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CHARACTERISTIC MODULES OVER A LOCAL RING

MOHSEN GHEIBI AND RYO TAKAHASHI

Abstract. Let R be a commutative noetherian local ring, and let M be a finitely generated R-module.
Inspired by works of Vasconcelos and Briggs on characterization of complete intersection local rings through
the homological properties of the conormal module, in this paper, we define the characteristic module TM

and the cocharacteristic module EM of M , and investigate their properties. Our main results include char-
acterizations of Cohen–Macaulay and Gorenstein local rings.

1. Introduction

Let (R,m) be a (commutative noetherian) local ring. Let π : Q ։ R̂ be a Cohen presentation of R, that

is, a surjective homomorphism from a regular local ring Q to the m-adic completion R̂ of R. Let I be the

kernel of π. Then the conormal module of R is defined as the R-module CR such that ĈR
∼= I/I2. The notion

of conormal modules has been studied actively for more than half a century in its algebraic and geometric
aspects; see [1, 2, 5, 12, 13] and references therein. The celebrated theorem of Ferrand, Vasconcelos, and
Briggs states that if pdR CR < ∞, then the ring R is complete intersection. One may think of the conormal

module as the first Tor module of R̂ over Q. That is

ĈR
∼= TorQ1 (R̂, R̂).

A natural question stems from the aforementioned isomorphism. It is whether the ring R can be characterized

regarding certain properties of higher Tor modules of R̂ over Q. In this paper, we focus on the last nonzero

Tor module of R̂ over Q and define the characteristic module of R to be such an R-module TR that satisfies

T̂R
∼= TorQs (R̂, R̂),

where s = pdQ R̂. More generally, for each (finitely generated) R-module M we shall define the characteristic

module TM of M by the existence of an isomorphism T̂M
∼= TorQs (R̂, M̂). We also consider the dual notion

and define the cocharacteristic module of M as an R-module EM such that ÊM
∼= ExtsQ(R̂, M̂).

First we discuss the existence and uniqueness of (co)characteristic modules and show that if they exist,
they do not depend on the choice of a Cohen presentation. More precisely, we prove the following theorem.

Theorem 1.1. Let R be a local ring and M an R-module.

(1) If R is a homomorphic image of a Gorenstein local ring, then both TM and EM exist.

(2) If TM or EM exists, then it is uniquely determined from M up to isomorphism.

As to the structure of (co)characteristic modules and their completions, we present the theorem below.

Theorem 1.2. Let R be a local ring. Then the following statements hold true.

(1) Suppose that ER exists. If R is a Cohen–Macaulay ring, then ER is a canonical module of R.

(2) Suppose that ER exists. For every Cohen presentation Q ։ R̂, there are isomorphisms

E
R̂
∼= ÊR

∼= ExtsQ(R̂, R̂) ∼= ExtsQ(R̂, Q), s := pdQ R̂ = dimQ− depthR.

(3) If EM exists, then E
M̂

∼= ÊM
∼= E

R̂
⊗

R̂
M̂ . If TM exists, then T

M̂
∼= T̂M

∼= Hom
R̂
(E

R̂
, M̂).

Cohen–Macaulay local rings are characterized in terms of the dimensions of (co)characteristic modules.

Theorem 1.3. Suppose that R is a homomorphic image of a Gorenstein local ring. The following conditions

are equivalent.
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(1) The local ring R is Cohen–Macaulay.

(2) One has dimER = dimR.

(3) One has dimTR = dimR.

(4) There exists an R-module M such that dimEM = dimR.

(5) There exists an R-module M such that dimTM = dimR.

As an application of Theorem 1.3, we can also relate a (co)characteristic module to the generic Goren-
steinness, and obtain a characterization of the Gorenstein local ring.

Theorem 1.4. Let R be a local ring. The following conditions are equivalent.

(1) The local ring R is Gorenstein.

(2) One has that ER exists and is nonzero and free.

(3) One has that TR exists and is nonzero and free.

(4) There is an R-module M with dimM = dimR such that EM exists and EM
∼= M .

(5) There is an R-module M with dimM = dimR and G-dimM < ∞ such that TM exists and TM
∼= M .

(6) There is an R-module M with G-dimR M < ∞ such that EM exists, pdR EM < ∞ and dimEM = dimR.

(7) There is an R-module M with pdR M < ∞ such that TM exists, G-dimR TM < ∞ and dimTM = dimR.

The organization of this paper is as follows. In Section 2, we collect definitions and properties of basic
notions used in this paper. In Section 3, we state the precise definitions of a quasi-canonical module of
R, a characteristic module and a cocharacteristic module of a given R-module. We investigate their basic
properties in this section. In Section 4, we study characteristic and cocharacteristic modules over a quotient
of a regular local ring from functorial approaches. In the final Section 5, we give the proofs of the theorems
mentioned above and state some other related results.

2. Preliminaries

This section is devoted to preliminaries for the later section. We begin with stating our convention adopted
throughout this paper.

Convention 2.1. Throughout this paper, we assume that all rings are commutative and noetherian and all

modules are finitely generated. For a local ring (R,m) we denote by (̂−) the m-adic completion. A Cohen

presentation is by definition a surjective ring homomorphism Q ։ R̂ where Q is a regular local ring.

We recall the definition of a dualizing complex of R and some of its fundamental properties.

Definition 2.2. (1) Let D be an R-complex with finitely generated homology (note then that D is homo-
logically bounded). We say that D is dualizing if it has finite injective dimension and the homothety
morphism R → RHomR(D,D) is a quasi-isomorphism.

(2) We denote by DR a normalized dualizing complex of R, that is, DR is a dualizing R-complex with
inf{i | Hi(DR) 6= 0} = 0.

Remark 2.3. (1) A dualizing complex of R is uniquely determined up to shifts in the derived category of
R; see [7, Chapter V, Theorem 3.1] and [4, (A.8.3)]. Hence a normalized dualizing complex DR of R is
uniquely determined up to quasi-isomorphism.

(2) A local ring R admits a dualizing complex if and only if R is a homomorphic image of a Gorenstein local
ring; see [9, Corollary 1.4].

(3) If R is a homomorphic image of a Gorenstein local ring S, then

DR
∼= RHomS(R,S)[dimS − dimR]

in the derived category of R. This is a consequence of the derived Hom-⊗ adjointness and the fact that
S is a dualizing complex of S.

(4) If R is Cohen–Macaulay, then H0(DR) is a canonical module of R by (3) and [3, Theorem 3.3.7(b)].

Next we recall some basic numerical invariants for local rings and modules over them.

Definition 2.4. Let (R,m, k) be a local ring.

(1) We denote by cmdR the Cohen–Macaulay defect of R, that is, cmdR = dimR− depthR.

(2) We denote by typeR the type of R, that is, typeR = dimk Ext
depthR
R (k,R).
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(3) For an R-module M we denote by νR(M) the minimal number of generators of M , that is, νR(M) =
dimk M ⊗R k.

The Auslander class and the Bass class of a Cohen–Macaulay local ring with a canonical module, and the
Poincaré and the Bass series of a complex play an important role in Section 4.

Definition 2.5. Let R be a Cohen–Macaulay local ring with a canonical module ω. The Auslander class

A(R) is defined as the class of R-modules M such that the natural map M → HomR(ω, ω ⊗R M) is an

isomorphism, TorR>0(ω,M) = 0 and Ext>0
R (ω, ω ⊗R M) = 0. The Bass class B(R) is defined as the class of

R-modules M such that the natural map ω⊗R HomR(ω,M) → M is an isomorphism, Ext>0
R (ω,M) = 0 and

TorR>0(ω,HomR(ω,M)) = 0.

Definition 2.6. Let X be an R-complex with finitely generated homology. Then the formal Laurent series

PX(t) =
∑

n∈Z

βR
n (X) tn, IX(t) =

∑

n∈Z

µn
R(X) tn

are respectively called the Poincaré series and the Bass series of X , where βR
n (X) = dimk Tor

R
n (k,X) and

µn
R(X) = dimk Ext

n
R(X, k) are the nth Betti and Bass numbers of X .

3. Basic properties of characteristic modules

In this section, we state basic properties of characteristic modules and cocharacteristic modules. First of
all, we define a quasi-canonical module of a local ring.

Definition 3.1. We define a quasi-canonical module of R to be an R-module ER such that

ÊR ∼= ExtdimQ−depthR
Q (R̂, Q),

where Q ։ R̂ is a Cohen presentation.

The following proposition guarantees the existence and uniqueness of a quasi-canonical module of a local
ring, and explains that it is a generalization of a canonical module of a Cohen–Macaulay local ring.

Proposition 3.2. (1) Suppose that R is a homomorphic image of a Gorenstein local ring. Then a quasi-

canonical module of R exists. Indeed, HcmdR(DR) is a quasi-canonical module of R.

(2) If a quasi-canonical module of R exists, then it is uniquely determined up to isomorphism.

(3) If R is Cohen–Macaulay, then a quasi-canonical module of R is a canonical module of R.

Proof. (1) As R and R̂ are homomorphic images of Gorenstein local rings, there exist normalized dualizing

complex DR and D
R̂
, and we easily see that D̂R

∼= D
R̂
. Set H = HcmdR(DR). Let Q ։ R̂ be a Cohen

presentation. We have

Ĥ ∼= HcmdR(D̂R) ∼= HcmdR(D
R̂
) ∼= Ext

cmdR+(dimQ−dim R̂)
Q (R̂, Q) = ExtdimQ−depthR

Q (R̂, Q).

Therefore, H is a quasi-canonical module of R.

(2) Let X and Y be quasi-canonical modules of R. Then there exist Cohen presentations Q ։ R̂ and

Q′ ։ R̂ such that X̂ ∼= ExtdimQ−depthR
Q (R̂, Q) and Ŷ ∼= ExtdimQ′

−depthR
Q′ (R̂, Q′). Since R̂ is a homomorphic

image of the Gorenstein local rings Q and Q′, a normalized dualizing complex D
R̂
of R̂ exists, and we have

RHomQ(R̂, Q)[dimQ− dim R̂] ∼= D
R̂
∼= RHomQ′(R̂, Q′)[dimQ′ − dim R̂]

in the derived category of R̂. It follows that

X̂ ∼= ExtdimQ−depthR
Q (R̂, Q) = Ext

cmd R̂+(dimQ−dim R̂)
Q (R̂, Q) ∼= Hcmd R̂(D

R̂
),

Ŷ ∼= ExtdimQ′
−depthR

Q′ (R̂, Q′) = Ext
cmd R̂+(dimQ′

−dim R̂)
Q′ (R̂, Q′) ∼= Hcmd R̂(D

R̂
).

We thus obtain X̂ ∼= Ŷ , which implies X ∼= Y .
(3) This is an immediate consequence of [3, Theorem 3.3.7(b)]. �

A quasi-canonical module is compatible with completion.

Corollary 3.3. If ER exists, then there is an isomorphism ÊR ∼= E
R̂
.
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Proof. Let Q ։ R̂ be a Cohen presentation. Then D
R̂

= RHomQ(R̂, Q)[dimQ − dim R̂], and E
R̂

=

Hcmd R̂(D
R̂
) = Extcmd R̂+dimQ−dim R̂

Q (R̂, Q) = ExtdimQ−depthR
Q (R̂, Q) ∼= ÊR by Proposition 3.2(1). �

Now we define a characteristic module and a cocharacteristic module of a given R-module.

Definition 3.4. Let M be an R-module. We define a characteristic module of M to be an R-module TM

such that
T̂M

∼= TorQdimQ−depthR(R̂, M̂)

where Q ։ R̂ is a Cohen presentation of R. Dually, we define a cocharacteristic module of M to be an
R-module EM such that

ÊM
∼= ExtdimQ−depthR

Q (R̂, M̂).

The definition of characteristic modules is motivated by the notion of the conormal module of a local ring.

Remark 3.5. Let R be a local ring. The conormal module of R is by definition an R-module CR such that

ĈR
∼= I/I2, where I is the kernel of a minimal Cohen presentation Q ։ R̂. Hence

ĈR
∼= TorQ1 (R̂, R̂).

One has pdQ R̂ = n − t, where n = dimQ and t = depthR. The minimal free resolution of R̂ over Q is of
the form F = (0 → Fn−t → Fn−t−1 → · · · → F0 → 0). There is a complex

F ⊗Q R̂ = (0 → Fn−t ⊗Q R̂ → Fn−t−1 ⊗Q R̂ → · · · → F0 ⊗Q R̂ → 0).

The completion of CR is the first homology of this complex, while the completion of TR is the left-end
homology of this complex.

Spectral sequence arguments give rise to equalities of types and minimal numbers of generators.

Proposition 3.6. Let (R,m, k) be a local ring of depth t, and let M be a finitely generated R-module. Assume

TM and EM exist. Let Q ։ R̂ be a Cohen presentation, where Q is a regular local ring of dimension n.

(1) One has νR(EM ) = type(R)νR(M).

(2) Assume TM is nonzero and depth
R̂
TorQn−t−i(R̂, M̂) > t − i + 1 for all 1 6 i 6 n − t. Then one has

depthR TM = depthR and

typeR(TM ) = type(R) typeR(M).

Proof. Passing to the completion, we may assume R = R̂. Let F be a free resolution of M over Q, U a free
resolution of k over R, J ′ an injective resolution of M over Q, and J an injective resolution of R over itself.

(1) The double complex U ⊗R HomQ(R, J ′) induces an spectral sequence

E2
p,q = TorRp (k,Ext

q
Q(R,M)) =⇒ Hp−q(U ⊗R HomQ(R, J ′)).

Since Q is regular, there exists an isomorphism of complexes U ⊗R HomQ(R, J ′) ∼= HomQ(HomR(U,R), J ′)
from which we get the following isomorphisms

Hm(U ⊗R HomQ(R, J ′)) ∼= Hm(HomQ(HomR(U,R), J ′))
∼= Hm(HomQ(HomR(k, J), J

′))
∼= Hm(HomR(k, J)⊗k HomQ(k, J

′))
∼= ⊕i−j=m ExtiR(k,R)⊗k Ext

j
Q(k,M).

Since pdQ R = n − t and the maps drp,q on Er page are bidegree (−r,−r + 1), we have E2
0,n−t

∼= E∞
0,n−t.

Therefore k ⊗R EM
∼= ExttR(k,R)⊗k Ext

n
Q(k,M). Since ExtnQ(k,M) ∼= k ⊗Q M , we are done.

(2) The double complex HomR(U,R⊗Q F ) induces an spectral sequence

E2
p,q

∼= ExtpR(k,Tor
Q
q (R,M)) =⇒ Hp−q(HomR(U,R⊗Q F )).

Since F is a perfect complex over Q, there is a natural isomorphism of complexes HomR(U,R) ⊗Q F ∼=
HomR(U,R⊗Q F ). Therefore one has

Hm(HomR(U,R⊗Q F )) ∼= Hm(HomR(U,R)⊗Q F )
∼= Hm(HomR(k, J)⊗Q F )
∼= Hm(HomR(k, J)⊗k (k ⊗Q F ))
∼= ⊕i−j=m ExtiR(k,R)⊗k Tor

Q
j (k,M).
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Since the maps drp,q on Er page are bidegree (r, r − 1), the spectral sequence and the assumptions show that

ExtjR(k,TM ) = 0 for all 0 6 j 6 t − 1, and E2
t,n−t

∼= E∞
t,n−t

∼= ExttR(k,R) ⊗k TorQn−t(k,M). Therefore

depthR TM = t and since Q is regular, we have TorQn−t(k,M) ∼= ExttQ(k,M). This finishes the proof. �

The following example shows that the equality of Proposition 3.6(2) may fail if the depth assumption on
Tor modules is removed. We used Macaulay2 for computations.

Example 3.7. Let R be the completion of the third Veronese subring of the polynomial ring k[s, t] over a
field k, that is, R = k[[s3, s2t, st2, t3]]. Then R is a Cohen–Macaulay complete local ring of dimension 2. We
have R ∼= Q/I where Q = k[[w, x, y, z]] and I = (x2 − yw, y2 − xz, xy − wz). One has type(R) = 2 (see [3,

Exercise 3.6.21]) but typeR(TR) = 3 6= type(R)2 = 4. Moreover, the module TR = TorQ2 (R,R) is maximal

Cohen–Macaulay and depthR TorQ1 (R,R) = 1. Since dimTorQ1 (R,R) = dim I/I2 = 2, the conormal module
of R is not Cohen–Macaulay.

One obtains a sufficient condition for an artinian local ring R to be Gorenstein.

Corollary 3.8. Let R be an artinian local ring. If there exists a nonzero R-module M such that typeR(M) >
typeR(TM ), then R is Gorenstein. In particular, if M ∼= TM , then R is Gorenstein.

The following example shows that Corollary 3.8 is not true if R is not Cohen–Macaulay.

Example 3.9. Let k be a field, Q = k[[x, y]], I = (x2, xy), and R = Q/I. Then R is a one-dimensional
complete local ring and depthR = 0. One has type(R) = 1 and Tk

∼= k but R is not Gorenstein. Also for

M = R/(x), one has pdQ M = 1 and therefore TM = TorQ2 (R,M) = 0. This shows the assumption TM 6= 0
is necessary in Proposition 3.6.

4. Functorial approaches to characteristic modules and applications

In this section, we restrict to the case of a quotient of a regular local ring and discuss functorial aspects
of characteristic modules and cocharacteristic modules over it. Throughout this section, let Q be an n-
dimensional regular local ring, I an ideal of Q, R = Q/I and t = depthR. Then pdQ R = n−t. Let F = (0 →

Fn−t

∂n−t

−−−→ · · ·
∂1−→ F0 → 0) be a minimal free resolution of R over Q. Then DR = RHomQ(R,Q)[n− dimR]

and E := ER = HcmdR(DR) = Extn−t
Q (R,Q) by Proposition 3.2(1).

For an R-module M we define the R-modules T(M) and E(M), which play a main role in this section.

Definition 4.1. For an R-module M we define the modules T(M) and E(M) as follows.

T(M) = TorQn−t(R,M), E(M) = Extn−t
Q (R,M).

The modules T(M) and E(M) can be described by using the quasi-canonical module E.

Proposition 4.2. There are isomorphisms of covariant functors from modR to modR:

T(−) ∼= HomR(E,−), E(−) ∼= E ⊗R −.

In particular, one has an adjoint pair

modR
E

⊥

//

modR
T

oo

and an R-module isomorphism E(R) ∼= E.

Proof. Let M be an R-module. By definition, the module T(M) is the kernel of the map ∂n−t ⊗Q M , while
the modules E and E(M) is the cokernels of the maps HomQ(∂n−t, Q) and HomQ(∂n−t,M), respectively.
There is a commutative diagram

0 // T(M) // Fn−t ⊗Q M
∂n−t⊗QM

// Fn−t−1 ⊗Q M

0 // HomQ(E,M) // HomQ(HomQ(Fn−t, Q),M)
HomQ(HomQ(∂n−t,Q),M)

//

∼=

OO

HomQ(HomQ(Fn−t−1, Q),M)

∼=

OO
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of R-modules, where the vertical maps are natural isomorphisms. We get an isomorphism HomQ(E,M) →
T(M). As E and M are R-modules, we have HomQ(E,M) = HomR(E,M). Hence T(M) ∼= HomR(E,M).
There is also a commutative diagram

HomQ(Fn−t−1,M)
HomQ(∂n−t,M)

// HomQ(Fn−t,M) // E(M) // 0

HomQ(Fn−t−1, Q)⊗Q M
HomQ(∂n−t,Q)⊗QM

//

∼=

OO

HomQ(Fn−t, Q)⊗Q M //

∼=

OO

E ⊗Q M // 0

of R-modules, where the vertical maps are natural isomorphisms. We get an isomorphism E⊗QM → E(M).
As E and M are R-modules, we have E ⊗Q M ∼= E ⊗Q R⊗R M ∼= E ⊗R M . Hence E(M) ∼= E ⊗R M . �

Next we define the canonical homomorphisms αM and βM for each R-module M .

Definition 4.3. Let M be an R-module. Define the maps

αM : M → HomR(E,E ⊗R M), βM : E ⊗R HomR(E,M) → M

by αM (m)(e) = e⊗m and βM (e⊗ f) = f(e) for e ∈ E, m ∈ M and f ∈ HomR(E,M). Proposition 4.2 says
that we may think

αM : M → TE(M), βM : ET(M) → M.

The homomorphisms αT(M) and βE(M) split.

Proposition 4.4. (1) There is an equality T(βM ) ◦ αT(M) = 1. Hence αT(M) : T(M) → TET(M) is a split

monomorphism.

(2) There is an equality βE(M) ◦ E(αM ) = 1. Hence βE(M) : ETE(M) → E(M) is a split epimorphism.

Proof. Using Proposition 4.2, we have

T(βM ) = HomR(E, βM ) : HomR(E,E ⊗R HomR(E,M)) → HomR(E,M),

αT(M) = αHomR(E,M) : HomR(E,M) → HomR(E,E ⊗R HomR(E,M)),

βE(M) = βE⊗RM : E ⊗R HomR(E,E ⊗R M) → E ⊗R M,

E(αM ) = E ⊗R αM : E ⊗R M → E ⊗R HomR(E,E ⊗R M).

Now we easily verify that the assertions hold. �

Here we remark when αM and βM are isomorphisms.

Remark 4.5. Assume that R is Cohen–Macaulay. In view of [4, (3.4.11)], one has that if pdR M < ∞, then
αM is an isomorphism, and if idRM < ∞, then βM is an isomorphism.

The following corollary provides criteria for detecting infinite injective dimension over a local ring by using
minimal numbers of generators of modules.

Corollary 4.6. For a finitely generated R-module M , if νR(T(M)) > νR(M), then idRM = ∞.

Proof. Assume that M is nonzero and idRM < ∞. Then by using Proposition 3.6(1) and Remark 4.5, we
have νR(M) = type(R)νR(T(M)). Therefore νR(T(M)) 6 νR(M). �

The proposition below says about the compatibility of a quasi-canonical module with localization.

Proposition 4.7. Let p ∈ SuppR(ER), and write p = q/I where q is a prime ideal of Q containing I. One

then has ht q− depthRp = n− t and there is an isomorphism

(ER)p ∼= ERp
.

Proof. We have 0 6= (ER)p = Extn−t
Q (R,Q)p ∼= Extn−t

Qq
(Rp, Qq). Since pdQq

Rp 6 pdQ R = n − t, we have

Ext
>(n−t)
Qq

(Rp, Qq) = 0. As Qq is a Gorenstein local ring, it is seen that dimQq − depthRp = n − t =

dimQ− depthR. Thus ERp

∼= Extn−t
Qq

(Rp, Qq) ∼= (ER)p. �

Now we state and prove the main result of this section.

Theorem 4.8. The following conditions are equivalent.
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(1) There exists an R-module M such that dimT(M) = dimR.

(2) There exists an R-module M such that dimE(M) = dimR.

(3) One has dimT(R) = dimR.

(4) One has dimE(R) = dimR.

(5) The local ring R is Cohen–Macaulay.

(6) The map αR is an isomorphism.

(7) The map βE is an isomorphism.

Proof. First of all, note by Proposition 4.2 that E(R) ∼= E = ER. The implications (4) ⇒ (2) and (3) ⇒
(1) are obvious. If R is Cohen–Macaulay, then E is a canonical module of R by Proposition 3.2(3). Hence
the implication (5) ⇒ (4) holds. Note that the supports of HomR(E,M) and E ⊗R M are contained in the
support of E for each R-module M . Using Proposition 4.2, we see that the implications (1) ⇒ (4) ⇐ (2)
hold.

Assume (4). The equality dimE = dimR implies that SuppE ∩AsshR is nonempty. We have

∅ 6= SuppE ∩AsshR ⊆ SuppE ∩ AssR = AssHomR(E,R) = AssT(R),

where the last equality follows from Proposition 4.2. We observe that dimT(R) = dimR. Thus (3) follows.
There exists p ∈ SuppE∩AsshR. Take a prime ideal q of Q that contains I and satisfies p = q/I. Proposition
4.7 implies ht q − depthRp = n − t. As p ∈ AsshR, we have depthRp = 0 and dimR/p = dimR. Hence
depthR = t = n− ht q = dimQ/q = dimR/p = dimR. Therefore, R is Cohen–Macaulay. Thus (5) follows.
We have got the implications (3) ⇐ (4) ⇒ (5), and now the conditions (1)–(5) are equivalent.

The implications (7) ⇐ (5) ⇒ (6) follow from the fact that if R is Cohen–Macaulay, then E is a canonical
module of R. If (6) holds, then R ∼= TE(R) and therefore dimR TE(R) = dimR. By setting M = E(R), we
have condition (2) holds. In a similar way, we can show that (7) implies (1). �

Remark 4.9. The implication (4) ⇒ (5) in the above theorem can also be deduced by using [3, Theorem
8.1.1(b)]. Indeed, we have dimE = dimR/AnnR Extn−t

Q (R,Q) 6 t = depthR. Hence, if dimE = dimR,
then R is Cohen–Macaulay.

Applying the above theorem, we get the following two corollaries, which give criteria for Gorensteinness
in terms of characteristic and cocharacteristic modules.

Corollary 4.10. The following conditions are equivalent.

(1) There exists an R-module M such that dimM = dimR, G-dimM < ∞ and M ∼= T(M).
(2) There exists an R-module M such that dimM = dimR and M ∼= E(M).
(3) The local ring R is Gorenstein.

Proof. (2) ⇒ (3): Theorem 4.8 implies that R is Cohen–Macaulay, while typeR = 1 by Proposition 3.6(1).
(3) ⇒ (1) and (2): As R is Gorenstein, Proposition 3.2(3) implies E ∼= R. We obtain E(R) ∼= E ∼= R and

T(R) ∼= HomR(R,R) ∼= R by Proposition 4.2. Thus, letting M = R, we are done.
(1) ⇒ (3): Theorem 4.8 and Proposition 3.2(3) imply that R is Cohen–Macaulay and E is a canonical

module of R. By Proposition 4.2 and [4, (3.1.11)] we have HomR(E,M) ∼= T(M) ∼= M ∈ A(R). We get M ∈
B(R) by [11, Theorem 2.8(a)], which implies that Ext>0

R (E,M) = 0. It follows that M ∼= RHomR(E,M) in

the derived category of R. Using [4, (A.7.7)], we get IM (t) = IRHomR(E,M)(t) = PE(t) I
M (t). Comparing the

coefficients of tdepthM in IM (t) and PE(t) I
M (t), we observe that E is cyclic. Thus the ringR is Gorenstein. �

Corollary 4.11. The following conditions are equivalent.

(1) There exists an R-module M such that pdR M < ∞, G-dimR T(M) < ∞ and dimT(M) = dimR.

(2) There exists an R-module M with G-dimR M < ∞ such that pdR E(M) < ∞ and dimE(M) = dimR.

(3) The R-module T(R) is nonzero and free.

(4) The R-module E(R) is nonzero and free.

(5) The ring R is Gorenstein.

Proof. It follows from Theorem 4.8 and Propositions 3.2(3), 4.2 that under any of those five conditions which
are given in the corollary, R is a Cohen–Macaulay local ring and E ∼= E(R) is a canonical module of R.

(5) ⇒ (3) and (4): By the argument in the proof of the implication (3) ⇒ (1) and (2) in Corollary 4.10,
we have T(R) ∼= E(R) ∼= R. Hence the R-modules T(R) and E(R) are nonzero and free.

(3) ⇒ (1) and (4) ⇒ (2): Letting M = R, we are done.
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(1) ⇒ (5): As T(M) has finite G-dimension, it is in A(R) by [4, (3.1.11)]. Since T(M) ∼= HomR(E,M)
by Proposition 4.2, we have M ∈ B(R) by [11, Theorem 2.8(a)]. Since M has finite projective dimension, it
follows from [4, (3.4.12)] that R is Gorenstein.

(2) ⇒ (5): As M has finite G-dimension, it is in A(R) by [4, (3.1.11)]. Hence E(M) ∼= E ⊗M ∈ B(R)
by Proposition 4.2 and [11, Theorem 2.8(b)]. Since E(M) has finite projective dimension, it follows from [4,
(3.4.12)] that R is Gorenstein. �

To state our next result, we recall a basic fact on faithful modules.

Remark 4.12. An R-module X is faithful if and only if the homothety map R → HomR(X,X) is injective.
Indeed, the kernel of this map coincides with the annihilator of X .

The following lemma is necessary to get our next corollary.

Lemma 4.13. Let M be an R-module such that M ∼= T(M).

(1) If M is faithful, then so is E.

(2) If E is faithful, then Ep
∼= Rp for every p ∈ AssR M .

Proof. (1) Proposition 4.2 yields T(M) ∼= HomR(E,M). We get AnnR E ⊆ AnnR T(M) ⊆ AnnR M , where
the latter inclusion follows from the assumption that M ∼= T(M). Thus, the assertion holds.

(2) Since M ∼= T(M) ∼= HomR(E,M), we have p ∈ AssM ⊆ SuppM ⊆ SuppE. In view of Propositions
4.2 and 4.7, there are isomorphisms

Mp
∼= TR(M)p ∼= HomR(E,M)p ∼= HomRp

(Ep,Mp) ∼= HomRp
(ERp

,Mp) ∼= TRp
(Mp),

HomRp
(κ(p),Mp) ∼= HomRp

(κ(p),HomRp
(Ep,Mp)) ∼= HomRp

(Ep ⊗Rp
κ(p),Mp).

Since p is in AssM , the κ(p)-vector space HomRp
(κ(p),Mp) is nonzero. Substituting κ(p)⊕c for Ep⊗Rp

κ(p),
we see that c = 1, so that Ep ⊗Rp

κ(p) ∼= κ(p). Nakayama’s lemma implies that Ep is cyclic over Rp.
Faithfulness localizes by Remark 4.12, and Ep is a faithful Rp-module. It follows that Ep

∼= Rp. �

Now we can prove another corollary of Theorem 4.8.

Corollary 4.14. Let M be an R-module such that M ∼= T(M). Consider the following two conditions.

(i) The R-module M is faithful.

(ii) The R-module E is faithful and dimM = dimR.

Then the following statements hold true.

(1) If (i) holds, then (ii) holds as well.

(2) If (ii) holds, then R is a Cohen–Macaulay local ring and E is a canonical module of R.

(3) If (ii) holds, then the ring R is locally Gorenstein on AssM .

(4) If (i) holds, then the ring R is generically Gorenstein.

Proof. The equality AnnM = 0 particularly says dimM = dimR. Lemma 4.13(1) implies that E is faithful
as well.

(2) Since dimM = dimR, there exists p ∈ AsshR ∩ SuppM . Then p ∈ MinM ⊆ AssM . Lemma 4.13(2)
implies Ep

∼= Rp, and hence dimE = dimR. As E ∼= E(R) by Proposition 4.2, it follows from Theorem 4.8
and Proposition 3.2(3) that R is Cohen–Macaulay and E is a canonical module of R.

(3) Let p ∈ AssM . By (2), the local ring Rp is Cohen–Macaulay, and Ep is a canonical module of Rp. It
follows from Lemma 4.13(2) that Ep is isomorphic to Rp, which means that Rp is Gorenstein.

(4) Since the R-module M is faithful, R is embedded in a finite direct sum of copies of M . This implies
that AssR is contained in AssM . The assertion is now a direct consequence of (3) and (1). �

5. Proofs of our main results

This section is devoted to giving proofs of the results stated in the Introduction and stating related results.

Proof of Theorem 1.1. (1) A quasi-canonical module ER of R exists by Proposition 3.2(1). Set X =

HomR(ER,M) and Y = ER ⊗R M . Let Q ։ R̂ be a Cohen presentation. Applying Proposition 4.2 and
Corollary 3.3, we have

X̂ ∼= Hom
R̂
(ÊR, M̂) ∼= Hom

R̂
(E

R̂
, M̂) ∼= T

R̂
(M̂) = TorQdimQ−depthR(R̂, M̂),
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and similarly Ŷ ∼= ExtdimQ−depthR
Q (R̂, M̂). Therefore, X is a characteristic module of M , and Y is a

cocharacteristic module of M .
(2) Suppose that TM exists. Then there exists a Cohen presentation Q ։ R̂ such that T̂M

∼=

TorQdimQ−depthR(R̂, M̂). Using Proposition 4.2, we have T̂M
∼= T

R̂
(M̂) ∼= Hom

R̂
(E

R̂
, M̂). Hence TM is

uniquely determined from M up to isomorphism. Similarly, EM is uniquely determined from M up to
isomorphism, if it exists. �

Proof of Theorem 1.2. Using Propositions 3.2, 4.2 and Theorem 1.1, we see that E
R̂
and E

R̂
exist and E

R̂
∼=

E
R̂
.
We prove (1) and (2) together. Suppose that ER exists. By definition, there exists a Cohen presentation

P ։ R̂ such that ÊR
∼= ExtdimP−depthR

P (R̂, R̂). Using Propositions 3.2(2), 4.2 and Theorem 1.1(2), we get

ExtdimP−depthR
P (R̂, P ) ∼= E

R̂
∼= E

R̂
(R̂) ∼= ExtdimP−depthR

P (R̂, R̂) ∼= E
R̂
.

Hence ER is a quasi-canonical module of R, and we have ER ∼= ER by Proposition 3.2(2). If R is Cohen–
Macaulay, then ER is a canonical module of R by Proposition 3.2(3).

Let Q ։ R̂ be a Cohen presentation. By Propositions 3.2(2) and4.2, we get E
R̂
∼= ExtdimQ−depthR

Q (R̂, Q) ∼=

ExtdimQ−depthR
Q (R̂, R̂). Hence E

R̂
∼= ÊR

∼= ExtdimQ−depthR
Q (R̂, R̂) ∼= ExtdimQ−depthR

Q (R̂, Q).

(3) Suppose that TM exists. Then T̂M
∼= TorQdimQ−depthR(R̂, M̂) for some Cohen presentation Q ։

R̂. Theorem 1.1 implies that T
M̂

exists and is isomorphic to TorQdimQ−depthR(R̂, M̂). Hence T̂M
∼= T

M̂
.

Proposition 4.2 shows that T
M̂

∼= Hom
R̂
(E

R̂
, M̂) ∼= Hom

R̂
(E

R̂
, M̂). In a similar way, we see that if EM

exists, then E
M̂

∼= ÊM
∼= E

R̂
⊗

R̂
M̂ . �

Proof of Theorem 1.3. Passing to the completion, we may assume that R is complete. Then the assertion
follows from Theorem 4.8. �

Proof of Theorem 1.4. By completion, we may assume thatR is complete, and then we are done by Corollaries
4.10, 4.11. �

From now on, we shall state several other results than the ones given in the Introduction. We begin with
showing that the cocharacteristic module of a local ring R and the quasi-canonical module of R are the same.

Corollary 5.1. Let R be a local ring. Suppose that either ER or ER exists. Then the other exists as well,

and both are isomorphic: one has ER ∼= ER.

Proof. We have already seen in the proof of Theorem 1.2 that if ER exists, then ER also exists and ER
∼= ER.

Suppose that ER exists. Then ÊR ∼= E
R̂

∼= E
R̂
(R̂) = ExtdimQ−depthR

Q (R̂, R̂) for some Cohen presentation

Q ։ R̂, where the two isomorphisms follow from Corollary 3.3 and Proposition 4.2, respectively. By the
definition of a cocharacteristic module, we see that ER is a cocharacteristic module of R. It follows from
Theorem 1.1(2) that ER is isomorphic to ER. �

Finally, we remove the assumption from Corollary 4.14(3)(4) that R is a homomorphic image of a regular
local ring. We do this after stating a remark.

Remark 5.2. Let R be a local ring. For an R-module M it holds that

AssR M = {P ∩R | P ∈ Ass
R̂
M̂}.

Indeed, let p ∈ AssR M . Then Ass
R̂
M̂ =

⋃
q∈AssR M Ass

R̂
R̂/qR̂ by [10, Theorem 12(ii)], which contains

Ass
R̂
R̂/pR̂. Since R̂/pR̂ is nonzero, there exists P ∈ Ass

R̂
R̂/pR̂ ⊆ Ass

R̂
M̂ . Then P ∩ R ∈ {P ′ ∩ R | P ′ ∈

Ass
R̂
R̂/pR̂} = {p} by [10, Theorem 12(i)], and hence P ∩R = p.

Conversely, let P ∈ Ass
R̂
M̂ and put p = P ∩ R. Then P is in

⋃
q∈AssR M Ass

R̂
R̂/qR̂, so that P ∈

Ass
R̂
R̂/qR̂ for some q ∈ AssR M . It follows that p = P ∩ R ∈ {P ′ ∩ R | P ′ ∈ Ass

R̂
R̂/qR̂} = {q}, which

implies that p = q ∈ AssR M .

Corollary 5.3. Let R be a local ring and M an R-module. Suppose that ER and TM exist and that TM
∼= M .

(1) If ER is faithful and dimM = dimR, then R is locally Gorenstein on AssR M .

(2) If M is faithful, then R is generically Gorenstein.
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Proof. There are isomorphisms M̂ ∼= T̂M
∼= T

R̂
(M̂).

(1) By Remark 4.12, the R̂-module E
R̂
(R̂) = ÊR is faithful. Also, dim M̂ = dim R̂. If R̂ is locally

Gorenstein on Ass
R̂
M̂ , then R is locally Gorenstein on AssR M by Remark 5.2. Thus the assertion follows

from Corollary 4.14(3).

(2) By Remark 4.12, the R̂-module M̂ is faithful. If R̂ is generically Gorenstein, then so is R by Remark
5.2. Hence the assertion follows from Corollary 4.14(4). �

We close the section by posing a natural question, asking whether one can remove from Theorem 1.4(5)
the assumption that M has finite G-dimension.

Question 5.4. Let R be a local ring. Suppose that there is an R-module M with dimM = dimR such that
TM exists and TM

∼= M . Is then R Gorenstein?

Corollary 3.8 guarantees that this question is affirmative in the case when the local ring R is artinian.
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