
Scalable Adaptive Traffic Light Control Over a Traffic Network
Including Turns, Transit Delays, and Blocking

Yingqing Chen and Christos G. Cassandras

Abstract— We develop adaptive data-driven traffic light con-
trollers for a grid-like traffic network considering straight, left-
turn, and right-turn traffic flows. The analysis incorporates
transit delays and blocking effects on vehicle movements
between neighboring intersections. Using a stochastic hybrid
system model with parametric traffic light controllers, we use
Infinitesimal Perturbation Analysis (IPA) to derive a data-
driven cost gradient estimator with respect to controllable
parameters. We then iteratively adjust them through an online
gradient-based algorithm to improve performance metrics. By
integrating a flexible modeling framework to represent diverse
intersection and traffic network configurations with event-
driven IPA-based adaptive controllers, we develop a general
scalable, adaptive framework for real-time traffic light control
in multi-intersection traffic networks.

I. INTRODUCTION

The Traffic Light Control (TLC) problem aims to dy-
namically optimize traffic light cycles at one or multiple
intersections to improve traffic flow and reduce congestion as
measured by metrics such as waiting times, vehicle through-
put, or traffic backlog. The single intersection TLC problem
has been thoroughly studied using different approaches such
as model-based optimization [1], computational intelligence
[2], [3], and online optimization methods [4]. In addition
to pure vehicle flows, some prior works [5] [6] [1] have
incorporated pedestrian flows and their interactions with
vehicle traffic in addition to optimizing vehicle movement.

However, the transition from single to coordinated multi-
intersection control poses at least four key challenges:
(i) Different traffic flows (straight, turning, U-turn) prop-
agate through the network, complicating efforts to model
network-wide effects; (ii) Scalable solutions that extend
one-dimensional approaches to high-dimensional multi-
intersection settings are difficult to obtain; (iii) The transit
delays experienced by traffic between intersections must be
accounted for in order to effectively coordinate an intersec-
tion with its downstream counterpart(s); and (iv) When the
distance between adjacent intersections is relatively short,
traffic is often blocked and such blocking effects must be
taken into account. Capturing the dynamics of propagat-
ing flows, achieving scalable optimization, modeling delays
between-intersections, and handling blocking constraints are
critical factors to achieve effective multi-intersection traffic
light control.
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Early works on multi-intersection traffic signal control
focused on simple scenarios. For example, [7] presented
three self-organizing methods for responsive signal timing,
and [8] framed fixed-cycle control as a network synchro-
nization problem, only considering offset costs between ad-
jacent intersections. Later approaches expanded controllable
parameters to develop centralized controllers optimizing co-
ordination across multiple signals. For example, [9] proposed
a steady-state signal control approach which models the
traffic light network as a linear time-varying system, and
controls the discharging ratio of internal network links.
More recently, [10] developed an adaptive linear quadratic
regulator to synchronize a network of intersections. However,
it is challenging for these model-based approaches to extend
to large networks and accommodate the nonlinearities of flow
dynamics and stochastic traffic effects.

To deal with the high computational intensity of such
centralized optimization methods, various decomposition ap-
proaches have been proposed. In [11], the problem is split
into nonlinear non-convex subnetwork optimizations to min-
imize delays and Model Predictive Control (MPC) is used
to coordinate subnetwork controllers. Similarly, [12] consid-
ers both deterministic traffic demand from commuters and
stochastic demand from infrequent travellers. A two-stage
stochastic modeling approach is designed to deal with two
kinds of demand sequentially by minimizing the expected
total travel time at a traffic equilibrium scenario. To address
the computational complexity caused by nonlinearities, [13]
presents a linear prediction model and employs an MPC
controller using a Quadratic Program (QP) formulation,
which quadratically penalizes the number of vehicles in the
network and linearly penalizes the control decision.

Although many methods have been implemented to re-
duce computational requirements, especially in large traffic
networks, [14] argues that centralized approaches to traffic
signal control cannot cope with the increasing complexity of
urban traffic networks. Thus, decentralized approaches have
emerged. El-Tantawy et al. [15] designed a decentralized
framework where agents coordinate through joint policy
learning. They later improved agent coordination using mod-
ular Q-learning with neighbor information [16]. Modeling
duration changing action as a high-dimensional Markov de-
cision process, a deep reinforcement learning framework for
traffic light cycle control was developed in [17]. Adding more
features, [18] proposed multi-agent reinforcement learning
using a Recurrent Neural Network (RNN) and a Graph
Neural Network (GNN) to model spatio-temporal influences.

Decentralized techniques aim to improve scalability and
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adaptability compared to centralized control. However,
both model-based and learning-based approaches mentioned
above have downsides in large networks: Centralized opti-
mization faces the “curse of dimensionality” as complexity
grows, while decentralized reinforcement learning shifts the
computational load to extensive training with large historical
datasets, especially for large-scale urban traffic networks.
Moreover, many models lack the flexibility to adapt to
changing traffic conditions, since they are designed or trained
for specific traffic patterns and road layouts. Additional effort
is needed to adjust models for new scenarios that may occur.
Therefore, key unmet challenges remain centered around the
difficulty of balancing optimality, scalability, adaptivity, and
flexibility. Open questions persist on coordinating decentral-
ized agents while optimizing system-wide performance under
varying demand.

With this motivation, we propose a flexible traffic model-
ing framework that can incorporate different network topolo-
gies. Based on this enhanced network representation, we
design scalable adaptive traffic light controllers to optimize
signal timings across a multi-intersection structure. Our main
contributions are as follows:

(i) We exploit the scalability properties of the single-
intersection adaptive data-driven TLC approach in [4], [6]
based on Infinitesimal Perturbation Analysis (IPA) used to
estimate on line performance gradients with respect to the
parameters of a TLC controller. In particular, since IPA-
based gradient estimators are entirely event-driven, these
algorithms scale with the (relatively small) number of events
in each system intersection, not the (much larger) state space
dimensionality [19], [6]. Moreover, IPA is independent of
any modeling assumptions regarding the stochastic processes
characterizing traffic demand and vehicle behavior, driven
only by actual observed traffic data similar to other learning-
based approaches.

(ii) We expand the multi-intersection framework in [20]
(limited to straight flows) by incorporating turning flows into
the traffic model. By accounting for vehicle turns at each
intersection, the model can better capture the propagation of
congestion effects across the intersection network and pro-
vides the opportunity to optimize coordinated signal timing
plans.

(iii) We incorporate vehicle transit delays into the traffic
network. Similar to the stochastic hybrid system model in
[19], the traffic flow at each intersection depends on the
incoming flow from an upstream intersection delayed by
the transit time between intersections. In this paper, we
provide a simpler way relative to [19] that can capture the
flow delay process. With the incorporation of turning flows,
this new framework allows us to take advantage of one of
the fundamental properties of IPA [21] applied to networks,
whereby the effect of a parameter perturbation at one traffic
light can only propagate to adjacent traffic lights as a result of
a limited and easily tractable number of events; this facilitates
the estimation of network-wide performance gradients with
respect to a local parameter at a specific traffic light.

(iv) We expand the multi-intersection traffic model from

Fig. 1: Grid traffic system

[20] by incorporating finite road capacities and analyzing
blocking effects. Blocking occurs when downstream con-
gestion causes vehicle queues to propagate backwards, pre-
venting movement at upstream intersections and potentially
creating gridlock across the network. The key enhancement
is to consider blocking effects not just on the current road
segment, but also on upstream segments affected so that the
coordinated multi-intersection model can minimize conges-
tion propagation.

(v) We propose a flexible traffic modeling framework by
abstracting several traffic features and their relationships over
network topologies. By focusing on the traffic features and
their interactions rather than specific predefined structures,
our framework provides flexibility to model heterogeneous
road structures, lane configurations, traffic directions, inter-
section designs, and traffic signal patterns.

The remainder of this paper is organized as follows.
In section II, we formulate the TLC problem for a grid-
like multi-intersection network and present the stochastic
hybrid system modeling framework. Section III details the
derivation of the IPA gradient estimators for a network-wide
cost function with respect to a controllable parameter vector.
The IPA estimators are then incorporated into a gradient-
based optimization algorithm. In Section IV, we conduct
multiple simulation experiments under different settings and
demonstrate the adaptivity and scalability properties of this
approach. Finally, we conclude and discuss future work in
Section V.

II. PROBLEM FORMULATION

We consider a traffic system with m parallel arteries,
each of which contains n consecutive intersections. A total
of N traffic lights are included in this grid-like network,
where N = m ∗ n, as shown in Fig.1. We assume that the
YELLOW cycle is combined with the RED one. The traffic
flow towards each intersection n (n = 1, . . . , N ) can be
identified by the orientation of its origin (East, South, West,
North) and direction (straight, left, right), and we define
each combination of these three attributes as a movement.
For example, movement [n-E-l] denotes the direction for



traffic that starts from East and turns left at intersection
n. We categorize movements into two types: controllable
and uncontrollable. Controllable traffic flows can be directed
by traffic lights, while uncontrolled traffic is free to move
without signals, such as some right-turning vehicle flows.

We can further group movements by their location since
the traffic flow for certain movements is confined to specific
lanes on the road. Note that several different movements can
share a single lane rather than having dedicated lanes for
each movement. We model each lane segment between two
adjacent intersections as a queue where vehicles stop when
the light for the associated movement is RED. We define
the set of all queues at intersection n as Qn. As in actual
traffic systems, a traffic light gives right-of-way by showing
GREEN to a particular set of controllable movements. After
its GREEN cycle time, the light pattern changes to allow
the vehicles from the next group of movements to pass
through. Therefore, we define a set of movements that are
enabled at the same time as a phase, and a traffic light cycle
for each intersection n = 1, . . . , N contains a predefined
sequence of k phases Pn = (pn,1, pn,2, . . . , pn,k). When a
phase is enabled, all movements inside that phase are facing
a GREEN light with all associated queues such that their
movements are consistent in terms of traffic rules. Therefore,
we denote the corresponding set of enabled queues within
phase p ∈ Pn as Qp, where Qp ⊂ Qn. Note that a single
queue could appear in different phases. This indicates that
when the GREEN light switches from one phase to the next
consecutive phase, some queues may remain enabled if they
are included in both phases. Additionally, note that each
queue with controllable movements should be enabled at
least once during a full signal cycle. This ensures that all
movements get a chance to proceed during the cycle.

We now define the corresponding queue content state
variable xq(t) for each queue q in Qn, where n = 1, . . . , N ,
and xq(t) ∈ R+

0 . The potential downstream queues for each
queue q are determined based on the movements accepted in
q and are denoted as QD

q . Similarly, the set of upstream
queues for queue q is denoted as QU

q . With these set
definitions, we capture all the flow connection relationships
between queues.

As an example, Fig.2 shows a portion of a traffic network
structure where each road segment contains 2 queues - one
for left-turn movements and one for straight and right-turn
movements. The two intersections have a similar structure,
so we will focus on modeling intersection 1. The queue
set for intersection 1 is Q1 = [q1, q2, q3, q4, q5, q6, q7, q8].
We designate all right-turn movements as uncontrollable,
aligning with many real-world traffic regulations. For the
remaining movements, we define 4 phases: (a) Phase p1
includes straight movement from West [W-s] on queue q2
and straight movement from East [E-s] on queue q6 (q2, q6 ∈
Qp1

); (b) Phase p2 includes left turns from West [W-l] on
q1 and from East [E-l] on q5 (q1, q5 ∈ Qp2 ); (c) Phase p3
includes straight flows from South [S-s] on q4 and from
North [N-s] on q8 (q4, q8 ∈ Qp3

); and (d) Phase p4 includes
left turns from South [S-l] on q3 and from North [N-l]

Fig. 2: Traffic Structure Demonstration

on q7 (q3, q7 ∈ Qp4
). To connect adjacent intersections,

we can specify downstream queue sets under 2-intersection
scope, e.g. QD

q2 = {q9, q10}, and upstream queue sets, e.g.
QU

q9 = {q2, q4, q7}.
With these definitions, we can represent several key fea-

tures of transportation networks: (a) Different acceptable traf-
fic directions (e.g. straight, left-turn or right-turn) are defined
by specifying allowable movements; (b) Road structures
with different numbers of lanes are represented by defining
multiple queues for road segments; (c) Lane occupancy rules
regarding which movements can use which lanes are encoded
by assigning sets of allowed movements to each queue; (d)
Intersection structures like 4-way or 3-way intersections are
captured by properly defining the upstream and downstream
queue connectivity for each queue based on the intersection
geometry; (e) Traffic light patterns are specified by defining
the corresponding sequence of phases. In summary, this
network representation is flexible enough to model heteroge-
neous road structures, lane configurations, traffic directions,
intersection designs and traffic signal patterns through careful
specification of movements, queues, phases and their rela-
tionships. This allows the analytical modeling of traffic flows
through diverse transportation network topologies.

Blocking. Blocking arises when the road length between
two neighboring intersections is not long enough or the green
cycle for the in-between queues is too short so that the
probability that one or more queues are filled with vehicles
is strictly positive. We denote the capacity of queue q as cq
so that when xq(t) reaches cq from below, blocking occurs
and no more vehicles can join this queue. Note that such
blocking may not only affect the arrival process at queue q,
but also halt the departure processes of all upstream queues
qu ∈ QU

q , since the vehicles in them are not able to proceed.
State Dynamics. As in prior work, e.g., [4], we model

the input and output to each queue as two stochastic flow
processes {αq(t)} and {βq(t)}, where αq(t) and βq(t) are
the stochastic instantaneous arrival and departure rate at
queue q respectively. We can then write the queue flow
dynamics as

ẋq(t) = αq(t)− βq(t), q ∈ Qn, n = 1, . . . N (1)

Unlike a single intersection, where {αq(t)} is an exogenous
arrival process independent of the state of the system, in the
multi-intersection case, the arrival flow process is determined
by the departure process of its upstream queues, except



when there are no upstream queues, i.e., q is such that
QU

q = ∅. The arrival rate αq(t) for q ∈ {q|QU
q ̸= ∅}

will be defined in the sequel so as to properly capture its
dependence on βqu(t), q

u ∈ QU
q and include the effect of

flow transit delays. On the other hand, {βq(t)} depends
on the corresponding traffic light control, denoted by vq(t),
where vq(t) = 1 corresponds to a GREEN phase for queue
q, and vq(t) = 0 to a RED phase, respectively. We set vq(t)
to be a right-continuous function of t. The departure process
is also influenced by whether or not the downstream queue is
blocked, since a blocked downstream queue prevents vehicles
in the corresponding upstream queue from moving, hence
βq(t) = 0. Therefore, βq(t) can be expressed as follows:

βq(t) =



hq(t), if xq(t) > 0, vq(t) = 1,
and xqd(t) < cqd ∀qd ∈ QD

q

αq(t), if xq(t) = 0, vq(t) = 1,
and xqd(t) < cqd ∀qd ∈ QD

q

0, otherwise

(2)

where q ∈ Qn, n = 1, . . . , N and hq(t) is the unconstrained
departure rate for which appropriate models can be used (see
Section IV).

Next, we ensure that the control of a queue is consis-
tent with phase control. Given a phase sequence Pn =
(pn,1, pn,2, . . . pn,k), we require that when the GREEN cycle
ends for movements in one phase, then the GREEN signals
for the next phase movements in the sequence immediately
turn on, while the remaining movements face a RED light.
We denote the control for phase p as up(t) for p ∈ Pn, n =
1, . . . N , where up(t) = 1 indicates a GREEN signal for all
movements in p, otherwise up(t) = 0. We define up(t) to be
right-continuous in order to accurately represent the control
policy defined in the sequel. Moreover, for any intersection
n, we require

∑
p∈Pn

up(t) = 1. Therefore, for any q ∈ Qn,
we can always set the control of queue q ∈ Qp once the
phase p controls are decided:

vq(t) =

{
1, if up(t) = 1 for some p ∈ Pn, q ∈ Qp

0, otherwise
(3)

Note that it is possible for a particular queue to be enabled
during several consecutive phase cycle.

Finally, we define clock state variables zp(t) to measure
the time since the current enabled phase last switches to p.
The dynamics of zp(t) are:

żp(t) =

{
1, if up(t) = 1

0, otherwise
(4)

We define zp(t) to be left-continuous, so that when the
enabled phase switches from p to the next phase, zp(t) > 0,
zp(t

+) = 0, and up(t) = 0 (since up(t) is right-continuous).
Traffic Light Control. An effective controller design

needs to address two issues: (i) maintaining a proper balance
between allocating a GREEN light to competing queues and
(ii) preventing the undesired phenomenon where vehicles
wait at a RED light while competing queues are empty during

their GREEN phase. Such “waiting-for-nothing” instances
waste the resources of vehicles that wait unnecessarily and
can be eliminated through a proper controller design as
detailed next. Towards these two goals, we design a quasi-
dynamic controller such that only partial state information is
needed. Such control is based on the ability of current sensors
to detect events of interest in the state dynamics above, such
as a queue content becoming empty. On the other hand, it
may not be possible to detect the exact number of vehicles in
a queue (e.g., using cameras); therefore, we assume that this
number can be estimated so as to classify a queue content
xq(t) as being empty and either below or above some queue
content threshold, as well as the time such transitions occur.
We define an adjustable queue content threshold, denoted by
sp, for each phase p. When phase p is enabled, the detector
uses the same threshold value sp for all queues q ∈ Qn.
We also assign a guaranteed minimum GREEN light cycle
time θmin

p and a maximum cycle time θmax
p for each phase

p. This is to ensure that traffic light switches are not overly
frequent nor can they be excessively long. Thus, a controller
for phase p depends on a controllable parameter vector for
each phase:

θp = [θmin
p , θmax

p , sp] (5)

for p ∈ Pn, n = 1, . . . N , where θmin
n ≥ 0, θmax

p ≥ θmin
p ,

sp ≥ 0. We also define the complete parameter set Θ = {θ :
θ ∈ θp, p ∈ Pn, n = 1, . . . , N}.

In order to partition the queue content state space of inter-
section n which is currently under phase p ∈ Pn (up(t) = 1),
we start by defining two auxiliary variables indicating the
(instantaneous) largest queue content of any queue in phase
p and that of any queue not in phase p as xmax

p (t) =
maxq∈Qp

xq(t) and xmax
p̄ (t) = maxq∈Qn\Qp

xq(t). Based
on the value of these two variables, we partition the queue
content state space into the following regions (as shown in
Fig.3):
Xn,0 = {(xmax

p , xmax
p̄ ) : xmax

p (t) = 0, xmax
p̄ (t) = 0}

Xn,1 = {(xmax
p , xmax

p̄ ) : xmax
p (t) > 0, xmax

p̄ (t) = 0}
Xn,2 = {(xmax

p , xmax
p̄ ) : xmax

p (t) = 0, xmax
p̄ (t) > 0}

Xn,3 = {(xmax
p , xmax

p̄ ) : 0 < xmax
p (t) < sp, 0 <

xmax
p̄ (t) < sp}

Xn,4 = {(xmax
p , xmax

p̄ ) : 0 < xmax
p (t) < sp, xmax

p̄ (t) ≥
sp}
Xn,5 = {(xmax

p , xmax
p̄ ) : xmax

p (t) ≥ sp, 0 < xmax
p̄ (t) <

sp}
Xn,6 = {(xmax

p , xmax
p̄ ) : xmax

p (t) ≥ sp, xmax
p̄ (t) ≥ sp}

Therefore, if intersection n is currently in phase p ∈
Pn, the quasi-dynamic traffic light controller follows the
following rules:

1. (xmax
p , xmax

p̄ ) ∈ {Xn,1}: In this case, there is no
vehicle flow for any queue in {q̄|q̄ ∈ Qn, q̄ /∈ Qp} competing
with queue q while queues enabled in the current phase are
not empty. In this case, the light for the current phase should
remain GREEN:

up(t) = 1 (6)

2. (xmax
p , xmax

p̄ ) ∈ {Xn,2}: In this case, there is no
vehicle flow for queues enabled in the current phase p, while



Fig. 3: State space representation

competing queues are not empty. In this case, the current
phase should switch to RED immediately:

up(t) = 0 (7)

3. (xmax
p , xmax

p̄ ) ∈ {Xn,0, Xn,3, Xn,5, Xn,6}: In this
case, vehicle traffic for queues in the current phase p is either
higher or balanced compared to competing queues. Thus, the
current phase should be prioritized and remain GREEN until
it reaches its maximum cycle time:

up(t) =

{
1, if zp(t) ∈ (0, θmax

p )

0, otherwise
(8)

4. (xmax
p , xmax

p̄ ) ∈ {Xn,4}: In this case, there is low
vehicle traffic demand for queues in the current phase p and
high demand for the other queues, thus the system should
switch phases to accommodate the excess demand:

up(t) =

{
1, if zp(t) ∈ (0, θmin

p )

0, otherwise
(9)

Note that when the traffic light for movements in the
current phase p switches from GREEN to RED, the move-
ments for the next phase in the predefined phase sequence
Pn = (pn,1, pn,2, . . . pn,k) switches from RED to GREEN
accordingly.

Events. The state transitions in the model defined through
(2), (1), and (4) under the controller (6), (7), (8) and (9) are
dictated by ten possible events defined as follows (see also
Table I).

Basic events. For n = 1, . . . , N, q ∈ Qn : (a) [xq ↓ 0]:
xq(t) reaches 0 from above, (b) [xq ↑ 0]: xq(t) becomes
positive from 0, (c) [xq ↓ sp]: xq(t) reaches sp from above,
(d) [xq ↑ sp]: xq(t) reaches sp from below, (e) [xq ↓ cq]:
xq(t) reaches cq from above, which indicates the end of
a blocking interval, (f) [xq ↑ cq]: xq(t) reaches cq from
below, which indicates the start of a blocking interval, (g)
[zp ↑ θmin

p ]: zp(t) reaches its lower bound, (h) [zp ↑ θmax
p ]:

zp(t) reaches its upper bound, (i) [αq ↑ 0]: αq becomes
positive from 0, (j) [αq ↓ 0]: αq reaches 0 from above.

Light switching events. It is convenient to define the
following light switching events which are induced by basic
events according to the control rules. For n = 1, . . . , N, q ∈
Qn:

• R2Gq: traffic light for controllable movements in queue
q at intersection n switches from RED to GREEN.

• G2Rq: traffic light for controllable movements in queue
q at intersection n switches from GREEN to RED.

A. Flow Burst Modeling and Analysis

A major consideration in studying a multi-intersection
system is the role of a flow burst which is generated at each
intersection and has impact on the downstream intersection.
This was first studied in [19] for only two intersections and
only straight flows using a complicated sequence of sub-
processes. Here, we provide a more direct way to model
such flow bursts that easily extends to multiple intersections
and includes turning flows. Specifically, when a RED light
switches to GREEN for queue q, a new flow burst is
generated consisting of all vehicles queued at q that are
released. The impact this flow burst has on any downstream
queue qd ∈ QD

q is caused by the start and end of this flow
generation during each GREEN phase.

We start by defining event Gq,m for intersection n =
1, . . . N , q ∈ Qn, m = 1, 2, . . . causing the generation of a
flow burst from queue q during its mth GREEN cycle. This
event is induced at time t by one of two already defined
events: (a) R2Gq if xq(t) > 0, or (b) the first [αq ↑ 0] event
within the mth GREEN cycle if xq(t) = 0.

When Gq,m occurs, βq(t) increases from zero to positive
and the corresponding flow burst will join the downstream
queue qd ∈ QD

q (empty or not) following a time delay,
which then results in the downstream arrival rate increasing
from 0 to positive, thus creating an interdependence of flow
rates between neighboring intersections. The delay depends
on (a) the average speed of the flow burst, denoted by fq ,
affected by road quality and driver behavior, (b) the road
length Lqd where downstream queue qd is located, and (c)
the average length l of a vehicle (including a safe distance
between two vehicles). Then, the flow process relationship
between any two adjacent intersections caused by such delay
can be estimated as:

αqd(t) =
∑

q∈QU

qd

γq,qdβq(t−
Lqd − xqd(t) ∗ l

fq
) (10)

where γq,qd is the ratio of flow from q that is directed
to qd. Note that Lqd − xqd(t) ∗ l ≥ 0 always holds even
when blocking happens, which implies that αqd(t) is always
dependent on the upstream output process. For convenience,
set ∆q,qd(t) =

L
qd

−x
qd

(t)∗l
fq

to be the delay between queues

q and qd in (10) and note that ∆q,qd(t) ∈ [0,
L

qd

fq
]. Thus, (10)

provides the relationship for coupling the flow rates of two
consecutive intersections, which allows us to identify events
and their corresponding event time derivatives with respect
to the controllable parameters θ ∈ Θ, as shown in the next
section, without needing to know the value of γq,qd . We also
assume that any two flow bursts generated from the same
intersection but different GREEN cycles will not join each
other before the first one joins the downstream queue.



Fig. 4: Example for trajectories of yq,qd,m(t) and ∆q,qd(t)

We now define a second clock variable yq,qd,m(t) ∈ R+
0

for intersection n = 1, . . . N , q ∈ Qn, qd ∈ QD
q , m =

1, 2, . . ., similar to (4), which denotes the time elapsed since
Gq,m occurs. Its dynamics are

ẏq,qd,m(t) =

{
1, if yq,qd,m(t) ∈ (0,∆q,qd(t))

0, otherwise
(11)

The clock variable yq,qd,m(t) has a single cycle for each
flow burst m. When Gq,m occurs, we set yq,qd,m(t) = 0
and initialize (11) so that yq,qd,m(t+) > 0. As soon as
yq,qd,m(t) = ∆q,qd(t), we set yq,qd,m(t+) = 0. An example
is shown in Fig. 4. Note that yq,qd,m(t) > 0 is possible for
multiple different m, i.e., several flow bursts may be active
generated from the same intersection but during different
GREEN cycles. This may happen when Lqd is large and
the flow bursts have yet to reach the downstream queue.
Also note that when yq,qd,m(t) = ∆q,qd(t), this implies
that the head of a flow burst generated by event Gq,m joins
the downstream queue qd at time t. This is the first instant
when this flow burst can have an impact on the downstream
queue. Therefore, we define it as an event Jq,qd,m, which also
induces an event [αqd ↑ 0], i.e., the input flow for queue qd

becomes positive again.
Similarly, in order to model the end of a flow burst, we

define an event Ge
q,m, which indicates the end of a flow burst

generation from queue q during the mth GREEN cycle. This
can be induced by (a) G2Rq if either αq(t) > 0 or xq(t) > 0,
or (b) the last [αq ↓ 0] event inside the mth GREEN cycle
if xq(t) = 0. This leads to the definition of another clock
state variable rq,qd,m(t) ∈ R+

0 for intersection n where q ∈
Qn, q

d ∈ QD
q and m = 1, 2, . . ., which measures the time

elapsed since Ge
q,m occurs. Its dynamics are

ṙq,qd,m(t) =

{
1, if rq,qd,m(t) ∈ (0,∆q,qd(t))

0, otherwise
(12)

When Ge
q,m occurs, we set rq,qd,m(t) = 0 and initialize (12)

so that rq,qd,m(t+) > 0. As soon as rq,qd,m(t) = ∆q,qd(t),
we set rq,qd,m(t+) = 0. Similar to yq,qd,m(t), it is possible
that rq,qd,m(t) > 0 for multiple different m. Note that
when rq,qd,m(t) = ∆q,qd(t), this implies that the flow burst
generated from queue q at the mth GREEN cycle ceases to
have any impact on the downstream queue qd. Therefore, we
define it as an event Je

q,qd,m, which also induces an event
[αqd ↓ 0]. Since we consider a single flow burst generated by
the same GREEN phase, any [αqd ↑ 0] or [αqd ↓ 0] between

TABLE I: List of Events

Basic Events
[xq ↓ 0], [xq ↑ 0], [xq ↓ sp], [xq ↑ sp]
[xq ↓ cq], [xq ↑ cq], [zp ↑ θmin

p ]
[zp ↑ θmax

p ],[αq ↑ 0], [αq ↓ 0]
Light Switching Events R2Gq , G2Rq

Flow Burst Tracing Events Gq,m, Jq,qd,m, Ge
q,m, Je

q,qd,m

Jq,qd,m and Je
q,qd,m is exogenous and has no impact on the

downstream queue state.
In summary, the generation and impact of a flow burst

is captured through the four additional flow burst tracing
events Gq,m, Jq,qd,m, Ge

q,m, Je
q,qd,m, which facilitate the IPA

gradient evaluation in Section III. The full list of events is
shown in Table I.

The multi traffic light intersection system can be viewed
as a hybrid system in which the time-driven dynamics are
given by (1), (4), (11), (12) and (2), while the event-driven
dynamics are dictated by the basic events in Table I; these in-
duce associated light switching and flow burst tracing events
(defined for convenience). Although the dynamics are based
on knowledge of the instantaneous flow processes {αq(t)}
and {βq(t)}, we will show that the IPA-based adaptive
controller we design does not require such knowledge and
depends only on estimating some rates in the vicinity of
certain critical observable events.

B. TLC Optimization Problem

With the parameterized controller defined through
Xn,0, . . . , Xn,6 and (6)-(9), our aim is to optimize a perfor-
mance metric for the intersection operation with respect to
the controllable parameters that comprise Θ defined through
(5). We choose our performance metric to be the weighted
mean of all queue lengths over a fixed time interval [0, T ]:

L(Θ;x(0), z(0), T ) =
1

T

N∑
n=1

∑
q∈Qn

∫ T

0

ωqxq(t; Θ) dt (13)

where ωq is a weight associated with queue q. In order to
focus on the structure of a typical sample path of the hybrid
system, observe that the sample path of any flow queue
content {xq(t)} consists of alternating Non-empty Periods
(NEPs) and Empty Periods (EPs), which correspond to time
intervals when xq(t) > 0 and xq(t) = 0 respectively, as
shown in Fig. 5. We define two additional events: Sq for
starting NEPs and Eq for ending them, both induced by
basic events defined earlier. Moreover, we denote the kth
NEP of queue q by [ξq,k, ηq,k) where ξq,k, ηq,k are the
occurrence times of the kth Sq event and kth Eq event
respectively. Inside NEPs, we further define Blocking Periods
(BPs) when xq(t) = cq , indicating blocking happens. Since
xq(t) = 0 during EPs of queue q, the sample function
L(Θ;x(0), z(0), T ) in (13) can be rewritten as

L(Θ;x(0), z(0), T ) =
1

T

N∑
n=1

∑
q∈Qn

Kq∑
k=1

∫ ηq,k

ξq,k

ωqxq(t; Θ) dt

(14)



Fig. 5: Typical sample path of a traffic queue

where Kq is the (random) total number of NEPs during the
sample path of queue q over [0, T ].

Thus, our goal is to determine Θ that minimizes the
expected weighted mean queue length:

J(Θ;x(0), z(0), T ) = E[L(Θ;x(0), z(0), T )] (15)

We note that it is not possible to derive a closed-form expres-
sion of J(Θ;x(0), z(0), T ) even if we had full knowledge
of the processes {αq(t)} and {βq(t)}. Therefore, a closed-
form expression for the gradient ∇J(Θ) is also infeasible.
The role of IPA is to obtain an unbiased estimate of ∇J(Θ)
based on the sample function gradient ∇L(Θ) which can
be evaluated based only on data directly observable along a
single sample path such as Fig. 5, as will be shown in the
next section. The unbiasedness of ∇L(Θ) is ensured under
mild conditions on L(Θ) (see [21]) and assuming that each
αq(t) is piecewise continuously differentiable in t w.p. 1. In
particular, we emphasize that no explicit knowledge of αq(t)
is necessary to estimate ∇J(Θ) through ∇L(Θ).

We can now invoke a gradient-based algorithm of the form

θp,i,l+1 = θp,i,l − ρl
[ dJ

dθp,i,l

]
IPA

(16)

where θp,i,l is the ith parameter of θp at the lth iteration
(i ∈ {1, 2, 3}), ρl is the stepsize at the lth iteration, and
[ dJ
dθp,i,l

]IPA is the IPA estimator of dJ
dθp,i,l

, which will be
derived in the next section.

III. INFINITESIMAL PERTURBATION ANALYSIS

We begin with a brief review of the IPA framework in [21].
Consider a sample path over [0, T ] and denote the occurrence
time of the kth event (of any type) by τk. Let x′(θ, t), τ ′k(θ)
be the derivatives of x(θ, t), τk(θ) over the scalar controllable
parameter of interest θ respectively. We omit the dependence
on θ for ease of notation hereafter. The dynamics of x(t) are
fixed over any inter-event interval [τk, τk+1), represented by
ẋ(t) = fk(t). Then, the state derivative satisfies

d

dt
x′(t) =

∂fk(t)

∂x
x′(t) +

∂fk(t)

∂θ
(17)

with boundary condition (see [21]):

x′(τ+k ) = x′(τ−k ) + [fk−1(τ
−
k )− fk(τ

+
k )]τ ′k (18)

In order to evaluate (18), τ ′k must be determined, which
depends on the type of event taking place at τk. For ex-
ogenous events (events causing a discrete state transition

that is independent of any controllable parameter), we have
τ ′k = 0. For endogenous events (events that occur when
there exists a continuously differentiable function gk such
that τk = min{t > τk−1 : gk(x(θ, t), θ) = 0}) with guard
condition gk = 0 (see [21]):

τ ′k = −[
∂gk
∂x

fk(τ
−
k )]−1(

∂gk
∂θ

+
∂gk
∂x

x′(τ−k )) (19)

This framework captures how system states and event times
change with respect to controllable parameters. Our goal is to
estimate ∇J(Θ) through ∇L(Θ), and, according to (14), the
performance metric expression is a function of event time and
system state variables. Thus, we apply the IPA framework
to the TLC problem and evaluate how a perturbation in θ
would affect performance metrics.

A. State Derivatives.

We define the derivatives of the state variable xq(t), zq(t),
yq,qd,m(t), rq,qd,m(t) and event times τk with respect to
parameter Θi (i = 1, . . . , |Θ|) as follows:

x′
q,i ≡

∂xq(t)

∂Θi
, z′q,i ≡

∂zq(t)

∂Θi
, y′q,qd,m,i ≡

∂yq,qd,m(t)

∂Θi
,

r′q,qd,m,i ≡
∂rq,qd,m(t)

∂Θi
, τ ′k,i ≡

∂τk
∂Θi

(20)

For ease of notation, we denote the state dynamics in (1), (4),
(11), (12) over an inter-event interval [τk, τk+1) as follows:

ẋq(t) = fx
q,k(t), żp(t) = fz

p,k(t), ẏq,qd,m(t) = fy
q,qd,m,k

(t),

ṙq,qd,m(t) = fr
q,qd,m,k(t), q ∈ Qn, q

d ∈ QD
q , n = 1, . . . , N

(21)

Combining the dynamics in (1), (4), (11) and (12) with (17),
similar to the analysis in [4] we can easily conclude that
the state derivative of any queue is unaffected within any
inter-event time interval, i.e., for t ∈ [τk, τk+1):

x′
q,i(t) = x′

q,i(τ
+
k ), z′q,i(t) = z′q,i(τ

+
k ),

y′q,qd,m,i(t) = y′q,qd,m,i(τ
+
k ), r′q,qd,m,i(t) = r′q,qd,m,i(τ

+
k )

(22)

Next, for any discrete event time τk, we evaluate queue con-
tent derivatives for any possible event occurring to start/end
an EP/NEP or within any EP/NEP, and for any controllable
parameter Θi (i = 1, . . . , |Θ|):

1) Event inside EP: Since xq(t) = 0 throughout the whole
EP, it immediately follows that

x′
q,i(τ

+
k ) = 0 (23)

2) Event starting EP (Eq): This is induced by the basic
event [xq ↓ 0]. The state dynamics change from
fx
q,k−1(τ

−
k ) = αq(τ

−
k ) − hq(τ

−
k ) to fx

q,k(τ
+
k ) =

αq(τ
+
k )− αq(τ

+
k ) = 0. Then, from (18),

x′
q,i(τ

+
k ) = x′

q,i(τ
−
k ) + (αq(τ

−
k )− hq(τ

−
k ))τ ′k,i (24)

3) Event starting NEP (Sq) from EP: This can be induced
in three possible ways:



3.1) Sq induced by light switching to RED (G2Rq)
when αq(τk) > 0. We have fx

q,k−1(τ
−
k ) = 0 and

fx
q,k(τ

+
k ) = αq(τ

+
k ). Based on (23) and (18):

x′
q,i(τ

+
k ) = −αq(τ

+
k )τ ′k,i (25)

3.2) Sq induced by Jqu,q,m where qu ∈ QU
q . The state

dynamics are fx
q,k−1(τ

−
k ) = 0, fx

q,k(τ
+
k ) = αq(τ

+
k )−

βq(τ
+
k ), where βq(τk) is defined in (2) and αq(τ

+
k )−

βq(τ
+
k ) > 0 in order to induce Sq . Based on (18) we

get
x′
q,i(τ

+
k ) = (βq(τ

+
k )− αq(τ

+
k ))τ ′k,i (26)

3.3) Sq induced by an exogenous change in αq(τk) when
QU

q = ∅. In this case, τ ′k,i = 0, so that we have

x′
q,i(τ

+
k ) = x′

q,i(τ
−
k ) = 0 (27)

4) Event inside NEP. The following are all possible cases:
4.1) G2Rq: the state dynamics are fx

q,k−1(τ
−
k ) =

αq(τ
−
k ) − hq(τ

−
k ) and fx

q,k(τ
+
k ) = αq(τ

+
k ). Note

αq(t) is continuous except when joining events hap-
pen at q. Therefore,

x′
q,i(τ

+
k ) = x′

q,i(τ
−
k )− hq(τ

−
k )τ ′k,i (28)

4.2) R2Gq: the state dynamics are fx
q,k−1(τ

−
k ) = αq(τ

−
k )

and fx
q,k(τ

+
k ) = αq(τ

+
k )− hq(τ

+
k ). Therefore,

x′
q,i(τ

+
k ) = x′

q,i(τ
−
k ) + hq(τ

+
k )τ ′k,i (29)

4.3) Jqu,q,m with qu ∈ QU
q : the state dynamics are:

fx
q,k−1(τ

−
k ) = −βq(τ

−
k ), fx

q,k(τ
+
k ) = αq(τ

+
k ) −

βq(τ
+
k ) where βq(τk) follows (2), and it is continuous

except when a light switching event happens at q.
Thus,

x′
q,i(τ

+
k ) = x′

q,i(τ
−
k )− αq(τ

+
k )τ ′k,i (30)

4.4) Je
qu,q,m with qu ∈ QU

q : similarly, the state dynamics
are: fx

q,k−1(τ
−
k ) = αq(τ

−
k ) − βq(τ

−
k ), fx

q,k(τ
+
k ) =

−βq(τ
+
k ). Therefore,

x′
q,i(τ

+
k ) = x′

q,i(τ
−
k ) + αq(τ

−
k )τ ′k,i (31)

4.5) Other exogenous events. Those events would not
affect state derivatives, so that:

x′
q,i(τ

+
k ) = xq,i

′(τ−k ) (32)

5) Event starting BP. Blocking is triggered by [xq ↑ cq].
When queue q starts to block, in addition to the current
state xq(t), states from all upstream queues qu ∈ QU

q

are also affected. For queue q, the state dynamics change
from fx

q,k−1(τ
−
k ) = αq(τ

−
k )− βq(τ

−
k ) to fx

q,k(τ
+
k ) = 0.

Therefore,

x′
q,i(τ

+
k ) = x′

q,i(τ
−
k ) + (αq(τ

−
k )− βq(τ

−
k ))τ ′k,i (33)

For upstream queue qu ∈ QU
q , the state dynamics

change from fx
qu,k−1(τ

−
k ) = αqu(τ

−
k ) − βqu(τ

−
k ) to

fx
qu,k(τ

+
k ) = αqu(τ

+
k ). Therefore,

x′
qu,i(τ

+
k ) = x′

qu,i(τ
−
k )− βqu(τ

−
k )τ ′k,i (34)

6) Event inside BP. Since the state dynamics do not change
during blocking, the state derivatives do not change:

x′
q,i(τ

+
k ) = x′

q,i(τ
−
k ) (35)

7) Event starting NEP from BP. This is triggered by
[xq ↓ cq], and, similar to case 5, it affects the state
of all upstream queues. For queue q, the state dynamics
are: fx

q,k−1(τ
−
k ) = 0, fx

q,k(τ
+
k ) = αq(τ

+
k ) − βq(τ

+
k ).

Therefore:

x′
q,i(τ

+
k ) = x′

q,i(τ
−
k ) + (βq(τ

+
k )− αq(τ

+
k ))τ ′k,i (36)

For upstream queue qu ∈ QU
q , the state dynamics are:

fx
qu,k−1(τ

−
k ) = αqu(τ

−
k ) to fx

qu,k(τ
+
k ) = αqu(τ

+
k ) −

βqu(τ
+
k ). Therefore,

x′
qu,i(τ

+
k ) = x′

qu,i(τ
−
k ) + βqu(τ

+
k )τ ′k,i (37)

Observe that whenever QU
q ̸= ∅, the value of αq is given

by (10), thus capturing the interdependence of queue content
derivatives between adjacent queues qu, q. Also note that
most of the queue content derivative expressions involve
the event time derivative τ ′k,i. Therefore, to complete our
analysis we need to derive these expressions by applying
(19) as shown next and use them in (24), (25), (26), (28),
(29), (30), (31), (33), (34), (36) and (37).

B. Event Time Derivatives

In this section, we derive the event time derivatives with
respect to each of the controllable parameters Θi, i =
1, . . . , |Θ| as formulated in (5). For queue q ∈ Qn within
intersection n = 1, . . . , N :

1) Event Eq occurs at τk. This is induced by [xq ↓ 0] so
that the guard condition is gk = xq−0 = 0, which gives
∂gk
∂xq

= 1, ∂gk
∂Θi

= 0. The dynamics are fx
q,k−1(τ

−
k ) =

αq(τ
−
k )− hq(τ

−
k ), fx

q,k(τ
+
k ) = 0. Then, it follows from

(19) that:

τ ′k,i =
−xq,i

′(τ−k )

αq(τ
−
k )− hq(τ

−
k )

(38)

This completes equation (24) and yields xq,i
′(τ+k ) = 0

for the state derivative in case 2.
2) Event G2Rq occurs at τk. This happens when there is a

phase switch and queue q is part of the previous enabled
phase p (q ∈ Qp) but not part of the next enabled phase
p′ (q /∈ Qp′ ). Such a phase switch can be triggered by
the following basic events:

2.1) [zp ↑ θmax
p ] while xmax

p̄ (τk) > 0. The guard
condition is gk = zp − θmax

p with ∂gk
∂zp

= 1 and
∂gk

∂θmax
p

= −1, and all other partial derivatives equals
to zero. We also have fz

p,k(τ
−
k ) = 1. Similar to the

analysis in [4] we get:

τ ′k,i = τ ′ks,i + 1Θi=θmax
p

(39)

where ks is the index of the last light switching
event (R2Gq) prior to event k and 1· is the indicator
function. This completes equations (25) and (28).



2.2) [zp ↑ θmin
p ] while xmax

p (τk) < sp andxmax
p̄ (t) > sp.

The guard condition is gk = zp − θmin
p . Similar to

the last case, (19) can be reduced to:

τ ′k,i = τks,i
′ + 1Θi=θmin

p
(40)

2.3) [xmax
p ↓ sp] while zp ≥ θmin

p and xmax
p̄ (τk) ≥ sp.

The guard condition is gk = xq∗(τk) − sp with
∂gk
∂xq∗

= 1 and ∂gk
∂sp

= −1, and all other partial deriva-
tives equal to zero, where q∗ = argmaxq∈Qp

xq(τk).
Due to light switching, the state dynamics change
from fx

q,k−1(τ
−
k ) = αq(τ

−
k )− βq(τ

−
k ) to fx

q,k(τ
+
k ) =

αq(τ
+
k ). As a result, (19) reduces to:

τ ′k,i =
1Θi=sp − x′

q∗,i(τ
−
k )

αq∗(τ
−
k )− βq∗(τ

−
k )

(41)

2.4) [xmax
p̄ ↑ sp] while zp ≥ θmin

p and xmax
p (τk) <

sp. The guard condition is gk = xq̄∗(τk) − sp
with ∂gk

∂xq̄∗
= 1 and ∂gk

∂sp
= −1, and all other

partial derivatives equal to zero, where q̄∗ =
argmaxq̄∈Qn\Qp

xq̄(τk). Similar to the previous case:

τ ′k,i =
1Θi=sp − x′

q̄∗,i(τ
−
k )

αq̄∗(τ
−
k )

(42)

When it comes to event R2Gq , note that this is triggered
under similar conditions to those of G2Rq . In particular,
R2Gq occurs at phase switching times when queue q is
not part of the previous enabled phase p (q /∈ Qp) but
part of the next enabled phase p′ (q ∈ Qp′). Thus, we
omit its analysis here. The combined four cases of these
events together complete the state derivative calculation
of (25), (29), and (28).

3) Event Jqu,q,m occurs at τk, where qu ∈ QU
q . This

is an endogenous event triggered by yqu,q,m(τk) =
∆qu,q(τk), so that the associated guard condition is
gk = yqu,q,m(τk) − Lq−xq(τk)∗l

fqu
= 0. Since there are

two state variables present in this guard condition, we
take derivatives of gk with respect to parameter Θi first.
Since the event time variable τk is directly affected by
Θi, while state variables xq(τk) and yqu,q,m(τk) are
both directly and indirectly affected by Θi through τk,
using the chain rule yields the derivative g′k,i as follows:

g′k,i = y′qu,q,m,i(τ
−
k ) + fy

qu,u,m,k−1(τ
−
k )τ ′k,i+

l

fqu
(x′

q,i(τ
−
k ) + fx

q,k−1(τ
−
k )τ ′k,i) = 0 (43)

The last event before τk that would cause the change
of state yqu,q,m is Gqu,q,m (start of flow burst gen-
eration). Denoting its occurrence time by τkg , we
have fy

qu,q,m,kg−1(τ
−
kg
) = 0 and fy

qu,q,m,kg
(τ+kg

) = 1.
Also, since yqu,q,m(t) = 0 right before τkg , we have
y′qu,q,m,i(τ

−
kg
) = 0 for all i = 1, . . . , |Θ|. Therefore, by

applying (18) and (22), we get:

y′qu,q,m,i(τ
−
k ) = y′qu,q,m,i(τ

+
kg
)

= y′qu,q,m,i(τ
−
kg
) + (0− 1)τ ′kg,i

= −τ ′kg,i

(44)

The state dynamics can be calculated from (11) and (1)
with αq(τ

−
k ) = 0:

fy
qu,q,m,k−1(τ

−
k ) = 1 (45)

fx
q,k−1(τ

−
k ) = −βq(τ

−
k ) (46)

Then, making use of (44), (45) and (46) in (43) finally
yields:

τ ′k,i =
fqu

fqu − lβq(τ
−
k )

(τ ′kg,i −
l

fqu
xq,i

′(τ−k )) (47)

where τ ′kg,i
is the event time derivative when Gqu,q,m

occurs with [βqu ↑ 0]. This can be induced by: (a)
R2Gqu when xqu(τkg,i) > 0, in which case τ ′kg,i

follows (39), (40), (41) or (42); (b) Jquu,qu,m̂ when
xqu(τkg,i) = 0 and uquu = 1, where quu is an upstream
queue of qu (quu ∈ QU

qu ), and m̂ is the GREEN cycle
index of quu at τkg

. In this case, τ ′kg,i
follows (47);

(c) an exogenous change of αqu where τ ′kg,i
= 0. This

completes the state derivatives equations (26) and (30).
4) Event Je

qu,q,m occurs at τk where qu ∈ QU
q . As in

the last case, this is an endogenous event triggered by
rqu,q,m(τk) = ∆qu,q(τk), with guard condition gk =

rqu,q,m(τk)−Lq−xq(τk)∗l
fqu

= 0. Similar to the analysis in
the previous case, the derivative of the guard condition
with respect to Θi is:

g′k,i = r′qu,q,m,i(τ
−
k ) + fr

qu,u,m,k−1(τ
−
k )τ ′k,i+

l

fqu
(x′

q,i(τ
−
k ) + fx

q,k−1(τ
−
k )τ ′k,i) = 0 (48)

The last event before τk that would cause the change
of state rqu,q,m is Ge

qu,q,m (end of flow burst gener-
ation). Denoting its occurrence time by τke , we have
fr
qu,q,m,ke−1(τ

−
ke
) = 0 and fr

qu,q,m,ke
(τ+ke

) = 1. There-
fore,

r′qu,q,m,i(τ
−
k ) = r′qu,q,m,i(τ

+
ke
)

= r′qu,q,m,i(τ
−
ke
) + (0− 1)τ ′ke,i

= −τ ′ke,i

(49)

Also by (12) and (1):

fr
qu,q,m,k−1(τ

−
k ) = 1 (50)

fx
n,d,k−1(τ

−
k ) = αq(τ

−
k )− βq(τ

−
k ) (51)

where the value of βq(τ
−
k ) follows (2). Then, using (49),

(50) and (51) in (48) we finally obtain:

τ ′k,i =
fqu

fqu + (αq(τ
−
k )− βq(τ

−
k ))l

∗

(τ ′ke,i −
l

fqu
xq,i

′(τ−k )) (52)

where τ ′ke,i
is the event time derivative when Ge

qu,q,m

occurs with [βqu ↓ 0]. This can be induced by: (a)
G2Rqu when αqu(τke

) > 0 or xqu(τke
) > 0, in which

case τ ′ke,i
follows (39), (40), (41) or (42); (b) Je

quu,qu,m̂

where quu is an upstream queue of qu (quu ∈ QU
qu ),



and m̂ is the GREEN cycle index of quu at τkg
. In this

case, τ ′ke,i
follows (52); (c) an exogenous change of

αqu where τ ′ke,i
= 0. This completes the state derivative

equation (31).
5) Event [xq ↑ cq] occurs at τk and induces blocking for

queue q. The guard condition is gk = xq − cq = 0.
Similar to the calculation in case 1:

τ ′k,i =
−xq,i

′(τ−k )

αq(τ
−
k )− βq(τ

−
k )

(53)

This completes equations (33) and (34).
6) Event [xq ↓ cq] occurs at τk and releases blocking

for queue q. Note that we cannot directly calculate τk
through (19) since fx

q,k−1(τ
−
k ) = 0. However, [xq ↓ cq]

can only be induced by: (a) R2Gq , in which case τk
follows (39), (40), (41) or (42); (b) [αq ↓ 0], in which
case τk = 0 if QU

q = ∅ or τk follows (52) otherwise.
This completes equations (36) and (37).

In summary, if G2Rq occurs at time τk:

τ ′k,i =



τks,i
′ + 1Θi=θmax

p
, if induced by [zp ↑ θmax

p ]
τks,i

′ + 1Θi=θmin
p

, if induced by [zp ↑ θmin
p ]

1Θi=sp−x′
q∗,i(τ

−
k )

αq∗ (τ
−
k )−βq∗ (τ

−
k )

, if induced by [xmax
p ↓ sp]

1Θi=sp−x′
q̄∗,i(τ

−
k )

αq̄∗ (τ
−
k )

, if induced by [xmax
p̄ ↑ sp]

(54)
where q∗ = argmaxq∈Qp

xq(τk), and q̄∗ =
argmaxq̄∈Qn\Qp

xq̄(τk) as defined in Section III-B.
Otherwise:

τ ′k,i =



−xq,i
′(τ−

k )

αq(τ
−
k )−hq(τ

−
k )

, if Eq occurs at τk
fqu

fqu−lβq(τ
−
k )

∗

(τ ′kg,i
− l

fqu
xq,i

′(τ−k )), if Jqu,q,m occurs at τk
fqu

fqu+(αq(τ
−
k )−βq(τ

−
k ))l

∗

(τ ′ke,i
− l

fqu
xq,i

′(τ−k )), if Je
qu,q,m occurs at τk

−xq,i
′(τ−

k )

αq(τ
−
k )−βq(τ

−
k )

, if [xq ↑ cq] occurs at τk
(55)

Note that the event time derivative for R2Gq , Gqu,q,m,
Ge

qu,q,m and [xq ↓ cq] can be derived from the above
equation based on different cases with all events as defined
in Section II.

C. Cost Derivatives

With all state derivatives obtained as shown in the previous
section, we can obtain the IPA cost gradient estimator as
the derivative of L(Θ;x(0), z(0), T ) in (14). Similar to the
derivation provided in [4], the IPA estimator consisting of
dL(Θ)/dΘi, i = 1, ..., |Θ| is given by

dL(Θ)

dΘi
=

1

T

N∑
n=1

∑
q∈Qn

Kq∑
k=1

ωq
dLq,k(Θ)

dΘi
(56)

where

Lq,k(Θ) =

∫ ηq,k

ξq,k

xq(Θ, t) dt (57)

dLq,k(Θ)

dΘi
= x′

q,i(ξq,k
+)(t1q,k − ξq,k)

+ x′
q,i(t

Oq,k

q,k

+
)(ηq,k − t

Oq,k

q,k )

+

Oq,k∑
o=2

x′
q,i(t

o−1
q,k

+
)(toq,k − to−1

q,k ) (58)

where Oq,k is the total number of events on the observed
sample path at queue q within the kth NEP, toq,k is the
observed time of the oth event in that NEP, and ξq,k, ηq,k
are the observed occurrence times of the start and end of the
kth NEP respectively.

It is clear from (56) and (58) that each IPA derivative is
basically the accumulation of measurable inter-event times
(timers) multiplied by a corresponding state derivative. The
full information needed to evaluate this IPA estimator con-
sists of (a) event time data, which are easy to record by
directly observing events, and (b) state derivatives at those
times, which are given by the simple iterative expressions
derived in Sections III-A and III-B. Some state derivatives
evaluated at an event time τk involve flow rates αq(τk),
hq(τk); however, these are only needed at specific events
(e.g., at the time when Sq is induced by a light switching
event in (25)), making them easy to estimate in practice, as
described in the next section. Regarding the unconstrained
departure rate hq(t), considering it as a constant also makes
it easy to estimate through simple offline counting methods.

Returning to our observation in (10) that the γq,qd infor-
mation is not needed, observe that this is indeed not involved
in the derivation the IPA derivatives.

Finally, using simple online gradient-based algorithms as
in (16), we can adjust the controllable parameters to improve
the overall performance and attain possibly local optima if
the operating conditions do not change substantially; see also
Section IV.

D. Perturbation Propagation

The IPA method is able to adjust the controllable parame-
ters automatically in an online data-driven manner. When
applying it to a multi-intersection traffic system, the ad-
justment of the controllable parameters can synchronize the
traffic lights and naturally induce a “green wave” effect by
propagating state perturbations to downstream intersections.
Such propagation is induced by the flow burst joining events
and affects downstream state derivatives, thus capturing how
a perturbation in a TLC parameter Θi causes a perturbation in
the queue content xq(t). For example, if an Sq event occurs
induced by a Jqu,q,m event (where qu ∈ QU

q ) when vq = 0
(the light is RED), then by combining (26) and (55), the state
derivative becomes

x′
q,i(τ

+
k ) = (βq(τ

+
k )− αq(τ

+
k ))∗

(τ ′kg,i −
l

fqu
x′
q,i(τ

−
k ))

fqu

fqu − lβq(τk)
(59)



Since βq(τ
+
k ) = 0 when vq = 0 and x′

q,i(τ
−
k ) = 0, this

is reduced to x′
q,i(τ

+
k ) = −αq(τk)τ

′
kg,i

, where the flow rate
αq(τk) can be traced to the upstream departure rate based on
(10) and the event time derivative at Gqu,q,m also depends
on upstream information: (a) if this is triggered by R2Gqu ,
then τ ′kg,i

is an accumulation of light switching counts at
the upstream intersection, whereas (b) if it is triggered by
Jquu,qu,m̂ this again depends on the event time derivative at
Gquu,qu,m̂, where quu ∈ Qu

qu . Thus, recursively, x′
q,i(τ

+
k ) is

affected by all upstream states capturing how a perturbation
can be propagated. A similar process takes place under other
flow burst joining conditions.

It is also worth observing that combining (24) and (55)
gives x′

q,i(τ
+
k ) = 0 when event Eq occurs at τk. This

implies that any parameter perturbation affecting xq(t) is
reset to zero after such events at queue q. Therefore, for any
perturbation at qu to propagate beyond q requires that after
a Jqu,q,m event occurs it must be followed by a Eq event
before a G2Rq event occurs so that the vehicles from qu

benefiting from a positive GREEN cycle perturbation have
the chance to get through q without stopping; otherwise,
the perturbation at qu is “cancelled” by Eq . Note that such
propagation only occurs through Jqu,q,m events, which limits
computation to simple derivative updates at selected events
and makes this propagation analysis scalable. This also
allows us to easily track how TLC parameters affect “green
waves” along a series of intersections.

IV. SIMULATION RESULTS

We use the Eclipse SUMO (Simulation of Urban MObil-
ity) simulator to build a simulation environment for traffic
through a m ∗ n traffic light systems. We initially consider
a 2 ∗ 3 grid shape, so that N = 6. The length of each
road segment between two neighboring intersections is set
to be 300m. For each individual intersection, we use the
traffic structure shown in Fig. 2: each road segment contains
two queues - one for left-turn movements and one for
combined straight and right-turn movements. Four phases are
designed as described in Sec.II: (a) [W-s],[E-s]; (b)[W-l],[E-
l];(c)[S-s],[N-s]; (d)[S-l],[N-l]. Although IPA is independent
of the arrival processes, we select Poisson arrival processes
in SUMO to capture the traffic demand for each origin-
destination (OD) pair, where the origins and destinations are
different and correspond to boundary edges of the traffic
network. To simplify traffic demand representation, OD
pairs are grouped into four categories: row-to-row, row-to-
column, column-to-row, and column-to-column. Let ᾱ =
[ᾱrr, ᾱrc, ᾱcr, ᾱcc] denote the Poisson arrival rates for each
OD pair group, where subscripts indicate directionality. For
example, ᾱrr represents Poisson rate for OD pairs with hori-
zontal departure and arrival edges. This abstraction allows the
aggregated modeling of demand patterns between boundary
edges. Since we only need the real-time arrival flow rate at
certain event times, we can estimate an instantaneous arrival
rate through αq(τk) = Nq/tw, where Nq denotes the number
of vehicles joining queue q during a time window of size
tw before event time τk; this is easy to detect and record

in SUMO. We also estimate the maximum departure rate
as a constant value hq(t) = H for all queues (where H
is determined through a separate offline analysis). We set
H = 1.3vehicles/s , v = 10m/s, and equal weights for all
flows (wq = 1) throughout this section. With this setting, we
have performed simulation experiments to demonstrate im-
provements in mean waiting times, synchronization leading
to “green waves”, adaptivity, and scalability.

A. Online TLC Implementation for Uncongested Traffic

The ultimate goal of TLC is to operate on line, i.e., observe
real-time traffic data and adaptively adjust the controllable
parameters. We simulate this process by creating a single
long sample path and updating IPA derivatives in (58) with
every observed event occurrence (assuming some sensing
capabilities for detecting events and event times). The results
are accumulated and the parameters are updated every 1000s
using the data collected during the most recent time window.
Two metrics are used to evaluate the performance of the
TLC method: (a) Mean waiting time, which measures the
time of stopping at a queue, providing an indication of
delay experienced behind traffic signals; (b) Time-distance
ratio, which calculates the average time taken to travel a
fixed distance. This incorporates both stopping time and
travel speed. A higher ratio indicates more undesirable traffic
conditions associated with congestion. We set the initial
controllable parameters for each phase of each traffic light as
θp = [20, 40, 10], p ∈ Pn, n = 1, . . . , 6, indicating minimum
GREEN time threshold, maximum GREEN time threshold,
and queue content threshold respectively.

We start with different relatively small ᾱ values that would
not lead to congested traffic, and record performances as
shown in Table II. Observe that under different unbalanced
traffic demands, both performance metrics show improve-
ments from 0.75% to 46%. Typical sample cost trajectories
for different flows under ᾱ = [0.02, 0.01, 0.02, 0.01] are
shown in Fig. 6. Observe that a left-turn queue always has a
higher waiting time than a straight & right-turn queue, while
the gap becomes smaller as both values decrease.

We also compare the performance of our method against
Webster’s Method [22], which is a rational approach for
designing fixed-cycle traffic signals based on Webster’s
formula. Webster’s Method incorporates static information
such as flow ratios and lost time to optimize predetermined
cyclic plans rather than adapting in real-time. As shown
in Fig. 7, our adaptive TLC method initially has higher
waiting times before optimizing the signal timings. However,
it is then able to self-adjust the parameters, while the fixed
cycle timing from Webster’s method is prone to slight
demand fluctuations, leading to consistently higher overall
wait times. It should be noted that under uncongested traffic
conditions, fixed-cycle policies, like Webster’s method, can
deliver relatively stable and acceptable performance, despite
some fluctuations. However, such predetermined signal plans
becomes ineffective in scenarios where congestion emerges,
as demonstrated next.



TABLE II: Simulation results for different traffic demands

ᾱ
Average Waiting Time Time-Distance Ratio

init opt reduction ratio init opt reduction ratio
[0.02,0.01,0.01,0.01] 12.03 6.42 46.63% 0.122 0.115 5.74%
[0.02,0.02,0.01,0.01] 19.06 10.81 43.28% 0.141 0.131 7.09%
[0.02,0.01,0.02,0.01] 16.20 10.71 42.96% 0.133 0.132 0.75%
[0.02,0.01,0.01,0.02] 23.17 12.37 46.61% 0.152 0.135 11.18%
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Fig. 6: Sample cost trajectory for online implementation
under uncongested traffic with ᾱ = [0.02, 0.01, 0.02, 0.01]
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Fig. 7: Sample cost trajectories comparison with Webster’s
Method under uncongested traffic

B. Online TLC Implementation for Congested Traffic

We next consider scenarios where traffic demand is high
enough that improper signal timing can lead to congestion
and blocking. In such cases, our adaptive TLC method can
detect emerging blockages and adjust the signal parameters
accordingly. This allows responding to congestion in real
time, which can be challenging for static traffic light schemes
like Webster’s Method that rely on flow ratios to determine
signal cycles.

We use the same simulation setting as the uncongested
case, with traffic demand set as ᾱ = [0.02, 0.02, 0.02, 0.011].
A typical comparison of sample trajectories is shown in Fig.
8. When traffic congestion builds up early in the simulation,
our method can adapt parameters based on observed blocking
to help mitigate gridlock. In contrast, the average waiting
time with Webster’s method increases rapidly and quickly
leads to unstable conditions.

C. TLC Adaptivity

Our TLC method is designed to adapt to changing traf-
fic conditions. We illustrate this property by observing
how performance changes when traffic demand is per-
turbed. The initial traffic demand is set through ᾱ =

Fig. 8: Sample cost trajectories comparison with Webster’s
Method under potential congested traffic
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Fig. 9: Sample cost trajectories with traffic demand pertur-
bation

[0.01, 0.01, 0.01, 0.015], with the same initial parameters as
in previous cases. We add traffic perturbations by doubling
the Poisson rate of the flow for row-to-column OD pairs at
t = 8000s and then return to the original rate at t = 20000s.
The cost trajectory is shown in Fig. 9 where the shaded area
corresponds to the time interval over which traffic demand
was increased. We can see that the waiting time initially
decreases due to proper parameter adjustments. When traf-
fic demand abruptly increases, the waiting time increases
as expected, since the previously optimized parameters no
longer apply to the new traffic demand. Nonetheless, they
gradually adjust and converge to new optimal values after
several iterations, including the time interval after the traffic
demand is returned to its original value.

D. TLC Scalability

We have seen in Section III that the IPA gradient estima-
tion process is entirely event-driven. Therefore, the computa-
tional complexity of the TLC method is linear in the number
of events. This implies that our approach scales with the
number of traffic lights in a network of interconnected inter-
sections, since the presence of a new intersections involves
the addition of a similar number of events as any other and
the IPA process scales accordingly. We illustrate this property
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Fig. 10: Scalability: CPU time as a function of the number
of intersections

by recording the CPU time of the IPA calculations as a
function of the increasing number of intersections as shown
in Fig. 10. With a fixed number of parallel row arteries (m),
increasing the intersections per row from 2 to 10 results in
an approximately linear increase in average IPA computation
time. Furthermore, the gap in process time between propor-
tional m values increases evenly. This linear relationship
indicates that the computational complexity scales well as
more intersections are added. Note that in an actual traffic
network the IPA calculations can be distributed over each in-
tersection resulting in parallel processing. Given the observed
linear scaling, the TLC approach can be extended to large
networks while maintaining tractable computation times.

V. CONCLUSION AND FUTURE WORK

We have studied a TLC problem for grid-like traffic
systems considering straight, left-turn, and right-turn flows.
We have considered a flexible traffic structure modeling
framework that provides flexibility to model heterogeneous
road structures, lane configurations, traffic directions, inter-
section designs, and traffic signal patterns. The analysis in-
corporates transit delays and blocking for vehicle movements
between intersections. We have used a stochastic hybrid
system model and derived IPA gradient estimators of a cost
metric with respect to TLC parameters (lower and upper
limits to GREEN cycles, as well as thresholds on queue
lengths for dynamic adjustments), accounting for delays and
blocking through flow burst definitions and burst joining
logic. Based on gradient estimates, we adjust the parameters
iteratively through an online gradient-based algorithm in
order to improve overall performance, with the ability to au-
tomatically adapt to changing traffic conditions. Performance
is measured through the mean waiting time and a time-
distance ratio metric capturing speed information. Our next
steps are to include additional traffic flows, such as bicycle
and pedestrian traffic, similar to [6], and to develop adaptive
methods to automatically determine optimal gradient step
sizes that can result in faster convergence.
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