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Abstract. Second Moment Methods (SMMs) are developed that are consistent with the Discon-
tinuous Galerkin (DG) spatial discretization of the discrete ordinates (or SN ) transport equations.
The low-order (LO) diffusion system of equations is discretized with fully consistent P1, Local Dis-
continuous Galerkin (LDG), and Interior Penalty (IP) methods. A discrete residual approach is used
to derive SMM correction terms that make each of the LO systems consistent with the high-order
(HO) discretization. We show that the consistent methods are more accurate and have better solution
quality than independently discretized LO systems, that they preserve the diffusion limit, and that
the LDG and IP consistent SMMs can be scalably solved in parallel on a challenging, multi-material
benchmark problem.
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1. Introduction. The Second Moment Method (SMM) is an iterative scheme
for solving high-dimensional kinetic equations that utilizes a low-order (LO) model
to accelerate the calculation of slow-to-converge physics such as scattering in linear
radiation transport and absorption-emission in thermal radiative transfer [1]. SMM
is a member of a broad class of methods that includes the Variable Eddington Factor
(VEF) [2], Quasidiffusion (QD) [3], and high-order low-order (HOLO) [4] methods.
Such methods are particularly well suited for multiphysics calculations as the LO
system can be directly coupled to the other physics in place of the high-order (HO)
system, reducing reliance on expensive high-dimensional operations. Furthermore,
this class of methods has been shown to be efficient across a wide range of problems
including nuclear reactor modeling [5], ocean modeling [6], and gas dynamics [7].

A moment method is called “algebraically consistent” if the discrete LO solution
matches the moments of the discrete HO solution to iterative solver tolerances inde-
pendently from the mesh size. By tying the LO solution to the moments of the HO
solution, consistency guarantees that the LO system reproduces the solution quality
of the HO solution and that both HO and LO solutions are conservative. The require-
ment of consistency often results in LO discretizations that can make the application
of existing linear solver technology difficult or impractical [8, 9]. In contrast, relax-
ing the consistency restraint leads to so-called independent methods [10] which allow
efficient solvers to be applied to the LO system [11, 12, 13, 14], leading to greater
overall computational efficiency. However, in these schemes, only the LO solution
is conservative requiring extra care when multiphysics coupling beyond that which
can be provided by the LO system alone is needed. Furthermore, it was shown in
Olivier et al. [11] that the LO solution was slow to converge to the HO solution,
requiring significant mesh refinement to match the solution quality produced by the
HO scheme in isolation. The independent methods from [11, 12, 13, 14] also produced
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suboptimally converging approximations for the first moment. Finally, consistency
was recognized as important in a recently developed HOLO algorithm with implicit-
explicit time integration [15]. Our results support the importance of consistent LO
discretizations, particularly for the first moment where independent LO systems can
yield very poor solution quality despite converging to the HO system with mesh re-
finement (see Figs. 5.8 and 5.9).

In this paper, we design discretizations of the SMM low-order system that can
be scalably solved and are algebraically consistent with the Discontinuous Galerkin
(DG) spatial discretization of the Discrete Ordinates (SN ) transport equations. In
particular, we derive consistent SMMs with LO systems equivalent to the fully con-
sistent P1 [16], Local Discontinuous Galerkin (LDG) [17], and Interior Penalty (IP)
[18] discretizations of radiation diffusion. Our approach is to use the discrete residual
procedure developed for HOLO methods [4, 19] – where the LO correction terms are
formed as a discrete residual that force a given LO system to match the moments of
HO – to generate the correction source terms needed for consistency. Through this
discrete residual, consistency with the HO discretization can be achieved for any LO
discretization, allowing the flexibility to choose LO discretizations that have known,
efficient linear solvers without sacrificing consistency.

Our motivation for this combination of schemes is that the DG SN transport dis-
cretization is commonly used in thermal radiative transfer calculations and the LDG
and IP discretizations are well known to be effectively preconditioned by Algebraic
Multigrid (AMG). The fully consistent P1 discretization is included as a comparison
method as it is known to be remarkably effective when used in the context of Diffusion
Synthetic Acceleration (DSA) but notoriously difficult to solve iteratively [8], leaving
unscalable, sparse direct methods as the only viable alternative. In addition, each of
the proposed LO discretizations produce the zeroth and first moments in the same
spaces as the zeroth and first moments of the DG SN transport equation, avoiding
the projections and interpolations needed to combine DG SN HO with finite volume
[4, 19] or vertex-centered [20] LO discretizations. In this sense, the LDG and IP LO
systems derived here are as close as possible to the fully consistent P1 method while
maintaining the solvability of the LO system.

The paper proceeds as follows. In Section 2 we describe the SMM algorithm
for the continuous transport system and in Section 3 define the DG SN transport
discretization. We then derive the discrete moments of the DG SN transport equations
and form the discrete residual for each of the P1, LDG, and IP LO systems in Section 4.
The resulting closures are analyzed and compared to the SMM closures of analogous
independent SMMs from [14]. Section 5 provides numerical results verifying the order
of accuracy of the schemes, their iterative efficiency in the thick diffusion limit, and
their weak scaling performance on a challenging, multi-material benchmark problem.
Finally, Section 6 gives conclusions.

2. Second Moment Method Algorithm. We consider the steady-state, mono-
energetic, linear transport problem with isotropic scattering given by

(2.1a) Ω · ∇ψ + σtψ =
σs
4π
φ+ q , x ∈ D ,

(2.1b) ψ(x,Ω) = ψ̄(x,Ω) , x ∈ ∂D and Ω · n < 0 ,

whereD ⊂ Rdim is the domain of the problem with ∂D its boundary, x ∈ D andΩ ∈ S2
are the spatial and angular variables, respectively, ψ(x,Ω) the angular flux, σt(x)
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and σs(x) the total and scattering macroscopic cross sections, respectively, q(x,Ω)
the fixed-source, and ψ̄(x,Ω) a specified inflow boundary function. We define the
zeroth, first, and second moments of the angular flux as φ =

∫
ψ dΩ, J =

∫
Ωψ dΩ,

and P =
∫
Ω ⊗ Ωψ dΩ and refer to them as the scalar flux, current, and pressure,

respectively. This transport problem is often extended to time and energy dependence
and coupled with more complicated physics models such as thermal radiative transfer
and radiation-hydrodynamics. In SMM, the scattering term is determined by the
scalar flux solution of a certain LO system which we now derive. The zeroth and first
angular moments of (2.1a) are

(2.2a) ∇ · J + σaφ = Q0 ,

(2.2b) ∇ ·P+ σtJ = Q1 ,

where σa(x) = σt(x) − σs(x) is the absorption macroscopic cross section and Qi =∫
Ωi q dΩ are the angular moments of the transport equation’s fixed-source, q. Let

J±
n =

∫
Ω·n≷0

Ω ·nψ dΩ denote the partial currents. Suitable boundary conditions are

found by manipulating partial currents according to

(2.3) J · n = J+
n + J−

n = (J+
n − J−

n ) + 2J−
n = B(ψ) + 2J−

n ,

where B(ψ) =
∫
|Ω · n|ψ dΩ. The moments of the transport equation have more

unknowns than equations. Thus, we introduce auxiliary equations, referred to as
closures, that relate P and B in terms of the scalar flux and current. SMM uses
additive closures of the form

(2.4a) P =
1

3
Iφ+T(ψ) ,

(2.4b) B =
1

2
φ+ β(ψ) ,

where I denotes the dim×dim identity tensor and

(2.5a) T(ψ) =

∫ (
Ω⊗Ω− 1

3
I

)
ψ dΩ ,

(2.5b) β(ψ) =

∫ (
|Ω · n| − 1

2

)
ψ dΩ ,

are the SMM correction tensor and boundary factor, respectively. Observe that the
SMM closures are simply algebraic manipulations of P and B, respectively. Thus,
when the angular flux is known, the LO SMM system is an equivalent reformulation
of the zeroth and first angular moments of the HO transport equation.

An efficient iterative algorithm is found by alternating HO and LO solves: the
left hand side of the transport equation is inverted against a fixed scattering source,
the closures T and β are computed, and the LO system is then solved to update the
transport equation’s scattering source. The closures are weak functions of the HO
solution so even simple iterative schemes converge rapidly and robustly with a cost
that is independent of the mean free path.
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3. Transport Discretization. The Discrete Ordinates (SN ) method is used to
collocate the direction variable at a set of discrete points from a quadrature rule on
the unit sphere {wd,Ωd}NΩ

d=1 such that ψd(x) = ψ(x,Ωd). Each discrete angle is then
discretized in space with linear Discontinuous Galerkin (DG) finite elements so that,
for each direction Ωd, ψd ∈ Y1 where Y1 is the space of piecewise discontinuous linear
polynomials. Let the domain D be split into finite elements, K, such that D = ∪K.
The spatial discretization is derived by multiplying the transport equation for each
Ωd by an arbitrary test function u ∈ Y1 and integrating over each element in the
mesh. On interior interfaces, upwinding is used such that

(3.1) Ωd · n ψ̂d =

{
Ωd · nψd,1 , Ωd · n > 0

Ωd · nψd,2 , Ωd · n < 0
,

where ψd,i = ψd|Ki and the indices “1” and “2” correspond to two arbitrary neighbor-
ing elements in the mesh following the convention that the normal vector, n, points
from K1 to K2. Note that the upwind flux can be equivalently written using the
switch functions

(3.2) Ωd · n ψ̂d =
1

2
(Ωd · n+ |Ωd · n|)ψd,1 +

1

2
(Ωd · n− |Ωd · n|)ψd,2 .

Combining like terms, this is equivalent to

(3.3) Ωd ·n ψ̂d =
Ω · n
2

(ψd,1+ψd,2)+
|Ω · n|

2
(ψd,1−ψd,2) = Ω ·n {{ψd}}+

|Ω · n|
2

JψdK

where, for u ∈ Y1,

(3.4) JuK = u1 − u2 , {{u}} =
1

2
(u1 + u2) ,

are the jump and average, respectively, with an analogous definition for vector-valued
arguments. Note that while |Ω · n| is continuous, it has a discontinuous derivative at
Ω · n = 0 and thus angular moments of the upwind numerical flux will be difficult to
compute accurately with numerical quadrature. On the boundary of the domain, the
numerical flux is

(3.5) Ωd · n ψ̂d =

{
Ωd · nψd , Ωd · n > 0

Ωd · n ψ̄(x,Ωd) , Ωd · n < 0
.

That is, for an element on the boundary, the inflow is specified by the boundary
function, ψ̄, and the outflow is specified by the numerical solution.

With these definitions, the transport discretization is: for each Ωd, find ψd ∈ Y1
such that

(3.6)∫
Γ0

Ω ·n JuK {{ψd}}ds+
1

2

∫
Γ0

|Ω ·n| JuK JψdKds+
∫
Γ+
b,d

Ω ·nuψ ds−
∫

Ω ·∇huψd dx

+

∫
σt uψd dx =

1

4π

∫
σs uφdx+

∫
u q dx−

∫
Γ−
b,d

Ω · nuψ̄ ds , ∀u ∈ Y1 ,

where Γ0 is the set of unique interior faces in the mesh, Γ±
b,d are the outflow/inflow

portions of the boundary of the domain, and ∇h the element-local gradient. In the
SMM algorithm, the scalar flux in the scattering term is determined by the LO system
and thus each HO solve involves inverting the left hand side of (3.6) only.
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4. Derivation of Consistent SMMs. SMMs consistent with DG SN transport
are derived by introducing an SMM correction term as a residual between the moments
of the DG SN transport equations and a chosen LO discretization. Upon iterative
convergence, terms present in the LO system but not in the HO system are canceled by
this residual, making the solution of the LO system equivalent to the angular moments
of the discrete transport equation. This process allows us to choose discretizations of
the LO system for which scalable and efficient iterative solution methods are available
while still maintaining consistency between the HO and LO equations.

In this section, we derive the zeroth and first angular moments of the discrete
transport equation and the correction source terms that make the fully consistent
P1, Local Discontinuous Galerkin (LDG), and Interior Penalty (IP) discretizations of
radiation diffusion consistent with the moments of DG SN transport. Additionally,
the correction terms for the consistent IP method will be analyzed and compared to
the independent variant of IP in [14].

4.1. Angular Moments of DG SN Transport. To notationally separate the
HO and LO variables, we use the “HO” subscript to denote quantities computed
from the HO solution, ψd. That is, the zeroth, first, and second moments of the HO
solution are denoted

(4.1) ϕHO =
∑
d

wd ψd , JHO =
∑
d

wd Ωd ψd , PHO =
∑
d

wd Ωd ⊗Ωd ψd .

Since each ψd ∈ Y1, we have that ϕHO and each component of JHO and PHO are all
members of Y1. We write [Y1]

dim to denote the dim-fold tensor product of the space
Y1 such that JHO ∈ [Y1]

dim has each component in Y1. We focus primarily on the
upwind numerical fluxes in the discretized transport equation because the remaining
terms are derived by simply replacing the discrete moments of ψd with ϕHO, JHO, and
PHO, where appropriate. The zeroth and first moments of the upwind numerical flux,
denoted by ĴHO ·n and P̂HOn, respectively, require half-range integrations because the
upwind flux cannot be integrated exactly by SN quadrature. From (3.3), the zeroth
moment of the upwind numerical flux is

(4.2)

ĴHO · n =
∑
d

wd Ωd · n ψ̂d

=
∑
d

wd

(
Ωd · n {{ψd}}+

1

2
|Ω · n| JψdK

)

=

{{∑
d

wd Ωd · nψd

}}
+

1

2

t∑
d

wd |Ωd · n|ψd

|

= {{JHO · n}}+ 1

2

q
J+
HO,n − J−

HO,n

y
,

where

(4.3) J±
HO,n =

∑
Ωd·n≷0

wd Ωd · nψd

are the half-range or “partial” currents. Applying the definitions of the jump and av-
erage and dropping the “HO” subscript for brevity, the zeroth moment of the upwind
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numerical flux is simply

(4.4)

Ĵ · n = {{J · n}}+ 1

2

q
J+
n − J−

n

y

=
1

2
(J1 · n+ J2 · n) +

1

2

(
J+
n,1 − J−

n,1 − (J+
n,2 − J−

n,2)
)

=
1

2

(
J+
n,1 + J−

n,1 + J+
n,2 + J−

n,2

)
+

1

2

(
J+
n,1 − J−

n,1 − (J+
n,2 − J−

n,2)
)

= J+
n,1 + J−

n,2 ,

where J±
n,i = J±

n |Ki
are the half-range currents computed using information in element

Ki. In other words, the zeroth moment of the upwind numerical flux is computed
from the sum of two partial currents, one in which information from element “1” is
used to compute the particle flow from K1 to K2 and the other in which information
from element “2” computes the flow in the opposite direction from K2 to K1. This
viewpoint lends itself to a simpler implementation while (4.2) is useful in analyzing
the closures that follow in subsequent sections. On the boundary, the zeroth moment
of the numerical flux is

(4.5) ĴHO · n =
∑
d

wd Ωd · n ψ̂d = J+
HO,n + Jin

where

(4.6) Jin =
∑

Ωd·n<0

wd Ωd · n ψ̄(x,Ωd)

is the inflow partial current computed from the inflow boundary function, ψ̄.
Similarly, the first moment of the upwind numerical flux is

(4.7) P̂HOn =
∑
d

wd Ωd(Ωd · n) ψ̂d = {{PHOn}}+
1

2

q
P+

HO,n − P−
HO,n

y
,

where

(4.8) P±
HO,n =

∑
Ωd·n≷0

wd Ωd(Ωd · n)ψd

are the half-range pressures. Again, applying the definitions of the jump and average
yields P̂HOn = P+

HO,n,1 + P−
HO,n,2 so that the first moment of the upwind numerical

flux is computed from the half range pressures. On the boundary,

(4.9) P̂HOn =
∑
d

wd Ωd(Ωd · n) ψ̂d = P+
HO,n + P in

where

(4.10) P in =
∑

Ωd·n<0

wd Ωd(Ωd · n) ψ̄(x,Ωd)

is the half-range pressure computed from the inflow transport boundary condition.
The discrete zeroth moment is derived by operating on the DG SN transport

equation from (3.6) by the quadrature sum
∑

d wd (·). Each component of the discrete
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first moment is similarly derived by operating on (3.6) with the quadrature sum∑
d wd ei ·Ωd where ei are the coordinate-axis unit vectors and 1 ≤ i ≤ dim. We use

the fact that

(4.11) {v : v = eiu ∀u ∈ Y1 and 1 ≤ i ≤ dim}

forms a basis for the space [Y1]
dim to write all the components of the first moment

equation as a single equation with a vector-valued test function v = eiu where u ∈ Y1.
The zeroth and first moments of the DG SN transport discretization are

(4.12a)

∫
Γ0

JuK
(
{{JHO · n}}+ 1

2

q
J+
HO,n − J−

HO,n

y)
ds+

∫
Γb

uJ+
HO,n ds

−
∫

∇hu · JHO dx+

∫
σa uϕHO dx =

∫
uQ0 dx−

∫
Γb

uJin ds ,

(4.12b)

∫
Γ0

JvK ·
(
{{PHOn}}+

1

2

q
P+

HO,n − P−
HO,n

y)
ds+

∫
Γb

v · P+
HO,n ds

−
∫

∇hv : PHO dx+

∫
σt v · JHO dx =

∫
v ·Q1 −

∫
v · P in ds ,

where u ∈ Y1 and v ∈ [Y1]
dim are arbitrary and the angular moments of the source

q are computed with SN quadrature. In the following, (4.12) will be algebraically
manipulated so that the left hand side is equivalent to a desired LO discretization of
radiation diffusion. Manipulations applied on the left hand side are balanced on the
right hand side, producing correction terms that make the LO system equivalent to
(4.12).

4.2. P1. The P1 diffusion system is derived by restricting the transport solution
to be at most linearly anisotropic. That is, the half-range current and half and full-
range pressures are closed under the assumption that ψd = 1

4π (φ+ 3Ωd · J). Under
this ansatz, the pressure is

(4.13) P =
1

3
Iφ ,

and the half-range currents are

(4.14) J±
n =

J · n
2

± α

2
φ .

Note that using the quadrature-dependent term α =
∑

d wd |Ωd ·n| such that α→ 1/2
as NΩ → ∞ can be important for achieving optimal convergence for independent
SMMs [14]. Using the upwinded partial current definition of ĴHO · n in (4.4) and the
linearly anisotropic partial currents, the zeroth moment of the upwind numerical flux
is

(4.15)

Ĵ · n = J+
n,1 + J−

n,2

=
J1 · n

2
+
α

2
φ1 +

J2 · n
2

− α

2
φ2

= {{J · n}}+ α

2
JφK .
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The first moment is closed using (4.13) and the partial currents are used to find an
expression for the scalar flux. That is,

(4.16) J+
n − J−

n = αφ⇒ φ =
1

α
(J+

n − J−
n ) .

This expression is combined with (4.13) and upwinded so that the first moment of
the upwind numerical flux is:

(4.17)

P̂n =
n

3α

(
J+
n,1 − J−

n,2

)
=

n

3α

[
J1 · n

2
+
α

2
φ1 −

(
J2 · n

2
− α

2
φ2

)]
=

n

6α
JJ · nK +

n

3
{{φ}} .

Because P̂n depends on J · n, this numerical flux couples the current degrees of
freedom across interior faces. For boundary faces, information from the “2” element
is computed from the half range moment of the inflow source function so that

(4.18a) Ĵ · n =
J · n
2

+
α

2
φ+ Jin ,

(4.18b) P̂n =
n

6α
J · n+

n

6
φ+ P in .

The moments of DG SN transport are manipulated to make the left hand side of (4.12)
equivalent to P1. To that end, we seek to define the numerical fluxes and pressure
such that, upon iterative convergence, the HO and LO variables cancel leaving only
the numerical fluxes and pressure associated with the HO moments. First, consider
ĴHO ·n from (4.2). We add the P1 numerical flux in (4.15) to ĴHO ·n and subtract the
P1 numerical flux computed from the HO solution. The resulting P1 SMM numerical
flux is

(4.19)

ĴP1 · n = ĴHO · n+ {{J · n}}+ α

2
JφK − {{JHO · n}} − α

2
JϕHOK

= {{J · n}}+ α

2
JφK +

1

2

q
J+
HO,n − J−

HO,n − αϕHO

y

= {{J · n}}+ α

2
JφK +

1

2
JβK ,

where β =
∑

d wd (|Ωd · n| − α)ψd is the discrete version of the SMM boundary
correction factor from (2.5b). For boundary faces, an analogous process applied to
the boundary numerical flux in (4.5), using the P1 boundary flux from (4.18a), yields

(4.20)

ĴP1 · n = J+
HO,n + Jin +

J · n
2

+
α

2
φ− JHO

2
− α

2
ϕHO

=
J · n
2

+
α

2
φ+

1

2

(
J+
HO,n − J−

HO,n − αϕHO

)
+ Jin

=
J · n
2

+
α

2
φ+

β

2
+ Jin .
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Repeating for the first moment of the numerical flux, now using (4.17) and (4.7), gives
(4.21)

P̂P1n = P̂HOn+
n

6α
JJ · nK +

n

3
{{φ}} − n

6α
JJHO · nK − n

3
{{ϕHO}}

=
n

6α
JJ · nK +

n

3
{{φ}}+

{{
PHOn− n

3
ϕHO

}}
+

1

2

r
P+

HO,n − P−
HO,n − n

3α
JHO · n

z

=
n

6α
JJ · nK +

n

3
{{φ}}+ {{Tn}}+ 1

2

r
P+

HO,n − P−
HO,n − n

3α
JHO · n

z

where T =
∑

d wd (Ωd ⊗Ωd − 1/3I)ψd is the discrete version of the SMM correction
tensor from (2.5a). On the boundary, (4.9) is manipulated with (4.18b) to yield

(4.22) P̂P1n = P+
HO,n + P in +

n

6α
J · n+

n

6
φ− n

6α
JHO · n− n

6
ϕHO .

Finally, the full range pressure is closed with

(4.23) PSMM = PHO +
1

3
Iφ− 1

3
IϕHO =

1

3
Iφ+T .

Observe that, if the HO and LO scalar flux and current were equal, the HO and LO
variables in (4.19), (4.20), (4.21), (4.22), and (4.23) would cancel leaving only the
corresponding HO numerical flux or pressure, as desired.

Substituting the P1 interior and boundary numerical fluxes and the SMM pressure
for their HO counterparts in (4.12) and moving all HO terms to the right hand side
yields the LO P1 SMM problem: find (φ,J) ∈ Y1 × [Y1]

dim such that

(4.24a)

∫
Γ0

JuK {{J · n}}ds+ α

2

∫
Γ0

JuK JφKds+
1

2

∫
Γb

uJ · n ds+
α

2

∫
Γb

uφds

−
∫

∇hu · J dx+

∫
σa uφdx =

∫
uQ0 dx−

∫
Γb

uJin ds+R0
P1(u) , ∀u ∈ Y1 ,

(4.24b)
1

6α

∫
Γ0

Jv · nK JJ · nKds+
1

3

∫
Γ0

Jv · nK {{φ}}ds+ 1

6α

∫
Γb

(v·n)(J ·n) ds+1

6

∫
Γb

v·nφds

−1

3

∫
∇h·v φdx+

∫
σt v·J dx =

∫
v·Q1 dx−

∫
Γb

v·P in ds+R1
P1(v) , ∀v ∈ [Y1]

dim ,

where

(4.25a) R0
P1(u) = −1

2

∫
Γ0

JuK JβKds− 1

2

∫
Γb

uβ ds ,

(4.25b)

R1
P1(v) = −

∫
Γ0

JvK · {{Tn}}ds− 1

2

∫
Γ0

JvK ·
r
P+

HO,n − P−
HO,n − n

3α
JHO · n

z
ds

−
∫
Γb

v ·
(
P+

HO,n − n

6α
JHO · n− n

6
ϕHO

)
ds+

∫
∇hv : Tdx ,
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are P1 correction source terms for the zeroth and first moments, respectively. Note
that this system can be symmetrized by multiplying the first moment equation by
−3. To show this, the local divergence is integrated by parts on each element:
(4.26)∫

∇h · v φdx =

∫
Γ0

Jv · nφKds+
∫
Γb

v · nφds−
∫

v · ∇hφdx

=

∫
Γ0

Jv · nK {{φ}}ds+
∫
Γ0

{{v · n}} JφKds+
∫
Γb

v · nφds−
∫

v · ∇hφdx

so that

(4.27)
1

3

∫
Γ0

Jv · nK {{φ}}ds+ 1

6

∫
Γb

v · nφds− 1

3

∫
∇h · v φdx

= −1

3

∫
Γ0

{{v · n}} JφKds− 1

6

∫
Γb

v · nφds+
1

3

∫
v · ∇hφdx .

The terms on the left hand side appear in the first moment equation (4.24b) and are
then symmetric up to a factor of −1/3 with

(4.28)

∫
Γ0

JuK {{J · n}}ds+ 1

2

∫
Γb

uJ · nds−
∫

∇hu · J dx

from the zeroth moment. The remaining terms are symmetric.

4.3. Consistent Low-Order Systems with Scalable Solvers. As mentioned,
the P1 LO system rapidly accelerates the solution of the HO system, but is difficult
to solve iteratively. We now design LO systems so that the left hand side matches
existing discretizations for elliptic problems to which efficient and scalable solvers can
be applied, with right hand side source terms that result in consistent methods.

After discretizing the LO system, the assembled matrices take a block form

(4.29) ALO =

[
MJ −1/3DT

D Mφ

]
.

We consider LO systems based on the LDG [17] and IP [18] methods. Both schemes
allow for an efficient solution procedure by severing the coupling between the normal
component of the current across interior mesh interfaces. That is, the numerical flux
for the first moment equation is chosen to be independent of J · n. This makes MJ

block-diagonal by element, allowing the current to be eliminated directly to form
an exact block LDU decomposition, with Schur complement in scalar flux, Sφ =
Mφ + 1/3DM−1

J DT . Note that Sφ has the form of a discrete diffusion operator and
can be scalably preconditioned with AMG. Once the scalar flux is known, the current
solution can be easily computed with element-local back substitution.

Due to the localization of the current, stabilization must be included to ensure
the resulting discretizations are stable with respect to h. LDG and IP differ only in
their choice of stabilization. Figure 4.1 shows sparsity plots of the block IP system
(4.29) as the current is localized and stabilization is added. The stabilization terms
are artifacts of the choice of the LO discretization. Maintaining consistency requires
modified SMM correction source terms that will impact the convergence rate of the
SMM algorithm.
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(a) (b) (c)

Fig. 4.1: Sparsity plots depicting DG discretizations of the Poisson equation in first-
order form. The degrees of freedom are ordered such that the first block row corre-
sponds to the current and the second to the scalar flux, as in (4.29). Plot (a) shows
the sparsity pattern for a P1-like numerical flux. Observe that the top diagonal block
is coupled to its neighbors, preventing the efficient elimination of the current. Plot
(b) shows the sparsity pattern associated with the approach taken by the LDG and IP
discretizations where the coupling in the normal component of the current is severed
and replaced with alternate stabilization terms, allowing the current to be efficiently
eliminated on each element. Plot (c) shows the sparsity pattern that results after
eliminating the current with block Gaussian elimination.

4.3.1. Local Discontinuous Galerkin. We first consider the LDG method
which is notable for its lack of problem-dependent parameters and avoidance of a
penalty parameter that scales inversely with the mesh size. LDG is also naturally
formulated and typically implemented as the Schur complement in the scalar flux of
the block 2 × 2 system (4.29). The LDG numerical fluxes are based on an arbitrary
upwinding of the current that is balanced by an opposing choice for the scalar flux.
Following Cockburn and Dong [17], the LDG numerical fluxes are

(4.30a) Ĵ · n = {{J · n}}+ s

2
JJ · nK + κ JφK ,

(4.30b) P̂n =
n

3

(
{{φ}} − s

2
JφK

)
.

When s = +1, {{J · n}} + s/2 JJ · nK = J1 · n with J2 · n chosen when s = −1. The
scalar flux is chosen oppositely, with φ2 and φ1 selected when s = +1 and s = −1,
respectively. The upwinding parameter s is chosen according to

(4.31) s =

{
+1 , w · n > 0

−1 , w · n < 0

for some arbitrary, non-zero vector w ∈ Rdim. Note that P̂n does not depend on
the current, meaning the current is not coupled across interior faces in its diagonal
block, allowing the efficient solution procedure outlined above. Here, κ ≥ 0 is a free
parameter that we elect to set to α/2 to exactly match the analogous term in the P1

LO system (4.24a). The numerical fluxes on the boundary are the same as for P1

from (4.20) and (4.22).
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Observe that the LDG numerical fluxes add s/2 JJ · nK to the P1 zeroth moment
numerical flux in (4.19) and that 1/6α JJ · nK is replaced with −s/2 JφK in the first
moment numerical flux from (4.21). The LDG SMM numerical fluxes are then

(4.32a) ĴLDG · n = {{J · n}}+ s

2
JJ · nK +

α

2
JφK +

1

2
Jβ − sJHO · nK ,

(4.32b) P̂LDGn =
n

3

(
{{φ}} − s

2
JφK

)
+ {{Tn}}+ 1

2

r
P+

HO,n − P−
HO,n +

n

3
sϕHO

z
,

for interior faces and

(4.33a) ĴLDG · n =
J · n
2

+
α

2
φ+

1

2
β + Jin ,

(4.33b) P̂LDGn = P+
HO,n + P in +

n

6α
J · n+

n

6
φ− n

6α
JHO · n− n

6
ϕHO ,

for boundary faces. As with P1, the pressure term is closed with (4.23). Replacing
the numerical fluxes in the P1 weak form (4.24), the consistent LDG LO problem is:
find (φ,J) ∈ Y1 × [Y1]

dim such that

(4.34a)∫
Γ0

JuK
(
{{J · n}}+ s

2
JJ · nK

)
ds+

α

2

∫
Γ0

JuK JφKds+
1

2

∫
Γb

uJ ·nds+
α

2

∫
Γb

uφds

−
∫

∇hu · J dx+

∫
σa uφdx =

∫
uQ0 dx−

∫
Γb

uJin ds+R0
LDG(u) , ∀u ∈ Y1 ,

(4.34b)
1

3

∫
Γ0

Jv · nK
(
{{φ}} − s

2
JφK

)
ds+

1

6α

∫
Γb

(v · n)(J · n) ds+ 1

6

∫
Γb

v · nφds

−1

3

∫
∇h·v φdx+

∫
σt v·J dx =

∫
v·Q1 dx−

∫
v·P in ds+R1

LDG(v) , ∀v ∈ [Y1]
dim .

The LDG correction source terms are

(4.35a) R0
LDG(u) = −1

2

∫
Γ0

JuK JβK − 1

2

∫
Γb

uβ ds+
s

2

∫
Γ0

JuK JJHO · nKds ,

(4.35b) R1
LDG(v) = −

∫
Γ0

JvK · {{Tn}}ds− 1

2

∫
Γ0

JvK ·
r
P+

HO,n − P−
HO,n +

n

3
sϕHO

z
ds

−
∫
Γb

v ·
(
P+

HO,n − n

6α
JHO · n− n

6
ϕHO

)
ds+

∫
∇hv : Tdx .

4.3.2. Interior Penalty. The IP numerical fluxes are

(4.36a) Ĵ · n = {{J · n}}+ κ JφK ,

(4.36b) P̂n =
n

3
{{φ}} ,



CONSISTENT SECOND MOMENT METHODS 13

where the parameter κ ∝ σ−1
t h−1 is required to ensure stability as h→ 0 and the pro-

portionality constant is typically problem dependent and requires tuning [18]. Com-
pared to the zeroth moment P1 numerical flux in (4.19), (4.36a) differs in the choice
of coefficient in the jump-jump bilinear form, κ versus α/2. For the first moment,
(4.36b) has removed the term depending on JJ · nK in (4.17). The interior numerical
fluxes are then

(4.37a) Ĵ IP · n = {{J · n}}+ κ JφK +
1

2
JβK +

(α
2
− κ

)
JϕHOK ,

(4.37b) P̂IPn =
n

3
{{φ}}+ {{Tn}}+ 1

2

q
P+

HO,n − P−
HO,n

y
.

The factor of α/2 − κ occurs because β/2 implicitly includes −α/2ϕHO. We present
results with κ prescribed according to the modified interior penalty formulation from
[21] defined as

(4.38) κMIP = max (κIP , α/2) ,

where κIP = C
3σth

is the standard interior penalty parameter with problem-dependent
constant, C. In the under-resolved thick diffusion limit, κMIP → α/2, causing (α/2−
κ) JϕHOK to vanish. The IP LO system is: find (φ,J) ∈ Y1 × [Y1]

dim such that

(4.39a)

∫
Γ0

JuK {{J · n}}ds+
∫
Γ0

κ JuK JφKds+
1

2

∫
Γb

uJ · nds+
α

2

∫
Γb

uφds

−
∫

∇hu · J dx+

∫
σa uφdx =

∫
uQ0 dx−

∫
Γb

uJin ds+R0
IP(u) , ∀u ∈ Y1 ,

(4.39b)
1

3

∫
Γ0

Jv · nK {{φ}}ds+ 1

6α

∫
Γb

(v · n)(J · n) ds+ 1

6

∫
Γb

v · nφds

−1

3

∫
∇h·v φdx+

∫
σt v·J dx =

∫
v·Q1 dx−

∫
v·P in ds+R1

IP(v) , ∀v ∈ [Y1]
dim ,

where

(4.40a) R0
IP(u) = −1

2

∫
Γ0

JuK JβK − 1

2

∫
Γb

uβ ds+

∫
Γ0

(
κ− α

2

)
JuK JϕHOKds ,

(4.40b) R1
IP(v) = −

∫
Γ0

JvK · {{Tn}}ds− 1

2

∫
Γ0

JvK ·
q
P+

HO,n − P−
HO,n

y
ds

−
∫
Γb

v ·
(
P+

HO,n − n

6α
JHO · n− n

6
ϕHO

)
ds+

∫
∇hv : Tdx .

4.3.3. Alternative Boundary Conditions. The boundary conditions derived
from the moments of DG SN transport have a different structure than those used for
the independent DG SMMs derived in [14]. We refer to these two types of boundary
conditions as half and full-range, respectively, owing to the domain of integration
associated with the boundary corrections. It was found that the boundary conditions
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affect the solvability of the LO system and the performance of the consistent SMMs
in the thick diffusion limit. The boundary conditions from [14] are of the form

(4.41a) Ĵ · n = αφ+ 2Jin ,

(4.41b) P̂n =
n

3
φ .

Comparing these boundary conditions to the DG SN moment boundary conditions
from (4.5) and (4.9), alternative boundary fluxes for LDG and IP are

(4.42a)
Ĵ full · n = ĴHO · n+ αφ+ 2Jin − (αϕHO + 2Jin)

= αφ+ J+
HO,n − αϕHO + Jin ,

(4.42b)
P̂fulln = P̂HOn+

n

3
φ− n

3
ϕHO

=
n

3
φ+ P+

HO,n − n

3
ϕHO + P in .

With these full range boundary fluxes, the LDG LO problem is: find (φ,J) ∈ Y1 ×
[Y1]

dim such that

(4.43a)

∫
Γ0

JuK
(
{{J · n}}+ s

2
JJ · nK

)
ds+

α

2

∫
Γ0

JuK JφKds+ α

∫
Γb

uφds

−
∫

∇hu·J dx+

∫
σa uφdx =

∫
uQ0 dx−2

∫
Γb

uJin ds+R0
LDG,full(u) , ∀u ∈ Y1 ,

(4.43b)
1

3

∫
Γ0

Jv · nK
(
{{φ}} − s

2
JφK

)
ds+

1

3

∫
Γb

v · nφds

−1

3

∫
∇h·v φdx+

∫
σt v·J dx =

∫
v·Q1 dx−

∫
v·P in ds+R1

LDG,full(v) , ∀v ∈ [Y1]
dim ,

where
(4.44a)

R0
LDG,full(u) = −1

2

∫
Γ0

JuK JβKds+
s

2

∫
Γ0

JuK JJHO · nKds−
∫
Γb

u
(
J+
HO,n − αϕHO − Jin

)
ds ,

(4.44b)

R1
LDG,full(v) = −

∫
Γ0

JvK · {{Tn}}ds− 1

2

∫
Γ0

JvK ·
r
P+

HO,n − P−
HO,n +

n

3
sϕHO

z
ds

−
∫
Γb

v ·
(
P+

HO,n − n

3
ϕHO

)
ds+

∫
∇hv : Tdx .

With full range boundary conditions, the IP LO problem is: find (φ,J) ∈ Y1× [Y1]
dim

such that

(4.45a)

∫
Γ0

JuK {{J · n}}ds+
∫
Γ0

κ JuK JφKds+ α

∫
Γb

uφds

−
∫

∇hu ·J dx+

∫
σa uφdx =

∫
uQ0 dx−2

∫
Γb

uJin ds+R0
IP,full(u) , ∀u ∈ Y1 ,
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(4.45b)
1

3

∫
Γ0

Jv · nK {{φ}}ds+ 1

3

∫
Γb

v · nφds− 1

3

∫
∇h · v φdx

+

∫
σt v · J dx =

∫
v ·Q1 dx−

∫
v · P in ds+R1

IP,full(v) , ∀v ∈ [Y1]
dim ,

where
(4.46a)

R0
IP,full(u) = −1

2

∫
Γ0

JuK JβKds−
∫
Γb

u
(
J+
HO,n − αϕHO − Jin

)
ds+

∫
Γ0

(
κ− α

2

)
JuK JϕHOKds ,

(4.46b) R1
IP,full(v) = −

∫
Γ0

JvK · {{Tn}}ds− 1

2

∫
Γ0

JvK ·
q
P+

HO,n − P−
HO,n

y
ds

−
∫
Γb

v ·
(
P+

HO,n − n

3
ϕHO

)
ds+

∫
∇hv : Tdx .

4.4. Analysis of Consistent Closures. The correction source terms discussed
above contain model and discretization correction terms. We define discretization cor-
rections as terms that are on the order of the discretization error and can be removed
without degrading the physics fidelity of the algorithm resulting in an independent
SMM. Since the approximation spaces for the LO solution and the moments of the HO
solution are the same, the volumetric terms from the LO system exactly match the
volumetric terms in the moments of the HO system. Thus, discretization corrections
arise only on the interior and boundary faces of the mesh. Note that, when the true
solution is continuous, JψdK is on the order of the discretization error, hence, terms in
the correction sources that depend on a jump in a HO variable can be ignored without
altering the overall algorithm’s spatial convergence rate.

Consider, for example, the LDG correction source terms (4.35a) and (4.35b). The
interior face terms depending on JβK, JJHO · nK, JϕHOK, and

q
P+

HO,n − P−
HO,n

y
can all

be dropped and, by our definition, are discretization corrections. In contrast, the
terms

(4.47)

∫
Γ0

JvK · {{Tn}}ds−
∫

∇hv : Tdx

vanish only when the solution is linearly anisotropic, which we consider to be model
correction terms. In practice, we have seen that neglecting the discretization correc-
tion terms results in lower solution quality, especially for the current. Because the
correction sources in a consistent method contain discretization corrections in addition
to the model corrections required by an independent SMM, we postulate that con-
sistent methods will require more fixed-point iterations than independent methods.
However, these additional terms are on the order of the discretization error so that
consistent and independent methods should converge at similar rates on a mesh that
is refined enough. Finally, note that the independent IP SMM in [14] is equivalent
to the consistent IP SMM with full-range boundary conditions from (4.45) when the
discretization corrections are neglected.

5. Numerical Results. We now present numerical results demonstrating the
accuracy and performance of the methods. The implementations used the MFEM
finite element framework [22] and and were solved with the BoomerAMG preconditioner
from the hypre sparse linear algebra library [23] and the KINSOL fixed-point solver
with Anderson acceleration from the Sundials package [24]. The P1 discretization is
solved with the distributed version of SuperLU [25].
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Fig. 5.1: Errors on the MMS problem. The P1, LDG, and IP methods were equivalent
to the iterative tolerance of 10−10.

5.1. Accuracy. The accuracy of the schemes are investigated with the Method
of Manufactured Solutions (MMS). The computational domain is D = [0, 1]2. The
solution is set to

(5.1) ψ =
1

4π

(
sin(πx) sin(πy) + (Ωx +Ωy) sin(2πx) sin(2πy)/2

+ (Ω2
x +Ω2

y) sin

(
3π(x+ δ)

1 + 2δ

)
sin

(
3π(y + δ)

1 + 2δ

)
/4 + 2

)
,

where δ = 0.05 allows testing the accuracy of the methods on problems with spa-
tially dependent, anisotropic inflow boundary conditions. The scalar flux and current
solutions are then:

(5.2a) φ = sin(πx) sin(πy) +
1

6
sin

(
3π(x+ δ)

1 + 2δ

)
sin

(
3π(y + δ)

1 + 2δ

)
+ 2 ,

(5.2b) J =
1

6
sin(2πx) sin(2πy)

[
1
1

]
.

The material data are σt = 2 cm−1 and σs = 1.9 cm−1. The fixed-source MMS prob-
lem is solved with fixed-point iteration to a tolerance of 10−10 with level symmetric
S4 quadrature. The error is computed in the L2(D) and [L2(D)]dim for the scalar
flux and current, respectively. Figures 5.1a and 5.1b show the errors as the mesh is
refined, comparing the consistent SMMs and the independent variants of LDG and
IP. For the scalar flux, all methods produce the optimal second-order convergence.
However, for the current, only the consistent methods are able to achieve optimal
accuracy with the independent LDG method converging the current at O(h3/2) and
independent IP at first-order. Notably, all the consistent methods produce the same
error for both the scalar flux and current.

Next, we demonstrate that the consistent methods produce HO and LO solutions
that match up to iterative tolerances independent of the mesh size. Figures 5.2a and
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Fig. 5.2: Consistency between the HO and LO solution variables on the MMS problem.
The P1, LDG, and IP methods were equivalent to below the iterative tolerance of
10−10.

Table 5.1: Iterations for SMM to converge in thick diffusion limit.

LDG IP

ϵ P1 Full Half Indep. Full Half Unmodified Indep.

10−1 9 13 9 9 13 9 13 9
10−2 5 16 5 5 16 5 54 5
10−3 4 15 3 3 15 3 151 3
10−4 3 11 3 3 11 3 70 3

5.2b show the difference between the LO solution and the zeroth and first angular
moments of the HO solution. In other words, these figures plot

(5.3) ∥φ− ϕHO∥ , ∥J − JHO∥ ,

where ϕHO =
∑

d wd ψd and JHO =
∑

d wd Ωd ψd. Observe that the three consistent
schemes produce consistency errors below the iterative tolerance of 10−10 and that
the error is independent of the mesh size. By contrast, the independent methods have
consistency error on the order of the LO discretization error and thus the consistency
error depends on the mesh size.

5.2. Thick Diffusion Limit. We now compare the iterative efficiency of the
methods in the asymptotic, thick diffusion limit. The domain is [0, 1]2. The materials
are set to

(5.4) σt = 1/ϵ , σs = 1/ϵ− ϵ , q = ϵ ,

where ϵ ∈ (0, 1] such that ϵ → 0 induces the diffusion limit. Level symmetric S4

angular quadrature is used with a coarse 8×8 mesh. This is a numerically challenging,
but common in practice, regime where robust performance is crucial.
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Fig. 5.3: Lineouts of the scalar flux along y = 0.5 cm for the consistent SMMs as
ϵ→ 0.
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Fig. 5.4: Depiction of the geometry of the crooked pipe benchmark problem. The
optically thin pipe and optically thick wall are depicted as gray and black, respectively.

Table 5.1 shows the number of fixed-point iterations for convergence to a tolerance
of 10−6 as ϵ→ 0. The consistent P1, LDG, and IP SMMs are compared to the inde-
pendent variants of LDG and IP. The LDG and IP methods are compared with both
full and half-range boundary conditions. In addition, the consistent IP scheme with-
out the modified interior penalty parameter specification from [21] is shown. Aside
from the unmodified IP method, all schemes achieve iterative efficiency independent
of ϵ. Convergence of the consistent LDG and IP methods with half-range boundary
conditions is comparable to that of the P1 method and convergence is significantly
improved compared to the full-range boundary conditions. The IP method without
the modified penalty parameter scales poorly with ϵ. This problem is severely under-
resolved, in which case the IP discretization corrections are relatively large compared
to the physics corrections, slowing iterative convergence. The modified penalty param-
eter ensures that the discretization corrections remain bounded as ϵ → 0. Lineouts
of the solutions for the consistent P1, LDG, and IP SMMs are shown in Fig. 5.3,
illustrating that physically realistic solutions are obtained as ϵ→ 0.

5.3. Crooked Pipe Problem. Here, we compare performance in parallel and
solution quality of the consistent and independent SMMs on a steady-state, linear
transport variant of the crooked pipe benchmark. The geometry, depicted in Fig. 5.4,
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consists of two materials, the optically thick wall and the optically thin pipe, which
have a 1000× difference in total cross section between the two regions. The wall and
pipe are characterized by

Wall: σt = 200 cm−1 , σa = 10−3cm−1 , q = 10−7cm−3 str−1 s−1 ,(5.5a)

Pipe: σt = 0.2 cm−1 , σa = 10−3cm−1 , q = 10−7cm−3 str−1 s−1 .(5.5b)

The absorption and source are chosen to correspond to the first backward Euler time
step of a thermal radiative transfer calculation with c∆t = 103cm and initial condition
ψ0 = 10−4cm−2 str−1 s−1. The isotropic, inflow boundary condition is

(5.6) ψ̄ =

{
1
2π , x = 0 and |y| ≤ 0.5 cm

0 , otherwise
,

so that radiation isotropically enters the left entrance of the pipe with vacuum bound-
ary conditions applied elsewhere. A reflection plane along the line y = 0 is used to
halve the computational domain. We use level symmetric S12 angular quadrature.

5.3.1. Parallel Performance. The efficiency of the outer fixed-point itera-
tion with preconditioned, linear inner iteration is investigated under weak scaling
wherein the MPI-decomposed mesh is uniformly refined as the number of proces-
sors is increased so that the work per processor remains constant. The base mesh
has 224 × 64 uniform quadrilateral elements that are aligned with the materials in
the problem. Across four refinements of this base mesh, the mesh size ranges from
h = 3.125 × 10−2 cm to h = 1.953 × 10−3 cm. We compare fixed-point iteration and
Anderson-accelerated fixed-point iteration [26] with five Anderson vectors. The outer
tolerance is 10−6. The P1 LO system is solved with SuperLU. All other methods are
solved with conjugate gradient preconditioned with one V-cycle of AMG to a toler-
ance of 10−8. The solution from the previous outer iteration is used as an initial guess
for the inner iteration so that the initial guess becomes progressively more accurate
as the outer iteration converges. The streaming and collision operator is inverted di-
rectly with a full parallel transport sweep. The sweep is ordered so that the reflection
boundary condition is inverted exactly. The calculations were run on 22-core Intel
Skylake Gold processors with two sockets and 376 GB of memory per node. The
runtime is reported as the minimum of three repeated executions for each method
and refinement.

The number of outer fixed-point iterations is shown in Table 5.2 for the consistent
P1, LDG, and IP and independent LDG and IP methods. The final P1 data point
could not be obtained due to the SuperLU solve of the P1 LO system exceeding the
memory available on six nodes. For P1 and the independent methods, the number
of outer iterations increases as the mesh is refined. In contrast, the consistent LDG
and IP methods show decreasing iterations as the mesh is refined. This could be
explained by the discretization corrections becoming smaller in magnitude as the mesh
is refined and the discretization error is reduced. Unlike on the single material thick
diffusion limit problem, full or half-range boundary conditions did not significantly
affect convergence. For the least resolved mesh, the independent SMMs converged 1.7x
faster than P1 and 2.5x faster than the LDG and IP consistent methods. However,
as the mesh is refined all the methods eventually converge at the same rate.

The scaling study was repeated using Anderson-acceleration with five Anderson
vectors in Table 5.3. More uniform convergence with respect to the mesh size is
observed when acceleration is employed.
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Table 5.2: Number of outer fixed-point iterations for the crooked pipe problem.

LDG IP

Ne Proc. P1 Full Half Indep. Full Half Indep.

14 336 1 68 96 97 38 109 108 38
57 344 4 73 90 89 47 98 98 46
229 376 16 78 82 82 55 88 88 54
917 504 64 82 78 77 64 80 80 63
3 670 016 256 – 75 75 69 76 75 69

Table 5.3: Number of outer fixed-point iterations with Anderson acceleration.

LDG IP

Ne Proc. P1 Full Half Indep. Full Half Indep.

14 336 1 16 25 26 13 25 23 12
57 344 4 18 20 21 14 22 23 14
229 376 16 19 20 20 15 20 20 15
917 504 64 19 18 18 16 18 18 15
3 670 016 256 – 17 17 18 17 17 18

The scaling of the maximum number of inner, preconditioned conjugate gradient
iterations over all outer iterations is shown in Table 5.4. These results are identical
with and without Anderson acceleration. Observe that AMG preconditioned conju-
gate gradient has uniform convergence for all schemes except LDG with half-range
boundary conditions. Notably the effectiveness of the inner solver was not altered by
the choice of boundary conditions for the IP method. The half-range boundary condi-
tions introduce a term on the boundary analogous to the term that couples the normal
component of the current across interior interfaces in the P1 discretization. Recall
that this term arises from integrating the gradient of the scalar flux so we surmise
that this boundary term introduces a gradient-like scaling in the diagonal block of the
LDG discretization that interferes with the effectiveness of AMG. The LDG method
with full-range boundary conditions and the IP method with either of the boundary
conditions are then consistent methods that have scalable solvers comparable to an
independent method.

The average cost per outer iteration associated with solving the LO system, as-
sembling the SMM correction source, and applying the transport sweep are shown in
Fig. 5.5. Only the consistent LDG and IP methods with full-range boundary condi-
tions are shown since LDG with half-range boundary conditions was not scalable and
the cost of IP was insensitive to the choice of boundary condition. The sparse direct
solver used for the P1 method is clearly not scalable. The fastest LO solutions were
obtained by the independent and consistent LDG methods, with the IP methods being
about 3% slower per outer iteration. Assembling the consistent SMM source is more
expensive than for the independent methods as more computation is needed to form
the additional correction source terms required to achieve consistency. Note that the
P1 method shows an unexpectedly poor scaling in the cost of assembly. This scaling
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Table 5.4: Maximum number of inner iterations performed over all outer iterations.

LDG IP

Ne Proc. Full Half Indep. Full Half Indep.

14 336 1 10 48 10 10 11 10
57 344 4 11 62 11 11 11 11
229 376 16 13 86 12 12 12 12
917 504 64 13 113 13 14 13 14
3 670 016 256 15 160 15 15 16 15

discrepancy was also seen in the average cost of the transport sweep per iteration. The
sweep and much of the assembly machinery are shared among all the methods. We
believe this behavior is due to a possible memory issue with SuperLU as anomalous
timings occurred only in a few iterations directly following the LU factorization.
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Fig. 5.5: The average cost per iteration to solve the LO system, assemble the LO
correction source, and apply the transport sweep.

The total time to solution is presented in Figure 5.6 for solving the crooked
pipe with and without Anderson acceleration. The effectiveness of the P1 method in
accelerating the outer iteration counterbalances the inefficiency of the LO solver. For
the first two levels of refinement, the P1 method is faster than the consistent LDG and
IP methods. However, the poor parallel scaling of the sparse direct solver makes P1

significantly more expensive than the consistent LDG and IP methods for subsequent
refinements. In particular, on the largest mesh for which the direct method could
be applied to the P1 LO system, the consistent LDG and IP methods were up to 3x
faster. The independent methods were the fastest at each mesh resolution, resulting
in speedups of 13% over the scalable, consistent variants on the finest mesh.

With Anderson acceleration, the cost of factorizing the P1 system is amortized
across fewer outer iterations. This results in up to a 5x speedup of consistent LDG and
IP over P1. Since Anderson narrows the gap in outer iterations between consistent and
independent, consistent was able to beat independent on the most resolved problem.
Thus, when the discretization error is small enough, the proposed consistent methods
produce a consistent solution while achieving comparable performance to independent
methods. Nuances in cost of forming and solving the LO system are dominated by
the high cost of the transport sweep, resulting in all the scalable algorithms producing



22 OLIVIER, SOUTHWORTH, WARSA, AND PARK

similar runtimes on the most refined mesh.
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Fig. 5.6: Total time to solution for the crooked pipe problem under weak scaling.

Using the data from the Anderson-accelerated solve, the LDG and IP-based meth-
ods exhibit weak scaling efficiency of the inner, linear solve between 10% and 20%
on 256 processors. The IP-based methods scaling was slightly better than the LDG-
based methods. The P1 moment solve did not scale due to the use of the sparse direct
method. The full algorithms scale between 15% and 30% for the IP and LDG-based
methods with P1 resulting in an overall unscalable transport algorithm. Note that
the weak scaling of the IP and LDG diffusion systems is less than what was reported
in Baker et al. [27] for BooomerAMG applied to similar problems. This is likely because
their weak scaling is compared to a base case starting with 64 processors while our
base case is serial. Using a serial base case makes the inclusion of parallel commu-
nication costs in subsequent calculations more pronounced. We did observe similar
iterative convergence comparable to what was seen in [27].

5.3.2. Comparison of Solution Quality. Solutions generated by the consis-
tent methods are compared with those of the independent methods on the base mesh
and on the most refined mesh. The consistent methods attain the same solutions
up to the 10−6 fixed-point iteration tolerance so only the consistent LDG solution
is shown. Figure 5.7 shows a lineout of the scalar flux solution along the centerline
y = 0 on the least and most refined meshes. A diffusion solution on the same mesh
provides a reference with which to compare the physics fidelity of the SMMs. On the
least refined mesh, the independent methods have numerical diffusion that results in
under and over heating the front and back of the inner wall, respectively, as compared
to the consistent solution. This numerical diffusion pushes the independent methods
closer toward the diffusion solution. On the refined mesh, independent and consistent
produce similar solutions.

Plots of the magnitude of the current along the same centerline y = 0 are shown
in Fig. 5.8. The independent methods produce currents with wide, non-physical oscil-
lations. These oscillations increase in magnitude as the mesh is refined, particularly
at the wall-pipe interface. By contrast, the consistent scheme achieves a physically
realistic solution on both meshes. It is possible that better discretizations of the LO
system, such as Raviart Thomas, could improve the solution quality of an independent
SMM. However, a Raviart Thomas-based SMM was also shown to have suboptimal
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Fig. 5.7: Scalar flux along y = 0.

accuracy of the current in [14].
In Fig. 5.9, the HO and LO currents from the independent methods are compared

to the consistent current solution. The HO current associated with the independent
methods does not exhibit the wild oscillations that the independent LO currents
do on both meshes. However, use of the HO solution may have implications for
conservation, especially in multiphysics simulations. Consistent methods avoid such
issues by producing HO and LO solutions that are both conservative.
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Fig. 5.8: Magnitude of the current along the line y = 0.

6. Conclusions. We developed three novel consistent Second Moment Methods
(SMMs) based on low-order (LO) systems with left hand sides equivalent to the fully
consistent P1, Local Discontinuous Galerkin (LDG), and Interior Penalty (IP) dis-
cretizations of radiation diffusion. A discrete residual approach was used to derive
the SMM correction source terms that make these choices of LO diffusion discretiza-
tions consistent with the Discontinuous Galerkin (DG) discretization of the Discrete
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Fig. 5.9: Magnitude of the HO and LO current for the independent SMM along y = 0.

Ordinates (SN ) transport equations. The consistent SMMs were compared to the
independent LDG and IP SMM variants. We found that the consistent SMMs were
more accurate than the independent methods. In particular, the currents generated
by the consistent methods converged with optimal second-order accuracy while the
independent LDG and IP methods showed O(h3/2) and O(h) accuracy, respectively.
The LDG and IP methods were scalably solved in parallel with algebraic multigrid,
obtaining a LO solution consistent with the DG SN transport discretization on a
challenging, multi-material benchmark problem. The P1 method was effective at ac-
celerating the outer fixed-point iteration but the LDG and IP methods were more
efficient on more resolved problems because the sparse direct method used to solve
the P1 LO system was not scalable. Generally, the independent variants of LDG
and IP were the most efficient methods, requiring fewer total transport sweeps than
the consistent variants. This discrepancy was less apparent as the mesh was refined
because the additional discretization-dependent correction terms for the consistent
methods become smaller in magnitude. The efficiency of the independent methods
came at the cost of poor solution quality for the LO solution, especially for the cur-
rent. We therefore recommend the use of the LDG or IP consistent SMMs over their
independent variants.
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