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Abstract

One of the classic results of group theory is the so-called Schur theorem. It
states that if the central factor-group G/((G) of a group G is finite, then its
derived subgroup |G, G] is also finite. This result has numerous generalizations
and modifications in group theory. At the same time, similar investigations were
conducted in other algebraic structures, namely in modules, linear groups, topo-
logical groups, n-groups, associative algebras, Lie algebras, Lie n-algebras, Lie
rings, Leibniz algebras. In 2021, L.A. Kurdachenko, O.O. Pypka and I.Ya. Sub-
botin proved an analogue of Schur theorem for Poisson algebras: if the center
of the Poisson algebra P has finite codimension, then P includes an ideal K
of finite dimension such that P/K is abelian. In this paper, we continue sim-
ilar studies for another algebraic structure. An analogue of Schur theorem for
Poisson (2-3)-algebras is proved.
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1 Introduction.

We start with a classical result of group theory. In 1951, B.H. Neumann proved
the so-called [12] Schur theorem. This theorem states that if the central factor-
group G/C(G) of a group G is finite, then its derived subgroup [G,G] is also fi-
nite [14]. In other words, if G/((G) is finite, then G includes a finite normal subgroup
H =[G, G] such that G/H is abelian. Moreover, there exists a function w such that
I[G, G]| < w(t), where t = |G/((G)|. This theorem has numerous generalizations and
modifications in group theory (see, for, example, [2| [3 5] [7, 8 [15]). Furthermore,
similar investigations were conducted in other algebraic structures of a different na-
ture. Thus, analogues of Schur theorem were obtained for modules (see, for example,
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[13]), linear groups [1], topological groups [19], n-groups [4], associative algebras [16],
Lie algebras [0} 17], Lie n-algebras [18], Lie rings [10], Leibniz algebras [6].

A few years ago, L.A. Kurdachenko, O.0O. Pypka and I.Ya. Subbotin proved an
analogue of Schur theorem for Poisson algebras [11]. More precisely, it was proved
that if the center ((P) of the Poisson algebra P has finite codimension, then P
includes an ideal K of finite dimension such that P/K is abelian. Moreover, they
proved that dimp(K) < @.

Consider another algebraic structure that arises from Poisson algebras by replac-
ing the binary operation of Lie bracket [—, —] with the ternary operation [—, —, —].

Let P be a vector space over a field F'. Then P is called a Poisson (2-3)-algebra,
if P has a binary operation - and ternary operation [—, —, —] such that the product -
forms a commutative associative algebra, the bracket [—, —, —] forms a Lie 3-algebra,
and [—, —, —] acts as a derivation of the product -, that is - and [—, —, —] satisfy the
Leibniz (2-3)-identity. In other words,

ab = ba, (ab)c = a(be),
a(b+ ¢) = ab+ ac, (Aa)b = a(Ab) = A(ab),
[a1 + az2,b,c| = [a1,b,c] + [az,b, ],
[a,b1 + ba, ] =] ] +
[a,b,c1 + c2] = [a,b,c1] + [a, b, 2],
[Aa, b, c|] = [a, Ab, c] = [a,b, A\c| = Aa, b, ],

[a1, a2, a3] = 0 whenever a; = a; for some i # j,1 <i,j < 3,

(I,bl,C [a,bg,C],

[[a1,a2,as3],b,c] = [la1,b,c|,as,as] + [a1, [az,b, ], as] + [a1, az, [as, b, c]],
[a1a2,b,c] = asla1,b,c] + ayaz, b, ]

for all a,aq,a9,as,b,b1,bs,c,c1,c9 € P, A € F. If we will consider P as an associative
and commutative algebra by multiplication -, then we will denote it by P(+,-). If
we will consider P as a Lie 3-algebra by Lie 3-bracket [—, —, —], then we will denote
it by P(+,[—,—, —]).

This article is devoted to the extension of the statement, similar to Schur theo-
rem, to Poisson (2-3)-algebras.

2 Preliminary results.

We begin with a series of important basic results that illustrate the properties of
Poisson (2-3)-algebras.

Lemma 2.1. Let P be a Poisson (2-3)-algebra over a field F. Then for all elements
of P

(i) [a,b,c] = [b,c,a] = [c,a,b] = —[a,c,b] = —[b,a,c] = —[c,b,al;
(i) [a,bibe,c] = bola, by, c] + bila, b, c|;

(iii) [a, b, c1e2] = c2a, b, e1] + c1]a, b, ca).



Proof. (i) By definition, [a1, a2, a3] = 0 whenever a; = a; for some i # j, 1 <4,j < 3.
Since [a, a,c] = 0 for all a,c € P, then

[a+b,a+b,c] =0,
[a,a,c] + [a,b,c] + [b,a,c] +[b,b,c] =0,
[a,b,c] = —[b,a,c].

Since [a,b,a] = 0 for all a,b € P, then

[a+ ¢, bya+c| =0,
[a,b,a] + [a,b, ] + [¢, b, a] + [¢, b, ¢] = 0,
[a,b,c] = —[c,b,al.

Since [a,b,b] = 0 for all a,b € P, then

[a,b+ ¢, b+ ¢c] =0,
[a,b,b] + [a,b,c] + [a,¢,b] + [a,¢,c] =0,
[a,b,c] = —[a,c,D].

Finally,
—le,b,a] = —(—[b,¢c,a]) = [b, ¢, al

and
—la,e,b) = —(—[e,a,b]) = [c,a,b].

(ii) Since by (i) [a, b, ¢] = [b, ¢, a], then
[a,b1ba, c] = [b1ba, ¢, a] = ba[b1, ¢, a] + bi[ba, ¢, a] = bala, by, c] + bi]a, b, c].
(iii) Since by (i) [a,b,c] = [c,a,b], then
[a,b, cica] = [c1¢2,a,b] = cae1, a,b] + cie2,a,b] = e2]a, b, 1] + cifa, b, ca).
U
Lemma 2.2. Let P be a Poisson (2-3)-algebra over a field F. Then for all elements

of P

() | II anbe| = X I arlaibd;
_1<i<k 1<i<k 1<;§k
TF1

(11) a, H ij cl = Z H bu [av bj7 C] ;
1<j<s 1<j<s ISpss
BFE]

(iii) |a,b, I | = > I ela,b,erl;
1<r<t 1<r<t 1<;<t
VET




(iv) | II ai, II b5 Il ef|= > II arbucyfai, by, c];
I<i<k  1<j<s © 1<r<t 1<i<k  1<r<k
1<j<s 1<puss
1<r<t 1<v<t

THLUFE] VFET
(v) [a¥,b%, ] = ksta* "0~ " a, b, c].

Proof. (i) Consider the product [ IT ai,b, c]:

1<i<3

IT @b C] [a1aza3,b, c] = [(a1a2)as, b, c] =

1<i<3

= azayag, b, c] + arasas, b, c] = az(az[a1, b, c] + ailaz, b, c]) + araslasz, b, c] =

= agaslay, b, c] + ajaslaz, b, c| + ajazlas, b, c| E H arlai, b, cl.
1<i<3 1<7<3
TH4

Suppose we have already proved that

H ai,b,c| = Z H arla;, b, cl.

1<i<d 1<i<d 1<7<d
TH4

Then

H ai7bvc = H a; ad+1,b,C =

1<i<d+1 1<i<d

=aaqqr | [ @bl + ] ailoa,b,d=

1<i<d 1<i<d

= ags1 Z H arlai,b,c] + H ailadgy1,b,c] =

1<i<d 1<7<d 1<i<d

TH4

= Z H (araat1)lai, b, c] + H ailagi1,b, ] =

1<i<d 1<7<d 1<i<d

TH4
Z H rlai, b, cl.

1<i<d+1 1<m<d+1
TH4

Thus for every positive integer k we proved that

H a;,b,c| = Z H ar[a;, b, ]

1<i<k 1<i<k 1<r<k
T#4



Similarly, using (ii) and (iii) of Lemma 2] we can prove that for all positive
integers s and ¢

(i) |a, H bj,c| = Z H bula, b, cl;

1<yss 1<i<s 1Spuss
bFEd

(iii) [a, b, H CT] = Z H cyla, b, cr.

1<r<t 1<r<t 1<v<t
v#r

Combining (i), (ii) and (iii), we obtain that

(iv) H ai, H bj, H Cr| = Z H arbycylai, by, cpl.

1<i<k 1<j<s 1<r<t 1<i<k  1<7<k
1<j<s 1<pss
1<r<t 1<V<_t

THEGUEJ VET

Finally, using (iv), we obtain that
(v)[ak, 0%, ] = ksta®* 105" ! L a, b, d].

O

Let P be a Poisson (2-3)-algebra over a field F'. A subset S of P is called a
subalgebra of P if S is a subspace of P and ab, [a,b,c] € S for all a,b,c € S. A subset
I of P is called an ideal of P if I is a subspace of P and ab, [a,b,c] € I for all a € T
and b,c € P.

We will say that a Poisson (2-3)-algebra P is simple, if it has only two ideals,
(0) and P. As usual, P is abelian, if [a,b,c] = 0 for all a,b,c € P.

Let P, and P, be Poisson (2-3)-algebras over a field F'. Then a mapping f : P| —
P, is called a homomorphism, if

f(a) = Af(a), fla+0b) = fla) + f(b),
flab) = f(a)f(b), f([a,b,c]) = [f(a), f(]), f(c)]

for all a,b,c € P, A € F.

As usual, an injective homomorphism is called a monomorphism, a surjective
homomorphism is called an epimorphism, and bijective homomorphism is called an
isomorphism.

Proposition 2.3. Let A be an arbitrary Poisson (2-3)-algebra over a field F. Then

(i) there exists a Poisson (2-3)-algebra P over a field F' having a multiplicative
identity element;

(ii) there exists a monomorphism f : A — P such that Im(f) is an ideal of P.



Proof. (i) If A has an identity element by multiplication -, then all is proved. There-
fore, suppose that A has no an identity element by multiplication -. Put P = A x F
and define on P the following operations:

Aa, @) = (Aa, Aa),
(a,a) + (b,8) = (a+b,a+ B),
(a,)(b, B) = (ab+ ab + Ba,ap),
[(a, @), (b, B), (¢, )] = ([a,b,c],0p)

for all a,b,c € A and \,«, 3,0 € F.
Let us show first that P is an algebra. If a,b,c € A and «, 3,0 € F, then

(a,a) + (b,8) =(a+b,a+p)=(b+a,p+a)=(b,B)+ (a,);

((a,a) + (b,8)) + (c,8) = (a + b,a+ B) + (¢,0) =
={(a+b)+c,(a+p)+d6) =(a+(b+ec),a+(B+0)) =
= (a,a) + (b+¢,+0) = (a,a) + ((b,8) + (¢, 9));

(a,a) +(04,0p) = (a+ 04,4+ 0p) = (a,);
(a,a) + (—a,—a) = (a+ (—a),a+ (—a)) = (04,0p);

(a,)((b, B) + (¢, 0)) = (a,)(b+¢,B+ ) =
=(alb+ec)+alb+c)+ (B+0d)a,a(f+0)) =
= ((ab+ ab+ Ba) + (ac + ac + da),af + ad) =
= (ab + ab + Ba,af) + (ac + ac + da, ad) =
= (a,a)(b, B) + (a,a)(c, 0);

((a,a) + (b, 8))(c,8) = (a +b,a+ B)(c,6) =
=((a+b)c+ (a+P)c+d(a+Db),(a+ B)d) =
= ((ac+ ac+ da) + (bc + Bc + db), ad + B6) =
= (ac + ac+ da,ad) + (bc + Bc+ 0b, B6) =

= (a,a)(c,8) + (b, B)(c, d).
Let A,k € F. Then

A((a, @) + (b, 8)) = Ma +b,a + ) =
= (Aa+Db),Ma+B)) = (Aa+ Ab, Ao+ \3) =
= (Aa, Aa) + (Ab, AB) = A(a, a) + A(D, B);
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A+ r)(a,a) = (A +K)a, (A + K)a) =
= (\a + ka, \a + ka) = (Aa, A\a) + (ka, ka) =
= Ma, o) + k(a, a);

(A&)(a,a) = (Ar)a, (Ak)a) =
= (A(ka), A(ka)) = A(ka, ka) = a(k(a,a));

1r(a,a) = (1pa, lpa) = (a, ).
Finally,

A(a,)(b, B)) = Aab + ab + Ba,af) =
= (Aab + Aab + ABa, Aap3),

(Ala, @))(b, B) = (Aa, Aa)(b, B) =
= (Aab + Aab + ABa, Aaf3),

(a, @)(A(b, B)) = (a, @)(Ab, M) =
= (Aab + Aab + ABa, Aaf3),

which implies that
A(a,a)(b, B)) = (Aa, a))(b, B) = (a,a)(A(b, B)).
Therefore, P is an algebra over a field F'. Since

(a,a)(b,B) = (ab+ ab+ Ba,af) =
= (ba + Ba + ab, Ba) = (b, B)(a, a),

P is commutative. Moreover,

((a,)(b, B))(c, ) = (ab+ ab+ Ba,aB)(c,d) =
= (abc 4+ abc + Bac + afc + dab + adb + Bda, afd)

and

(a,)((b, B)(c,8)) = (a,a)(bc + Be + b, B6) =
= (abc 4 Bac + dab + abe + afc + adb + Boa, ad),

which implies that

((CL, a)(ba /8))(07 6) = (a7 a)((b, /8)(67 5))

Thus, P is an associative algebra. Since

[(a1, 1), (a2, a2), (a3, a3)] = ([a1, a2, a3],0F),
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then
[(al’al)v (a2,042)7 (a37 a3)] = (OA, OF) =0p

whenever (a;, ;) = (a;j, ;) for some i # j, 1 <4,5 < 3.
Furthermore,

[(a1, a1), (a2, a2), (a3, a3)], (b, B), (¢, 8)] =
= [([al’a2’a3]70F)v(bvﬁ)’(c’ )] = ([[al’a2’a3] b, ] OF)v

and

[[(a1, 1), (b, B), (¢, 0)], (a2, a2), (a3, a3)]+

+[(a1, 1), [(az, a2), (b, B), (¢, 9)], (a3, a3)]+

+[(a1, 1), (a2, a2), [(a3, a3), (b, B), (¢, 9)]] =
= [([a1,b,¢],0F), (a2, a2), (a3, as)]+
+[(a1,aq), ([ag, b, c],0r), (as, a3)]+
+[(a1, a1), (a2, a2), ([as, b, ], OF)] =

= ([[a1,b, ], a2, a3],0r) + ([a1, [az2, b, c], a3],0r) + ([a1, a2, [as, b, c]],0F) =
= ([la1,b, ], a2, a3] + [a1, [a2, b, c], a3] + [a1, a2, [as, b, ]}, OF),

which shows that

[[(a1, 1), (a2, a2), (a3, a3)], (b, B), (¢, 6)] =
= [[(a1, 1), (b, B), (¢,6)], (a2, a2), (a3, a3)]+
+[(a1, 1), [(az, a2), (b, B), (¢, 0)], (a3, a3)]+
+[(a1, a1), (a2, a2), [(as, a3), (b, B), (¢, 0)]].

Consider the Leibniz (2-3)-identity for P.

[(a1, 1)(az, a2), (b, B), (¢, 8)] =
= [(a1a2 + anas + agar, aqaz), (b, B), (¢, 9)] =
= ([alag + ajas + asaq, b, C], OF) =
= ([a1az2,b, ¢] + a1az, b, c] + asla, b, c],0F).

On the other hand,

(a2, ag)[(a1, 1), (b, B), (¢, 6)] + (a1, o1)[(az, a2), (b, B),
= (az, az)([a1,b,¢],0r) + (a1, a1)([az, b, ], 0F)
= (ag[a1, b, c| + aslay, b, c] + Opag, as0F) + (a1[a
+aqlag, b, c] + 0pay, a1 0F) =
= (az[a1, b, c] + azlai, b, c],0p) + (a1[az, b, c] + a1]as, b, c],0F) =
= (az2la1, b, c| + ailaz, b, ¢] + aqlaz, b, c] + aslay, b, c],0F).

(¢, 0)] =
b



Since [ayag, b, ¢] = agla1,b, c] + ai|az, b, ],
[(al’ al)(a% OQ)? (b, 5)7 (C’ 5)] =
= (a27 a2)[(a17 O41)7 (b7 /8)7 (C7 5)] + (a17 al)[(a27 a2)7 (b7 5)7 (Cv 6)]

Taking into account the above, we can say that P is a Poisson (2-3)-algebra.
Finally, (04,1F) is an identity element by multiplication -:

(a,0)(04,1p) = (a04 + 04 + 1pa,alp) = (a,a).

(ii) Consider the mapping f : A — P, which defined by the rule f(a) = (a,0F)
for all a € A. Then

f(Aa) = (Aa,0p) = (Aa, \Op) = A(a,0r) = Af(a);
fla+0b)=(a+0b,0r) = (a+b,0r +0F) = (a,0r) + (b,0r) = f(a) + f(b);
f(ab) = (ab, OF) = (ab 4+ 0pb+ Opa, OFOF) = (a, OF)(b, OF) = f(a)f(b),
f(la,b,¢]) = ([a,b,c],0r) = [(a,0r), (b,0r), (c,0p)] = [f(a), f(b), f(c)].

Thus f is a homomorphism. Clearly f is injective, so that f is a monomorphism.
Let

(CL,OF)7 (b7 OF) € Im(f) = {($70F)| LS A}
Since
(CL,OF) — (b, OF) = (CL — b, OF) S Im(f),
)\(a,Op) = ()\a, OF) S Im(f),
Im(f) is a subspace of P. Finally, if (a,0r) € Im(f), (b,8), (¢,d) € P, then
(a,0r)(b,B) = (ab+ 0pb + Ba,0pB) = (ab + Ba,0F) € Im(f),
[(a,0r), (b, 8), (¢, 0)] = ([a,b,¢],0r) € Im(f),

which shows that Im(f) is an ideal of P. O
Proposition 2.3 shows that we can consider only Poisson (2-3)-algebras with an
identity element 1p by multiplication -.
Let A, B,C be subspaces of a Poisson (2-3)-algebra P. Denote by

e A + B the subspace of P with elements of the form a +b, a € A, b € B;
e AB the subspace of P, which generated by the subset {ab| a € A,b € B};

e [A, B, C] the subspace of P, which generated by the subset {[a,b,c]| a € A,b €
B,ce C}.

Clearly, every element of AB has a following form
arby + ...+ apby,

where a1,...a, € A, by,...b, € B.
Similarly, every element of [A, B, C] has a following form

[a1,b1,¢1] + ... + [an, by, ¢
where ay,...a, € A, b1,...bp, € Band ¢q,...c, € C.



Proposition 2.4. Let P be a Poisson (2-3)-algebra over a field F.

(i) If A is a subalgebra of P and B is an ideal of P, then A+ B is a subalgebra
of P.

(ii) If A is a subalgebra of P and B is an ideal of P, then AB is a subalgebra of
P.

(iii) If A, B are ideals of P, then A+ B is an ideal of P.
(iv

)

) If A, B are ideals of P, then AB is an ideal of P.

(v) If P is non-simple, then P has a proper non-zero mazimal ideal.
)

(vi) If a € P, then aP = {ab| b € P} is a subalgebra of P and an ideal of P(+,).

Proof. (i) If z,y,2 € A+ B, then © = a; + by, y = ag + by, 2z = ag + by where
ai,as,a3 € A, by,ba,bs € B. If A € F, then

Az = Aaj +b1) = Aag + \by € A+ B;
r—y= (a1 +b1)— (az +b2) = (a1 —az) + (by — b2) € A+ B;
xy = (a1 + b1)(ag + b2) = aras + (a1by + byag + bi1be) € A+ B;
[z,y,2] = [a1 + b1, a2 + ba,a3 + b3] =
= la1, az,a3] + ([a1,a2,b3] + [a1, be, as] + [a1, b, b3]+
+[b1, a9, as] + [b1, ag, bs] + [b1,be, as] + [b1,be,b3]) € A+ B.

Thus A + B is a subalgebra of P.
(ii) If z,y,z € AB, then

r=aib; +...+ayb, = Z a;b;,

1<i<n
y=-cidy+ ...+ csds = Z cid;,

1<g<s
z=hiki k=Y bk,

1<r<t

where a;,cj, h, € A, b;,dj,k, € B,1<i<n,1<j<s, 1<r <t If A€ F, then

Ar = MNaiby + ...+ apby) = (Aa1)by + ... + (Aay)b, € AB;
x—y=(a1b1 + ...+ apby) — (c1d1 + ... + csds) € AB;

Ty = < Z aibi> Z cjdj | = Z (aibi)(c;d;)

1<i<n 1<j<s Isisn
1<j<s
= E (CLiCj)(bidj) € AB.
1<i<n
1<j<s

10



Consider the product [z,y, 2]|:

[z,y,2] = | > aibs, cidj, Y heky| = D [aibi,cidy, heky].

1<i<n 1<j<s 1<r<t 1<i<n
1<j<s
1<r<t

Taking into account Lemma (iv), we have

[aibi, dej, hrkr] =
= bidjkr [ai, Cj, hr] + bidjhr [ai, Cj, kr] + biCjkr [ai, dj, hr] + bithr [CLZ', dj, kr]-l-
+aidjkr [bz, Cj, hr] + aidjhr [bz, Cj, kr] + CLiCjkr [bz, dj, hr] + aithr [b“ dj, kr]

Since A is a subalgebra of P, then [a;, ¢j, hy], ¢jhy, aihy, a;cj, a;cjh, € A. On the other
hand, since B is an ideal of P, then b;d;k,, bid;[ai, ¢j, k|, bikr[ai, d;j, he], bi[a;, d;j, k],
djk,[bs, cj, hyl, djbs, ¢, kr), ke[bi, dj, he, [bi, dj, ky] € B. Thus each term in the expan-
sion of [a;b;, ¢jd;, hyky] belongs to AB. Obviously, this is true for all 4, 5,7, 1 <7 < n,
1<j<s, 1< r<t, which implies that [z,y, z] € AB. Therefore, AB is a subalge-
bra of P.

(iii) As above we can show that A + B is a subspace of P. If z € A+ B, then
r=a+b,a€ A, be B. Let y,z € P. Then

vy = (a+bly=ay+by € A+ B;
[z,y,2] = [a+b,y,2] = [a,y,2] + [b,y,2] € A+ B.

Thus A + B is an ideal of P.
(iv) As above we can show that AB is a subspace of P. If x € AB, then

r=aib; +...+ayb, = Z a;b;,

1<i<n

a; € A, b; € B, 1 <i<n. Let y,z€ P. Then

Ty = < > aibi) y= Y aiby) € AB;

1<i<n 1<i<n
[z,y,2] = [ E aibz‘,y,Z] = E laibi,y, 2]
1<i<n 1<ign

= (bilas,y, 2] + ai[b;,y, 2]) € AB.

1<i<n

Therefore, AB is an ideal of P.
(v) If P is not simple, then P includes a proper non-zero ideal. Put

S = {A| A is a proper non-zero ideal of P}.

Obviously, & is non-empty. Since 1p & A for each A € &, an union of every linearly
ordered (by inclusion) subset of & belongs to &. By Zorn’s Lemma, a family & has
a maximal element.
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(vi) If z,y,z € aP = {ab| b € P}, then x = ab;, y = aby and z = abs. Let \ € F,
then

Ax = Aab; = a(A\by) € aP;
x —y=aby —aby = a(by — be) € aP;
xy = (aby)(abz) = a(biabs) € aP.

In particular, since for any ¢ € P we have xzc = (aby)c = a(bic) € P, then aP is an
ideal of P(+,-).
Finally, using Lemma [2.2] (iv), we have

[aby, aby, abs] =
= bibobsla, a, a] + bibeala, a, bs] + biabs|a, by, a] + biaala, be, b3]+
+ababs b1, a,al + abaalby, a, bs] + aabs[by, b, a] + aaalby, by, bs] =
= biaala, be, bs] + absalby, a, bs] + aabs[by, by, a] + aaalby, ba, bs] =
= a(abi[a, by, b3] + aba[b1, a, bs] + abs[b, b2, a] + a?[b1, ba, bs]) € aP.

The last inclusion shows that aP is a subalgebra of P for each a € P. O
Let P be a Poisson (2-3)-algebra over a field F. Put

¢(P)={a € P| Ja,b,c] =0 for all b,c € P}.

The subset ((P) is called the center of P. We note that ((P) is an ideal of Lie
3-algebra P(+,[—,—,—]).

Proposition 2.5. Let P be a Poisson (2-3)-algebra over a field F. Then
(i) ¢(P) is a subalgebra of P;
(ii) ¢(P) contains every idempotent of P, in particular, 1p € ((P).
Proof. (i) Let A € F, a € ((P), b,c € P. Then
[Aa, b, c] = Aa, b, c] = 0.
If aj,a9 € ((P) and b,c, € P, then
[a1 —ag,b,c] = [a1,b,c] — [az,b,c] =0,

which shows that a; — ag € ((P), so that ((P) is a subspace of P.
Moreover,
[ara2,b, c] = asla1, b, c] + ailaz, b, c] =0,

so that ajas € ((P).
Finally, let aq,as2,a3 € ((P) and b, ¢, € P. Then

a1, a2, a3],b,c] = [[a1,b, c|, a2, az] + a1, [a2, b, c],a3] + [a1, a2, [a3, b, c]] =
= [0, a2,a3] + [a1,0,a3] + [a1, az,0] =0,
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which implies that [a1, ag, ag] € ((P). Thus ((P) is a subalgebra of P.
(ii) Let e be an arbitrary idempotent of P. Let b,c € P. Using Lemma (v)
we have
le,b,c] = [€2,b, ] = 2e|e, b, d].

If 2¢efe, b, c] = 0, then all is proved. Suppose that 2e[e, b, ¢] # 0. Then
2ele, b, c| — [e, b, c] = 0.
It follows that
0 = 2¢(2e[e, b, c] — [e, b, c]) = 4€?[e, b, c] — 2ele, b, ] =
= dele, b, c] — 2e[e, b, c|] = 2e[e, b, (],

and we obtain a contradiction. Thus 2ele, b, c] = 0, so that e € ((P). In particular,
since 1p = 1%, 1p € ((P). O

3 Analogue of Schur theorem for Poisson (2-3)-algebras

Lemma 3.1. Let L be a Lie 3-algebra over a field F'. Suppose that the factor-algebra
L/¢(L) has a finite dimension d and let {e; + ((L),...,eq + (L)} be a basis of
L/{(L). Then [L, L, L] generated by the elements [u1,us, us] where uj € {e1,...,eq},
I1<y<3.

Proof. Put Z = ((L). Then for every x € L we have x = Ajej+...+Ageq+$, for some
M,...,\g € Fand s, € Z. Let y = p1e1+...+pqeq+sy and z = vier+. . .+vgeq+s.,
Hlseeos fbds V1s--- Vq €F, 8y,5, € Z. Then

[z,y, 2]
= [)\161 + ...+ Ageq + Sz, pier + ..+ pgeq + sy, vier —l—...—l—Vded—i-Sz]
= Y dmmlenej el

1<i,5,k<d

As we can see, [L,L, L] is a subalgebra generates by the elements [e;, e, €], 1 <
i,j,k < d. More precisely, since [e;, e;, ex] = sign(o)leq (i), €x(j); €x(k)] (0 € S3) and
lei, e, ex] = 0 whenever e, = e, for some m # n, 1 <i,j,k <d, [L,L, L] generates
by the elements [e;, e;, e;] where 1 <i < j <k <d. O

Theorem 3.2. Let P be a Poisson (2-3)-algebra over a field F'. Suppose that the cen-

ter of P has a finite codimension d. Then P includes an ideal K of finite dimension
2

at most W such that P/K is abelian.

Proof. Put Z = ((P). Then P = Z & A for some subspace A of P. Choose a basis
{e1,...,eq} in the subspace A. Then for every element = € P we have

T=MNej+ ...+ Neg+ 2

for some A\i,...,A\g € F and z, € Z.
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A subspace [P, P, P] is an ideal of a Lie 3-algebra P(+,[—,—, —]). Lemma B.]
shows that [P, P, P| generates as a subspace by the elements [e;, e;, ex] where 1 <
i<j<k<d.

Consider an ideal K of an associative algebra P(+,-) generated by [P, P, P].
Every element from K has a form aijxy + ... + a,z, where aq,...,a, € [P, P, P],
x1,...,T, are the arbitrary elements of P. Let x be an arbitrary element of P,
T =Me1+ ...+ Neq+ zz where Aq,..., g € F and z, € Z. We have

lei, e, ex]x = [es, e5,ex](Mer + ... + Ageq + 2z)
= Aieileq, €5, ex] + ... + Ageqles, €5, ex] + 2z e €5, e

Using Leibniz rule we obtain
[€i, €, enza) = 2zlei, €5, €] + exles, €5, zx] = zz]€i, €5, ex).
For element ez, we have the decomposition ejz; = vie1+...+v4eq+ 2, ;. Therefore
(i, e, exze) = €, €5, v1€1 + ... + Vgeq + Zp 1] = viles, e5,e1] + ...+ vglei, e, eq].

These equalities show that K as a vector space is generated by the elements
leisej,er], eslei,ejer], 1 < s <d, 1 <i<j<k<d It follows that K has a
dimension at most

md—nu—a)+dﬂd—mw—2yzmd—mw—2kd+n
6 6
~d(d*—1)(d-2)
: .

The inclusion [K, K, K| < [P, P, P] < K shows that K is a subalgebra of P.
Moreover, [K,P,P] < [P,P,P] < K, so that K is an ideal of Lie 3-algebra
P(+7[_7_7_])' g
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