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CHARACTERISTIC MODULES OVER A LOCAL RING

MOHSEN GHEIBI AND RYO TAKAHASHI

ABSTRACT. Let R be a commutative noetherian local ring, and let M be a finitely generated R-module.
Inspired by works of Vasconcelos and Briggs on characterization of complete intersection local rings through
the homological properties of the conormal module, in this paper, we define the characteristic module T,
and the cocharacteristic module Ej; of M, and investigate their properties. Our main results include char-
acterizations of Cohen—Macaulay and Gorenstein local rings.

1. INTRODUCTION

Let (R, m) be a (commutative noetherian) local ring. Let 7 : Q — R be a Cohen presentation of R, that
is, a surjective homomorphism from a regular local ring @) to the m-adic completion R of R. Let I be the
kernel of 7. Then the conormal module of R is defined as the R-module Cg such that (/]} = [/I%. The notion
of conormal modules has been studied actively for more than half a century in its algebraic and geometric
aspects; see [II, 2 B 12, T3] and references therein. The celebrated theorem of Ferrand, Vasconcelos, and
Briggs states that if pdp Cr < 00, then the ring R is complete intersection. One may think of the conormal
module as the first Tor module of R over Q. That is

Cr = TorlQ(ﬁ, R).
A natural question stems from the aforementioned isomorphism. It is whether the ring R can be characterized

regarding certain properties of higher Tor modules of R over Q. In this paper, we focus on the last nonzero
Tor module of R over Q and define the characteristic module of R to be such an R-module Tg that satisfies

Tp Tor?(R, R),
where s = pd, R. More generally, for each (finitely generated) R-module M we shall define the characteristic
module Tpr of M by the existence of an isomorphism TAM = TorSQ (E, M ). We also consider the dual notion
and define the cocharacteristic module of M as an R-module Eps such that Eyy =2 Exty, (R, M).

First we discuss the existence and uniqueness of (co)characteristic modules and show that if they exist,
they do not depend on the choice of a Cohen presentation. More precisely, we prove the following theorem.
Theorem 1.1. Let R be a local ring and M an R-module.

(1) If R is a homomorphic image of a Gorenstein local ring, then both Ty and Epy exist.
(2) If Tas or Epy exists, then it is uniquely determined from M up to isomorphism.

As to the structure of (co)characteristic modules and their completions, we present the theorem below.

Theorem 1.2. Let R be a local ring. Then the following statements hold true.
(1) Suppose that Eg exists. If R is a Cohen—Macaulay ring, then Eg is a canonical module of R.
(2) Suppose that Eg exists. For every Cohen presentation QQ — R, there are isomorphisms

Ep = Ep = Ext)(R, R) 2 Ext)(R,Q),  s:=pdg R =dimQ — depth R.
(3) If Enr exists, then Eq; = Ej\; 2 Ez®p M. If Ty exists, then Ty = 'l/’z\\/[ = Homp(Ep, ]/\4\)
Cohen—Macaulay local rings are characterized in terms of the dimensions of (co)characteristic modules.

Theorem 1.3. Suppose that R is a homomorphic image of a Gorenstein local ring. The following conditions
are equivalent.
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(1) The local ring R is Cohen—Macaulay.

(2) One has dimEg = dim R.

(3) One has dim Tg = dim R.

(4) There exists an R-module M such that dimEjp; = dim R.
(5) There exists an R-module M such that dim Tp; = dim R.

As an application of Theorem [[3] we can also relate a (co)characteristic module to the generic Goren-
steinness, and obtain a characterization of the Gorenstein local ring.

Theorem 1.4. Let R be a local ring. The following conditions are equivalent.

(1) The local ring R is Gorenstein.

(2) One has that Eg exists and is nonzero and free.

(3) One has that T exists and is nonzero and free.

(4) There is an R-module M with dim M = dim R such that Epr exists and Epp = M.

(5) There is an R-module M with dim M = dim R and G-dim M < oo such that Ty exists and Ty = M.
(6) There is an R-module M with G-dimg M < oo such that Epy exists, pdg Epr < 0o and dim Ej; = dim R.
(7) There is an R-module M with pdp M < oo such that Ty ezists, G-dimpg Ty < 0o and dim Ty = dim R.
The organization of this paper is as follows. In Section 2, we collect definitions and properties of basic
notions used in this paper. In Section 3, we state the precise definitions of a quasi-canonical module of
R, a characteristic module and a cocharacteristic module of a given R-module. We investigate their basic
properties in this section. In Section 4, we study characteristic and cocharacteristic modules over a quotient
of a regular local ring from functorial approaches. In the final Section 5, we give the proofs of the theorems
mentioned above and state some other related results.

2. PRELIMINARIES

This section is devoted to preliminaries for the later section. We begin with stating our convention adopted
throughout this paper.

Convention 2.1. Throughout this paper, we assume that all rings are commutative and noetherian and all
modules are finitely generated. For a local ring (R, m) we denote by (—) the m-adic completion. A Cohen
presentation is by definition a surjective ring homomorphism @ — R where @) is a regular local ring.

We recall the definition of a dualizing complex of R and some of its fundamental properties.

Definition 2.2. (1) Let D be an R-complex with finitely generated homology (note then that D is homo-
logically bounded). We say that D is dualizing if it has finite injective dimension and the homothety
morphism R — RHompg(D, D) is a quasi-isomorphism.

(2) We denote by Dgr a normalized dualizing complex of R, that is, Dg is a dualizing R-complex with
inf{i | H(Dr) # 0} = 0.

Remark 2.3. (1) A dualizing complex of R is uniquely determined up to shifts in the derived category of
R; see [7, Chapter V, Theorem 3.1] and [4, (A.8.3)]. Hence a normalized dualizing complex D of R is
uniquely determined up to quasi-isomorphism.

(2) A local ring R admits a dualizing complex if and only if R is a homomorphic image of a Gorenstein local
ring; see [9, Corollary 1.4].

(3) If R is a homomorphic image of a Gorenstein local ring S, then

Dr = RHomg(R, S)[dim S — dim R]

in the derived category of R. This is a consequence of the derived Hom-® adjointness and the fact that

S is a dualizing complex of S.
(4) If R is Cohen—Macaulay, then H’(Dg) is a canonical module of R by (3) and [3, Theorem 3.3.7(b)].

Next we recall some basic numerical invariants for local rings and modules over them.

Definition 2.4. Let (R, m, k) be a local ring.
1) We denote by cmd R the Cohen—Macaulay defect of R, that is, cmd R = dim R — depth R.
Y
(2) We denote by type R the type of R, that is, type R = dimy Ext(li;pthR(k, R).
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(3) For an R-module M we denote by vr(M) the minimal number of generators of M, that is, vr(M) =
dim; M ®g k.

The Auslander class and the Bass class of a Cohen—Macaulay local ring with a canonical module, and the
Poincaré and the Bass series of a complex play an important role in Section 4.

Definition 2.5. Let R be a Cohen-Macaulay local ring with a canonical module w. The Auslander class
A(R) is defined as the class of R-modules M such that the natural map M — Hompg(w,w ®p M) is an
isomorphism, Tor%,(w, M) = 0 and Ext3’(w,w ®g M) = 0. The Bass class B(R) is defined as the class of
R-modules M such that the natural map w ®g Hompg(w, M) — M is an isomorphism, Ext7%(w, M) = 0 and
Tor%,(w, Hompg(w, M)) = 0.

Definition 2.6. Let X be an R-complex with finitely generated homology. Then the formal Laurent series

Px(t) =) BI0Ot",  IX(@t) =) pk(X)t"

nez neZ

are respectively called the Poincaré series and the Bass series of X, where SE(X) = dimy, Tor(k, X) and
pE(X) = dimg Exts (X, k) are the nth Betti and Bass numbers of X.

3. BASIC PROPERTIES OF CHARACTERISTIC MODULES

In this section, we state basic properties of characteristic modules and cocharacteristic modules. First of
all, we define a quasi-canonical module of a local ring.

Definition 3.1. We define a quasi-canonical module of R to be an R-module £ such that
o~ dim Q—depth R/
ER = EXthmQ ept (Ra Q)7

where @ — R is a Cohen presentation.

The following proposition guarantees the existence and uniqueness of a quasi-canonical module of a local
ring, and explains that it is a generalization of a canonical module of a Cohen—Macaulay local ring.

Proposition 3.2. (1) Suppose that R is a homomorphic image of a Gorenstein local ring. Then a quasi-
canonical module of R exists. Indeed, H™IR(DRg) is a quasi-canonical module of R.

(2) If a quasi-canonical module of R exists, then it is uniquely determined up to isomorphism.

(3) If R is Cohen—Macaulay, then a quasi-canonical module of R is a canonical module of R.

Proof. (1) As R and R are homomorphic images of Gorenstein local rings, there exist normalized dualizing

complex Dg and D, and we easily see that Dp = Dy. Set H = H™4%(Dp). Let Q — R be a Cohen

presentation. We have
H = ™R (Dg) = Homd B(D ) o Ext ™ A dm B (k) = Extd™ 9P (R, Q).
Therefore, H is a quasi-canonical module of R.
(2) Let X and Y be quasi-canonical modules of R. Then there exist Cohen presentations ¢ — R and
Q' — R such that X = ExtngfdcmhR(}Aﬁ, Q) and Y Extin,m QdePthR(ﬁ, Q"). Since R is a homomorphic

image of the Gorenstein local rings @ and @', a normalized dualizing complex Dz of R exists, and we have
RHomg (R, Q)[dim Q — dim R] = D5 = RHomg (R, Q)[dim Q' — dim R]
in the derived category of R. Tt follows that
X = ExtmQaerth B R ) — pygnd FH@mQ-dinR)(f ) o gemd By ),
V2 Bxtlm QA R(R () = Bl B @m @ —dim ) B 1) o gemd R(py

We thus obtain X = SA/, which implies X 2 Y.
(3) This is an immediate consequence of [3, Theorem 3.3.7(b)]. O

A quasi-canonical module is compatible with completion.

Corollary 3.3. If Eg exists, then there is an isomorphism g]\{ =&;5.
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Proof.ﬁ Let Q — R be a Cohen presentation. Then Dp = RHomQ(}A%, Q)[dim Q — dim ﬁ], and & =
H"dB(D ) = Ex tcmd“d‘m@ dmBp 0) = Ext$™ @ 4P (R, Q) 2 € by Proposition E2(1). O

Now we define a characteristic module and a cocharacteristic module of a given R-module.

Definition 3.4. Let M be an R-module. We define a characteristic module of M to be an R-module T,
such that

Ty = Tor(?imedcpthR(}L M)
where @Q — R is a Cohen presentation of R. Dually, we define a cocharacteristic module of M to be an
R-module Ej; such that

= o dim Q—depth R/ 5 77

Ey = Ext(y™ @~ PR D).

The definition of characteristic modules is motivated by the notion of the conormal module of a local ring.

Remark 3.5. Let R be a local ring. The conormal module of R is by deﬁnltlon an R-module Cg such that
Cr r = I/I?, where I is the kernel of a minimal Cohen presentation @Q —» R. Hence

Cr Tor® (R, R).

One has pd R=n-— t, where n = dim @) and ¢ = depth R. The minimal free resolution of R over Q is of
the form F = (0 = F,—y = Fy,—4—1 — --+ — Fy — 0). There is a complex

F®Q§:(0—>Fn_t®Q§—>Fn—t—l®Q§—>"'—>F0®Q§—>O).

The completion of Cg is the first homology of this complex, while the completion of Tg is the left-end
homology of this complex.

Spectral sequence arguments give rise to equalities of types and minimal numbers of generators.

Proposition 3.6. Let (R, m, k) be a local ring of depth t, and let M be a finitely generated R-module. Assume
Ty and Epy exist. Let Q — R be a Cohen presentation, where Q is a reqular local ring of dimension n.
(1) One has vr(En) = type(R)vr(M).
(2) Assume Ty is nonzero and depthg Tor%_, 1(R M) t—i+1 foralll <i<n—t. Then one has
depthp Tps = depth R and
typer(Tar) = type(R) typeg(M).

Proof. Passing to the completion, we may assume R = R. Let F be a free resolution of M over Q, U a free
resolution of k over R, J' an injective resolution of M over ), and J an injective resolution of R over itself.
(1) The double complex U ®r Homg (R, J') induces an spectral sequence

E? = Tor[ (k, Ext},(R, M)) = H,_,(U ® g Homg(R, J')).

Since @ is regular, there exists an isomorphism of complexes U ® g Homg (R, J') = Homg(Homg(U, R), J')
from which we get the following isomorphisms

H,, (U @ g Homg(R, J')) H,,(Homg(Homg (U, R), J'))
Hm(HomQ(HomR(k, J), J/))
Hm(HOmR(k, J) R HomQ(_k, J/))

> ;i jom Extip(k, R) @ Exty, (k, M).

1R 1R

Since pdg R = n —t and the maps d;, , on E" page are bidegree (—r, —r + 1), we have E%)n_t = Eg,
Therefore k @ g Ear 2 Extiz (k, R) ®) Exty(k, M). Since Extgy(k, M) = k ®q M, we are done.
(2) The double complex Hompg (U, R ®¢ F) induces an spectral sequence

E2,, = Ext}(k, Tor?(R, M)) = H?~(Homg(U, R ®q F)).

Since F is a perfect complex over @, there is a natural isomorphism of complexes Hompg (U, R) ®¢g F =
Homp(U, R ®¢q F'). Therefore one has

H™(Hompg(U,R®q F))

IR 1R 1R
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Since the maps dj, , on E" page are bidegree (r,r — 1), the spectral sequence and the assumptions show that
Ext%(k,TM) =0forall0<j<t—1,and E},_, = EX _, = Exth(k, R) @ Tor®_,(k, M). Therefore
depthy Ty =t and since @ is regular, we have Torgft(k, M) = ExttQ (k, M). This finishes the proof. O

The following example shows that the equality of Proposition B:6(2) may fail if the depth assumption on
Tor modules is removed. We used Macaulay2 for computations.

Example 3.7. Let R be the completion of the third Veronese subring of the polynomial ring k[s, t] over a
field k, that is, R = k[s3, s*t, st?,t3]. Then R is a Cohen—Macaulay complete local ring of dimension 2. We
have R = Q/I where Q = k[w,x,y, 2] and I = (2? — yw,y? — x2, 2y — wz). One has type(R) = 2 (see 3]
Exercise 3.6.21]) but typeg(Tr) = 3 # type(R)? = 4. Moreover, the module Tg = ToréQ(R, R) is maximal
Cohen-Macaulay and depthp TorlQ (R, R) = 1. Since dim TorlQ(R, R) = dim I /I? = 2, the conormal module
of R is not Cohen—Macaulay.

One obtains a sufficient condition for an artinian local ring R to be Gorenstein.

Corollary 3.8. Let R be an artinian local ring. If there exists a nonzero R-module M such that typeg (M) >
typer(Tar), then R is Gorenstein. In particular, if M = Ty, then R is Gorenstein.

The following example shows that Corollary B8 is not true if R is not Cohen—Macaulay.

Example 3.9. Let k be a field, Q = k[[z,y]], I = (22,2y), and R = Q/I. Then R is a one-dimensional
complete local ring and depth R = 0. One has type(R) = 1 and Ty = k but R is not Gorenstein. Also for
M = R/(x), one has pdg M =1 and therefore Tps = Tor§ (R, M) = 0. This shows the assumption Tj; # 0
is necessary in Proposition

4. FUNCTORIAL APPROACHES TO CHARACTERISTIC MODULES AND APPLICATIONS

In this section, we restrict to the case of a quotient of a regular local ring and discuss functorial aspects
of characteristic modules and cocharacteristic modules over it. Throughout this section, let @ be an n-
dimensional regular local ring, I an ideal of @, R = /I and t = depth R. Then pdg R =n—t. Let F' = (0 —

Fh_t Oty 2, Fy — 0) be a minimal free resolution of R over Q). Then Dg = RHomg(R, Q)[n — dim R)

and E := £ = H™I7(Dp) = Exty, (R, Q) by Proposition B2A(1).
For an R-module M we define the R-modules T(M) and E(M), which play a main role in this section.

Definition 4.1. For an R-module M we define the modules T(M) and E(M) as follows.
T(M) = Tor (R, M),  E(M)=Ext} (R, M).
The modules T(M) and E(M) can be described by using the quasi-canonical module E.
Proposition 4.2. There are isomorphisms of covariant functors from mod R to mod R:
T(-) = Homp(E,~), E(-)=E@g—.

In particular, one has an adjoint pair

mod R 1 mod R

and an R-module isomorphism E(R) = E.

Proof. Let M be an R-module. By definition, the module T(M) is the kernel of the map 0,,— ®¢ M, while
the modules E and E(M) is the cokernels of the maps Homg(0n—¢, Q) and Homg(0p—¢, M), respectively.
There is a commutative diagram

6n7t® M
T(M) Fo s ®o M ° Fo v 1@ M

. )

Homg (Homg (0, —+,Q), M.
0 —— Homg(E, M) —— Homg (Homg(Fy_r, Q), M) o2 ome@n e @My - (Homo(Fu_i1, Q), M)

0
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of R-modules, where the vertical maps are natural isomorphisms. We get an isomorphism Homg(E, M) —
T(M). As E and M are R-modules, we have Homg(E, M) = Homg(E, M). Hence T(M) = Homg(E, M).
There is also a commutative diagram

HOmQ (871—t,M)

Homg (Fp—¢—1, M) Homg (Fr—¢, M)

] ]

Homg (0n—+,Q)Qq M
HOHlQ(antfl, Q) ®Q M 2 < HOHlQ (ant, Q) ®Q M ——F ®Q M——-0

E(M) — 0

of R-modules, where the vertical maps are natural isomorphisms. We get an isomorphism F ®g M — E(M).
As E and M are R-modules, we have EQq M E E®q ROr M 2 E®r M. Hence EM) = E®p M. O

Next we define the canonical homomorphisms ay; and Gy for each R-module M.
Definition 4.3. Let M be an R-module. Define the maps
OzM:M—)HOmR(E,E@RM), ﬂM:E®RHOmR(E,M)—>M

by ap(m)(e) =e®@m and By (e ® f) = f(e) fore € E, m € M and f € Hompg(F, M). Proposition 2] says
that we may think
oy : M — TE(M), By ET(M) — M.

The homomorphisms ar(ry and Bg(ar) split.

Proposition 4.4. (1) There is an equality T(Bar) o apry = 1. Hence apary : T(M) — TET(M) is a split
monomorphism.
(2) There is an equality Prnry o E(anr) = 1. Hence Pgary : ETE(M) — E(M) is a split epimorphism.

Proof. Using Proposition 4.2] we have
T(Brn) = Hompg(E, Bar) : Hompg(E, E @ g Homg(E, M)) — Homg(E, M),
QT(M) = QHomp(E,M) - Homg(E, M) — Hompg(E, E ® g Homg(E, M)),
Bev) = BEgrm : E@r Homg(E,E®r M) = E®p M,
Elapy)=EQray: EQrM — EQp HOmR(E,E ®rM).
Now we easily verify that the assertions hold. (]

Here we remark when «aj; and 8); are isomorphisms.

Remark 4.5. Assume that R is Cohen—-Macaulay. In view of [4] (3.4.11)], one has that if pdg M < oo, then
ayy is an isomorphism, and if idg M < oo, then () is an isomorphism.

The following corollary provides criteria for detecting infinite injective dimension over a local ring by using
minimal numbers of generators of modules.

Corollary 4.6. For a finitely generated R-module M, if vr(T(M)) > vr(M), then idgM = cc.

Proof. Assume that M is nonzero and idgM < oo. Then by using Proposition B.6(1) and Remark 5] we
have vr(M) = type(R)vg(T(M)). Therefore vg(T(M)) < vr(M). O

The proposition below says about the compatibility of a quasi-canonical module with localization.

Proposition 4.7. Let p € Suppr(Er), and write p = q/1 where q is a prime ideal of Q containing I. One
then has ht ¢ — depth R, = n —t and there is an isomorphism

(Er)p = &R,
Proof. We have 0 # (Egr)p = Extg_t(R,Q)p = Extg:t(Rp,Qq). Since pdg, Ry < pdg R = n —t, we have
Extggn_t) (Rp,Qq) = 0. As Qq is a Gorenstein local ring, it is seen that dim Qg — depthR, = n —t =
dim @ — depth R. Thus €g, = Exty ' (Ry, Qq) = (Er)p- O
Now we state and prove the main result of this section.

Theorem 4.8. The following conditions are equivalent.
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) There exists an R-module M such that dim T(M) = dim R.
) There exists an R-module M such that dimE(M) = dim R.
) One has dimT(R) = dim R.

) One has dimE(R) = dim R.

) The local ring R is Cohen—Macaulay.

) The map ag is an isomorphism.

) The map Bg is an isomorphism.

Proof. First of all, note by Proposition that E(R) & E = £g. The implications (4) = (2) and (3) =
(1) are obvious. If R is Cohen—Macaulay, then F is a canonical module of R by Proposition B:2(3). Hence
the implication (5) = (4) holds. Note that the supports of Homg(FE, M) and E ® M are contained in the
support of E for each R-module M. Using Proposition [4.2] we see that the implications (1) = (4) < (2)
hold.

Assume (4). The equality dim F = dim R implies that Supp E N Assh R is nonempty. We have

() # Supp E N Assh R C Supp E N Ass R = Ass Hompg(FE, R) = Ass T(R),

where the last equality follows from Proposition We observe that dim T(R) = dim R. Thus (3) follows.
There exists p € Supp FNAssh R. Take a prime ideal q of @ that contains I and satisfies p = q/I. Proposition
M1 implies ht g — depth R, = n —t. As p € Assh R, we have depth R, = 0 and dim R/p = dim R. Hence
depthR=t=n—htq=dim@/q = dim R/p = dim R. Therefore, R is Cohen—-Macaulay. Thus (5) follows.
We have got the implications (3) < (4) = (5), and now the conditions (1)—(5) are equivalent.

The implications (7) < (5) = (6) follow from the fact that if R is Cohen—Macaulay, then E is a canonical
module of R. If (6) holds, then R 2 TE(R) and therefore dimp TE(R) = dim R. By setting M = E(R), we
have condition (2) holds. In a similar way, we can show that (7) implies (1). O

Remark 4.9. The implication (4) = (5) in the above theorem can also be deduced by using [3, Theorem
8.1.1(b)]. Indeed, we have dim F = dim R/ Annp Extgft(R, Q) < t = depth R. Hence, if dim £ = dim R,
then R is Cohen—Macaulay.

Applying the above theorem, we get the following two corollaries, which give criteria for Gorensteinness
in terms of characteristic and cocharacteristic modules.

Corollary 4.10. The following conditions are equivalent.

(1) There exists an R-module M such that dim M = dim R, G-dim M < oo and M = T(M).
(2) There exists an R-module M such that dim M = dim R and M =2 E(M).
(3) The local ring R is Gorenstein.

Proof. (2) = (3): Theorem [ implies that R is Cohen-Macaulay, while type R = 1 by Proposition B.6|(1).

(3) = (1) and (2): As R is Gorenstein, Proposition B.2[(3) implies F 2 R. We obtain E(R) = F =~ R and
T(R) = Hompg(R, R) & R by Proposition 2l Thus, letting M = R, we are done.

(1) = (3): Theorem [A.8 and Proposition B.2(3) imply that R is Cohen—-Macaulay and E is a canonical
module of R. By Proposition .2 and [4, (3.1.11)] we have Homg(E, M) 2 T(M) = M € A(R). We get M €
B(R) by [I1, Theorem 2.8(a)], which implies that Ext;’(E, M) = 0. It follows that M =~ RHomg(E, M) in
the derived category of R. Using [, (A.7.7)], we get IM (t) = [RHomr(EM) (1) — P (¢) IM(t). Comparing the
coefficients of t4°P*h M in TM (¢) and P p(t) I (t), we observe that E is cyclic. Thus the ring R is Gorenstein. [

Corollary 4.11. The following conditions are equivalent.

(1) There exists an R-module M such that pdr M < 0o, G-dimg T(M) < oo and dim T(M) = dim R.

(2) There exists an R-module M with G-dimgr M < oo such that pdz E(M) < oo and dimE(M) = dim R.
(3) The R-module T(R) is nonzero and free.

(4) The R-module E(R) is nonzero and free.

(5) The ring R is Gorenstein.

Proof. Tt follows from Theorem [£.8 and Propositions B:2(3), L2 that under any of those five conditions which
are given in the corollary, R is a Cohen—Macaulay local ring and E = E(R) is a canonical module of R.

(5) = (3) and (4): By the argument in the proof of the implication (3) = (1) and (2) in Corollary E10]
we have T(R) 2 E(R) = R. Hence the R-modules T(R) and E(R) are nonzero and free.

(3) = (1) and (4) = (2): Letting M = R, we are done.
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(1) = (5): As T(M) has finite G-dimension, it is in A(R) by [4 (3.1.11)]. Since T(M) = Hompg(FE, M)
by Proposition [£.2] we have M € B(R) by [11, Theorem 2.8(a)]. Since M has finite projective dimension, it
follows from [4] (3.4.12)] that R is Gorenstein.

(2) = (5): As M has finite G-dimension, it is in A(R) by [4, (3.1.11)]. Hence E(M) 2 E® M € B(R)
by Proposition 2 and [I1, Theorem 2.8(b)]. Since E(M) has finite projective dimension, it follows from [4]
(3.4.12)] that R is Gorenstein. O

To state our next result, we recall a basic fact on faithful modules.

Remark 4.12. An R-module X is faithful if and only if the homothety map R — Hompg(X, X) is injective.
Indeed, the kernel of this map coincides with the annihilator of X.

The following lemma is necessary to get our next corollary.

Lemma 4.13. Let M be an R-module such that M = T(M).
(1) If M is faithful, then so is E.
(2) If E is faithful, then E, = R, for every p € Assg M.
Proof. (1) Proposition [£2 yields T(M) = Homp(E, M). We get Anng E C Anng T(M) C Anng M, where
the latter inclusion follows from the assumption that M = T(M). Thus, the assertion holds.
(2) Since M 2 T(M) = Hompg(E, M), we have p € Ass M C Supp M C Supp E. In view of Propositions
and [£.7] there are isomorphisms
Mp = TR(M)p = HOIDR(E, M)p = HOIIIRp (Ep, Mp) = HOIIIRp (5RF , Mp) = TRP (Mp),
Homg, (k(p), My) = Homp, (k(p), Hompg, (E,, M,)) = Hompg, (B, ®g, k(p), My).
Since p is in Ass M, the k(p)-vector space Hompg, (k(p), My) is nonzero. Substituting x(p)®© for Ey, ®r, £(p),

we see that ¢ = 1, so that E, ®g, x(p) = x(p). Nakayama’s lemma implies that E, is cyclic over R,.
Faithfulness localizes by Remark @12 and E,, is a faithful Rp-module. It follows that E, = R,. O

Now we can prove another corollary of Theorem (.8

Corollary 4.14. Let M be an R-module such that M = T(M). Consider the following two conditions.
(i) The R-module M is faithful.
(ii) The R-module E is faithful and dim M = dim R.

Then the following statements hold true.

(1) If (i) holds, then (ii) holds as well.

(2) If (ii) holds, then R is a Cohen—Macaulay local ring and E is a canonical module of R.

(3) If (ii) holds, then the ring R is locally Gorenstein on Ass M.

(4) If (i) holds, then the ring R is generically Gorenstein.

Proof. The equality Ann M = 0 particularly says dim M = dim R. Lemma [£T3[1) implies that F is faithful
as well.

(2) Since dim M = dim R, there exists p € Assh RN Supp M. Then p € Min M C Ass M. Lemma [.T3(2)
implies Ey, = Ry, and hence dim £ = dim R. As E = E(R) by Proposition 2] it follows from Theorem
and Proposition B:2(3) that R is Cohen—-Macaulay and F is a canonical module of R.

(3) Let p € Ass M. By (2), the local ring R, is Cohen-Macaulay, and E,, is a canonical module of R,. It
follows from Lemma [4.13|(2) that E, is isomorphic to Ry, which means that R, is Gorenstein.

(4) Since the R-module M is faithful, R is embedded in a finite direct sum of copies of M. This implies
that Ass R is contained in Ass M. The assertion is now a direct consequence of (3) and (1). 0

5. PROOFS OF OUR MAIN RESULTS

This section is devoted to giving proofs of the results stated in the Introduction and stating related results.

Proof of Theorem [Tl (1) A quasi-canonical module £ of R exists by Proposition B2(1). Set X =
Homp(ér, M) and ¥ = Ep ®r M. Let Q — R be a Cohen presentation. Applying Proposition and
Corollary 3.3 we have

X = Homp(Er, M) = Homp(Eq, M) = Tp(M) = Tor$,, o gepen r(7: M),
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and similarly ¥ = ExtngdepthR(ﬁ, M ). Therefore, X is a characteristic module of M, and Y is a
cocharacteristic module of M. R -

(2) Suppose that Ty, exists. Then there exists a Cohen presentation ¢ — R such that Ty =
Tor(?iindcpthR(ﬁ,]\//f). Using Proposition B2, we have Ty, = TE(J\/Z) = Homﬁ(fﬁ,]\//f). Hence Ty is
uniquely determined from M up to isomorphism. Similarly, E,; is uniquely determined from M up to

isomorphism, if it exists. O
Proof of Theorem[I.2, Using Propositions [3.2] and Theorem [Tl we see that £5 and Ej exist and £ =
E.

R

We prove (1) and (2) together. Suppose that Er exists. By definition, there exists a Cohen presentation
P — R such that Eg = Ext@™P~4P™ B(R R Using Propositions B:2(2), B2 and Theorem [LT(2), we get
Extp" PPN (R P) = &5 2 E5(R) = Extp™ PP (R R) 2 By,

Hence Ep is a quasi-canonical module of R, and we have £g = Egi by Proposition B2(2). If R is Cohen—
Macaulay, then Eg is a canonical module of R by Proposition [3.2](3).

Let Q — R be a Cohen presentation. By Propositions B.2(2) andd.2 we get £5 = Extng_demhR(}A{, Q)=
Extiy™ ™" (R, R). Hence Epy & Ep = Extgy™ O™ (R, R) = Extg" TP (R, Q).

(3) Suppose that Tps exists. Then Ty = TorinmedcpthR(R,M) for some Cohen presentation @) —
R. Theorem [ implies that Ty exists and is isomorphic to Tor?imedcpthR(}Al, ]/\/[\) Hence Tj; Ty
Proposition sho/w\s that Ty; /%\Homﬁ(é’ﬁ,]\/f) = Homﬁ(Eﬁ,]\//.T). In a similar way, we see that if Ej;
exists, then Eg; @ Eyy 2 Ef @p M. O
Proof of Theorem[I.3. Passing to the completion, we may assume that R is complete. Then the assertion
follows from Theorem [£.8 O

Proof of Theorem[I.j] By completion, we may assume that R is complete, and then we are done by Corollaries
410 411 O

From now on, we shall state several other results than the ones given in the Introduction. We begin with
showing that the cocharacteristic module of a local ring R and the quasi-canonical module of R are the same.

Corollary 5.1. Let R be a local ring. Suppose that either Eg or Er exists. Then the other exists as well,
and both are isomorphic: one has Egr = ERg.

Proof. We have already seen in the proof of Theorem [[.2] that if Eg exists, then £g also exists and Eg = ER.
Suppose that €r exists. Then £r = 5 = Ex(R) = ExtdQ‘medCPthR(R,R) for some Cohen presentation

Q — R, where the two isomorphisms follow from Corollary and Proposition 2] respectively. By the
definition of a cocharacteristic module, we see that £g is a cocharacteristic module of R. It follows from
Theorem [[LT[(2) that Eg is isomorphic to Eg. O

Finally, we remove the assumption from Corollary .14Y3)(4) that R is a homomorphic image of a regular
local ring. We do this after stating a remark.

Remark 5.2. Let R be a local ring. For an R-module M it holds that
Assp,M ={PNR|Pc¢c ASSE]/\Z}.

Indeec/l\7 leE p e Ass/\R]WA. Then ASSIA%]/W\ = quAssRMASSRAﬁ/‘lE by [10,/’\l’heorem 12(ii)], which contains
Assg R/pR. Since R/pR is nonzero, there exists P € Assz R/pR C Assz M. Then PN R e {P'NR| P €
Assg R/pR} = {p} by [10, Theorem 12(i)], and hence P N R = p.

Corlveriely, let P € Assﬁﬁ and put p = PN R. Then P is in quAssRMAssﬁzﬁ/qﬁv so that P €
Assg R/qR for some q € Assg M. It follows that p = PN R € {P'NR | P’ € Assg R/qR} = {q}, which
implies that p = q € Assg M.

Corollary 5.3. Let R be a local ring and M an R-module. Suppose that Er and Ty exist and that Ty = M.

(1) If Er is faithful and dim M = dim R, then R is locally Gorenstein on Assg M.
(2) If M is faithful, then R is generically Gorenstein.
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Proof. There are isomorphisms M =Ty Tx(M).
(1) By Remark ELI2, the R-module Eﬁ(fi) = Ep is faithful. Also, dimM = dimR. If R is locally
Gorenstein on Assp M , then R is locally Gorenstein on Assg M by Remark Thus the assertion follows
from Corollary L.T4(3).
(2) By Remark A12] the R-module M is faithful. If R is generically Gorenstein, then so is R by Remark
Hence the assertion follows from Corollary FLT4{(4). O

We close the section by posing a natural question, asking whether one can remove from Theorem [[.Z(5)
the assumption that M has finite G-dimension.

Question 5.4. Let R be a local ring. Suppose that there is an R-module M with dim M = dim R such that
Ty exists and Ty = M. Is then R Gorenstein?

Corollary 3.8 guarantees that this question is affirmative in the case when the local ring R is artinian.
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