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Abstract

We examine the oscillon decay in a model with a single scalar field and two asymmetric funda-

mental states. Specifically, we verify how the evolution of an initially excited oscillon leads to the

formation of antikink-kink pairs in the presence of a centered long-lived pulse. In such a context,

the magnitude of the original perturbation stands for the most important factor influencing the

process. For intermediary values of this magnitude, we find a transitory behavior which suggests

that the energy exchange between translational and vibrational modes begins to play an impor-

tant role in the overall evolution. As the magnitude increases, the centered pulse intermediates an

interaction between the inner structures which compose the pairs whose behavior mimics that of

a standard antikink-kink collision and therefore reinforces the role played by the energy transfer

mechanism. We depict the resulting resonant structure and note that it mimics that of an usual

kink-antikink scattering. We also reproduce some of our results now via an initial lumplike pertur-

bation proposed as a kink-antikink pair. For different values of width, an almost pure antikink-kink

pair escapes to the infinity after multiple bounces.

∗Electronic address: fc.simas@ufma.br, carlos.hora@ufma.br

1

ar
X

iv
:2

40
4.

17
84

8v
2 

 [
he

p-
th

] 
 1

3 
M

ay
 2

02
4

mailto:fc.simas@ufma.br, carlos.hora@ufma.br 


I. INTRODUCTION

In the context of classical field models, topological defects are usually described as the

solutions to highly nonlinear equations of motion. In this case, the nonlinearity is intro-

duced via the potential which describes the self-interaction of the scalar matter and, as a

consequence, also determines the vacuum structure of the corresponding theory [1].

In such a scenario, localized configurations connect two adjacent minima of the potential,

with both the solution and its anti-version having the very same total energy, but topological

charges with opposite signs.

Under special circumstances, these profiles can be also obtained via a set of first-order dif-

ferential equations which emerges from the minimization of the energy of the model through

the implementation of the so-called BPS technique [2, 3]. In this case, it is possible to verify

that these first-order equations lead to the standard second-order equations of motion, from

which one concludes that the BPS configurations are legitimate solutions of the effective

theory indeed.

In this overall context, localized structures have been studied in connection to a wide

variety of physical systems throughout the last few years, ranging from the subatomic to

the cosmological scale [4, 5]. Furthermore, topological defects are particularly common in

high-energy issues [6], optical communication [7] and DNA [8].

The topological structures which emerge in a (1 + 1)-dimensional scalar field theory

are known as kinks. In such a relativistic ambient, these originally time-independent BPS

solutions acquire dynamics via the implementation of a Lorentz boost, from which the

evolution of the resulting travelling profiles must be studied via the numerical treatment of

the effective equations of motion.

The evolution of travelling kinks have been widely investigated. Among some of the fields

of research, we can highlight the study of kink scattering, which revealed a surprisingly

complex structure of bounces and annihilation. The final result of the scattering process is

intimately influenced by the value of the initial velocity of the colliding structures, therefore

giving rise to resonance windows [9–11]. Additional discussions in the context of most diverse

models can also be found in [12–31].

At the same time, the study of the so-called oscillons and spharelons has been the subject

of recent investigations. The sphaleron stands for a static, finite and unstable solution which
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appears in Skyrme models and electroweak theories [32]. It was demonstrated in the Ref. [33]

that the spharelon serves as the source for the internal mode which gives rise to the fractal

structures in a kink-antikink collision. Oscillons, on the other hand, are spatially localized

oscillatory solutions which present a long lifetime. Their stability can not assured because

due to the lack of a well-defined topological charge [34, 35]. These solutions naturally occur

from the collapse of bubbles [36] and can be also formed in the context of a domain wall

network [37].

Interestingly, connections between spharelons and oscillons have been discovered recently.

In this sense, the Ref. [38] has examined a spharelon which, when slightly perturbed, decays

into a large amplitude oscillon. In addition, the Ref. [39] has also investigated the spharelon-

oscillon relation, with the authors showing that the presence of the internal mode of the

spharelon is not a necessary ingredient in the dynamics of the oscillon.

A recent research has revealed the creation of kink-antikink pairs as a result of collisions

between two identical wave trains. In that work, the authors have considered the ϕ4 model,

from which they have identified that the resonant excitation plays an important role in the

formation of the new pair, with the process being determined by the amplitude [40]. Most

recently, a scenario with only one symmetric vacuum was proposed. In such a case, the

formation of a fractal structure from the decay of excited oscillons [41] was verified. Here,

the most intriguing aspect is that the effective model does not support any static solutions.

However, the resonant window structure, which is based on the energy exchange between

the translational and vibrational modes, is realized. Examine also the Refs. [42–45], which

address pair production.

The aim of the present manuscript is to contribute with such a research. In this sense,

we study the production of antikink-kink pairs as a result of the decay of an oscillon initially

excited around a vacuum state in the ϕ4 theory. In order to present our developments, this

work is organized as follows: in the next Section II, we introduce the particular model and

comment on its general aspects. In the sequence, we define the initial condition (a Gaussian-

like oscillatory perturbation) which depends on two parameters, i.e., its amplitude and width.

We are particularly interested in the effects brought about by a perturbation of different

intensities. Still in the Sec. II, we observe that the corresponding solution for the field at

the center of mass mimics the profile inherent to a multiple-bounce window with nontrivial

order, which therefore suggests that the exchange of energy between the translational and
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vibrational modes via the energy transfer mechanism begins to play a relevant role. We

then study the corresponding resonant structure and show that it reveals a fractal pattern

which surprisingly mimics that of a standard kink-antikink scattering. Motivated by such

a coincidence, we dedicate the Section III to the reproduction of the effects caused by a

Gaussian perturbation now via a lumplike profile proposed as a kink-antikink pair, from

which we argue that such an approach holds well in the limit of small amplitudes. Finally,

the Sec. IV brings a brief summary and our perspectives regarding future investigations.

II. THE MODEL AND ITS RESULTS

In this manuscript, we consider a (1+1)-dimensional theory which contains a single real

scalar field ϕ(x, t) only, its Lagrangian density being given by

L =
1

2
∂µϕ∂

µϕ− V (ϕ), (1)

where both the field, coordinates and coupling constants were made dimensionless via the

implementation of an appropriate rescaling defined in terms of the mass scale of the model.

As usual, the Greek index µ runs from 0 to 1 and therefore counts the spacetime coordinates.

Moreover, we have chosen to work with ηµν = (+−) as the metric signature of the Minkowski

spacetime.

In such a context, the potential V (ϕ) determines the self-interaction inherent to the real

field via the specification of the vacuum structure of the corresponding theory. In the present

case, we consider the well-known ϕ4 model, whose potential reads

V (ϕ) =
1

2
(1− ϕ2)2, (2)

which has many applications in various physics scenarios. For instance, in condensed matter

physics, a one-dimensional Ginzburg-Landau theory has been proposed to describe the phase

transition in shape memory alloys [46]. Moreover, in Ref. [47], the authors found that

temperature has a significant influence on the formation of kink-antikink pairs.

The resulting nonintegrable theory is known to support energetically stable time-

independent solutions which connect the two adjacent vacuum predicted by the ϕ4 potential

above. Specifically, while the resulting kink is given by ϕK(x) = tanh (x) and interpolates

between the states ϕK(−∞) = −1 and ϕK(∞) = 1, the corresponding antikink can be
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promptly obtained based on the Z2 symmetry inherent to the original model and therefore

connects the adjacent vacuum in an opposite way, i.e. ϕK̄(−∞) = 1 and ϕK̄(∞) = −1.

These two profiles can be verified to have the very same energy, but topological charges

with opposite signs. Furthermore, the stability analysis reveals the existence of two distinct

modes - translational and vibrational ones - inherent to the kink profile. In such a case,

the evolution of a kink-antikink collision is directly affected by the existence of the vibra-

tional mode (related to ω1 =
√
3) via the so-called energy transfer mechanism. As a result,

two-bounce windows appear and a typical fractal structure can be observed.

In this manuscript, instead of colliding kinks, we focus our attention on the generation

of oscillating pulses and kinks as a result of oscillons decay. With such a purpose in mind,

we consider as the initial condition

ϕ(x, 0) = 1 + A0e
−x2/σ, (3)

where the parameter A0 represents the amplitude and σ stands for the width of a pertur-

bation (with a Gaussian profile) around the positive vacuum ϕ0 = +1 of the ϕ4 potential.

As we demonstrate below, depending on the values of these parameters, we find more or

less excited oscillons, which eventually give rise to different final states of the field ϕ(x, t).

Here, it is worthwhile to point out that such an initial data is comparable to that very

recently used in the Ref. [41], where the authors have successfully studied oscillons decay

in a model with a symmetric vacuum only and whose potential can be approximated by the

sine-Gordon one.

In what follows, we investigate the evolution of the field configuration in the full space for

different values of A0 and with an initially fixed σ. At this first moment, we are interested

in small perturbations around the vacuum state, from which we consider very small values

of the amplitude.

The Figure 1 (top) shows the evolution of ϕ(x, t) for σ = 10 and A0 = 0.05 (left) and

0.15 (right). In such a context, it is important to note how the original (small) perturbation

produces an excited oscillon around the vacuum which decays and annihilates. In this sense,

the field profile at the center of mass as a function of t is displayed in the Fig. 1 (bottom),

which reveals how the amplitude of the oscillations around ϕ0 = +1 decreases. It is therefore

reasonable to conclude that, when submitted to a relatively small Gaussian-like perturbation

around its vacuum value, the scalar sector tends to return to its fundamental state. In other
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words, the corresponding perturbation are not intense enough to remove the field from its

vacuum value and then generate a nontrivial configuration. Remarkably, unlike what is seen

in the Ref. [41], the original perturbation in the present ϕ4 scenario does not decompose

into two (or more) constituent oscillons.
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FIG. 1: Evolution of the scalar sector ϕ(x, t) in the full space (top) and the field profile at the center

of mass (bottom) for A0 = 0.05 (left) and 0.15 (right). Here, σ = 10. The oscillon annihilates and

the field returns to its fundamental state.

In the sequence, in order to explore the impact of parameter values on the oscillon devel-

opment process, we consider also the case of not so small perturbations, from which we solve

the numerical problem for additional values of A0. The corresponding solutions appear in

the figures below.

The Figure 2 brings the results for intermediary A0, from which it is possible to infer

the existence of a range of values for which the solutions present a transitory behavior. In

particular, for A0 = 0.30 and 0.40, the perturbation produces a long-lived oscillon which, in

view of the nonintegrable nature of the theory, annihilates after an extremely long time and
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induces the real field to finally return to its vacuum state. On the other hand, the solution

for A0 = 0.50 reveals the occurrence of a perturbed pulse (i.e. with anharmonic oscillations)

whose existence might be connected to the exchange of energy between the translational

and vibrational modes through the energy transfer mechanism.
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FIG. 2: Evolution of the scalar sector ϕ(x, t) in the full space (top) and the field profile at the

center of mass (bottom) for A0 = 0.30 (left), 0.40 (center) and 0.50 (right). Here, σ = 10. The

solutions present a transitory behavior, with the anharmonic pulse possibly indicating the exchange

of energy between the translational and vibrational modes.

The suggestion above is corroborated by the solutions which appear in the Figure 3. Here,

for A0 = 0.60, the Gaussian perturbation oscillates and, through the emission of radiation,

rapidly decays into a antikink-kink pair with a central long-lived small oscillon around the

negative vacuum ϕ0 = −1. In addition, the evolution for A0 = 0.70 shows the scattering of

two almost pure antikink-kink pairs, from which we conclude that an increasing amplitude

generates an even more excited oscillon whose decay leads to the creation of such pairs

followed by the escape of the radiation. Similar phenomenon was studied in the Ref. [48],

where the scattering of two lumps was verified to produce kink-antikink pairs, while multiple

antikink-kink pairs were obtained in a double sine-Gordon model [49]. An antikink-kink pair
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can also be obtained via the collision of two identical wave trains, see the Ref. [40]. Still

regarding our solution for A0 = 0.70, we highlight that, once the time evolution begins, a

centered oscillon emerges and then intermediates a “collision” between the inner structures

whose corresponding pattern mimics the one typically related to a four-bounce window, see

the resulting profile for ϕ(0, t). In particular, between the first two bounces, the scalar field

performs two complete oscillations in a clear manifestation of the energy exchange between

the translational and vibrational modes, such a behavior reinforcing the role played by the

energy transfer mechanism. Moreover, when A0 = 0.75, the perturbation produces a pair of

bions and a central oscillon around ϕ0 = +1.
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FIG. 3: Evolution of the scalar sector ϕ(x, t) in the full space (top) and the field profile at the

center of mass (bottom) for A0 = 0.60 (left), 0.70 (center) and 0.75 (right). Here, σ = 10. The

Gaussian perturbation rapidly decays into kink-antikink pairs.

The final configurations obtained for high amplitudes are shown in the Figure 4. In

general, the initial condition oscillates and then generates two antikink-kink pairs which

propagate without considerable radiation escape, while the central region is distinguished by

the existence of oscillons which travel around while emitting a certain quantity of radiation.

Interestingly, there are regions where the initial excitation produces two oscillons which
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escape to the infinity, again irradiating. In particular, two antikink-kink pairs appear for

A0 = 0.80 and 0.90. However, there are now two basic differences in comparison to the

previous occurrence: long-lived oscillations around ϕ0 = +1 take place at the center of

mass, and the arising antikink-kink pairs do not bounce. Note that three non-bouncing

pairs emerge for A0 = 0.95.
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FIG. 4: Evolution of the scalar sector ϕ(x, t) in the full space (top) and the field profile at the center

of mass (bottom) for A0 = 0.80 (left), 0.90 (center) and 0.95 (right). Here, σ = 10. The initial

condition generates antikink-kink pairs which propagate without considerable radiation escape. In

particular, three non-bouncing pairs emerge for A0 = 0.95.

It sounds relevant to study the resonant structure related to the evolution of the scalar

field in view of the Gaussian perturbation. In this sense, the Figure 5 summarizes the main

behaviors involving the oscillon decay, as well as the appearance of antikink-kink pairs.

Specifically, this plot shows the temporal evolution of the field value at the center of mass

for fixed σ = 10 and different values of A0, from which we identify well-defined segments

which alternate between blue and red colors. Here, in view of the previous figures which

bring the evolution of ϕ(x, t) in the full space, it is possible to understand that the blue

regions represent a field oscillation around ϕ0 = +1, whilst the red portions means the
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emergence of an antikink-kink pair at the origin. For instance, small values of A0 lead to

either an annihilation of the original perturbation or the generation of a long-lived oscillon.

On the other hand, when 0.5 < A0 < 0.7, there are stripes in red which represent a single

antikink-kink pair.

Notably, we also note a fractal structure which resembles the outcome of kink-antikink

collisions. In this case, in order to recognize the details of the resonant structure, we have

included a zoom, see the plots in the center and in the left of the Figure 5. It is important

to make clear that in kink-antikink scatterings, the resonant structure reflects the number

of interactions between the pair. In our case, however, the graphic depicts the alternation

between the emergence of an oscillation and an antikink-kink pair.
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FIG. 5: The resonant structure related to the evolution of the scalar field in view of a Gaussian

perturbation. Blue regions represent a field oscillation around ϕ0 = +1, whilst the red portions

means the emergence of an antikink-kink pair at the origin. The resulting fractal structure resem-

bles that of a kink-antikink collision. Here, we fixed σ = 10.

Next, a new blue band appears as the value of the amplitude increases. This area com-

prises either the formation of oscillatory pulses in the central region or the emergence of two

antikink-kink pairs which escape to infinity. For those values of A0 greater than 0.90, an

intriguing aspect is revealed, i.e. this region presents multiple red peaks, as can be seen in

the Fig. 5 (left), which suggests the formation of two pairs which scatter symmetrically and

an additional pair located at x = 0.

We end this section by exploring the effects related to an initial oscillation with a different

width. The numerical results are depicted in the Figure 6 for σ = 20 and different values of

A0. In this case, a single antikink-kink pair is generated by the original perturbation whose
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amplitude now determines the number of bounces performed by the pair. For instance,

when A0 = 0.55, the initial configuration oscillates and briefly separates. However, it lacks

sufficient kinetic energy and hence the pair collides. Only after this first collision, the process

of complete separation of the pair begins. Interestingly, we see that the pair formation

occurs only after two collisions (which corresponds to a first-order two-bounce window) for

A0 = 0.53. In the last case, the solution formed when A0 = 0.5346 remains trapped for a

long time, i.e., it performs three complete collisions (with a second-order three-bounce window

near to a seventh-order two-bounce one) and only then the antikink-kink pair escapes to the

infinity. Again, these results emphasize the role played by the energy transfer mechanism

during the generation of antikink-kink pairs due to an original Gaussian perturbation.
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FIG. 6: Evolution of the scalar sector ϕ(x, t) in the full space (top) and the field profile at the

center of mass (bottom) for A0 = 0.55 (left), 0.53 (center) and 0.5346 (right). Here, σ = 20.

The amplitude determines the number of bounces performed by the single pair, with two (three)

collisions occurring for A0 = 0.53 (A0 = 0.5346).
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III. THE PERTURBATION ITSELF AS A KINK-ANTIKINK PAIR

As we have pointed out previously, the ϕ4 model is known to support the existence of

time-independent kinks with finite energy and whose scattering process has been intensively

studied, see the Refs. [9, 10]. Interestingly, the temporal evolution of the real field ϕ(x, t)

due to a Gaussian perturbation applied to its fundamental state not only reveals a fractal

pattern which is similar to that of a standard kink-antikink collision, but it is also suggested

to occur according to the energy exchange between the translational and vibrational modes

related to the aforementioned kink profile. In view of these facts, it sounds reasonable to

conjecture that the evolution of ϕ(x, t) when submitted to a Gaussian perturbation can

eventually be mimicked by a lumplike profile.

The present section is devoted to the study of such a possibility. In this sense, we first

highlight that the original Gaussian perturbation can be approximated by a static lump

constructed as a kink-antikink pair. Therefore, instead of ϕ(x, 0) = 1 + A0e
−x2/σ, we now

adopt the initial condition as

ϕ (x, 0) = 1 +A0 [tanh (x+ |x0|)− tanh (x− |x0|)] , (4)

where A0 represents the magnitude of the lumplike perturbation, while 2x0 stands for the

distance between the kink and the antikink which compose the pair (therefore representing

the “width” of the corresponding lump, whose center is assumed to be positioned at x = 0).

As we argue below, this general form can be used to map the results which arise from

the Gaussian perturbation in terms of the properties inherent to a canonical kink-antikink

interaction.

It is useful to write down the Taylor series expansions for both the Gaussian and the

lumplike perturbations. In this case, whether we compare the relevant terms in both series,

one gets that A0 and x0 can be expressed in terms of A0 and σ as

A0 =
A0

2
√
1− 1

σ

, (5)

and

|x0| = arctanh

[√
1− 1

σ

]
, (6)
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via which we promptly rewrite the initial condition in the form

ϕ (x, 0) = 1 +
A0

2
√

1− 1
σ

[
tanh

(
x+ arcsech

(
σ− 1

2

))
− tanh

(
x− arcsech

(
σ− 1

2

))]
, (7)

where we have assumed σ > 1 in order to satisfy |x0| > 0.

The expression above can be used as a good approximation to describe the results ob-

tained in the limit of small A0. For instance, the Figure 7 brings a comparison between the

profiles for ϕ(0, t) obtained via the Gaussian (blue line) and lumplike (red line) perturba-

tions. Here, we have fixed σ = 10 and again solved the problem for A0 = 0.05, 0.15 and 0.25.

It is possible to see that, despite some differences (of order 10−2 and which decrease with

time) in the corresponding amplitudes, the solutions behave in the very same qualitative

way. In particular, they suggest that the central long-lived pulse which emerges for small

values of the original amplitude can be eventually treated as a kink-antikink pair which

perform several collisions without getting enough kinetic energy to escape from each other.

Due to the nonintegrable nature of the overall scenario, the colliding pair continuously emits

radiation and finally disappears, forcing the field to return to its fundamental state, therefore

mimicking the very same [qualitative] picture which arises from a Gaussian perturbation.
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FIG. 7: Field profile at the center of mass for A0 = 0.05 (left), A0 = 0.15 (center) and A0 = 0.25

(right). Here, we have fixed σ = 10. The results obtained via the Gaussian (lumplike) perturbation

appears as the blue (red) line. For small A0, the solutions behave in the very same qualitative way.

As the value of A0 increases, the resulting solutions assume different profiles (both in

magnitude and frequency). As a consequence, the aforementioned correspondence loses its

accuracy and can not be applied anymore, see the profiles for A0 = 0.25, for instance.
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It is always possible to improve the approximation above by fitting the Gaussian and

the lumplike profiles via a rescaling applied on x in the expression for the last one. As the

interested reader can verify, such a procedure gives rise to even better results (in comparison

to the ones displayed in the previous Figure 7). However, the corresponding accuracy is still

limited by the values of A0.

Here, in order to improve the accuracy of the Taylor series based approach, we adopt

an alternative way, i.e. we assume small values of the width σ. In this case, the Gaussian

profile is even more localized around x = 0, from which the series expansion approximation

consequently applies in a even better way. The results for σ = 2 and A0 = 0.30, 0.60 and

0.90 appear in the Figure 8, from which it is possible to see how accurate [both qualitatively

and quantitatively] the results provided by the lumplike perturbation are. It is however

important to reinforce that the corresponding final configurations dramatically depend on

the values of σ itself, see the results displayed in the Figure 6 for σ = 20, for instance. In

this sense, we clarify that, when σ = 2, the final structure solution is a short-lived (long-

lived) centered pulse for A0 = 0.30 (A0 = 0.60), while it represents the scattering of a single

antikink-kink pair (with a central pulse around the negative vacuum) for A0 = 0.90 (i.e.

multiple antikink-kink pairs were not observed).
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FIG. 8: Field profile at the center of mass for A0 = 0.30 (left), A0 = 0.50 (center) and A0 = 0.90

(right). Here, we have fixed σ = 2. The Gaussian profile is even more localized around the origin,

from which the series expansion provides better results.

In all these cases, the original Gaussian perturbation was approached via a lumplike

profile which was proposed as a static kink-antikink pair. The results obtained via the

Gaussian configuration were then mimicked via those related to a kink-antikink interaction.
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We believe that such an approach contributes to the comprehension on the role played by

the energy transfer mechanism in the formation of the final structures. In addition, the

lumplike perturbation approach is expected to provide some insight about the occurrence of

a fractal pattern which resembles that of a kink-antikink collision.

IV. SUMMARY AND PERSPECTIVES

In this manuscript, we have studied some of the results caused by a perturbation applied

to a fundamental state of a classical field.

With this aim in mind, we have considered a model with a single real scalar field ϕ(x, t)

only whose self-interaction potential V (ϕ) has the usual ϕ4 profile. The resulting noninte-

grable scenario is known to support energetically stable time-independent solutions which

connect the two adjacent minima of the potential. In addition, these solutions can be ver-

ified to have the very same energy, but topological charges with opposite signs. Moreover,

the stability analysis reveals that such a kink profile admits two well-defined internal modes

- translational and vibrational - which can be applied to explain the temporal evolution of

an scattering in such a classical ambient via the so-called energy transfer mechanism.

Motivated by the prominent developments recently presented in the Ref. [41], we have

here implemented a Gaussian-like perturbation around the vacuum state ϕ0 = +1. The

perturbation is controlled by two distinct parameters, namely, A0 and σ, which rotulate its

amplitude and width, respectively.

We have then focused our attention on how different values of A0 give rise to distinct

configurations of the real sector ϕ(x, t), from which we have considered some σ values in our

numerical investigations.

Initially, we have investigated the impact of small amplitudes. These solutions have re-

vealed that the perturbation produces an excited oscillon which decays and annihilates. We

have also explored the scenario of intermediate values of A0, where the dynamics has indi-

cated the creation of long-lived oscillons. As the amplitude increases, we have observed the

formation of antikink-kink pairs followed by the eventual emission of radiation. In particu-

lar, we have identified the appearance of a centered short-lived oscillon which intermediates

the interaction between the inner structures which compose the emergent pairs. Curiously,

we have noted that the corresponding solution for ϕ(0, t) mimics the pattern inherent to a
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four-bounce window, with the scalar field performing two complete oscillations between the

first two bounces, from which we have argued that such a behavior reinforces the role played

by the energy transfer mechanism. For large amplitudes, the initial condition oscillates and

then generates two pairs which propagate in opposite directions, followed by an oscillon at

the center of mass. Additionally, we have found that a new antikink-kink pair was formed.

Motivated by these results, we have obtained the resonant structure inherent to the

evolution of the scalar field in view of an initial Gaussian perturbation, see the Fig. 5. We

have identified field oscillations around ϕ0 = +1 (blue regions) and the emergence of an

antikink-kink pair positioned at x = 0 (red portions). Notably, we have noted that the

resulting fractal structure mimics that of a kink-antikink scattering. Moreover, we have

clarified that, while the resonant structure related to a standard kink-antikink collision

reflects the number of interactions between the pair, the structure which we have obtained

in the present manuscript depicts the alternation between the emergence of an oscillatory

pulse and an antikink-kink pair.

We have also investigated the impact of an initial oscillation with a different width, from

which we have fixed σ = 20. In these circumstances, we have observed that a single antikink-

kink pair is generated by the perturbation, with the amplitude now determining the number

of bounces performed by the pair before its escape to the infinity. We have pointed out that

these multiple bounces can be rotulated as usual, i.e., based on the order of the window

they belong. As a result, we have highlighted that the existence of these windows with

nontrivial order can be understood as a clear consequence of the energy exchange between

the translational and vibrational modes.

The coincidence between the fractal patterns has inspired us to study the reproduction

of the effects caused by the Gaussian perturbation via a lumplike profile constructed as

a kink-antikink pair. We have connected these two scenarios via the comparison between

the respective Taylor series expansions, from which we have written the parameters which

characterize the lumplike perturbation in terms of the A0 and σ. We have then depicted the

corresponding results, which have revealed that such a Taylor series based approach holds

well for small values of A0, its accuracy decreasing as the values of A0 increase. In particular,

when σ is small, the results practically coincide with each other, from what we have pointed

out that such a successful mapping may contribute to the understanding not only of the

coincidence between the fractal pattern, but also of the fundamental role played by the

16



energy transfer mechanism in the definition of the final configurations due to a Gaussian

perturbation.

Perspectives regarding future investigations include the study of the results related to

an initial perturbation around the fundamental states inherent to both the ϕ6 and the

sine-Gordon potentials. In this context, the last one sounds particularly interesting due

to the integrable nature of the corresponding ambient, from which emission of radiation

is not expected to occur. Also, we plan to depict the resonant structures of the resulting

configurations, from which we intend to verify whether the corresponding fractal patterns

can be eventually compared to the well-established ones or, on the other hand, they reveal

a novel profile to be explored. These issues are currently under investigation, and positive

results will be eventually reported in a future contribution.
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