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Motivated by discrepancies between recent cold atom experiments and the associated theory,
we explore the effect of immobile holes on the quantum dynamics of x–z spin helices in the one-
dimensional XX model. We calculate the exact spin dynamics by mapping onto a system of non-
interacting fermions, averaging over the distribution of holes. At small hole densities we find that the
helical spin pattern decays exponentially, with a pitch dependence that agrees with the experiments.
At large hole densities we instead find persistent oscillations. While our analytic approach does
not generalize to the XXZ model with arbitrary anisotropies, we validate a matrix product state
technique which might be used to model the experiments in those settings.

I. INTRODUCTION

In a recent experiment [1], Jepsen et al. used a gas of
7Li atoms trapped in a one-dimensional (1D) optical lat-
tice as an analog simulator of the 1D anisotropic Heisen-
berg model, one of the most important spin models from
condensed matter physics [2–15]. In certain limits their
experiment showed behavior which was qualitatively dif-
ferent from the exact solution of that model [16, 17]. Here
we show that adding a realistic density of immobile holes
to the model removes the discrepancy.

In the experiment bosonic lithium atoms were loaded
into an optical lattice and confined with an additional
harmonic trap. Due to the deep optical lattice, the
atoms formed a Mott insulator, and in the majority of the
cloud there was a single particle per site. Superexchange,
from the virtual hopping between neighboring sites, led
to an effective XXZ (or anisotropic Heisenberg) model
H =

∑
j Jx(S

x
j S

x
j+1+S

y
j S

y
j+1)+JzS

z
j S

z
j+1. Here, Jx and

Jz parameterize the nearest-neighbor interactions within
a 1D array of spins with spin-1/2 operators Sµ. Physi-
cally, the two spin degrees of freedom correspond to two
hyperfine spin states of 7Li. To probe the dynamics of
this model, they initialized the spins in a classical x–z
helix state, where the spin on site j was oriented with
⟨Sx

j ⟩ = ℏ
2 cos(Qj + ϕ) and ⟨Sz

j ⟩ = ℏ
2 sin(Qj + ϕ). The

wave vector Q and phase ϕ were varied. The experimen-
talists quantified the dynamics by studying the Fourier
component of ⟨Sz⟩ at wave vector Q, a quantity referred
to as the contrast. They found that the contrast de-
cayed exponentially in time to a non-zero value. From
the Q dependence of the decay time, τ(Q), they identi-
fied a variety of transport regimes, ranging from ballistic
to subdiffusive as a function of anisotropy Jz.

Unfortunately, these observations disagree with theo-
retical modeling [16, 17]. The XX limit of the 1D XXZ
model (i.e. taking Jz = 0) can be mapped onto a prob-
lem involving free spinless fermions, and hence is exactly
solvable. In Ref. [16] we used this mapping to show that
in this XX limit the contrast decays to zero as a power
law, implying that τ = ∞, independent of Q. Calcula-
tions based upon generalized hydrodynamics came to a
similar conclusion [17].

Here we consider one possible source of this discrep-
ancy, namely the presence of missing spins. When atoms
are loaded into the optical lattice some sites remain
empty. Aside from a region at the very center of the
harmonic trap, these holes cannot move, and hence we
treat them as immobile. To understand the hole mobility,
we note that the hopping strength [1] is t ≈ h× 400 Hz,
and the trap potential is Vj = (1/2)κj2 with κ ≈ h× 100
Hz. By energy conservation, a hole at site j can only
hop when Vj+1 − Vj ≈ κj is smaller than 2t. Thus, in
a chain of length L ≈ 40 [1], only holes in the central
(2t/κ)/L = 20% of the trap can even hop by a single
site. If we extend the criteria of ‘immobile’ to mean that
a hole can hop by no more than a single site, then the
holes are immobile in more than 90% of the cloud. Any
disorder in the potential further increases this fraction.
Mobile holes can also be modelled (for example, using the
tensor network approaches in Refs. [1, 18]), but given the
small region they are contained in, they should make a
small impact on the experiment.

It is simple to add immobile holes to the spin model.
The empty sites act as barriers, breaking the spin chain
into disjoint segments whose dynamics are independent.
We model the hole density as uniform. The experimen-
talists estimate that p ∼ 5–10% of the sites are empty [1].
At such small hole densities, we find that the contrast de-
cays exponentially with a time constant τ(Q) ∝ Q−α for
α ∼ 1, which agrees with the experimental observations.
We have quantitative agreement if we take p = 5%.

At large hole density (p ≳ 35%) we find a distinct dy-
namical regime, which has not yet been experimentally
observed. We argue that large hole densities stabilize the
helix, preventing its decay. In this regime we instead ob-
serve persistent oscillations of the contrast about a non-
zero average.

Our treatment is exact, but it relies upon special prop-
erties of the XX model. It does not readily generalize
to the case where Jz ̸= 0. Thus we also develop a more
general matrix product state approach [19] for calculating
quantum dynamics in the presence of a random collection
of static holes. To perform the average over the distribu-
tion of empty sites we borrow a strategy from studies of
thermal systems [20, 21]: we introduce a set of ancillary
spins which are entangled with our physical spins. Trac-
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FIG. 1. Example configuration of a spin helix with holes. The
spin helix has wavelength λ = 8 and 12 sites are shown. Solid
red arrows represent sites with spins; black dots represent the
location of immobile holes; transparent red arrows represent
the spins that have been replaced by immobile holes. The
12-site chain in this example has been divided into spinful
segments of length ℓ1 = 5 and ℓ2 = 4, separated by holes at
sites h1 = 1, h2 = 7 and h3 = 12.

ing over the ancillary spins yields a mixed density ma-
trix for the physical state – corresponding to an average
over all disorder realizations. We use the time-dependent
variational principle (TDVP) algorithm [22, 23] to time
evolve this purified density matrix. We use our previ-
ous modeling to validate this numerical technique, but
reserve studies of generic anisotropies for future work.

We emphasize that this study should not be inter-
preted as a criticism of Ref. [1] or other quantum sim-
ulators. Rather, we are in the early days of quantum
simulation and therefore must explore and understand
the impact of various imperfections. Confronting and
clarifying experiment-theory discrepancies is imperative
for developing future generations of simulators.

The outline of this paper is as follows. In Sec. II, we
describe our model and the main observable. In Sec. III,
we show how to calculate the properties of this model by
considering ensembles of non-interacting fermions. We
present the results of these calculations in Sec. IV. In
Sec. V, we compare our results to those of the experi-
ment. We conclude with a summary of our work in Sec.
VI. Appendix A describes our matrix product state ap-
proach to solving this problem, and Appendix B describes
a rough approximation which relates the thermal fraction
of atoms in the experiment to the hole density used in
our modeling.

II. SETUP

We take a 1D chain of sites, labeled by integers j, that
can be in one of three states: |↑⟩j , |↓⟩j , or |0⟩j , corre-
sponding to the presence of a spin-↑ particle, a spin-↓
particle, or an empty site. These empty sites are treated
as immobile, but the spins interact via a XX Hamilto-
nian

H = J
∑
j

[
Sx
j S

x
j+1 + Sy

j S
y
j+1

]
(1)

=
J

2

∑
j

[
S+
j S

−
j+1 + S−

j S
+
j+1

]
. (2)

Here, Sµ = 1
2σ

µ are the standard spin-1/2 matrices,
which can be extended into our larger local Hilbert space
by taking them to vanish when acting on |0⟩. We use
units where ℏ = 1.

To model the experiment, we consider an ensemble
of initial product states, each of which have the form
|ψ⟩ =

∏
j |ψ⟩j . The wavefunction on site j is |ψ⟩j = |0⟩j

with probability p, or |ψ⟩j =
[
Aj,↑ |↑⟩j +Aj,↓ |↓⟩j

]
≡

|χ⟩j with probability (1− p). Here Aj,↑ = sin(θj/2) and
Aj,↓ = cos(θj/2) with θj = Qj + ϕ for some wave vector
Q = 2π

λ and phase ϕ. The helix wavelength is λ. For our
numerics we use ϕ = 0, and we use λ = 8 whenever the
pitch dependence is not needed.

Consider a realization where the holes are at locations
{hν}. At all subsequent times the wavefunction is a prod-
uct of terms, |ψ⟩ =

∏
ν |0⟩hν

|mνℓν⟩, where |mνℓν⟩ only
involves sites from mν = hν+1 to mν+ℓν−1 = hν+1−1.
That is, there are ℓν sites in the ν-th chain segment,
and the first site is mν ; see Fig. 1. At time t = 0,
|mℓ⟩ =

∏m+ℓ−1
j=i

[
Aj,↑ |↑⟩j +Aj,↓ |↓⟩j

]
=
∏m+ℓ−1

j=i |χ⟩j .
To quantify the dynamics of this helix, we calculate

the contrast, which is the primary diagnostic in the ex-
periments. The contrast is the spatial Fourier transform
of the z-component of the spin texture,

CQ(t, p) =
4

L

L∑
j=1

eiQj
〈
Sz
j (t, p)

〉
, (3)

where the bar represents an ensemble average and ⟨ · ⟩ the
quantum mechanical expectation value in a given realiza-
tion. Here t is time, and, as already introduced, p is the
probability that any given site contains a hole. The nor-
malization of CQ(t, p) is chosen so that CQ(0, p) = 1− p,
which is unity when p = 0. To compare with the ex-
periments, we focus on two quantities of interest: (i)
the time series of the contrast (i.e. CQ(t, p) itself)
and (ii) the static background contrast (i.e. the zero-
frequency contribution to CQ(t, p), which we denote as
C̃Q(ω = 0, p) ≡ C̃Q(p)).

III. METHODS

The XX model with holes can be mapped onto non-
interacting fermions via a Jordan-Wigner transformation
[3, 16, 24]. In particular, if the site j is not occupied by
a hole, S+

j = e−iπ
∑

l<j nla†j and Sz
j = nj − 1

2 , where
a†j is the fermion creation operator and nj = a†jaj =

(2Sz
j + 1)/2 is the fermion number operator. Hence, in

terms of the occupation number,

CQ(t, p) =
4

L

L∑
j=1

eiQj⟨nj(t, p)⟩, (4)

C̃Q(p) =
4

L

L∑
j=1

eiQj ⟨ñj(ω = 0, p)⟩ . (5)
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Determining CQ(t, p) or C̃Q(p) thus reduces to deter-
mining ⟨nj(t, p)⟩ or its time-average ⟨ñj(ω = 0, p)⟩ =

limT→∞ T−1
∫ T

0
⟨nj(t, p)⟩ dt. We will first focus on cal-

culating ⟨nj(t, p)⟩.
Consider a particular chain segment |mℓ⟩; we suppress

the subscript ν. In this case, the bracketing holes are at
sites m−1 and m+ ℓ, and the fermionic Hamiltonian for
the segment m ≤ j ≤ m+ ℓ− 1 is

Hf =
J

2

m+ℓ−1∑
j=m

[
a†jaj+1 + a†j+1aj

]
. (6)

The density of fermions on site j at time t within this
segment is

⟨nj(t)⟩ = ⟨mℓ| a†j(t)aj(t) |mℓ⟩ . (7)

For non-interacting fermions, the annihilation operator
at time t can be written in terms of a ℓ× ℓ matrix G as

aj(t) =
∑
l

Gjl(t)al(0), (8)

where the Green’s function G has elements

Gjl(t) =

ℓ∑
µ=1

Gµ
jl(t), (9)

Gµ
jl(t) = e−iωµt(v∗

µ)j(vµ)l. (10)

Here, ωµ and vµ are the eigenvalues and eigenvectors of
the ℓ× ℓ tridiagonal matrix with zeroes on the main di-
agonal and J/2 on the others. These wavefunctions cor-
respond to discretized “particle-in-a-box” solutions and
only depend on where j and l sit inside the segment, and
not on the absolute location of the segment. Relative to
the hole at site m− 1, we introduce j̄ = j − (m− 1) and
l̄ = l − (m − 1). Thus vµ is a sinusoidal function which
vanishes at j̄ = 0, ℓ+ 1,

(vµ)j̄ =

√
2

ℓ+ 1
sin

(
µπ

ℓ+ 1
j̄

)
. (11)

In terms of these wavefunctions we can then calculate

⟨nj(t)⟩ =
∑
kl

ℓ∑
µ,ν=1

(Gµ
kj(t))

∗Gν
jl(t) ⟨mℓ| a

†
k(0)al(0) |mℓ⟩ .

(12)
The initial expectation value ρkl = ⟨mℓ| a†k(0)al(0) |mℓ⟩
is given by [16]

ρkl = Al,↑A
∗
l,↓Ak,↓A

∗
k,↑

(
l−1∏

m=k+1

(
|Am,↓|2 − |Am,↑|2

))
(13)

for k < l, ρkl = ρlk for k > l, and ρll = |Al,↑|2 for k = l.
The ensemble average is accomplished by taking

⟨nj(t, p)⟩ =
∑
m≤j

ℓ+m>j

p2(1− p)ℓ ⟨nj(t)⟩ , (14)

where the limits on the sum ensure site j is contained
within |ml⟩, and p2(1− p)ℓ is the probability that such a
segment |ml⟩ will occur. Eq. (4) is then readily calculated
as

CQ(t, p) =
4

L

L∑
j=1

∑
m≤j

ℓ+m>j

p2(1− p)ℓeiQj ⟨nj(t)⟩ (15)

with ⟨nj(t)⟩ coming from Eq. (12).
Equation (15) can be written in a more practical form

with three simplifications. Firstly, the spin helix has pe-
riodicity in λ, which means the sum over sites need only
run from 1 to λ and not the full chain length L. Secondly,
the triple sum over m, j, and ℓ can be rearranged so that
j is constrained by the choice of m and ℓ. Combining
these two simplifications gives

CQ(t, p) =
4

λ

∞∑
ℓ=1

λ∑
m=1

∑
m−1<j<m+ℓ

p2(1− p)ℓeiQj ⟨nj(t)⟩ .

(16)
Finally, ⟨nj(t)⟩ can be substituted in from Eq. (12),
with the Green’s functions having the known form from
Eq. (10). With this substitution, all summations neatly
separate into a telescoping set of expressions, which are
the key equations that are used to numerically calculate
our results:

CQ(t, p) =

∞∑
ℓ=1

p2(1− p)ℓCℓ
Q(t), (17)

Cℓ
Q(t) =

ℓ∑
µ,ν=1

ei(ωµ−ων)tCℓ
µν(Q), (18)

Cℓ
µν(Q) =

4

λ

λ−1∑
m=0

ℓ∑
k,l=1

eiQmρk+m,l+m(vµ)
∗
k(vν)l

×

 ℓ∑
j=1

eiQj(vµ)
∗
j (vν)j

 . (19)

The summation over ℓ in Eq. (17) performs the ensemble
average for a given hole probability p. The summation
over momenta µ and ν in Eq. (18) produces the time
evolution. The moments Cℓ

µν(Q) in Eq. (19) contain all
information about the spin helix. It is the only sum in-
volving the site indices. The sum over j can be per-
formed analytically, by writing the sinusoidal wavefunc-
tions in terms of complex exponentials and evaluating the
resulting geometric series. Thus tabulating the Cℓ

Q’s for
a single t takes O(λℓ4) operations. These coefficients are
independent of p, and then can be summed in Eq. (17)
to arrive at the time-dependent contrast for arbitrary p.

The static background contrast C̃Q(p) is readily cal-
culated from these expressions. Equation (18) controls
the time evolution of the spin helix. The particle-in-a-
box spectrum {ωµ} is non-degenerate for any choice of ℓ.
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FIG. 2. Ensemble-averaged contrast CQ(t, p) for helix wavelength λ = 8, phase ϕ = 0, in three distinct dynamical regimes. (a)
CQ(t, p = 0.05) calculated by mapping onto non-interacting fermions using a Jordan-Wigner transformation (solid red line). It
exhibits exponential decay at early times. The exact result in the absence of holes [16] is also displayed (dashed black line),
exhibiting power law behavior. (b) CQ(t, p = 0.60) calculated using the Jordan-Wigner (JW) method described in the main
text (solid red line) as well as the numerical Matrix Product State (MPS) method described in Appendix A (blue circles). In
this regime one sees persistent oscillations. The dotted black line shows C̃Q(p = 0.6).

Hence, the zero-frequency contribution comes only from
those terms in Eq. (18) for which µ = ν:

C̃Q(p) =

∞∑
ℓ=1

p2(1− p)ℓCℓ
Q(ω = 0), (20)

Cℓ
Q(ω = 0) =

ℓ∑
µ=1

Cℓ
µµ(Q). (21)

These can be efficiently calculated.
The probability that a spin is in a segment longer than

ℓmax sites is

Pℓ>ℓmax = (1− p)ℓmax+1(1 + pℓmax). (22)

To numerically evaluate Eq. (17) we introduce a cutoff
ℓmax = 300 such that Pℓ>ℓmax

≲ 10−3 for the smallest p =
0.03 that we consider. To prove Eq. (22), we note that
there are ℓ possible segments of length ℓ that can contain
a given spin. Such segments occur with probability p2(1−
p)ℓ, and hence Pℓ>ℓmax

=
∑∞

ℓ=ℓmax+1 ℓp
2(1 − p)ℓ, which

evaluates to Eq. (22).

IV. RESULTS

Figure 2 shows the ensemble-averaged contrast
CQ(t, p) for λ = 8, ϕ = 0, and three different choices
of the hole probability: p = 0 and p = 0.05 in Fig. 2(a)
and p = 0.60 in Fig. 2(b). These parameters illustrate
the three regimes that we observe: (1) In the absence of
holes, p = 0, the contrast oscillates with an envelope that
falls off as a power law, C(t) ∼ t−1/2. At long times C(t)
approaches zero. (2) At small but non-zero p, we initially
see an exponentially-decaying envelope (until t ≈ 50ℏ/J
for p = 0.05), followed by weak but long-lived oscilla-
tions about a non-zero mean. This is the regime most
relevant to experiments. (3) At large p we see large ape-
riodic oscillations about a non-zero mean. In Fig. 2(b),

we also show the results of our numerical matrix product
state calculation (described in Appendix A). They are
indistinguishable from our Jordan-Wigner approach.

In the context of Eqs. (17)–(19), the exponential decay
in Fig. 2(a) can be understood from the segment-length
dependence of the fermion spectrum in the low-p regime.
Each segment length ℓ contributes a different set of fre-
quencies and hence a different set of phase factors in the
time evolution, Eq. (18), leading to dephasing. At low p,
the segment length distribution is quite broad, producing
an exponential decay whose time constant will grow with
decreasing p (an observation to be discussed later on in
this section). At large p most segments are very short, re-
sulting instead in only a few discrete frequencies. These
are incommensurate with one another, leading to persis-
tent quasiperiodic oscillations. The long-time behavior at
small p is similar; there are just more discrete frequencies
involved, and hence the oscillations are weaker.

Perhaps the most notable feature in these graphs is the
long-time non-zero background contrast C̃Q(p). This is
best understood by noting that the net spin polarization
is conserved in any given segment: a segment which ini-
tially has a large total ⟨Sz⟩ will always have a large net
polarization; a segment with small total ⟨Sz⟩ will always
have a small net polarization. Since all segments are sep-
arated by holes and cannot equilibrate with each other,
some memory of the spatial spin patterns persists for all
times. We expect this background to tend to zero as
p → 0 (where equilibration occurs across large portions
of the chain) and as p → 1 (where most of the initial
polarization is lost to holes).

This static background contrast C̃Q(p) is shown in
Fig. 3 as a function of p. Indeed, the background contrast
tends to zero as p→ 0 and p→ 1. We also show the ratio
of the static background contrast to the initial contrast,
CQ(0, p) = 1−p, corresponding to the fraction of the ini-
tial contrast that remains at long time. This normalized
contrast is a monotonically increasing function of p.
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FIG. 3. Static background contrast C̃Q(p) (blue circles, left
axis) as a function of hole probability p for helix wavelength
λ = 8 and phase ϕ = 0. C̃Q(p) normalized by the initial
contrast CQ(0, p) = 1 − p is also shown (red triangles, right
axis). The data points at p = 0 are known from previous work
[16], with the dotted lines representing a linear extrapolation
from p = 0.03 to p = 0.

For p ≲ 0.35 we observe a notable separation between
an exponentially-decaying envelope at short times and
aperiodic oscillations at long times. For larger p the de-
cay time is so short that one cannot reliably make such
a separation. To extract the decay rate at small p, we
fit the envelope of the contrast versus time curves to a
function of the form

Cenv
Q (t, p) = p+At−1/2e−Γt. (23)

We shift by p, as that is the small-p approximation to
the background contrast, C̃Q(p) ≈ p. The factor of t−1/2

is included so that the envelope has the correct func-
tional form when p = 0. To find the optimal A and Γ,
we perform a least-squares fit for 0 < t ≲ 40ℏ/J , which
excludes any of the long-time persistent oscillations for
p ∈ [0.03, 0.09]. The resulting decay rate Γ as a function
of p is shown in Fig. 4. When p is finite, the decay rate Γ
is non-negligible, corresponding to an exponential decay.
As p → 0, however, Γ → 0, indicating a diverging time
constant with decreasing p. Ultimately, an exponential
decay at small p gives way to a power law decay as p→ 0.
This offers one possible resolution to the discrepancy be-
tween earlier hole-free calculations and the experiments.

V. COMPARISON TO EXPERIMENT AND
PRIOR MODELING

By modifying their loading procedure, Jepsen et al. [1]
were able to increase their hole density and experimen-
tally study some of its impact. They analyzed the time
series of the contrast, fitting it to an empirical form

Cemp
Q (t) = [a0 + b0 cos(ωt)] e

−t/τ + c0. (24)

Their fits used data with time between 0 and 20ℏ/J at
large Q and between 0 and 30ℏ/J at small Q. They
found that in the XX limit the oscillation period of the
contrast and the decay time only weakly depended on p,
with the decay time decreasing slightly as p increased.

On the other hand, the background contrast c0 in-
creased monotonically with hole concentrations up to

0.00 0.02 0.04 0.06 0.08 0.10
p

0.00

0.05

0.10

0.15

0.20

 [u
ni

ts 
of

 J/
]

FIG. 4. Exponential decay rate Γ from Eq. (23), deter-
mined by fitting the maxima of the scaled-and-shifted con-
trast (CQ(t, p)− p)

√
t for various hole probabilities p. Γ → 0

as p → 0 is indicative of the evolution from exponential decay
at nonzero p to power law decay at p = 0.

around p ∼ 50%, beyond which they did not explore.
Throughout they found that the contrast decayed expo-
nentially to its background value.

As in our model, the experimental background con-
trast increased with hole probability, but a quantitative
comparison is challenging as they do not have a direct
measure of the hole density. In Appendix B we use en-
tropy arguments to model the experimental hole density,
and make some comparisons.

As already discussed in Sec. IV, at larger hole densities
our model displays persistent quasiperiodic oscillations in
the contrast. The experiments do not see these oscilla-
tions. Instead their data is well described by Eq. (24),
with perhaps an additional long-time drift. Clearly there
is additional physics needed to explain these large p re-
sults. In the experiment, the harmonic trap leads to an
inhomogeneous hole distribution. There are also mobile
holes in the central region of the trap. Both of these
effects are potential sources of the discrepancy. Nonethe-
less, it appears that static holes play an important role
in the experiment, especially at low hole densities.

In Ref. [1], the experimentalists also made compar-
isons to numerical simulations of the bosonic t–J model
with finite hole concentrations. Their simulations did
not, however, include the harmonic trap, and hence their
holes were mobile throughout rather than fixed. Thus
their model was very different from ours. In the XX
limit, those simulations showed an exponential decay of
the contrast. Crucially, however, they found that the
contrast vanished at long times – that is, the simulations
had C̃Q(p) = 0. It therefore seems likely that immobile
holes are not simply important but even necessary for
producing the finite background contrast (see Sec. IV for
a physical argument). Indeed, the authors of Ref. [1] also
argued that immobile holes were the source of the finite
background contrast.

In the experiment a central role was played by the
pitch dependence of the decay time τ(Q), as they used
its behavior (particularly its power law scaling τ ∼ Q−α)
to distinguish between various transport regimes. To
compare with those results, we use their fitting func-
tion Eq. (24) for the contrast, extracting the constants
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FIG. 5. Decay time τ as a function of helix wave vector Q at
p = 0.05 (red circles), using the same fitting function Eq. (24)
for the contrast as Ref. [1]. The straight line represents the
least-squares fit of our calculated τ(Q), with the decay time
satisfying τ ∝ Q−α for α = 1.00(5). The black stars are
experimental data points from Ref. [1]. Inset: decay exponent
α as a function of p using the same fitting procedure.

a0, b0, c0 and τ for λ = 2π/Q = 4, 8, 12, 16 and p ∈
[0.03, 0.10]. We fit the data from time t = 0 to the time
at which quasiperiodic oscillations begin, which ranges
from as small as t ≈ 20ℏ/J to as large as t ≈ 80ℏ/J
depending on λ and p. In this manner we only fit the
regime of exponential decay. Figure 5 shows the result-
ing best-fit decay time τ as a function of the wave vector
Q on a log-log plot at p = 0.05. The best fit describes a
straight line, and from it we conclude that τ(Q) ∝ Q−α

with α = 1.00(5) when p = 0.05. This quantitatively
agrees with the exponent measured by the experimental-
ists. As seen in the inset, our exponent α decreases with
increasing hole density, going as low as α = 0.84(6) at
p = 0.10.

Figure 5 also shows the experimental data. Our pre-
dicted decay constants are roughly 20% greater than
what was measured in the experiment, but as already
emphasized the exponents agree. This small discrepancy
could be due to details in the fitting procedure (for ex-
ample, the range of times used), or physics which was
not included in our model (mobile holes, inhomogeneous
hole distribution, etc.).

We caution that the residuals of our fit to Eq. (24)
are only small at very short times, including no more
than two oscillations. Consequently, the time constant
τ extracted from this fit is not the inverse of the decay
rate Γ extracted from the envelope, which was plotted in
Fig. 4.

VI. CONCLUSION

We have studied the effect of immobile holes on the
quantum dynamics of the XX spin helix, revealing three
dynamical regimes as a function of hole probability p.
For p = 0, the contrast of the spin helix decays to zero
as a power law; for small p, the contrast decays expo-

nentially to a finite background value, about which it
exhibits weak oscillations; for large p, the contrast ex-
hibits large quasiperiodic oscillations about a finite back-
ground. The experiment largely operated in the regime
of small p. We are able to explain a number of their ob-
servations, including the finite background contrast and
exponential decay of the contrast. We find quantitative
agreement with the pitch dependence of their exponen-
tial decay constant. As such, a small density of immobile
holes is sufficient for explaining the main experimental
mysteries.

We caution, however, that in our attempt to produce
the simplest and most intuitive picture we have neglected
a number of experimental details. The experiments are
performed on an array of finite length spin chains, which
may not be identical: they each contain different num-
bers of particles, have different hole distributions, and
due to field gradients may experience slightly different
Hamiltonians. The particles in each spin chain feel a
harmonic potential. This localizes the majority of the
holes, but it also leads to an inhomogeneous hole dis-
tribution, with more holes in the wings. Our modeling
also does not take into account the mobile holes which
are found in the center of the trap. All of these effects
could be included in finite-chain t–J model calculations,
at the cost of making the results harder to interpret. One
could also envision modifications of the experiment which
would eliminate some of these complications. For exam-
ple, adding a large field gradient could ensure that all
holes are immobile [25].

Our work serves as a warning for transport studies us-
ing analog quantum simulators [26, 27]. The spin dynam-
ics for hole probabilities as small as 5% already signifi-
cantly differed from the true spin dynamics of the XX
spin helix in the absence of holes (see Fig. 2(a)). In the
experiment, this density of holes on a chain of length
L = 40 corresponds to only two holes. Furthermore, our
modeling suggests that the experimental timescales may
be too short to reliably distinguish between an exponen-
tial and power law decay.

On a positive note, our study illustrates the richness of
the physics which is being explored by the current genera-
tion of quantum simulators. The experiments in Ref. [1]
have taught us much about the dynamical behavior of
spin chains, and the way that cold atoms can be used to
explore that physics.
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Appendix A: Matrix Product State Method for Hole
Ensembles

The properties of an ensemble of quantum states is
captured by its density matrix,

ρS =

r∑
α=1

pα |α⟩S ⟨α|S . (A1)

Here the probability of finding state |α⟩S is pα. Note,
the set of {|α⟩S} need not be orthogonal (though in most
formulations they are). It is often helpful to encode this
density matrix in a purified wavefunction [20, 21], defined
by

|ψ⟩ =
r∑

α=1

sα |α⟩S |α⟩T . (A2)

Here {|α⟩T } is a set of orthonormal states in some un-
physical auxiliary space T , and |sα|2 = pα. The original
density matrix can then be recovered by performing a
partial trace

ρS = TrT |ψ⟩ ⟨ψ| . (A3)

The construction of the purified wavefunction |ψ⟩ is
clearly not unique, as one has a choice of the decom-
position in Eq. (A1), the auxilliary space T , the vectors
|α⟩T , and the phases of the coefficients sα.

Such purified wavefunctions are routinely used in ma-
trix product state (MPS) simulations of thermal ensem-
bles [20, 21]. Here we use this approach to model the
dynamics of an ensemble of spin chains with a random
distribution of immobile holes. As shown in Fig. 2(b), the
resulting MPS simulation agrees with our Jordan-Wigner
approach to modeling the experiment. It is more numer-
ically expensive, but unlike our Jordan-Wigner approach
can be extended beyond the XX limit.

We describe our purified state as an alternating ar-
ray of physical and auxiliary sites. As explained in the
main text, the physical site at integer location j can
be in one of three states: |↑⟩j , |↓⟩j , |0⟩j . The auxiliary
sites at half-integer postions can be in one of two states:
|0⟩j+1/2, |1⟩j+1/2. Our initial ensemble can then be en-
coded in a purified wavefunction,

|ψ⟩ =
∑
s

∏
j

(1− p)sj/2p(1−sj)/2 ×[
(1− sj) |0⟩j |0⟩j+1/2 + sj |χ⟩j |1⟩j+1/2

]
,

(A4)

where sj = 0, 1. The probability of finding a hole on a
given site is p, and |χ⟩j is given in Sec. II. One can readily

0.00 0.10 0.20 0.30 0.40 0.50
Nth/N

0.00

0.20

0.40

0.60

p

FIG. 6. Approximate relationship between hole density p of
the Mott insulator, and the thermal fraction Nth/N of the
harmonically-trapped gas from which it is loaded. This crude
estimate comes from equating the entropies in Eqs. (B1) and
(B2).

verify that

ρ(t = 0, p) = ρS = TrT |ψ⟩ ⟨ψ| (A5)

=
∏
j

[
p |0⟩j ⟨0|j + (1− p) |χ⟩j ⟨χ|j

]
, (A6)

which is the density matrix describing our spin helix after
randomly adding immobile holes.

We time-evolve Eq. (A6) by using the time dependent
variational principle (TDVP) algorithm [22, 23] as im-
plemented in the ITensor library [28]. We evolve the
system from t = 0 to t = 128ℏ/J with time steps
of size ∆t = 0.8ℏ/J . The Hamiltonian only acts on
the physical space. At every time step, we first per-
form a global subspace expansion [22], using two Krylov
states: that is, we construct a MPS representation of
both |ψ(t)⟩ and H |ψ(t)⟩, and use the resulting tensors
to represent |ψ(t+ δt)⟩. For the time evolution using
the time-dependent variational principle, we use a sin-
gular value decomposition (SVD) cutoff of 10−7 and a
maximum bond dimension of 600, with one sweep being
performed at every time step. We use a larger cutoff,
10−3, in our global subspace expansion.

Appendix B: Modeling the Experimental Hole
Density

In Ref. [1], the experimentalists loaded a three-
dimensional optical lattice (consisting of a two-
dimensional array of one-dimensional chains) from a
harmonically-trapped gas. They controlled the density
of holes by adjusting the temperature of the initial cloud.
A higher temperature cloud has more entropy, resulting
in spin chains with more holes. Here we estimate the
hole density by simply equating the entropy of the initial
cloud to the configurational entropy from a distribution
of holes in a perfect Mott insulator.

Of course, this is at best a crude approximation, and
neglects processes which could either increase or decrease
the entropy. Non-adiabatic transitions during the load-
ing process will increase the entropy. Conversely, dur-



8

0 5 10 15 20 25
t [units of /J]

-0.20
0.00
0.20
0.40
0.60
0.80
1.00

C
Q

(t,
p)

/C
Q

(0
,p

)
p = 0.04
p = 0.1
p = 0.24

p = 0.38
p = 0.48
p = 0.56

FIG. 7. Time evolution of the normalized contrast
CQ(t, p)/CQ(0, p) for a chain with λ = 10, ϕ = 0, and
p = 0.04, 0.10, 0.24, 0.38, 0.48, and 0.56, which have the same
entropy as a harmonically-trapped condensate with thermal
fraction Nth/N = 0.05, 0.1, 0.2, 0.3, 0.37, and 0.43.
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FIG. 8. Static background contrast C̃Q(p) normalized by
the initial contrast CQ(0, p) = 1 − p for λ = 10 and
ϕ = 0 (solid red line). The black stars are experimen-
tal data points from Ref. [1] for λ = 10.4 and p =
0.04, 0.10, 0.24, 0.38, 0.48, and 0.56, which have the same en-
tropy as a harmonically-trapped condensate with thermal
fraction Nth/N = 0.05, 0.1, 0.2, 0.3, 0.37, and 0.43.

ing loading entropy tends to be pushed from the central
Mott-insulating region into the superfluid wings. This
leads to an effective entropy reduction in the central re-
gion. It is also worth noting that the loading process
generically leads to a non-equilibrium state. Neverthe-
less, our approach serves as a first-order approximation

for estimating the hole density in the experiment.
The grand canonical free energy of a three-

dimensional harmonically-trapped Bose condensate is
Ω = −kBT (kBT/ℏω)3 ζ(4), where ζ(j) =

∑∞
s=1 s

−j is
the Riemann zeta function [29]. The entropy is S =
−∂Ω/∂T = 4Ω/T . The number of non-condensed atoms
is Nth = (kBT/ℏω)3ζ(3), and hence the entropy per par-
ticle is (

S

N

)
gas

= 4kB
ζ(4)

ζ(3)

Nth

N
(B1)

for N particles.
On the other hand, for a random distribution of holes,

the entropy is S = −kBNs[p ln p+(1−p) ln(1− p)]. Here,
Ns is the number of sites and p is the probability that
a hole is found on any site. The number of particles is
N = Ns(1− p), and hence the entropy per particle is(

S

N

)
lattice

= −kB
(

p

1− p
ln p+ ln(1− p)

)
(B2)

Equating the two entropies, Eqs. (B1) and (B2), relates
the thermal fraction Nth/N of the harmonically-trapped
gas to the hole density p in the Mott-insulating chains.
The resulting relation is illustrated in Fig. 6.

With this relation in hand, we show the time-
dependence of the contrast for various values of p in Fig 7,
roughly corresponding to the values of Nth/N used in the
experiment. Here we use λ = 10, to allow comparison to
the experimental studies with λ = 10.4 [1]. Despite no-
table quantitative differences, this crude model appears
to capture the general trends seen in the equivalent plot
in the experimental paper. In particular, increasing p or
Nth results in a larger normalized contrast, with weaker
oscillations.

Additionally, as shown in Fig. 8, we can use the rela-
tionship between p and Nth to compare the experimental
background contrast for various values of Nth/N with
our calculated background contrast as a function of the
corresponding hole density p. Here we again use λ = 10.
It is clear that for p > 0.05 our model significantly over-
estimates the magnitude of the background contrast. It
is difficult to determine the extent to which the discrep-
ancy is due to our estimation of p, as opposed to physics
that we did not include in our model of the spin dynam-
ics (mobile holes, the harmonic trapping potential, field
inhomogeneities, etc.).
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