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Abstract

One of the classic results of group theory is the so-called Schur theorem. It
states that if the central factor-group G/ζ(G) of a group G is finite, then its
derived subgroup [G,G] is also finite. This result has numerous generalizations
and modifications in group theory. At the same time, similar investigations were
conducted in other algebraic structures, namely in modules, linear groups, topo-
logical groups, n-groups, associative algebras, Lie algebras, Lie n-algebras, Lie
rings, Leibniz algebras. In 2021, L.A. Kurdachenko, O.O. Pypka and I.Ya. Sub-
botin proved an analogue of Schur theorem for Poisson algebras: if the center
of the Poisson algebra P has finite codimension, then P includes an ideal K
of finite dimension such that P/K is abelian. In this paper, we continue sim-
ilar studies for another algebraic structure. An analogue of Schur theorem for
Poisson (2-3)-algebras is proved.
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1 Introduction.

We start with a classical result of group theory. In 1951, B.H. Neumann proved
the so-called [12] Schur theorem. This theorem states that if the central factor-
group G/ζ(G) of a group G is finite, then its derived subgroup [G,G] is also fi-
nite [14]. In other words, if G/ζ(G) is finite, then G includes a finite normal subgroup
H = [G,G] such that G/H is abelian. Moreover, there exists a function w such that
|[G,G]| 6 w(t), where t = |G/ζ(G)|. This theorem has numerous generalizations and
modifications in group theory (see, for, example, [2, 3, 5, 7, 8, 15]). Furthermore,
similar investigations were conducted in other algebraic structures of a different na-
ture. Thus, analogues of Schur theorem were obtained for modules (see, for example,
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[13]), linear groups [1], topological groups [19], n-groups [4], associative algebras [16],
Lie algebras [9, 17], Lie n-algebras [18], Lie rings [10], Leibniz algebras [6].

A few years ago, L.A. Kurdachenko, O.O. Pypka and I.Ya. Subbotin proved an
analogue of Schur theorem for Poisson algebras [11]. More precisely, it was proved
that if the center ζ(P ) of the Poisson algebra P has finite codimension, then P
includes an ideal K of finite dimension such that P/K is abelian. Moreover, they

proved that dimF (K) 6 d(d2−1)
2 .

Consider another algebraic structure that arises from Poisson algebras by replac-
ing the binary operation of Lie bracket [−,−] with the ternary operation [−,−,−].

Let P be a vector space over a field F . Then P is called a Poisson (2-3)-algebra,
if P has a binary operation · and ternary operation [−,−,−] such that the product ·
forms a commutative associative algebra, the bracket [−,−,−] forms a Lie 3-algebra,
and [−,−,−] acts as a derivation of the product ·, that is · and [−,−,−] satisfy the
Leibniz (2-3)-identity. In other words,

ab = ba, (ab)c = a(bc),

a(b+ c) = ab+ ac, (λa)b = a(λb) = λ(ab),

[a1 + a2, b, c] = [a1, b, c] + [a2, b, c],

[a, b1 + b2, c] = [a, b1, c] + [a, b2, c],

[a, b, c1 + c2] = [a, b, c1] + [a, b, c2],

[λa, b, c] = [a, λb, c] = [a, b, λc] = λ[a, b, c],

[a1, a2, a3] = 0 whenever ai = aj for some i 6= j, 1 6 i, j 6 3,

[[a1, a2, a3], b, c] = [[a1, b, c], a2, a3] + [a1, [a2, b, c], a3] + [a1, a2, [a3, b, c]],

[a1a2, b, c] = a2[a1, b, c] + a1[a2, b, c]

for all a, a1, a2, a3, b, b1, b2, c, c1, c2 ∈ P , λ ∈ F . If we will consider P as an associative
and commutative algebra by multiplication ·, then we will denote it by P (+, ·). If
we will consider P as a Lie 3-algebra by Lie 3-bracket [−,−,−], then we will denote
it by P (+, [−,−,−]).

This article is devoted to the extension of the statement, similar to Schur theo-
rem, to Poisson (2-3)-algebras.

2 Preliminary results.

We begin with a series of important basic results that illustrate the properties of
Poisson (2-3)-algebras.

Lemma 2.1. Let P be a Poisson (2-3)-algebra over a field F . Then for all elements

of P

(i) [a, b, c] = [b, c, a] = [c, a, b] = −[a, c, b] = −[b, a, c] = −[c, b, a];

(ii) [a, b1b2, c] = b2[a, b1, c] + b1[a, b2, c];

(iii) [a, b, c1c2] = c2[a, b, c1] + c1[a, b, c2].
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Proof. (i) By definition, [a1, a2, a3] = 0 whenever ai = aj for some i 6= j, 1 6 i, j 6 3.
Since [a, a, c] = 0 for all a, c ∈ P , then

[a+ b, a+ b, c] = 0,

[a, a, c] + [a, b, c] + [b, a, c] + [b, b, c] = 0,

[a, b, c] = −[b, a, c].

Since [a, b, a] = 0 for all a, b ∈ P , then

[a+ c, b, a+ c] = 0,

[a, b, a] + [a, b, c] + [c, b, a] + [c, b, c] = 0,

[a, b, c] = −[c, b, a].

Since [a, b, b] = 0 for all a, b ∈ P , then

[a, b+ c, b+ c] = 0,

[a, b, b] + [a, b, c] + [a, c, b] + [a, c, c] = 0,

[a, b, c] = −[a, c, b].

Finally,
−[c, b, a] = −(−[b, c, a]) = [b, c, a]

and
−[a, c, b] = −(−[c, a, b]) = [c, a, b].

(ii) Since by (i) [a, b, c] = [b, c, a], then

[a, b1b2, c] = [b1b2, c, a] = b2[b1, c, a] + b1[b2, c, a] = b2[a, b1, c] + b1[a, b2, c].

(iii) Since by (i) [a, b, c] = [c, a, b], then

[a, b, c1c2] = [c1c2, a, b] = c2[c1, a, b] + c1[c2, a, b] = c2[a, b, c1] + c1[a, b, c2].

�

Lemma 2.2. Let P be a Poisson (2-3)-algebra over a field F . Then for all elements

of P

(i)

[

∏

16i6k

ai, b, c

]

=
∑

16i6k

∏

16τ6k
τ 6=i

aτ [ai, b, c];

(ii)

[

a,
∏

16j6s

bj, c

]

=
∑

16j6s

∏

16µ6s
µ6=j

bµ[a, bj , c];

(iii)

[

a, b,
∏

16r6t

cr

]

=
∑

16r6t

∏

16ν6t
ν 6=r

cν [a, b, cr];
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(iv)

[

∏

16i6k

ai,
∏

16j6s

bj ,
∏

16r6t

cr

]

=
∑

16i6k
16j6s
16r6t

∏

16τ6k
16µ6s
16ν6t

τ 6=i,µ6=j,ν 6=r

aτ bµcν [ai, bj , cr];

(v) [ak, bs, ct] = kstak−1bs−1ct−1[a, b, c].

Proof. (i) Consider the product

[

∏

16i63
ai, b, c

]

:

[

∏

16i63

ai, b, c

]

= [a1a2a3, b, c] = [(a1a2)a3, b, c] =

= a3[a1a2, b, c] + a1a2[a3, b, c] = a3(a2[a1, b, c] + a1[a2, b, c]) + a1a2[a3, b, c] =

= a2a3[a1, b, c] + a1a3[a2, b, c] + a1a2[a3, b, c] =
∑

16i63

∏

16τ63
τ 6=i

aτ [ai, b, c].

Suppose we have already proved that





∏

16i6d

ai, b, c



 =
∑

16i6d

∏

16τ6d
τ 6=i

aτ [ai, b, c].

Then




∏

16i6d+1

ai, b, c



 =









∏

16i6d

ai



 ad+1, b, c



 =

= ad+1





∏

16i6d

ai, b, c



 +
∏

16i6d

ai[ad+1, b, c] =

= ad+1

∑

16i6d

∏

16τ6d
τ 6=i

aτ [ai, b, c] +
∏

16i6d

ai[ad+1, b, c] =

=
∑

16i6d

∏

16τ6d
τ 6=i

(aτad+1)[ai, b, c] +
∏

16i6d

ai[ad+1, b, c] =

=
∑

16i6d+1

∏

16τ6d+1
τ 6=i

aτ [ai, b, c].

Thus for every positive integer k we proved that





∏

16i6k

ai, b, c



 =
∑

16i6k

∏

16τ6k
τ 6=i

aτ [ai, b, c]
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Similarly, using (ii) and (iii) of Lemma 2.1, we can prove that for all positive
integers s and t

(ii)



a,
∏

16j6s

bj , c



 =
∑

16j6s

∏

16µ6s
µ6=j

bµ[a, bj , c];

(iii)

[

a, b,
∏

16r6t

cr

]

=
∑

16r6t

∏

16ν6t
ν 6=r

cν [a, b, cr].

Combining (i), (ii) and (iii), we obtain that

(iv)





∏

16i6k

ai,
∏

16j6s

bj,
∏

16r6t

cr



 =
∑

16i6k
16j6s
16r6t

∏

16τ6k
16µ6s
16ν6t

τ 6=i,µ6=j,ν 6=r

aτ bµcν [ai, bj , cr].

Finally, using (iv), we obtain that

(v)[ak, bs, ct] = kstak−1bs−1ct−1[a, b, c].

�

Let P be a Poisson (2-3)-algebra over a field F . A subset S of P is called a
subalgebra of P if S is a subspace of P and ab, [a, b, c] ∈ S for all a, b, c ∈ S. A subset
I of P is called an ideal of P if I is a subspace of P and ab, [a, b, c] ∈ I for all a ∈ I
and b, c ∈ P .

We will say that a Poisson (2-3)-algebra P is simple, if it has only two ideals,
〈0〉 and P . As usual, P is abelian, if [a, b, c] = 0 for all a, b, c ∈ P .

Let P1 and P2 be Poisson (2-3)-algebras over a field F . Then a mapping f : P1 →
P2 is called a homomorphism, if

f(λa) = λf(a), f(a+ b) = f(a) + f(b),

f(ab) = f(a)f(b), f([a, b, c]) = [f(a), f(b), f(c)]

for all a, b, c ∈ P1, λ ∈ F .
As usual, an injective homomorphism is called a monomorphism, a surjective

homomorphism is called an epimorphism, and bijective homomorphism is called an
isomorphism.

Proposition 2.3. Let A be an arbitrary Poisson (2-3)-algebra over a field F . Then

(i) there exists a Poisson (2-3)-algebra P over a field F having a multiplicative

identity element;

(ii) there exists a monomorphism f : A → P such that Im(f) is an ideal of P .
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Proof. (i) If A has an identity element by multiplication ·, then all is proved. There-
fore, suppose that A has no an identity element by multiplication ·. Put P = A×F
and define on P the following operations:

λ(a, α) = (λa, λα),

(a, α) + (b, β) = (a+ b, α+ β),

(a, α)(b, β) = (ab+ αb+ βa, αβ),

[(a, α), (b, β), (c, δ)] = ([a, b, c], 0F )

for all a, b, c ∈ A and λ, α, β, δ ∈ F .
Let us show first that P is an algebra. If a, b, c ∈ A and α, β, δ ∈ F , then

(a, α) + (b, β) = (a+ b, α+ β) = (b+ a, β + α) = (b, β) + (a, α);

((a, α) + (b, β)) + (c, δ) = (a+ b, α+ β) + (c, δ) =

= ((a+ b) + c, (α+ β) + δ) = (a+ (b+ c), α + (β + δ)) =

= (a, α) + (b+ c, β + δ) = (a, α) + ((b, β) + (c, δ));

(a, α) + (0A, 0F ) = (a+ 0A, α+ 0F ) = (a, α);

(a, α) + (−a,−α) = (a+ (−a), α + (−α)) = (0A, 0F );

(a, α)((b, β) + (c, δ)) = (a, α)(b + c, β + δ) =

= (a(b+ c) + α(b+ c) + (β + δ)a, α(β + δ)) =

= ((ab+ αb+ βa) + (ac+ αc+ δa), αβ + αδ) =

= (ab+ αb+ βa, αβ) + (ac+ αc+ δa, αδ) =

= (a, α)(b, β) + (a, α)(c, δ);

((a, α) + (b, β))(c, δ) = (a+ b, α+ β)(c, δ) =

= ((a+ b)c+ (α+ β)c+ δ(a + b), (α+ β)δ) =

= ((ac+ αc+ δa) + (bc+ βc+ δb), αδ + βδ) =

= (ac+ αc+ δa, αδ) + (bc+ βc+ δb, βδ) =

= (a, α)(c, δ) + (b, β)(c, δ).

Let λ, κ ∈ F . Then

λ((a, α) + (b, β)) = λ(a+ b, α+ β) =

= (λ(a+ b), λ(α + β)) = (λa+ λb, λα+ λβ) =

= (λa, λα) + (λb, λβ) = λ(a, α) + λ(b, β);

6



(λ+ κ)(a, α) = ((λ+ κ)a, (λ+ κ)α) =

= (λa+ κa, λα + κα) = (λa, λα) + (κa, κα) =

= λ(a, α) + κ(a, α);

(λκ)(a, α) = ((λκ)a, (λκ)α) =

= (λ(κa), λ(κα)) = λ(κa, κα) = α(κ(a, α));

1F (a, α) = (1F a, 1Fα) = (a, α).

Finally,

λ((a, α)(b, β)) = λ(ab+ αb+ βa, αβ) =

= (λab+ λαb+ λβa, λαβ),

(λ(a, α))(b, β) = (λa, λα)(b, β) =

= (λab+ λαb+ λβa, λαβ),

(a, α)(λ(b, β)) = (a, α)(λb, λβ) =

= (λab+ λαb+ λβa, λαβ),

which implies that

λ((a, α)(b, β)) = (λ(a, α))(b, β) = (a, α)(λ(b, β)).

Therefore, P is an algebra over a field F . Since

(a, α)(b, β) = (ab+ αb+ βa, αβ) =

= (ba+ βa+ αb, βα) = (b, β)(a, α),

P is commutative. Moreover,

((a, α)(b, β))(c, δ) = (ab+ αb+ βa, αβ)(c, δ) =

= (abc+ αbc+ βac+ αβc+ δab+ αδb+ βδa, αβδ)

and

(a, α)((b, β)(c, δ)) = (a, α)(bc + βc+ δb, βδ) =

= (abc+ βac+ δab+ αbc+ αβc+ αδb + βδa, αβδ),

which implies that

((a, α)(b, β))(c, δ) = (a, α)((b, β)(c, δ)).

Thus, P is an associative algebra. Since

[(a1, α1), (a2, α2), (a3, α3)] = ([a1, a2, a3], 0F ),

7



then
[(a1, α1), (a2, α2), (a3, α3)] = (0A, 0F ) = 0P

whenever (ai, αi) = (aj , αj) for some i 6= j, 1 6 i, j 6 3.
Furthermore,

[[(a1, α1), (a2, α2), (a3, α3)], (b, β), (c, δ)] =

= [([a1, a2, a3], 0F ), (b, β), (c, δ)] = ([[a1, a2, a3], b, c], 0F ),

and

[[(a1, α1), (b, β), (c, δ)], (a2 , α2), (a3, α3)]+

+[(a1, α1), [(a2, α2), (b, β), (c, δ)], (a3 , α3)]+

+[(a1, α1), (a2, α2), [(a3, α3), (b, β), (c, δ)]] =

= [([a1, b, c], 0F ), (a2, α2), (a3, α3)]+

+[(a1, α1), ([a2, b, c], 0F ), (a3, α3)]+

+[(a1, α1), (a2, α2), ([a3, b, c], 0F )] =

= ([[a1, b, c], a2, a3], 0F ) + ([a1, [a2, b, c], a3], 0F ) + ([a1, a2, [a3, b, c]], 0F ) =

= ([[a1, b, c], a2, a3] + [a1, [a2, b, c], a3] + [a1, a2, [a3, b, c]], 0F ),

which shows that

[[(a1, α1), (a2, α2), (a3, α3)], (b, β), (c, δ)] =

= [[(a1, α1), (b, β), (c, δ)], (a2 , α2), (a3, α3)]+

+[(a1, α1), [(a2, α2), (b, β), (c, δ)], (a3 , α3)]+

+[(a1, α1), (a2, α2), [(a3, α3), (b, β), (c, δ)]].

Consider the Leibniz (2-3)-identity for P .

[(a1, α1)(a2, α2), (b, β), (c, δ)] =

= [(a1a2 + α1a2 + α2a1, α1α2), (b, β), (c, δ)] =

= ([a1a2 + α1a2 + α2a1, b, c], 0F ) =

= ([a1a2, b, c] + α1[a2, b, c] + α2[a1, b, c], 0F ).

On the other hand,

(a2, α2)[(a1, α1), (b, β), (c, δ)] + (a1, α1)[(a2, α2), (b, β), (c, δ)] =

= (a2, α2)([a1, b, c], 0F ) + (a1, α1)([a2, b, c], 0F ) =

= (a2[a1, b, c] + α2[a1, b, c] + 0Fa2, α20F ) + (a1[a2, b, c]

+α1[a2, b, c] + 0Fa1, α10F ) =

= (a2[a1, b, c] + α2[a1, b, c], 0F ) + (a1[a2, b, c] + α1[a2, b, c], 0F ) =

= (a2[a1, b, c] + a1[a2, b, c] + α1[a2, b, c] + α2[a1, b, c], 0F ).
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Since [a1a2, b, c] = a2[a1, b, c] + a1[a2, b, c],

[(a1, α1)(a2, α2), (b, β), (c, δ)] =

= (a2, α2)[(a1, α1), (b, β), (c, δ)] + (a1, α1)[(a2, α2), (b, β), (c, δ)].

Taking into account the above, we can say that P is a Poisson (2-3)-algebra.
Finally, (0A, 1F ) is an identity element by multiplication ·:

(a, α)(0A, 1F ) = (a0A + α0A + 1Fa, α1F ) = (a, α).

(ii) Consider the mapping f : A → P , which defined by the rule f(a) = (a, 0F )
for all a ∈ A. Then

f(λa) = (λa, 0F ) = (λa, λ0F ) = λ(a, 0F ) = λf(a);

f(a+ b) = (a+ b, 0F ) = (a+ b, 0F + 0F ) = (a, 0F ) + (b, 0F ) = f(a) + f(b);

f(ab) = (ab, 0F ) = (ab+ 0F b+ 0Fa, 0F 0F ) = (a, 0F )(b, 0F ) = f(a)f(b);

f([a, b, c]) = ([a, b, c], 0F ) = [(a, 0F ), (b, 0F ), (c, 0F )] = [f(a), f(b), f(c)].

Thus f is a homomorphism. Clearly f is injective, so that f is a monomorphism.
Let

(a, 0F ), (b, 0F ) ∈ Im(f) = {(x, 0F )| x ∈ A}.

Since

(a, 0F )− (b, 0F ) = (a− b, 0F ) ∈ Im(f),

λ(a, 0F ) = (λa, 0F ) ∈ Im(f),

Im(f) is a subspace of P . Finally, if (a, 0F ) ∈ Im(f), (b, β), (c, δ) ∈ P , then

(a, 0F )(b, β) = (ab+ 0F b+ βa, 0Fβ) = (ab+ βa, 0F ) ∈ Im(f),

[(a, 0F ), (b, β), (c, δ)] = ([a, b, c], 0F ) ∈ Im(f),

which shows that Im(f) is an ideal of P . �

Proposition 2.3 shows that we can consider only Poisson (2-3)-algebras with an
identity element 1P by multiplication ·.

Let A,B,C be subspaces of a Poisson (2-3)-algebra P . Denote by

• A+B the subspace of P with elements of the form a+ b, a ∈ A, b ∈ B;

• AB the subspace of P , which generated by the subset {ab| a ∈ A, b ∈ B};

• [A,B,C] the subspace of P , which generated by the subset {[a, b, c]| a ∈ A, b ∈
B, c ∈ C}.

Clearly, every element of AB has a following form

a1b1 + . . .+ anbn

where a1, . . . an ∈ A, b1, . . . bn ∈ B.
Similarly, every element of [A,B,C] has a following form

[a1, b1, c1] + . . . + [an, bn, cn]

where a1, . . . an ∈ A, b1, . . . bn ∈ B and c1, . . . cn ∈ C.
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Proposition 2.4. Let P be a Poisson (2-3)-algebra over a field F .

(i) If A is a subalgebra of P and B is an ideal of P , then A + B is a subalgebra

of P .

(ii) If A is a subalgebra of P and B is an ideal of P , then AB is a subalgebra of

P .

(iii) If A, B are ideals of P , then A+B is an ideal of P .

(iv) If A, B are ideals of P , then AB is an ideal of P .

(v) If P is non-simple, then P has a proper non-zero maximal ideal.

(vi) If a ∈ P , then aP = {ab| b ∈ P} is a subalgebra of P and an ideal of P (+, ·).

Proof. (i) If x, y, z ∈ A + B, then x = a1 + b1, y = a2 + b2, z = a3 + b3 where
a1, a2, a3 ∈ A, b1, b2, b3 ∈ B. If λ ∈ F , then

λx = λ(a1 + b1) = λa1 + λb1 ∈ A+B;

x− y = (a1 + b1)− (a2 + b2) = (a1 − a2) + (b1 − b2) ∈ A+B;

xy = (a1 + b1)(a2 + b2) = a1a2 + (a1b2 + b1a2 + b1b2) ∈ A+B;

[x, y, z] = [a1 + b1, a2 + b2, a3 + b3] =

= [a1, a2, a3] + ([a1, a2, b3] + [a1, b2, a3] + [a1, b2, b3]+

+[b1, a2, a3] + [b1, a2, b3] + [b1, b2, a3] + [b1, b2, b3]) ∈ A+B.

Thus A+B is a subalgebra of P .
(ii) If x, y, z ∈ AB, then

x = a1b1 + . . .+ anbn =
∑

16i6n

aibi,

y = c1d1 + . . . + csds =
∑

16j6s

cjdj ,

z = h1k1 + . . . + htkt =
∑

16r6t

hrkr

where ai, cj , hr ∈ A, bi, dj , kr ∈ B, 1 6 i 6 n, 1 6 j 6 s, 1 6 r 6 t. If λ ∈ F , then

λx = λ(a1b1 + . . .+ anbn) = (λa1)b1 + . . . + (λan)bn ∈ AB;

x− y = (a1b1 + . . . + anbn)− (c1d1 + . . .+ csds) ∈ AB;

xy =

(

∑

16i6n

aibi

)





∑

16j6s

cjdj



 =
∑

16i6n
16j6s

(aibi)(cjdj)

=
∑

16i6n
16j6s

(aicj)(bidj) ∈ AB.
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Consider the product [x, y, z]:

[x, y, z] =





∑

16i6n

aibi,
∑

16j6s

cjdj ,
∑

16r6t

hrkr



 =
∑

16i6n
16j6s
16r6t

[aibi, cjdj , hrkr].

Taking into account Lemma 2.2 (iv), we have

[aibi, cjdj , hrkr] =

= bidjkr[ai, cj , hr] + bidjhr[ai, cj , kr] + bicjkr[ai, dj , hr] + bicjhr[ai, dj , kr]+

+aidjkr[bi, cj , hr] + aidjhr[bi, cj , kr] + aicjkr[bi, dj , hr] + aicjhr[bi, dj , kr].

Since A is a subalgebra of P , then [ai, cj , hr], cjhr, aihr, aicj , aicjhr ∈ A. On the other
hand, since B is an ideal of P , then bidjkr, bidj [ai, cj , kr], bikr[ai, dj , hr], bi[ai, dj , kr],
djkr[bi, cj , hr], dj [bi, cj , kr], kr[bi, dj , hr], [bi, dj , kr] ∈ B. Thus each term in the expan-
sion of [aibi, cjdj , hrkr] belongs to AB. Obviously, this is true for all i, j, r, 1 6 i 6 n,
1 6 j 6 s, 1 6 r 6 t, which implies that [x, y, z] ∈ AB. Therefore, AB is a subalge-
bra of P .

(iii) As above we can show that A + B is a subspace of P . If x ∈ A + B, then
x = a+ b, a ∈ A, b ∈ B. Let y, z ∈ P . Then

xy = (a+ b)y = ay + by ∈ A+B;

[x, y, z] = [a+ b, y, z] = [a, y, z] + [b, y, z] ∈ A+B.

Thus A+B is an ideal of P .
(iv) As above we can show that AB is a subspace of P . If x ∈ AB, then

x = a1b1 + . . .+ anbn =
∑

16i6n

aibi,

ai ∈ A, bi ∈ B, 1 6 i 6 n. Let y, z ∈ P . Then

xy =

(

∑

16i6n

aibi

)

y =
∑

16i6n

ai(biy) ∈ AB;

[x, y, z] =

[

∑

16i6n

aibi, y, z

]

=
∑

16i6n

[aibi, y, z]

=
∑

16i6n

(bi[ai, y, z] + ai[bi, y, z]) ∈ AB.

Therefore, AB is an ideal of P .
(v) If P is not simple, then P includes a proper non-zero ideal. Put

S = {A| A is a proper non-zero ideal of P}.

Obviously, S is non-empty. Since 1P 6∈ A for each A ∈ S, an union of every linearly
ordered (by inclusion) subset of S belongs to S. By Zorn’s Lemma, a family S has
a maximal element.
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(vi) If x, y, z ∈ aP = {ab| b ∈ P}, then x = ab1, y = ab2 and z = ab3. Let λ ∈ F ,
then

λx = λab1 = a(λb1) ∈ aP ;

x− y = ab1 − ab2 = a(b1 − b2) ∈ aP ;

xy = (ab1)(ab2) = a(b1ab2) ∈ aP.

In particular, since for any c ∈ P we have xc = (ab1)c = a(b1c) ∈ P , then aP is an
ideal of P (+, ·).

Finally, using Lemma 2.2 (iv), we have

[ab1, ab2, ab3] =

= b1b2b3[a, a, a] + b1b2a[a, a, b3] + b1ab3[a, b2, a] + b1aa[a, b2, b3]+

+ab2b3[b1, a, a] + ab2a[b1, a, b3] + aab3[b1, b2, a] + aaa[b1, b2, b3] =

= b1aa[a, b2, b3] + ab2a[b1, a, b3] + aab3[b1, b2, a] + aaa[b1, b2, b3] =

= a(ab1[a, b2, b3] + ab2[b1, a, b3] + ab3[b1, b2, a] + a2[b1, b2, b3]) ∈ aP.

The last inclusion shows that aP is a subalgebra of P for each a ∈ P . �

Let P be a Poisson (2-3)-algebra over a field F . Put

ζ(P ) = {a ∈ P | [a, b, c] = 0 for all b, c ∈ P}.

The subset ζ(P ) is called the center of P . We note that ζ(P ) is an ideal of Lie
3-algebra P (+, [−,−,−]).

Proposition 2.5. Let P be a Poisson (2-3)-algebra over a field F . Then

(i) ζ(P ) is a subalgebra of P ;

(ii) ζ(P ) contains every idempotent of P , in particular, 1P ∈ ζ(P ).

Proof. (i) Let λ ∈ F , a ∈ ζ(P ), b, c ∈ P . Then

[λa, b, c] = λ[a, b, c] = 0.

If a1, a2 ∈ ζ(P ) and b, c,∈ P , then

[a1 − a2, b, c] = [a1, b, c] − [a2, b, c] = 0,

which shows that a1 − a2 ∈ ζ(P ), so that ζ(P ) is a subspace of P .
Moreover,

[a1a2, b, c] = a2[a1, b, c] + a1[a2, b, c] = 0,

so that a1a2 ∈ ζ(P ).
Finally, let a1, a2, a3 ∈ ζ(P ) and b, c,∈ P . Then

[[a1, a2, a3], b, c] = [[a1, b, c], a2, a3] + [a1, [a2, b, c], a3] + [a1, a2, [a3, b, c]] =

= [0, a2, a3] + [a1, 0, a3] + [a1, a2, 0] = 0,
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which implies that [a1, a2, a3] ∈ ζ(P ). Thus ζ(P ) is a subalgebra of P .
(ii) Let e be an arbitrary idempotent of P . Let b, c ∈ P . Using Lemma 2.2 (v)

we have
[e, b, c] = [e2, b, c] = 2e[e, b, c].

If 2e[e, b, c] = 0, then all is proved. Suppose that 2e[e, b, c] 6= 0. Then

2e[e, b, c] − [e, b, c] = 0.

It follows that

0 = 2e(2e[e, b, c] − [e, b, c]) = 4e2[e, b, c] − 2e[e, b, c] =

= 4e[e, b, c] − 2e[e, b, c] = 2e[e, b, c],

and we obtain a contradiction. Thus 2e[e, b, c] = 0, so that e ∈ ζ(P ). In particular,
since 1P = 12P , 1P ∈ ζ(P ). �

3 Analogue of Schur theorem for Poisson (2-3)-algebras

Lemma 3.1. Let L be a Lie 3-algebra over a field F . Suppose that the factor-algebra

L/ζ(L) has a finite dimension d and let {e1 + ζ(L), . . . , ed + ζ(L)} be a basis of

L/ζ(L). Then [L,L,L] generated by the elements [u1, u2, u3] where uj ∈ {e1, . . . , ed},
1 6 j 6 3.

Proof. Put Z = ζ(L). Then for every x ∈ L we have x = λ1e1+. . .+λded+sx for some
λ1, . . . , λd ∈ F and sx ∈ Z. Let y = µ1e1+. . .+µded+sy and z = ν1e1+. . .+νded+sz,
µ1, . . . , µd, ν1, . . . , νd ∈ F , sy, sz ∈ Z. Then

[x, y, z]

= [λ1e1 + . . .+ λded + sx, µ1e1 + . . . + µded + sy, ν1e1 + . . . + νded + sz]

=
∑

16i,j,k6d

λiµjνk[ei, ej , ek].

As we can see, [L,L,L] is a subalgebra generates by the elements [ei, ej , ek], 1 6

i, j, k 6 d. More precisely, since [ei, ej , ek] = sign(σ)[eσ(i), eσ(j), eσ(k)] (σ ∈ S3) and
[ei, ej , ek] = 0 whenever em = en for some m 6= n, 1 6 i, j, k 6 d, [L,L,L] generates
by the elements [ei, ej , ek] where 1 6 i < j < k 6 d. �

Theorem 3.2. Let P be a Poisson (2-3)-algebra over a field F . Suppose that the cen-

ter of P has a finite codimension d. Then P includes an ideal K of finite dimension

at most
d(d2−1)(d−2)

6 such that P/K is abelian.

Proof. Put Z = ζ(P ). Then P = Z ⊕ A for some subspace A of P . Choose a basis
{e1, . . . , ed} in the subspace A. Then for every element x ∈ P we have

x = λ1e1 + . . .+ λded + zx

for some λ1, . . . , λd ∈ F and zx ∈ Z.
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A subspace [P,P, P ] is an ideal of a Lie 3-algebra P (+, [−,−,−]). Lemma 3.1
shows that [P,P, P ] generates as a subspace by the elements [ei, ej , ek] where 1 6

i < j < k 6 d.
Consider an ideal K of an associative algebra P (+, ·) generated by [P,P, P ].

Every element from K has a form a1x1 + . . . + arxr where a1, . . . , ar ∈ [P,P, P ],
x1, . . . , xr are the arbitrary elements of P . Let x be an arbitrary element of P ,
x = λ1e1 + . . .+ λded + zx where λ1, . . . , λd ∈ F and zx ∈ Z. We have

[ei, ej , ek]x = [ei, ej , ek](λ1e1 + . . . + λded + zx)

= λ1e1[ei, ej , ek] + . . .+ λded[ei, ej , ek] + zx[ei, ej , ek].

Using Leibniz rule we obtain

[ei, ej , ekzx] = zx[ei, ej , ek] + ek[ei, ej , zx] = zx[ei, ej , ek].

For element ekzx we have the decomposition ekzx = ν1e1+. . .+νded+zx,k. Therefore

[ei, ej , ekzx] = [ei, ej , ν1e1 + . . . + νded + zx,k] = ν1[ei, ej , e1] + . . .+ νd[ei, ej , ed].

These equalities show that K as a vector space is generated by the elements
[ei, ej , ek], es[ei, ej , ek], 1 6 s 6 d, 1 6 i < j < k 6 d. It follows that K has a
dimension at most

d(d− 1)(d − 2)

6
+ d

d(d− 1)(d − 2)

6
=

d(d − 1)(d− 2)

6
(d+ 1)

=
d(d2 − 1)(d− 2)

6
.

The inclusion [K,K,K] 6 [P,P, P ] 6 K shows that K is a subalgebra of P .
Moreover, [K,P, P ] 6 [P,P, P ] 6 K, so that K is an ideal of Lie 3-algebra

P (+, [−,−,−]). �
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