
Constrained Neural Networks for Interpretable
Heuristic Creation to Optimise Computer

Algebra Systems

Dorian Florescu1 and Matthew England2

1 University of Bath, UK
2 Coventry University, UK

dmf36@bath.ac.uk, Matthew.England@coventry.ac.uk

Abstract. We present a new methodology for utilising machine learn-
ing technology in symbolic computation research. We explain how a well
known human-designed heuristic to make the choice of variable order-
ing in cylindrical algebraic decomposition may be represented as a con-
strained neural network. This allows us to then use machine learning
methods to further optimise the heuristic, leading to new networks of sim-
ilar size, representing new heuristics of similar complexity as the original
human-designed one. We present this as a form of ante-hoc explainability
for use in computer algebra development.

Keywords: computer algebra; cylindrical algebraic decomposition; ma-
chine learning; explainable AI; interpretability; XAI

1 Introduction

1.1 Machine learning within computer algebra systems

Machine Learning (ML) refers to tools and techniques that learn rules from
data, thus allowing a system to improve its performance on a task without any
change to the explicit programming. ML underpins recent AI advances and is
applied in an increasing number of domains. Mathematics is no exception: ML
has been employed to directly perform mathematical computation, such as [24]
who used ML to integrate expressions and solve ODEs, [2] who used ML to
find the real discriminant locus, and [19] who surveys ML to predict properties
from mathematical structures such as groups and graphs. However, it has been
observed that mathematical reasoning is an area ML finds difficult.

Computer Algebra Systems (CASs) are not an obvious domain for ML: their
unique selling point is that their answers are exactly correct and so developers
are unlikely to replace symbolic computation algorithms with ML3. However,
CAS algorithms often come with choices that have no effect on the mathemat-
ical correctness of the end result but can have a big impact on the resources

3 Experiments like [24] conflate two very different causes of failure: timeout and giving
the wrong answer. For a CAS: the former would be a shame; the latter a disaster.

ar
X

iv
:2

40
4.

17
50

8v
1 

 [
cs

.S
C

] 
 2

6 
A

pr
 2

02
4



2 D. Florescu and M. England

required to obtain it, and on how it is presented. Such choices are often made by
human designed heuristics or “magic constants” [7] (sometimes not scientifically
validated or even documented) but may be better made by ML.

Examples in the literature include [23] which used a Monte-Carlo tree search
to find the representation of polynomials most efficient to evaluate, and [32]
which used ML classifiers to pick from algorithms that compute the resultant,
and [21] which used ML to decide whether to precondition input for a CAS.

1.2 Gaining additional mathematical insight from machine learning

It seems clear that ML can offer optimisation to CASs, but can it offer any
further insight into the underlying mathematics / algorithms?

– [11] suggested that ML can help pure mathematicians with the development
of new theorems by uncovering patterns in the data. This led to new results
in knot theory and representation theory.

– [30] described a form a genetic programming where algorithms were evolved
with a large language model performing the crossover step. This resulted in
new state-of-the-art heuristics for two NP-hard problems.

– [28] trained ML to select the next S-pair in Buchberger’s algorithm to build a
Gröbner Basis. An analysis of the agent showed a preference for pairs whose
S-polynomials are monomials or low degree: prior human-designed heuris-
tics for the problem considered only the S-pairs and not the polynomials
themselves, so this represents a novel strategy.

– [29] described how the SHAP tool [25] may be used to analyse ML models
that make a heuristic choice for a CAS and then inform human-level heuris-
tics — heuristics that can be expressed in natural language in a similar
amount of text as a heuristic designed by a human — that can be operated
without any ML architecture.

The tool used in the final paper is from the growing field of Explainable AI.

1.3 Explainable AI

Explainable AI (often abbreviated to XAI) may be defined as those ML tech-
niques whose decisions can be explained (at least partially). Work in the field
is usually motivated by the need to error check ML decisions, and to generate
greater user trust in ML. However, in the case of mathematics we hypothesise
that XAI tools may be used to give give guidance or new understanding.

XAI is a new field: there have been several attempts to give a taxonomy such
as [1]. One distinction in XAI methods that has firmly emerged [33] is between:

ante-hoc explainability which refers to ML methods that are themselves by-
design transparent in their decisions; and

post-hoc explainability which use a secondary analysis of an opaque (i.e.
black-box) ML model to generate explanations for it.



Constrained Neural Networks for Interpretable Heuristics to Optimise CASs 3

The need for the latter is driven by the so called performance-explainability
trade-of whereby those ML techniques which allow ante-hoc explainability are
thought to give lower accuracy in general. Although often presented as fact, this
trade-off is disputed [31] and is likely application dependent [20]. We should
also remember that explainability is inherently-audience dependent (compare
explainable to an expert with explainable to the general public) [1].

SHAP is an example of the post-hoc explainability, forming its explanation
through experiments involving perturbations in the input. In the present paper,
we consider an alternative approach to the same application as [29], but aiming
for an ante-hoc explainability approach.

1.4 Plan of the paper

The paper continues in §2 with a brief introduction to the CAS choice that we
study. Then in §3 we recap a process presented in [16] to represent instances of
our problem as feature vectors: suitable for use in ML. Our new contributions
then follow in §4, where we interpret a well known human-designed heuristic as
a small neural network, and in §5 where we search through a family of similar
networks to identify an improved human-level heuristic, in effect defining a new
type of ante-hoc explainability technique for such problems.

2 Our application: variable ordering choice for CAD

2.1 Cylindrical Algebraic Decomposition

Cylindrical Algebraic Decomposition (CAD) was proposed in [9] as a method
to perform real quantifier elimination. Given an input in n ordered variables,
CAD will decompose the corresponding real space into cells (connected regions
of Rn) arranged cylindrically (the projections of a pair of cells with respect to
the variable ordering are equal or disjoint) with each semi-algebraic (described
by polynomial constraints). The input to CAD is a set of polynomials and the
CAD guarantees that each polynomials will have invariant sign upon each cell of
the decomposition. CAD has been applied in many fields ranging from robotics
[26] through biology [3] to economics [27]. However, CAD but has worst-case
complexity doubly exponential in the number of variables [10] and thus any
work to optimise its implementation can bring swathes of new applications into
scope.

2.2 CAD variable ordering

The CAD variable ordering controls both the algorithm flow and output format
(defining the cylindrical structure). It can have a huge impact, both practi-
cally [14] and in terms of theoretical complexity [6]. There exist human-designed
heuristics to choose the ordering, e.g. [5], and [13] which use simple statistics of
the input. Other heuristics perform increasing amounts of algebraic computation
[14], [4], [34] which we do not consider here in preference for a cheap heuristic.



4 D. Florescu and M. England

In the last decade ML models have also been trained to select the variable
ordering for CAD. The first attempt was made by [22] with a support vector ma-
chine. Later, the present authors experimented with a wider range of models [15],
methods for feature engineering [16] and improved metrics for hyper-parameter
selection [17], culminating in a machine learning pipeline available to use for the
task [18]. Separately [8] experimented with deep learning for variable selection.

3 Feature Generation Process

A challenge when using ML to optimise a CAS is the communication between
them: the former uses symbolic expressions, and the latter vectors of numerical
data called features. We summarise next the feature generation process of [16].

3.1 Formalising Brown’s Heuristic

Our work was based on an analysis of the Brown heuristic [5] which uses metrics:

1. the overall degree in the input of a variable v;

2. the maximum total degree of monomials in which variable v occurs; and

3. the number of terms which contain the variable v.

It orders on the earlier metrics, breaking ties with the subsequent ones.

In the following we use index p to refer to polynomials in a problem instance,
and index m to refer to the monomials in such a polynomial. We consider a CAD
problem instance as a set of polynomials: Pr = {Pp | p = 1, . . . , P}. A generic

polynomial Pp is then given by a sum of monomials, Pp =
∑Mp

m=1 c
m,p·

∏n
i=1 x

dm,p
i

i

where dm,p
i is the degree of variable xi in monomial m of polynomial p.

Thus the polynomials are defined by the series [cm,p, (dm,p
1 , dm,p

2 , dm,p
3 )], for

m = 1, . . . ,Mp. This allows formalising the problem set of all polynomials as

SPr =
{{

[cm,p, (dm,p
1 , dm,p

2 , dm,p
3 )] |m = 1, . . . ,Mp

}
| p = 1, . . . , P

}
.

Then the three metrics of the Brown heuristic above are formalised as

1. F 1(dv) := maxm,p d
m,p
v ,

2. F 2(dv) := maxm,p sgn(d
m,p
v ) · (dm,p

1 + dm,p
2 + dm,p

3 ),

3. F 3(dv) :=
∑

m,p sgn(d
m,p
v ).

Here max and
∑

are the maximum and sum functions with the subscript m, p
indicating that they are applied over all monomials in all polynomials; while
sgn(x) is the function which takes values in {−1, 0, 1} according to the sign of
its input (used to identify which terms contain the input − in our situation the
sign is only ever positive or zero).



Constrained Neural Networks for Interpretable Heuristics to Optimise CASs 5

3.2 Generating similar features

We notice that the features used by the Brown heuristic are simple to compute
using only max,

∑
, sgn applied to degrees over monomials and polynomials.

We define variants of the functions maxx and
∑

x where x indicates whether we
sum over monomials, polynomials or both; and we define similarly the averaging
functions:

avm =
1

Mp

∑
m

, avp =
1

P

∑
p

, avm,p =
1

P

∑
p

1

Mp

∑
m

;

then we can express all the features used in [22] in this formalisation [16].
In[16] we generalised this to create a larger set of features: all those of the

form f (Pr) = (g4◦g3◦g2◦g1◦hm,p) (Pr) , where hm,p (Pr) ∈
{
dm,p
v , sgn (dm,p

v )·
(
∑

v′ d
m,p
v′ ) | v = 1, 2, 3

}
and g1, g2, g3, g4 are taken from {maxp,maxm,maxm,p,∑

p,
∑

m,
∑

m,p, avp, avm, avm,p, sgn, Id}, with Id as the identity function.
Many of the features generated will be equivalent: either at a mathematical

level or for the dataset in question and so before using these for ML we should
identify a unique subset. In [16] it was demonstrated that we may use these in a
ML pipeline to improve the performance compared to using just a human crafted
set. These features have also been the basis for further work in [29], [12].

4 Interpreting Brown’s Heuristic as a Neural Network

Recall the Brown heuristic from Section 3.1 which used 3 rules with different
priority levels. We claim this can be equivalently represented as a dense 2-layer
neural network with summation activation functions, as visualised in Figure 1
for the three variable case (in the general case there will be n inputs into each of
the nodes of the first layer). The summations are weighted as in Figure 1 where
the weights are defined in terms w > 0 which we select such that

F i(dv) < w − 1, i, v ∈ {1, 2, 3} (1)

for all problems in the dataset (or large enough to cover all problems of interest).
The outputs of the first network layer are

yv = F 1(dv)w
2 + F 2(dv)w + F 3(dv).

We will show that the magnitude of yv orders the variables as Brown’s heuristic.
Assume first that F 1(dv) > F 1(dv′), for v, v′ ∈ {1, 2, 3}. We aim to show

yv > yv′ irrespective of the values of the other features. All features are positive
integers, meaning our assumption becomes F 1(dv) ≥ F 1(dv′)+ 1. We start with

yv′ = F 1(dv′)w2 + F 2(dv′)w + F 3(dv′)

≤ (F 1(dv)− 1)w2 + F 2(dv′)w + F 3(dv′)



6 D. Florescu and M. England

Fig. 1. Neural network inspired by Brown’s heuristic

where the inequality follows by our assumption. Then by the repeated use of (1)
we have the further strict inequality

yv′ < F 1(dv)w
2 − w2 + (w − 1)w + (w − 1)

= F 1(dv)w
2 − 1 < F 1(dv)w

2.

Then since all features are positive we have that

yv′ < F 1(dv)w
2 + F 2(dv)w + F 3(dv) = yv.

Now consider the case where F 1(dv) = F 1(dv′) for all v, v′ ∈ {1, 2, 3} and
F 2(dv) > F 2(dv′). We want to show that under these assumptions yv′ < yv
for any realisations of F 3. We proceed similarly to above:

yv′ = F 1(dv′)w2 + F 2(dv′)w + F 3(dv′)

= F 1(dv)w
2 + F 2(dv′)w + F 3(dv′)

≤ F 1(dv)w
2 + (F 2(dv)− 1)w + F 3(dv′)

< F 1(dv)w
2 + (F 2(dv)− 1)w + (w − 1)

= F 1(dv)w
2 + F 2(dv)w − 1

< F 1(dv)w
2 + F 2(dv)w

< F 1(dv)w
2 + F 2(dv)w + F 3(dv) = yv.

Similarly in the final case where F 1(dv) = F 1(dv′), and F 2(dv) = F 2(dv′) for all
v, v′ ∈ {1, 2, 3} and feature F 3 selects the ordering. With F 3(dv) > F 3(dv′)

yv′ = F 1(dv′)w2 + F 2(dv′)w + F 3(dv′)

= F 1(dv)w
2 + F 2(dv)w + F 3(dv′)

≤ F 1(dv)w
2 + F 2(dv)w + F 3(dv)− 1

< F 1(dv)w
2 + F 2(dv)w + F 3(dv) = yv.



Constrained Neural Networks for Interpretable Heuristics to Optimise CASs 7

Thus the internal layer will be ordered correctly. The last layer of the network
then performs weighted summations of the outputs of the first network layer,
yv +2yv′ +3yv′′ , with each output neuron labelled corresponding to the weights
applied to the variables (see Figure 1). If yv < yv′ < yv′′ then the weighted sum
yv + 2yv′ + 3yv′′ is the highest among all output neurons, meaning this neural
network may be used to produce the same orderings as the Brown heuristic.

5 Searching through similar constrained neural networks

Now we have represented the Brown heuristic as a (severely constrained) neural
network we may consider editing this network to see if a superior heuristic of
the same complexity as Brown can be obtained.

5.1 Feature Selection

We perform feature selection using a dataset of random 3-variable polynomial
problems (as described in [18]). We generated 84 features algorithmically fol-
lowing Section 3 and taking all permutations this led to 19, 656 possible feature
triplets. For each triplet, we computed the variable ordering predicted by the
neural network. The triplet that led to the shortest computing time is given by

1.
∑

p maxm dm,p
v , sum of the highest degree of a variable in each polynomial;

2.
∑

p maxm sgn (dm,p
v )·(

∑
v′ d

m,p
v′ ), the maximum sum of degrees of all variables

for the terms in which a given variable exists; and
3.

∑
p maxm sgn (dm,p

v ), the number of polynomials containing the variable.

We note that none of these features are in the Brown heuristic.
This new feature triplet was selected based on performance on random poly-

nomials. But to judge its performance we will evaluate it on the NLSAT dataset
of 3-variable polynomials from real world (non-linear arithmetic satisfiability
problems) as described in [15]. The Brown heuristic requires a total computing
time of 10, 580 s on this dataset, while the network defined by this new triple
resulted in a smaller computing time of 10, 181 s: which is 399 s shorter.

5.2 Weight Tuning

We next consider changing the weights in the neural network. This will have the
effect of a more complicated combination of the three features to be considered:
but still weighted sums of the same three pieces of information.

We use the neural network inspired by Brown’s heuristic (with w = 30) as a
starting point. The weights are then trained on the 3-variable random training
dataset using the adam stochastic gradient-based optimizer with learning rate
2 · 10−5. From the input data we used the new three features identified in Sub-
section 5.1. To avoid overfitting, the performance is evaluated for each step on
the independent 3-variable NLSAT dataset.



8 D. Florescu and M. England

After only three epochs of training the CAD times decreased to 9908 (af-
ter which there was only minimal improvement). The weight matrix was only
changed slightly, but this was sufficient to avoid the case of ties on the three
metrics (followed by a random choice) which was common in the dataset.

6 Final Thoughts

This paper contributes to the ongoing conversation on how ML can contribute
to computer algebra: not only algorithm optimisation but also mathematical
discovery. We present an approach, constrained neural networks, that may be
viewed as ante-hoc explainability. It allows for heuristics to be uncovered which
are human-level in complexity. The methodology could be directly applied to
other variable ordering choices in symbolic computation, and we expect it could
be adapted for use on other choices also. It remains to be shown whether these
more interpretable ML outputs can lead to new mathematical understanding.

Acknowledgements

DF and ME were both supported by EPSRC grant EP/R019622/1: Embedding
Machine Learning within Quantifier Elimination Procedures. ME was also sup-
ported by EPSRC grant EP/T015748/1: Pushing Back the Doubly-Exponential
Wall of Cylindrical Algebraic Decomposition (DEWCAD).

References

1. Barredo Arrieta, A., Dı́az-Rodŕıguez, N., Del Ser, J., Bennetot, A., Tabik, S.,
Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R.,
Herrera, F.: Explainable artificial intelligence (XAI): Concepts, taxonomies, op-
portunities and challenges toward responsible AI. Information Fusion 58, 82–115
(2020), https://doi.org/10.1016/j.inffus.2019.12.012

2. Bernal, E.A., Hauenstein, J.D., Mehta, D., Regan, M.H., Tang, T.: Machine learn-
ing the real discriminant locus. J. Symbolic Computation 115, 409–426 (2023),
DOI:10.1016/j.jsc.2022.08.001

3. Bradford, R., Davenport, J.H., England, M., Errami, H., Gerdt, V., Grigoriev,
D., Hoyt, C., Košta, M., Radulescu, O., Sturm, T., Weber, A.: Identifying the
parametric occurrence of multiple steady states for some biological networks. J.
Symbolic Computation 98, 84–119 (2020), DOI:10.1016/j.jsc.2019.07.008

4. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem for-
mulations for cylindrical algebraic decomposition. In: Carette, J. et al. (eds.),
Proc. CICM ’13, LNCS 7961, pp. 19–34. Springer Berlin Heidelberg (2013),
DOI:10.1007/978-3-642-39320-4 2

5. Brown, C.W.: Companion to the tutorial: Cylindrical algebraic decomposition,
ISSAC ’04. URL http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/
handout.pdf (2004)

6. Brown, C., Davenport, J.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proc. ISSAC ’07, pp. 54–60. ACM (2007),
DOI:10.1145/1277548.1277557

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.jsc.2022.08.001
https://doi.org/10.1016/j.jsc.2019.07.008
http://dx.doi.org/10.1007/978-3-642-39320-4_2
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://doi.org/10.1145/1277548.1277557


Constrained Neural Networks for Interpretable Heuristics to Optimise CASs 9

7. Carette, J.: Understanding expression simplification. In: Proc. ISSAC ’04, pp. 72–
79. ACM (2004), DOI:10.1145/1005285.1005298

8. Chen, C., Zhu, Z., Chi, H.: Variable ordering selection for cylindrical algebraic
decomposition with artificial neural networks. In: Bigatti et al. (eds.), Proc.
ICMS 2020, LNCS 12097, pp. 281–291. Springer International Publishing (2020),
DOI:10.1007/978-3-030-52200-1 28

9. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Proc. 2nd GI Conference on Automata Theory and Formal
Languages. pp. 134–183. Springer-Verlag (1975), DOI:10.1007/3-540-07407-4 17

10. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symbolic Computation 5(1-2), 29–35 (1988), DOI:10.1016/S0747-7171(88)80004-X

11. Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N.,
Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., Lackenby, M., Williamson,
G., Hassabis, D., Kohli, P.: Advancing mathematics by guiding human intuition
with AI. Nature 600, 70–74 (2021), DOI:10.1038/s41586-021-04086-x

12. del Ŕıo, T., England, M.: Lessons on datasets and paradigms in machine
learning for symbolic computation: A case study on CAD. Preprint, (2024),
DOI:10.48550/arXiv.2401.13343

13. del Ŕıo, T., England, M.: New heuristic to choose a cylindrical algebraic decom-
position variable ordering motivated by complexity analysis. In: Boulier, F. et al.
(eds.), Proc. CASC 2022, LNCS 13366, pp. 300–317. Springer International (2022),
DOI:10.1007/978-3-031-14788-3 17

14. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proc.
ISSAC ’04, pp. 111–118. ACM (2004), DOI:10.1145/1005285.1005303

15. England, M., Florescu, D.: Comparing machine learning models to choose the
variable ordering for cylindrical algebraic decomposition. In: Kaliszyk, C. et al.
(eds.) Proc. CICM ’19, LNCS 11617, pp. 93–108. Springer International (2019),
DOI:10.1007/978-3-030-23250-4 7

16. Florescu, D., England, M.: Algorithmically generating new algebraic features of
polynomial systems for machine learning. In: Abbott, J., Griggio, A. (eds.) Proc.
SC2 ’19. CEUR-WS 2460, (2019), http://ceur-ws.org/Vol-2460/

17. Florescu, D., England, M.: Improved cross-validation for classifiers that make algo-
rithmic choices to minimise runtime without compromising output correctness. In:
Slamanig, D. et al. (eds.), Proc. MACIS ’19, LNCS 11989, pp. 341–356. Springer
International (2020), DOI:10.1007/978-3-030-43120-4 27

18. Florescu, D., England, M.: A machine learning based software pipeline to pick
the variable ordering for algorithms with polynomial inputs. In: Bigatti, A. et al.
(eds.), Proc. ICMS ’20, LNCS 12097, pp. 302–322. Springer International (2020),
DOI:10.1007/978-3-030-52200-1 30

19. He, Y.H.: Machine-learning mathematical structures. Intl. J. Data Science in the
Mathematical Sciences 1(1), 1–25 (2022), DOI:10.1142/S2810939222500010

20. Herm, L.V., Heinrich, K., Wanner, J., Janiesch, C.: Stop ordering machine learning
algorithms by their explainability! A user-centered investigation of performance
and explainability. International Journal of Information Management p. 102538
(2022), https://doi.org/10.1016/j.ijinfomgt.2022.102538

21. Huang, Z., England, M., Davenport, J.H., Paulson, L.: Using machine
learning to decide when to precondition cylindrical algebraic decomposi-
tion with Groebner bases. In: Proc. SYNASC ’16, pp. 45–52. IEEE (2016),
DOI:10.1109/SYNASC.2016.020

https://doi.org/10.1145/1005285.1005298
https://doi.org/10.1007/978-3-030-52200-1_28
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1038/s41586-021-04086-x
https://doi.org/10.48550/arXiv.2401.13343
https://doi.org/10.1007/978-3-031-14788-3_17
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1007/978-3-030-23250-4_7
http://ceur-ws.org/Vol-2460/
https://doi.org/10.1007/978-3-030-43120-4_27
https://doi.org/10.1007/978-3-030-52200-1_30
https://doi.org/10.1142/S2810939222500010
https://doi.org/10.1016/j.ijinfomgt.2022.102538
https://doi.org/10.1109/SYNASC.2016.020


10 D. Florescu and M. England

22. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L., Bridge, J.:
Applying machine learning to the problem of choosing a heuristic to select the
variable ordering for cylindrical algebraic decomposition. In: Watt, S.M. et al.
(eds.), Proc. CICM ’14, LNCS 8543, pp. 92–107. Springer International (2014),
DOI:10.1007/978-3-319-08434-3 8

23. Kuipers, J., Ueda, T., Vermaseren, J.A.M.: Code optimization in FORM. Com-
puter Physics Communications 189, 1–19 (2015), DOI:10.1016/j.cpc.2014.08.008

24. Lample, G., Charton, D.: Deep learning for symbolic mathematics. In: Mo-
hamed, S. et al. (eds.), Proc. ICLR ’20, (2020), https://iclr.cc/virtual 2020/
poster S1eZYeHFDS.html

25. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model pre-
dictions. In: Proc. NIPS ’17, pp. 4768–4777. Curran Associates Inc. (2017),
DOI:10.5555/3295222.3295230

26. Manubens, M., Moroz, G., Chablat, D., Rouillier, F., Wenger, P.: Cusp points in the
parameter space of degenerate 3-RPR planar parallel manipulators. J. Mechanisms
Robotics 4, 041003 (2012), DOI:10.1115/1.4006921

27. Mulligan, C.B., Davenport, J.H., England, M.: TheoryGuru: A Mathematica pack-
age to apply quantifier elimination technology to economics. In: Davenport, J.H.
et al. (eds.), Proc. ICMS ’18, LNCS 10931, pp. 369–378. Springer International
(2018), DOI:10.1007/978-3-319-96418-8 44

28. Peifer, D., Stillman, M., Halpern-Leistner, D.: Learning selection strategies in
Buchberger’s algorithm. In: Daumé III, H., Singh, A. (eds.) Proc. ICML ’20. PMLR
119, pp. 7575–7585, (2020), https://proceedings.mlr.press/v119/peifer20a.html

29. Pickering, L., Del Rio Almajano, T., England, M., Cohen, K.: Explainable AI in-
sights for symbolic computation: A case study on selecting the variable ordering for
cylindrical algebraic decomposition. J. Symbolic Computation 123, 102276 (2024),
DOI:10.1016/j.jsc.2023.102276

30. Romera-Paredes, B., Barekatain, M., Novikov, A., Balog, M., Kumar, M.P.,
Dupont, E., Ruiz, F.J.R., Ellenberg, J.S., Wang, P., Fawzi, O., Kohli, P., Fawzi, A.:
Mathematical discoveries from program search with large language models. Nature
625, 468–475 (2023), DOI:10.1038/s41586-023-06924-6

31. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence 1(5),
206–215 (2019), https://doi.org/10.1038/s42256-019-0048-x

32. Simpson, M.C., Yi, Q., Kalita, J.: Automatic algorithm selection in computa-
tional software using machine learning. In: Proc. ICMLA ’16, pp. 355–360, (2016),
DOI:10.1109/ICMLA.2016.0064

33. Speith, T.: A review of taxonomies of explainable artificial intelligence
(XAI) methods. In: Proc. FAccT ’22, pp. 2239–2250. ACM (2022),
DOI:10.1145/3531146.3534639

34. Wilson, D., England, M., Davenport, J.H., Bradford, R.: Using the distribution
of cells by dimension in a cylindrical algebraic decomposition. In: Proc. SYNASC
’14, pp. 53–60. IEEE (2014), DOI:10.1109/SYNASC.2014.15

http://dx.doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1016/j.cpc.2014.08.008
https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html
https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html
https://dl.acm.org/doi/10.5555/3295222.3295230
https://doi.org/10.1115/1.4006921
https://doi.org/10.1007/978-3-319-96418-8_44
https://proceedings.mlr.press/v119/peifer20a.html
https://doi.org/10.1016/j.jsc.2023.102276
https://doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1109/ICMLA.2016.0064
https://doi.org/10.1145/3531146.3534639
http://dx.doi.org/10.1109/SYNASC.2014.15

	Constrained Neural Networks for Interpretable Heuristic Creation to Optimise Computer Algebra Systems

