett and Hofstra in [1,2,3], who influenced the work of Longley on
computability models and simulations between them in [6,7,8]. The categorical
notion of equivalence between computability models that is studied by Longley
and Normann in [9] allowed a better way to “identify” seemingly different com-
putability structures. By associating to a computability model C its category of
assembliesAsm(C), Longley and Normann established an equivalence of Morita-
type between them. We can summarise the work of Longley and Normann by
the phrase “from computability models to categories”.

In the previous work [10,11,12] of the second author the converse direction
i.e., “from categories to computability models”, is followed. Given a category C
and a presheaf S on C, the total computability model CMtot(C;S) was intro-
duced, and if C is a category with pullbacks and S preserves pullbacks, the partial
computability model CMprt(C;S) was studied. In our joint work in progress [5]
the notion of a computability model over a category C with a base of computabil-
ity, a notion close to Rosolini’s concept of dominion in [15], and a pullback-
preserving presheaf on C is elaborated, generalising in this way both construc-
tions, that of CMtot(C;S) and of CMprt(C;S). Strict computability models are
very close to categories of sets and partial functions, but avoiding the equality
rules for composition of partial functions (as it is mentioned by Cockett in [1],
p. 16, “program equality itself is not well-understood”), they possess a more ex-
pressive power than categories. Consequently, simulations, the arrows between
computability models, avoid equality too, involving certain forcing and tracking
relations instead.

Working within the direction “from categories to computability models” in
this paper too, we “translate” the categorical Grothendieck construction and the
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categorical notion of split (op)fibration to the partial and without equality, or
relational framework of computability models. The Grothendieck computability
models become then the Sigma-objects, in the sense of Pitts [14], in the category
of computability models. We structure this paper as follows:

– In section 2 we include all basic definitions within the theory of computability
models necessary to the rest of this paper. Crucial to the definition of the
Grothendieck model is our introduction of the computability model Sets,
the computability model-counterpart to the category of sets and functions
(Definition 2). The introduced representable-simulations correspond to the
representable presheaves (Example 1).

– In section 3 we define the Grothendieck computability model and the cor-
responding first-projection-simulation (Proposition 1). We prove some basic
properties of the Grothendieck computability model, and we show that the
category of computability models CompMod is a type-category, in the sense
of Pitts [14] (Theorem 1).

– In section 4 we introduce the notion of a (split) fibration and opfibration-
simulation and we show that the first-projection-simulation pr1 :

∑

C γγγ _C
is a (split) opfibration-simulation (Proposition 3 and Corollary 1).

– In section 5 we include some questions and topics for future work.

For all notions and results from category theory that are used here without
explanation or proof we refer to [17]. For various examples of computability
models and simulations from higher-order computability theory we refer to [9].

2 Basic definitions

Definition 1. A (strict) computability model C consists of the following data:
a class T , whose members are called type names; for each t ∈ T a set C(t) of
data types; for each s, t ∈ T a class C[s, t] of computable functions, i.e., partial
functions from C(s) to C(t). Moreover, for every r, s, t ∈ T the following hold:

1. The identity 1C(t) is in C[t, t].
2. For every f ∈ C[r, s] and g ∈ C[s, t] we have that g ◦ f ∈ C[r, t].

Next, we describe the computability model of sets and partial functions Sets,
as the computability model-analogue to the category of sets and functions Sets.

Definition 2. The computability model Sets has as type names the class of sets
and as data types the set U itself, for every type name U . If U, V are sets, the
computable functions from U to V is the class of partial functions from U to V .

A partial arrow (i, f) : a ⇀ b in a category C consists of a monomorphism
i : dom(i) → a and an arrow f : dom(i) → b in C. Given a (covariant) presheaf
S : C → Sets, we write S(i, f) instead of

(

S(i), S(f)
)

. In [12] computability
models over categories and presheaves on them were defined in a canonical way.
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Definition 3. Let C be a category and S : C → Sets a presheaf on C. The total
canonical computability model CMtot(C;S) over C and S has as type names
the class of objects C0 of C and data types the sets S(c), for every c ∈ C0. If
c1, c2 ∈ C0, the (total) functions from S(c1) to S(c2) is the class {S(f) | f ∈
Hom(c1, c2)}. The partial canonical computability model CMprt(C;S) over C and
a pullback-preserving presheaf S has the same type names and data types, while
the partial functions from S(c1) to S(c2) is the class {S(i, f) | (i, f) : c1 ⇀ c2}.

The pullback-preserving property on S is necessary to prove thatCMprt(C;S)
is a computability model. We can also use the category Setsprt of sets and
partial functions, and the computability model CMtot(Setsprt, idSetsprt) is the
computability model Sets of Definition 2. Next, we describe the arrows in the
category of computability models CompMod. A notion of contravariant simula-
tion can also be defined, allowing the contravariant version of the Grothendieck
construction for computability models.

Definition 4. A simulation γγγ from C (over T ) to D (over U) consists of a
class-function γ : T → U and a relation 

γ
t ⊆ D

(

γ(t)
)

×C(t) (a so-called forcing
relation), for each t ∈ T , subject to the following conditions:

1. For each x ∈ C(t) there exists some y ∈ D(γ(t)), such that y 
γ
t x.

2. For each f ∈ C[s, t] there exists some f ′ ∈ D
[

γ(s), γ(t)
]

such that

∀x∈C(s)∀y∈D(γ(s))

(

x ∈ dom(f) ∧ y 
γ
s x ⇒ y ∈ dom(f ′) ∧ f ′(y) γ

t f(x)
)

.

In this case we say that f ′ tracks f , and we write f ′


γ

(s,t) f . We also write

γγγ : C_D for a simulation γγγ from C to D. We call a simulation γγγ : C_Sets a
(covariant) presheaf-simulation. The identity simulation 1C : C_C is the pair
(

idT , (
ιC
t )t∈T

)

, where x′


ιC
t x :⇔ x′ = x, for every x′, x ∈ C(t). If δδδ : D_E,

the composite simulation δδδ ◦ γγγ : C_E is the pair
(

δ ◦ γ, (δ◦γ
t )t∈T

)

, where the

relation 
δ◦γ
t ⊆ E

(

δ(γ(t))
)

×C(t) is defined by

z 
δ◦γ
t x :⇔ ∃y∈D(γ(t))

(

z 
δ
γ(t) y ∧ y 

γ
t x

)

.

The following presheaf-simulations on a computability model C correspond
to the representable functors Hom(a,−) over a in a category C.

Example 1. Let C be a locally-small computability model over T , i.e., the class
C[s, t] of computable functions from C(s) to C(t) is a set, for every s, t ∈ T . If
t0 ∈ T , the representable-simulation γγγt0 : C_Sets consists of the class-function
γt0 : T → Sets, defined by γt0(t) := C[t0, t], for every t ∈ T , and the forcing
relations 

γt0
t ⊆ C[t0, t]×C(t), defined by

f 
γt0
t x :⇔ ∃y∈dom(f)

(

f(y) = x
)

.

To show that γγγt0 is a simulation, we also need to suppose that C is left-regular
i.e., ∀t∈T∀x∈C(t)∃f∈C[t0,t]∃y∈dom(f)

(

f(y) = x
)

. All computability models that
include the constant functions are left-regular (such as Kleene’s first model K1
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over T = {0} with C(0) = N, and C[0, 0] the Turing-computable partial func-
tions from N to N). If f ∈ C[s, t], it is easy to show that f∗


γt0

(s,t) f , where f∗

is the total function from C[t0, s] to C[t0, t], defined by f∗(g) := f ◦ g, for every
g ∈ C[t0, s]. A right-regularity condition on a locally-small computability model
is needed, to define the contravariant representable-simulations δt0 : C_Sets,
where δt0 : C → Sets is defined by δt0(t) := C[t, t0], for every t ∈ T .

3 The Grothendieck computability model

The Grothendieck computability model is the categorical counterpart to the
category of elements, a special case of the general categorical Grothendieck con-
struction. A category C is replaced by a computability modelC, and a (covariant)
presheaf S : C → Sets by a (covariant) simulation γγγ : C_Sets. Moreover, the
first-projection functor is replaced by the first-projection-simulation.

Proposition 1. Let C be a computability model over the class T together with
a simulation γγγ : C_Sets. The structure

∑

C γγγ with type names the class

∑

t∈T

γγγ(t) :=
{

(t, b) | t ∈ T and b ∈ γ(t)
}

,

with data types, for every (t, b) ∈
∑

t∈T γγγ(t), the sets

(

∑

C

γγγ
)

(t, b) :=
{

y ∈ C(t) | b γ
t y

}

,

and computable functions from
(

∑

C γγγ
)

(s, a) to
(

∑

C γγγ
)

(t, b) the classes

{

f ∈ C[s, t] | ∀x∈dom(f)

(

x ∈
(

∑

C

γγγ
)

(s, a) ⇒ f(x) ∈
(

∑

C

γγγ
)

(t, b)
)}

,

is a computability model. The class-function pr1 :
∑

t∈T γγγ(t) → T , defined by the
rule (t, b) 7→ t, and the forcing relations, defined, for every (t, b) ∈

∑

t∈T γγγ(t), by

y′ 
pr1
(t,b) y :⇔ y′ = y,

determine the first-projection-simulation pr1 :
∑

C γγγ _C.

Proof. We show that the computable functions include the identities and are
closed under composition. Notice that the defining property of the computable
functions in the Grothendieck model is equivalent to the condition a 

γ
s x ⇒

b 
γ
t f(x), for every x ∈ dom(f). If (t, b) ∈

∑

t∈T γγγ(t), then the identity on
∑

C γγγ(t, b) is the identity on C(t), i.e., 1C(t) is a computable function from
(

∑

C γγγ
)

(t, b) to itself: if x ∈ C(t), then the implication b 
γ
t x ⇒ b 

γ
t x holds

trivially. If g is a computable function from
∑

C γγγ(t, b) to
∑

C γγγ(u, c) and f is a
computable function from

∑

C γγγ(s, a) to
∑

C γγγ(t, b), then g ◦ f is a computable
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function from
∑

C γγγ(s, a) to
∑

C γγγ(u, c). For that, let x ∈ dom(f) and f(x) ∈
dom(g). If a 

γ
s x, then b 

γ
t f(x), and hence c γ

u g(f(x)). Next, we show that
pr1 is a simulation. If y ∈

∑

C γγγ(t, b), then x 
pr1
(t,b) x, and if f is a computable

function from
∑

C γγγ(s, a) to
∑

C γγγ(t, b), then f 
pr1
((s,a),(t,b)) f .

The following fact is straightforward to prove.

Proposition 2. Let C be a category and S : C → Sets a pullback-preserving
presheaf on C. Let γS : C0 _Sets be defined via γS(c) = S(c) and the rela-

tions 
γS

c are simply the diagonal, and let {pr2} :
∑

C
S → Sets be defined by

{pr2}(c, x) := {x} and if f : (c, x) → (d, y) in
∑

C
S, let [S(f)](x) := y. Then

∑

CMprt(C;S)

γγγS = CMprt
(

∑

C

S; {pr2}
)

.

Remark 1. The functor C 7→ Asm(C) studied in [9] does not “preserve” the
Grothendieck construction. Namely, if 1 is a terminal computability model with
type names {∅}, data type 1(∅) = {∅}, and as only computable function the
identity, then one can define a presheaf id1 : 1_Sets, and show that

Asm

(

∑

1

id1

)

6=
∑

Asm (1)

Asm(id1).

Next we show that the category of computability models CompMod is a type-
category, in the sense of Pitts [14], pp. 110-111, a reformulation of Cartmell’s
categories with attributes in [4]. These categories are what we call (fam, Σ)-
categories with a terminal object in [13], and serve as categorical models of
dependent type systems. First, we lift a simulation γγγ : C_D to a simulation
between the Grothendieck computability models

∑

C(δδδ ◦ γγγ) and
∑

D δδδ.

Lemma 1. Let C,D be computability models over the classes T, U respectively,
and γγγ : C_D, δδδ : D_Sets simulations. There is a simulation

∑

δδδ γγγ :
∑

C(δδδ ◦
γγγ)_

∑

D δδδ, such that the following is a pullback square

∑

C(δδδ ◦ γγγ)
∑

D δδδ

C D.

_

∑
δδδ γγγ

_ pr1 _ pr1

_

γγγ

Proof. To define
∑

δδδ γγγ, let the underlying class-function
∑

δ γ :
∑

t∈T γγγ(t) →
∑

u∈U δδδ(u) be defined by the rule (t, b) 7→
(

γ(t), b). The corresponding forcing

relations are defined by x′


∑
δ γ

(t,b) x :⇔ x′


γ
t x. It is straightforward to show

that
∑

δδδ γγγ is a simulation. Next we show that the above square commutes. On
the underlying classes this is immediate as

pr1
(

∑

δ

γ(t, b)
)

= pr1
(

γ(t)
)

= γ
(

pr1(t, b)
)

.
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On the forcing relations we observe that if x′


pr1 ◦
∑

δ γ

(t,b) x, then x′


∑
δ γ

(t,b) x,

and thus x′


γ
t x, which is also equivalent to x′


γ◦pr1
(t,b) x. Finally, we show the

pullback property. Let a computability model E over a class V with simulations
ααα,βββ be given, such that the following rectangle commutes

E
∑

D δδδ

C D.

_

βββ

_ ααα _ pr1

_

γγγ

(1)

We find a unique simulation ζζζ : E_

∑

C(δδδ◦γγγ) such that both following triangles

E

∑

C(δδδ ◦ γγγ)
∑

D δδδ

C D

_

ζζζ

_

ααα

_

βββ

_

∑
δδδ γγγ

_ pr1

_ pr1

_

γγγ

commute. First we define ζ on the level of the underlying classes. If v ∈ V , let
ζ(v) =

(

α(v), c
)

, where c ∈ δ(γ(v)) is the unique c such that β(v) = (u, c) for
some u. Clearly, ζ is well-defined. Next we define the forcing relations. Let

x′


ζ
v x :⇔ x′


α
v x.

This relations are well-defined and in conjunction with the aforementioned class-
function they constitute a simulation. Observe that the two triangles already
commute on the level of the underlying class-functions, so it remains to check the

forcing relations. Assume we are given v ∈ V and x′′ ∈ E(v), x′ ∈
(

∑

D δδδ
)

(

β(v)
)

and x ∈ C
(

α(v)
)

such that

x′


β
v x′′ and x 

α
v x′′.

By definition we have to show that there exist y1, y2 such that

x′


∑
δ γ

ζ(v) y1 and y1 
ζ
v x′′, and x 

pr1
ζ(v) y2 and y2 

ζ
v x′′.

We know that the square (1) commutes and x′


pr1
(
∑

δ γ)(ζ(v)) x
′, thus from x′


β
v

x′′ we conclude that x′


γ◦α
v x′′. This in turn ensures that there is y such that

x′


γ

α(v) y and y 
α
v x′′. By definition of

∑

δ γ we then have that x′


∑
δ γ

α(v) y and

thus y is our desired y1. For y2 we simply choose x and it is easy to see that
this fulfills the requirements. The above implications also work in the reverse
direction. It is immediate to show that ζζζ is the unique simulation making the
triangles commutative, as it is determined by the definition of βββ,ααα.
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Lemma 2. If C,D,E ∈ CompMod, γγγ : C_D, δδδ : D_E, and ǫǫǫ : E_Sets is a
presheaf-simulation, then the following strictness conditions hold:

(i)
∑

ǫǫǫ 1E = 1∑
E
ǫǫǫ.

(ii)
∑

ǫǫǫ(δδδ ◦ γγγ) =
∑

ǫǫǫ δδδ ◦
∑

(ǫǫǫ◦δδδ) γγγ.

Proof. (i) It suffices to observe that by its definition the simulation
∑

ǫǫǫ 1E on
the level of the underlying class takes a pair (t, u) to (1E(t), u) = (t, u), so on the
level of the underlying class-functions the two simulations agree. For the forcing
relations we see that both simulations are the corresponding diagonal.
(ii) To verify this equation on the level of underlying classes we have that

∑

ǫǫǫ

(δδδ ◦ γγγ)(t, b) =
(

t, (δ ◦ γ)(b)
)

=
∑

ǫǫǫ

δδδ
(

t, γ(b)
)

=
∑

ǫǫǫ

δδδ
((

∑

ǫǫǫ◦δδδ

γγγ
)

(t, b)
)

.

For the forcing relations we simply remark that x 

∑
ǫ δ◦γ

(t,b) y if and only if x 
δ◦γ
t

y. Similarly, we have that x 

∑
ǫ δ

(t,b) y if and only if x 
δ
t y, and x 

∑
ǫ◦δ γ

(t,b) y if

and only if x 
γ
t y. Hence, x 

∑
ǫ δ◦

∑
ǫ◦δ γ

(t,b) y if and only if x 
δ◦γ
t z, which by the

above is equivalent to x 

∑
ǫ δ◦γ

(t,b) z.

Theorem 1. The category CompMod is a type-category.

Proof. This follows immediately from Lemma 1, Lemma 2, and the fact that
CompMod has a terminal object, as explained in Remark 1.

4 Fibration-simulations and opfibration-simulations

The (covariant) Grothendieck construction allows the generation of fibrations
(opfibrations), as the first-projection functor pr1 :

∑

C
P → C is a (split) opfi-

bration, if P is a covariant presheaf, or a (split) fibration, if P is a contravariant
presheaf. In this section we introduce the notion of a fibration and opfibration-
simulation and we show that the first-projection-simulation pr1 :

∑

C γγγ _C is
a (split) opfibration-simulation, as we work with covariant presheaf-simulations.
The dual result is shown similarly.

In this section, E is a computability model over T and B a computability
model over U . Moreover, the pair

̟̟̟ :=

(

̟ : : T → U,
(


̟
t

)

t∈T

)

is a simulation of type E_B. In contrast to what it holds for functors, for
simulations γγγ : E _ B each computable function f in E is tracked, in general,
by a multitude of maps f ′ in B. Thus, for each opspan

E(t1) E(t2) E(t3)

_

f
_g
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we have a whole class, in general, of opspans

B(γ(t1)) B(γ(t2)) B(γ(t3))

_

f ′
_

g′

such that f ′ tracks f and g′ tracks g.

Definition 5 (Cartesian computable function). Let f ′ ∈ B[s, s′] and t′ ∈
T , such that ̟(t′) = s′ be given. We call a computable function f ∈ E[t, t′] carte-
sian for f ′ and t′, if f ′


̟
(t,t′) f , and given computable functions g ∈ E[t′′, t′], g′ ∈

B[̟(t′′), ̟(t′)], and h ∈ B[̟(t′′), ̟(t)] as in the following diagram

E(t) B(̟(t))

E(t′′) B(̟(t′′))

E(t′) B(̟(t′))


̟
t

f ′

k


̟
t′′

g g′

h


̟
t′

f

that is g′ tracks g, there is some k ∈ E[t′′, t] satisfying the following property:
h 

̟
(t′′,t) k, and for every x ∈ E(t′′), y ∈ B(̟(t′′)), such that y 

̟
t′′ x, y ∈

dom(f ′ ◦ h) ∩ dom(g′), and f ′(h(y)) = g′(y), then x ∈ dom(f ◦ k) ∩ dom(g) and
g(x) = f(k(x)).

Definition 6 (Opcartesian computable function). Let f ′ ∈ B[s′, s] and
t′ ∈ T , such that ̟(t′) = s′ be given We call a computable function f ∈ E[t′, t]
opcartesian for f ′ and t′, if f ′


̟
(t′,t′) f , and given computable functions g ∈

E[t′, t′′], g′ ∈ B[̟(t′), ̟(t′′)] and h ∈ B[̟(t), ̟(t′′)] as in the following diagram

E(t) B(̟(t))

E(t′′) B(̟(t′′))

E(t′) B(̟(t′))

l f


̟
t

f ′


̟
t′′

g g′

h


̟
t′

that is g′ tracks g, there is some l ∈ E[t, t′′] satisfying the following property:
h tracks l, and for every x ∈ E(t′), y ∈ B(̟(t′)), such that y 

̟
t′ x, y ∈

dom(h ◦ f ′) ∩ dom(g′), and f ′(h(y)) = g′(y), then x ∈ dom(l ◦ f) ∩ dom(g) and
g(x) = l(f(x)).

Note that the computable functions k ∈ E[t′′, t] and l ∈ E[t, t′′] in the above
two definitions, respectively, are not unique.

Definition 7 (Fibration-simulation). We call ̟̟̟ : E _ B a fibration-simula-
tion, if for every computable function f ∈ B

[

u,̟(t)
]

there is g ∈ E[t′, t] carte-
sian for f and t. In this case, we call g a lift of f .
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Definition 8 (Opfibration-simulation). We call ̟̟̟ : E → B an opfibration-
simulation, if for every computable function f ∈ B

[

̟(t), u
]

, there is g ∈ E[t, t′]
opcartesian for f and t. In this case, we call g a lift of f .

Example 2. Let E ,B be categories with presheaves S, S′ and let F : E → B be
a fibration, such that S′ ◦ F = S. Then, γγγF : CMtot(E ;S)_CMtot(B;S′) is
a fibration-simulation. To see this, assume we are given a computable function
in CMtot(B;S′), that is a function S′(f) : S′(b) → S′(b′), and e ∈ E such that
F (e′) = b′. As F is a fibration, we find an arrow g : e → e′ cartesian over f and
b′ . We show that S(g) is the desired cartesian function over S′(f) and S(b′).
For this, let functions S(h), S(h2), S(g2) as in the following diagram,

S(e) S′(b)

S(e′′) S′(b′′)

S(e′) S′(b′)

S(g)


γF

e

S′(f)

S′(h)S(k)

S(g2)


γF

e′′

S′(h2)


γF

e′

be given, where we used that CMprt(E ;S)(e) = S(e) and CMprt(B;S′)(b) =
S(b), for every e and b, respectively. As g is cartesian over f and b′, we obtain
an arrow k : e′′ → e, such that g ◦ k = g2 and F (k) = h2. Obviously, S(k) is the
function needed, and hence S(g) is cartesian over S′(f) and S(b′).

Proposition 3. If C is a computability model and γ : C → Sets a simulation,
then the first-projection-simulation pr1 :

∑

C γγγ _C is an opfibration-simulation.

Proof. Assume we are given a computable function f ∈ C[t, t′] and pr1(t, b) = t.
We need to find some b ∈ C(t′), such that pr1(t

′, b′) = t′, and a computable

function f ′ ∈
(

∑

C γγγ
)

[

(t, b), (t′, b′)
]

, such that f 
pr1
((t,b),(t′,b′)) f

′. By definition

we know that f 
pr1
((t,b),(t′,b′)) f

′ if and only if f = f ′, so we have to find y ∈ C(t′),

such that f(b) = b′. For this, we simply take b′ := f(b). To show that f is
opcartesian for f and b, we consider the following diagram

(

∑

C γγγ
)

(t, b) C(t)

(

∑

C γγγ
)

(t′′, b′′) C(t′′)

(

∑

C γγγ
)

(t′, b′) C(t′)

f

g


pr1
(t,b)

f

g

h


pr1
(t′′ ,b′′)

h


pr1
(t′ ,b′)
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and we observe that h fills also the triangle on the left, as we have that f = h◦g
whenever they are defined, so in particular f(b) = h

(

g(b)
)

, and thus b′ = h(b′′).

Hence, h is a computable function from
(

∑

C γγγ
)

(t′′, b′′) to
(

∑

C γγγ
)

(t′, b′).

Next we define split fibration-simulations and split opfibration-simulations.

Definition 9. A splitting for a fibration-simulation ̟̟̟ : E_B is a rule ̟△

that corresponds a pair (f, u), where f ∈ B[t1, t2] and ̟(u) = t2, to a function
f ′ ∈ E[u, u′] cartesian for f and u. This rule ̟△ is subject to the following
conditions:

– For every f ∈ B[t1, t2] and every g ∈ B[t2, t3] we have that

̟△(g ◦ f, u1) = ̟△(g, u1) ◦̟
△(f, u2).

– For every t ∈ T we have that ̟△(1B(t), u) = (1E(u), u).

A splitting for an opfibration-simulation ̟̟̟ : E_B is a rule ̟△ that corresponds
a pair (f, u), where f ∈ B[t1, t2] and ̟(u) = t1, to a function f ′ ∈ E[u, u′]
opcartesian over f and u. This rule ̟△ is subject to the following conditions:

– For every f ∈ B[t1, t2] and every g ∈ B[t2, t3] we have that

̟△(g ◦ f, u1) = ̟△(g, u2) ◦̟
△(f, u1).

– For every t ∈ T we have that ̟△(1B(t), u) = (1E(u), u).

A (op)fibration-simulation ̟̟̟ is split, if it admits a splitting ̟△.

Corollary 1. The simulation pr1 :
∑

C γγγ _C is a split opfibration-simulation.

Proof. We can simply take pr△1 to be defined by the rule pr△1 (f, u) := (f, u).

5 Conclusions and future work

In [9] many concepts and results from category theory were translated to the
theory of computability models, where equalities between arrows are replaced by
certain relations between type names and (partial) computable functions. In this
paper we extended the work initiated in [11,12] by translating the Grothendieck
construction and the notions of fibration and opfibration within computability
models. The category CompMod was shown to be a type-category, a fact that
allows the transport of concepts and facts from the theory of type-categories to
the theory of computability models. For example, the simulations

φφφ : C_

∑

C

γγγ ; pr1 ◦φφφ = 1C

are the canonical dependent functions over C and γγγ (see also [13], Theorem
4.6). It is natural to search whether these dependent functions determine a com-
putability model. The following table includes the correspondences between cat-
egorical and computability model theory-notions presented here.
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Category theory Computability model theory
category C computability model C
functor F : C → D simulation γ : C_D
category of Sets computability model of Sets
presheaf P : C → Sets presheaf-simulation γ : C_Sets
representable functor Hom(a,−) representable simulation γt0
representable functor Hom(−, a) representable-simulation δt0
Grothendieck category

∑

C
P Grothendieck computability model

∑

C γγγ
first-projection functor

pr1 :
∑

C

P → C

first-projection-simulation

pr1 :
∑

C

γγγ _C

(op)cartesian arrow (op)cartesian computable function
(op)fibration π : E → B (op)fibration-simulation ̟̟̟ : E_B
split (op)fibration split (op)fibration-simulation

It is natural to ask whether the category of presheaves, or more generally
of all functors between two categories, can be translated within computabil-
ity models. As a consequence, a Yoneda-type embedding and a corresponding
Yoneda lemma for computability models and appropriate presheaf-simulations
can be formulated. In such a framework the Grothendieck computability model
is expected to have the same crucial role to the proof of a corresponding density
theorem with that of the Grothendieck category to the proof of the categori-
cal density theorem. For that, we introduce forcing and tracking-moduli in the
definition of a simulation i.e., realisers for the forcing and tracking relations. A
forcing-modulus φγ for γγγ : C_D is a family of functions

φγ :=
(

φ
γ
t

)

t∈T
; φ

γ
t : C(t) → D

(

γ(t)
)

,

such that φ
γ
t (x) 

γ
t x, for every x ∈ C(t). A tracking-modulus µγ for γγγ is a

family of functions

µγ :=
(

µ
γ

(s,t)

)

s,t∈T
; µ

γ

(s,t) : C[s, t] → D[γ(s), γ(t)],

such that µ
γ

(s,t)(f) 
γ

(s,t) f , for every f ∈ C[s, t]. Conversely, if γ : T → U , φγ ,

and µγ are typed as above, such that for every f ∈ [s, t] the following rectangle

D(γ(s)) D(γ(t))

C(t)C(s)

µ
γ

(s,t)(f)

f

φγ
s φ

γ
t

with total and partial functions commutes, in the obvious sense, then if we define
y 

γ
t x :⇔ y = φ

γ
t (x), we get a realised simulation C_D. We can define then
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the exponential computability model with type names the realised simulations.
We hope to elaborate on these concepts in the future.

Our approach to (op)fibration-simulations and (op)cartesian functions is dif-
ferent from the 2-categorical approach to fibrations in [16,18]. In a subsequent
work we expect to show that our approach is equivalent to the 2-categorical one.
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