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Abstract

Let S be a set of n points in general position in Rd. The order-
k Voronoi diagram of S, Vk(S), is a subdivision of Rd into cells whose
points have the same k nearest points of S. Sibson, in his seminal paper
from 1980 (A vector identity for the Dirichlet tessellation), gives a formula
to express a point Q of S as a convex combination of other points of S
by using ratios of volumes of the intersection of cells of V2(S) and the
cell of Q in V1(S). The natural neighbour interpolation method is based
on Sibson’s formula. We generalize his result to express Q as a convex
combination of other points of S by using ratios of volumes from Voronoi
diagrams of any given order.

1 Introduction

Let S be a set of n points in general position in Rd, meaning no m of them lie
in a (m− 2)-dimensional flat for m = 2, 3, ..., d+ 1 and no d+ 2 of them lie in
the same d-sphere, and let k be a natural number with 1 ≤ k ≤ n − 1. Let σd

denote the Lebesgue measure on Rd, to simplify we just write σ.
The order-k Voronoi diagram of S, Vk(S), is a subdivision of Rd into cells

such that points in the same cell have the same k nearest points of S. Thus,
each cell f(Pk) of Vk(S) is defined by a subset Pk of S of k elements, where each
point of f(Pk) has Pk as its k closest points from S. See Figure 1.

For the order-k Voronoi diagram of S, the region Rk(ℓ) of Qℓ ∈ S is defined
as the set of cells of Vk(S) that have the point Qℓ as one of their k nearest
neighbours. See Figure 2. These regions are not necessarily convex but star-
shaped, see [2, 4, 10, 16], and it is known that R1(ℓ) is contained in the kernel
of Rk(ℓ); see [3]. Also, these regions are related to Brillouin zones. For a given
k, the region Rk(ℓ)\Rk−1(ℓ) is known as a Brillouin zone of Qℓ. Brillouin zones
have been studied mainly for lattices but also for arbitrary discrete sets, see e.g.
[6, 17].

Local coordinates based on Voronoi diagrams were introduced by Sibson [13].
He states that, given a set S of n points of Rd in general position, a point
Qℓ ∈ S can be expressed as a convex combination of its nearest points of S.
This is described next. Cells of V2(S) that intersect f({Qℓ}) in V1(S) are of
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Figure 1: For a set S = {Q1, · · · , Q5} of five points in R2. V1(S) is shown in
black, V2(S) in green, and V3(S) in orange colour. Each cell of V2(S) (V3(S)) is
labeled by the indices of its two (three) nearest points of S.

the form f({Qℓ, Qj}), i.e., cells defined by Qℓ and another point Qj , that we
call its natural neighbour. These intersections give ratios of volumes which are
the coefficients multiplying the corresponding natural neighbours in the convex
combination that expresses Qℓ. Volumes σ(f({Qℓ, Qj})∩ f({Qℓ})) are equal to
the volumes given by the intersection of the cells of V1(S \ {Qℓ}) and f(Qℓ) in
V1(S), see Figure 3.

Theorem 1. (Local coordinates property [13]). For a bounded cell f({Qℓ}) of
V1(S),

Qℓ =
∑
j ̸=ℓ

σ(f({Qℓ, Qj}) ∩ f({Qℓ}))
σ(f({Qℓ}))

Qj (1)

Sibson’s formula has been used to define the natural neighbour interpolation
method [14]. Given a set of points and a function, this interpolation method
provides a smooth approximation of new points to the function. Sibson’s al-
gorithm uses the closest subset of the input set S \ {Qℓ} to interpolate the
function value of a query point, Qℓ, and applies weights based on the ratios
of volumes provided by Theorem 1. Local coordinates and the natural neigh-
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Figure 2: R1(1) is the cell f({Q1}) in V1(S). R2(1) is the union of cells of V2(S)
that have Q1 as one of its two nearest neighbours. R1(1) ⊂ R2(1).

bour interpolation method have been studied e.g. in [5, 11, 15], and they have
many applications such as reconstruction of a surface from unstructured data
or interpolation of rainfall data, see [9, 15].

Aurenhammer gave a generalization of Sibson’s result to Voronoi diagrams
of higher order, and more generally to power diagrams, see [1]. Aurenhammer’s
formula allows to write a point Qℓ of S as a linear combination of other points
of S. We state this in Theorem 2 below. The formula in Theorem 2 is defined
in terms of intersections of cells of Vk−1(S) and Vk+1(S) with a cell of Vk(S).
This formula works for a bounded cell of Vk(S).

Our main contribution is another generalization of Sibson’s result, stated in
Theorem 6. In this theorem, we express a point Qℓ ∈ S as a convex combination
of its neighbours of S using ratios of volumes in the region Rk(ℓ). Similar to
Sibson’s formula that required the cell of the point Qℓ to be bounded, our
formula requires its region Rk(ℓ) to be bounded. For the case k = 1, Theorem 6
coincides with Theorem 1.

This paper is organized as follows. In Section 2 we revisit the formula of
Aurenhammer for higher order Voronoi diagrams and we give a geometric in-
terpretation of the formula. Our main result is given in Section 3, where we
detail our generalization of Sibson’s formula. Finally, Section 4 is on how our
generalization of Sibson’s formula from Section 3 could be used for interpolation.

2 A revisit of Aurenhammer’s formula

Next, we state the theorem of Aurenhammer [1] in terms of Vk(S).

Theorem 2. ([1]) Let 2 ≤ k ≤ n− 2 and let f(Pk) be a bounded cell of Vk(S).
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Figure 3: In R2. (a) The initial Voronoi diagram V1(S \ {Qℓ}) without query
point Qℓ. (b) Coloured areas given by the intersections of f({Qℓ}) and the cells
of V1(S \ {Qℓ}), are the same as the ones given by the intersections of the cells
of V2(S) (shown in dashed) with the cell f({Qℓ}).

Then,∑
f(Pk−1)∈Vk−1(S)

Qi∈Pk\Pk−1

σ(f(Pk−1) ∩ f(Pk))Qi =
∑

f(Pk+1)∈Vk+1(S)
Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))Qj

For an example illustrating Theorem 2, see Figure 4.
In the following we examine the generalization of Sibson’s theorem to higher

order Voronoi diagrams from Theorem 2 in more detail for cells f(Pk) of Vk(S),
when S is a point set in R2. Divide both sides of the equation given in Theorem 2
by σ(f(Pk)); then, each side of the equation describes a point H that is a convex
combination of points from S. We have

H =
∑

f(Pk−1)∈Vk−1(S)
Qi∈Pk\Pk−1

σ(f(Pk−1) ∩ f(Pk))

σ(f(Pk))
Qi =

∑
f(Pk+1)∈Vk+1(S)

Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))

σ(f(Pk))
Qj

(2)
What can we say about this point H?

Let f(Pk) be an r-gon. Then S contains r points Q1, . . . , Qr, such that each
edge of the r-gon lies on a perpendicular bisector between two of these r points,
and each vertex, Cijℓ, of f(Pk) is the center of a circle passing through three of
them, Qi, Qj , and Qℓ; see e.g. [3, 7].
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Figure 4: Illustrating Theorem 2 for f({Q2, Q4, Q5}) in V3(S), where S is
a set of six points in R2. In this case the equation reduces to σ(A5)Q5 +
σ(A2)Q2 = σ(B1)Q1 + σ(B3)Q3 + σ(B6)Q6. (a) Regions Ai are the cells of
V2(S) ∩ f({Q2, Q4, Q5}), whose points have Qi as the third nearest neighbour
of S. (b) Regions Bi are the cells of V4(S)∩f({Q2, Q4, Q5}), whose points have
Qi as the fourth nearest neighbour of S.

We denote with ∆(ABC) the triangle with vertices A, B, and C, and with
□(ABCD) the quadrilateral with vertices A,B,C and D, in cyclic order.

Let us consider the case when f(Pk) is a quadrilateral cell of Vk(S) with
vertices C123, C124, C134, and C234, in cyclic order along the boundary of the
quadrilateral cell f(Pk) = □(C123C124C134C234).

One of the diagonals C123C134 is an edge of Vk−1(S) and the other one,
C124C234, of Vk+1(S). Figure 5 shows an example. We refer to [3, 7] for a more
detailed discussion on the structure of cells of Vk(S). Theorem 2 states in this
case that

H = Q1 · σ(∆(C123C134C234))

σ(□(C123C124C134C234))
+Q3 · σ(∆(C123C124C134))

σ(□(C123C124C134C234))

= Q2 · σ(∆(C124C134C234))

σ(□(C123C124C134C234))
+Q4 · σ(∆(C124C234C123))

σ(□(C123C124C134C234))

(3)

Note that the point H is a convex combination of Q1 and of Q3, and H is
also a convex combination of Q2 and Q4, by the right side of Equation (3). Then
pointH is the intersection point of diagonals Q1Q3 and Q2Q4 of □(Q1Q2Q3Q4).

This implies the following corollary.

Corollary 3. Given a quadrilateral cell □(C123C124C134C234) of Vk(S), the four
corresponding points Q1, Q2, Q3, Q4 of S that participate in the perpendicular
bisectors that define □(C123C124C134C234), also form a convex quadrilateral,
□(Q1Q2Q3Q4).

More can be said about the areas of triangles with vertices from the set
{C123, C124, C134, C234}, within the quadrilateral cell □(C123C124C134C234) of
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Figure 5: The quadrilateral cell f(Pk) = □(C123C124C134C234) of Vk(S) is ob-
tained by perpendicular bisector construction from {Q1, Q2, Q3, Q4} ⊂ S. Point
H given by Equation (2) is the intersection point of diagonals Q1Q3 and Q2Q4.
Triangles with same colour have proportional area.

Vk(S). We show next, how these triangle areas are related to triangle areas
within the quadrilateral □(Q1Q2Q3Q4). As we will see, in the case of a quadri-
lateral cell of Vk(S), Theorem 2 has an analogous statement for the correspond-
ing quadrilateral formed by four points of S. Thereto, we recall a folklore result:

Property 4. Let P be a point contained in a triangle ∆(ABC). Then P can
be expressed as

P = A · σ(∆(PBC))

σ(∆(ABC))
+B · σ(∆(PAC))

σ(∆(ABC))
+ C · σ(∆(PAB))

σ(∆(ABC))
.

We also expect next Property 5 to be known. The following proof allows us
to infer the relation among triangle areas we want to show.

Property 5. Let □(Q1Q2Q3Q4) be a convex quadrilateral. Then,

Q1·σ(∆(Q2Q3Q4))+Q3·σ(∆(Q1Q2Q4)) = Q2·σ(∆(Q1Q3Q4))+Q4·σ(∆(Q1Q2Q3)).
(4)

Proof. Let H be the intersection point of the two diagonals Q1Q3 and Q2Q4.
Apply Property 4 to the triangle ∆(Q1Q2Q3) and P = H. Then P lies on the
edge Q1Q3, and the degenerate triangle ∆(Q1HQ3) has zero area. It follows
that

H = Q1 ·
σ(∆(HQ2Q3))

σ(∆(Q1Q2Q3))
+Q3 ·

σ(∆(HQ1Q2))

σ(∆(Q1Q2Q3))
. (5)

Repeat the same argument for the triangles ∆(Q1Q3Q4), ∆(Q2Q3Q4), and
∆(Q1Q2Q4) to obtain

H = Q1 ·
σ(∆(HQ3Q4))

σ(∆(Q1Q3Q4))
+Q3 ·

σ(∆(HQ1Q4))

σ(∆(Q1Q3Q4))
, (6)
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H = Q2 ·
σ(∆(HQ3Q4))

σ(∆(Q2Q3Q4))
+Q4 ·

σ(∆(HQ2Q3))

σ(∆(Q2Q3Q4))
, (7)

H = Q2 ·
σ(∆(HQ1Q4))

σ(∆(Q1Q2Q4))
+Q4 ·

σ(∆(HQ1Q2))

σ(∆(Q1Q2Q4))
. (8)

Combine Equations (5) and (6) to obtain

H = Q1 ·
σ(∆(Q2Q3Q4))

σ(□(Q1Q2Q3Q4))
+Q3 ·

σ(∆(Q1Q2Q4))

σ(□(Q1Q2Q3Q4))
. (9)

In the same way, combine Equations (7) and (8) to obtain

H = Q2 ·
σ(∆(Q1Q3Q4))

σ(□(Q1Q2Q3Q4))
+Q4 ·

σ(∆(Q1Q2Q3))

σ(□(Q1Q2Q3Q4))
. (10)

Finally, Equation (4) follows from Equations (9) and (10).

The quadrilateral cell□(C123C124C134C234) of Vk(S) corresponding to□(Q1Q2Q3Q4)
can be obtained from the so-called perpendicular bisector construction, see [12].
Furthermore,

σ(□(C123C124C134C234)) = |r| · σ(□(Q1Q2Q3Q4)), (11)

where

r =
1

4
(cot(α) + cot(γ)) · (cot(β) + cot(δ))

and α, β, γ and δ are the four interior angles of □(Q1Q2Q3Q4) in consecutive or-
der, see [12]. From Equations (3) and (9) we see that the coefficient multiplying
point Q1 must be the same, then

σ(∆(C123C134C234))

σ(□(C123C124C134C234))
=

σ(∆(Q2Q3Q4))

σ(□(Q1Q2Q3Q4))

and
σ(∆(C123C134C234)) = |r| · σ(∆(Q2Q3Q4)).

The other triangle areas can be related analogously. We also refer to [8] where
it is proved that □(Q1Q2Q3Q4) and □(C123C124C134C234)) are affine.

Let us then consider the case when f(Pk) is a cell of Vk(S) with more than
four sides. Equation (2) gives a point H that can be expressed in two ways as
convex combination of points of S. Let us look at a pentagonal cell f(Pk) =
(C123C134C145C245C125) of Vk(S); See Figure 6. For r > 5 the situation is

similar. Theorem 2 here gives

H = Q1 ·
σ(□(C123C125C145C134))

σ( (C123C134C145C245C125))
+Q5 ·

σ(∆(C125C245C145))

σ( (C123C134C145C245C125))

= Q2 ·
σ(□(C245C125C123C234))

σ( (C123C134C145C245C125))
+Q4 ·

σ(∆(C245C234C1345C145))

σ( (C123C134C145C245C125))

+Q3 ·
σ(∆(C123C234C134))

σ( (C123C134C145C245C125))
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We get thatH lies on the segment Q1Q5 and inside the triangle ∆(Q2Q3Q4).
Furthermore, H divides the segment Q1Q5 in the same proportion as the edge
C125C145 divides the pentagon (C123C134C145C245C125) into the quadrilateral
□(C125C145C134C123) and the triangle ∆(C125C145C245). And H divides trian-
gle ∆(Q1Q2Q3) in the same proportion into triangles ∆(Q3HQ4), ∆(Q2HQ3),
and ∆(Q2HQ4) as C234 divides (C123C134C145C245C125) into□(C245C125C123C234),
□(C245C234C134C145) and ∆(C134C234C123).

Q2

Q3

Q5

Q4

V1(S)
V2(S)
V3(S)

f (P2)
Q1

C245

(a)

H

C234

Q1

C245

C125

C123

C134C145

Q2

Q3

Q5

Q4

(b)

Figure 6: (a) V3(S) for a set of five points S = {Q1, Q2, Q3, Q4, Q5}. For P2 =
{Q1, Q5}, the grey region is the pentagonal cell f(P2) of V2(S). f(P2) is divided
by an edge of V1(S) and is also divided by three edges of V3(S). (b) The point
H lies on the segment Q1Q5 and inside the triangle ∆(Q2, Q3, Q4). Triangle
areas of ∆(Q2HQ3),∆(Q3HQ4) and ∆(Q2HQ4) are proportional to the areas
of the three coloured regions inside f(P2), green, yellow, and pink, respectively.
The lengths of segments HQ1 and HQ5 are proportional to the areas σ(f(P2)∩
f({Q1})) and σ(f(P2) ∩ f({Q5})), respectively.

3 Coordinates based on Voronoi diagrams

In this section we present our generalization of Sibson’s formula that expresses
a point Qℓ ∈ S as a convex combination of points from S using its neighbours
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of the Voronoi diagram of any given order.

Theorem 6. Let 1 ≤ k ≤ n− 2 and let Rk(ℓ) be a bounded region. Then,

Qℓ =
∑

f(Pk)∈Rk(ℓ)

∑
f(Pk+1)∈Vk+1(S)

Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))

σ(Rk(ℓ))
Qj

Proof. Since R1(ℓ) is the cell ofQℓ in V1(S), for k = 1 the statement is equivalent
to Theorem 1 the formula of Sibson [13], i.e., the statement holds for k = 1.

Now, by induction, suppose the hypothesis is true for Rk−1(ℓ). By summing
the equation given in Theorem 2 for cells in Rk(ℓ) = ∪ℓ∈Pk

f(Pk), we have

∑
f(Pk)∈Rk(ℓ)

∑
f(Pk+1)∈Vk+1(S)

Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))Qj =

=
∑

f(Pk)∈Rk(ℓ)

∑
f(Pk−1)∈Vk−1(S)

Qi∈Pk\Pk−1

σ(f(Pk−1) ∩ f(Pk))Qi =

=
∑

f(Pk)∈Rk(ℓ)

∑
f(Pk−1)∈Vk−1(S)

Qi∈Pk\Pk−1

Qi ̸=Qℓ

σ(f(Pk−1) ∩ f(Pk))Qi +

+
∑

f(Pk)∈Rk(ℓ)

∑
f(Pk−1)∈Vk−1(S)

Qℓ∈Pk\Pk−1

σ(f(Pk−1) ∩ f(Pk))Qℓ

(12)

By properties of Rk(ℓ), see [3], Rk(ℓ) without the cells that have Qℓ as its k-
th nearest neighbour is the region of Qℓ in the previous order diagram, Rk−1(ℓ).
See Figure 7. Then, we have that

∑
f(Pk)∈Rk(ℓ)

∑
f(Pk−1)∈Vk−1(S)

Qi∈Pk\Pk−1

Qi ̸=Qℓ

σ(f(Pk−1) ∩ f(Pk))Qi =

=
∑

f(Pk−1)∈Rk−1(ℓ)

∑
f(Pk)∈Vk(S)
Qi′∈Pk\Pk−1

σ(f(Pk) ∩ f(Pk−1))Qi′

That is, the sum of the Lebesgue measure of the cells of Rk−1(i) multiplied by
the corresponding k-nearest neighbours coincides with the sum of the Lebesgue
measure of the cells of Rk(i), whose k-nearest neighbour is not Qℓ, multiplied
by the corresponding k-nearest neighbours. See Figures 7, 8 and 9.

Since we assume that the statement is true for Rk−1(ℓ), then∑
f(Pk−1)∈Rk−1(ℓ)

∑
f(Pk)∈Vk(S)
Qi′∈Pk\Pk−1

σ(f(Pk) ∩ f(Pk−1))Qi′ = σ(Rk−1(ℓ))Qℓ

9



Now, replacing in Equation (12):

∑
f(Pk)∈Rk(ℓ)

∑
f(Pk+1)∈Vk+1(S)

Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))Qj =

=
∑

f(Pk−1)∈Rk−1(ℓ)

∑
f(Pk)∈Vk(S)
Qi′∈Pk\Pk−1

σ(f(Pk) ∩ f(Pk−1))Qi′ +

+
∑

f(Pk)∈Rk(ℓ)

∑
f(Pk−1)∈Vk−1(S)

Qℓ∈Pk\Pk−1

σ(f(Pk−1) ∩ f(Pk))Qℓ =

= σ(Rk−1(ℓ))Qℓ +
∑

f(Pk)∈Rk(ℓ)

∑
f(Pk−1)∈Vk−1(S)

Qℓ∈Pk\Pk−1

σ(f(Pk−1) ∩ f(Pk))Qℓ =

= σ(Rk(ℓ))Qℓ

Q2

Q3
Q4

Q5 Q6

Q8Q9

Q0

R1(1)
R2(1)
R3(1)

Q7

Q1

Figure 7: For a set S = {Q0, · · · , Q9} of 10 points. R1(1) ⊂ R2(1) ⊂ R3(1).
Points in R3(1) \R2(1) have Q1 as their third nearest neighbour. Analogously,
points in R2(1) \R1(1) have Q1 as their second nearest neighbour.
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Figure 8: For the same set S of Figure 7: (a) Regions Ai of R2(1), are the union
of cells of V3(S) whose points have Qi as the second nearest neighbour of S.
Cells with the same second nearest neighbour get the same colour. (b) Regions
Bi of R2(1), are the union of cells of V3(S) whose points have Qi as the third
nearest neighbour of S. Cells with the same third nearest neighbour get the
same colour.

∑
i=1...4 σ(Ai)Qi =

∑
i=2...8 σ(Bi)Qi.

B2

B3

B4

B5

B6

B7

B8

B1Q5 Q6

Q2

Q1

Q4 Q3

(a)

Q2

Q5 Q6

Q1

Q4 Q3

C0

C2

C3

C4

C5

C6

C7

C8

C9

(b)

Figure 9: For the same set S of Figure 7: (a) Regions Bi of R3(1), are the union
of cells of V4(S) whose points that have Qi as the third nearest neighbour of S.
It is shown that without B1, it is the same as Figure 8 (c). (b) Regions Ci of
R3(1), are the union of cells of V4(S) whose points have Qi as the fourth nearest
neighbour of S.

∑
i=1...8 σ(Bi)Qi =

∑
i=0,2,3...9 σ(Ci)Qi.

4 Towards higher order natural neighbour in-
terpolation

Sibson’s theorem (Theorem 1) gave rise to the natural neighbour interpola-
tion method. Given a set of points S and known function values G(Qj) for
Qj ∈ S \ {Qℓ}, the function value G(Qℓ) of a point Qℓ is interpolated by
G(Qℓ) =

∑
j cjG(Qj), where the sum is over the natural neighbours Qj of

Qℓ in V1(S). The local coordinates cj are given by Theorem 1. Note that
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they satisfy
∑

j cj = 1 and cj ≥ 0 for all j. Then, Sibson’s natural neighour
interpolation is given by

G(Qℓ) =
∑
j ̸=ℓ

σ(f({Qℓ, Qj}) ∩ f({Qℓ}))
σ(f({Qℓ}))

G(Qj). (13)

The generalization of Sibson’s formula given in Theorem 6 suggests to ap-
proximate the function value G(Qℓ) by using the natural neighbours of higher
order Voronoi diagrams. By using the region Rk(ℓ) for k > 1, we can estimate
the function value of a point Qℓ as

G(Qℓ) =
∑

f(Pk)∈Rk(ℓ)

∑
f(Pk+1)∈Vk+1(S)

Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))

σ(Rk(ℓ))
G(Qj) (14)

Note that R1(ℓ) = f({Qℓ}) in V1(S), and for k = 1 Equations (13) and (14)
coincide.

A better estimation can be obtained by using Theorem 6 in a combination
of different values of k.

We explore this for the 1-dimensional case. First, we state a structural
lemma.

Lemma 7. Let S be set of n different points on a line, and let 2 ≤ k ≤ n− 2.
Then, each bounded cell of Vk(S) contains exactly one vertex of Vk−1(S) and
one vertex of Vk+1(S).

Proof. Let S = {x1, . . . , xn}, where x1 < x2 < . . . < xn. All points of S lie on
a same line L. The bisectors between two consecutive points of S intersect L
at the vertices of the Voronoi diagram of order one V1(S), that is, the points
(xi + xi+1)/2, i = 1, . . . , n − 1. Analogously, the points (xi + xi+k)/2, i =
1, . . . , n− k, are the vertices of Vk(S).

A bounded cell of Vk(S) is the segment delimited by two consecutive vertices
of Vk(S), P = (xi + xi+k)/2 and R = (xi+1 + xi+k+1)/2. The point A =
(xi+1 + xi+k)/2 belongs to Vk−1(S) and fulfills P < A < R. The point B =
(xi + xi+k+1)/2 belongs to Vk+1(S) and fulfills P < B < R. Then, in the
segment PR we find vertex A from Vk−1(S) and vertex B from Vk+1(S).

Theorem 6, respectively Theorem 6, for dimension 1 reduces to the following
statement.

Property 8. Let S = {x0, x1, . . . x2ℓ} with x0 < x1 < . . . < x2ℓ be real numbers.
Then,

xℓ =
1

x2ℓ − x0

((
ℓ−1∑
i=0

xi(xℓ+1+i − xℓ+i)

)
+

(
2ℓ∑

i=ℓ+1

xi(xi−ℓ − xi−ℓ−1)

))
.

(15)
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Proof. The bounded cells of Vk(S) are intervals, bounded by midpoints between
points of S.

By Lemma 7, for k > 1, each such cell contains exactly one vertex (that is,
a midpoint between two points from S) from Vk+1(S) and exactly one vertex
from Vk−1(S). For a given point xℓ, the cells f(Pk) of Vk(S), with xℓ ∈ Pk,
satisfy that the k points from Pk are consecutive points among the points
{xℓ−k, xℓ−k+1, . . . , xℓ+k}. A term σ(f(Pk)∩f(Pk+1)) of Theorem 6 corresponds
to an interval with endpoints a vertex from Vk(S) and another vertex from
Vk+1(S). Since vertices from Vk+1(S) and Vk(S) appear in alternating order
when walking along the real line, the interval corresponding to a point xi with
xi < xℓ, has endpoints (xi+1−ℓ + xi)/2 and (xi−ℓ + xi)/2. And for a point xi

with xi > xℓ, the corresponding term σ(f(Pk)∩ f(Pk+1)) of Theorem 6 is given
by the interval with endpoints (xi + xi−ℓ)/2 and (xi + xi−ℓ−1)/2. The term
σ(Rk(ℓ)) in Theorem 6 is the length of the interval with endpoints (x0 + xℓ)/2
and (xℓ + x2ℓ)/2. The statement of Property 8 follows.

Remark. Property 8 has actually a more general statement. The assumption
x0 < x1 < . . . < x2ℓ is not needed. This follows easily: When expending the
terms of the two sums on the right side of Equation (15), all terms cancel out
except xℓx2ℓ and −xℓx0. The given proof using Vk(S) shows that Equation (15)
indeed is Theorem 6 in dimension 1.

We denote points Qi of S as xi and their function values G(Qi) as yi. When
k = 1 we have Sibson’s classical nearest neighbour interpolation, which for
dimension d = 1 is piecewise linear interpolation. Let x0, x1, . . . , x5 be six points
on the real line in that order. And let x2 < x < x3 be a query point whose
function value G(x) we want to interpolate. To avoid degenerate cases where
bisectors between points coincide, we also assume that all midpoints (xi+xj)/2
with xi, xj ∈ {S ∪ {x}} are different. Sibson’s classical formula, Equation (13),
uses the two neighbours x2 and x3 of x, and gives the interpolation

G1(x) =
1

x3 − x2
(y2(x3 − x) + y3(x− x2)) , (16)

i.e. point (x,G1(x)) lies on the line segment connecting points (x2, y2) and
(x3, y3). This can also be deduced from Property 8.

For k = 2, from Equation (14) we obtain

G′
2(x) =

1

x4 − x1
(y1(x3 − x) + y2(x4 − x3) + y3(x2 − x1) + y4(x− x2)) (17)

and for k = 3,

G′
3(x) =

1

x5 − x0
(y0(x3 − x) + y1(x4 − x3) + y2(x5 − x4)

+y3(x1 − x0) + y4(x2 − x1) + y5(x− x2).)

(18)
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Note that x only appears in the first and the last summand in Equations (17)
and (18). We therefore add x3−x2

x4−x1
G1(x) to Equation (17) and obtain

G′
2(x)+

x3 − x2

x4 − x1
G1(x) =

1

x4 − x1
(y1(x3−x)+y2(x4−x)+y3(x−x1)+y4(x−x2)).

By estimatingG(x) = G1(x) and alsoG(x) = G′
2(x) we obtainG(x)x4−x1+x3−x2

x4−x1

on the left hand side of this equation, and then the estimate, for k = 2,

G2(x) =
1

x4 − x1 + x3 − x2
(y1(x3−x)+y2(x4−x)+y3(x−x1)+y4(x−x2)). (19)

In the same way, by adding the equations G′
3(x) +

x4−x1

x5−x0
G′

2(x) +
x3−x2

x5−x0
G1(x),

we get the estimate for k = 3,

G3(x) =
1

x5 − x0 + x4 − x1 + x3 − x2
(y0(x3 − x) + y1(x4 − x) + y2(x5 − x)

+ y3(x− x0) + y4(x− x1) + y5(x− x2)).

(20)

Figure 10 shows an example of the interpolation formulas given in Equa-
tions (16), (19), and (20).

11 22 33 44 55 66 77 88

-2-2

-1-1

11

22

33

44

55

66

00

yy00

yy11

yy22

yy33

yy44

yy55

Figure 10: The generalized Sibson interpolation in R1. In green: Sibson’s origi-
nal interpolation, Equation (16), used only R1(x). The blue segment shows the
interpolation using R1(x) and R2(x), given by Equation (19). Four points are
used. The red segment shows the interpolation using R1(x), R2(x), and R3(x),
given by Equation (20). Six points are used.

We conclude with some comments on the proposed interpolation formulas.
First, they appear in a natural way from the generalization of Sibson’s formula.
This already makes it worth to study such generalized interpolation formulas.
In Equations (19) and (20), the coefficients cj in Gi(x) =

∑
j cjyj , i = 2, 3,

satisfy
∑

j cj = 1 and cj ≥ 0 for every cj . We also mention that it can not be
guaranteed that Gi(x) coincides with Gi(x2) or with Gi(x3), when x coincides
with one of the endpoints of the interval, x2 or x3, respectively. Though, we
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observe that in this case, the point farthest away from x on one side, drops from
being used in the interpolation formula. This also holds for the classical case
k = 1.

Finally, we expect that the generalized interpolation formulas can have ap-
plications. For instance, when the used values for the interpolation are obtained
by measurements and measurement inaccuracy can not be ruled out. Then re-
liability might be improved by using nearest neighbours from Vk(S) or by using
Rk(x), instead of only V1(S).

References

[1] Franz Aurenhammer. Linear combinations from power domains. Geome-
triae dedicata, 28(1):45–52, 1988.

[2] Franz Aurenhammer and Otfried Schwarzkopf. A simple on-line random-
ized incremental algorithm for computing higher order Voronoi diagrams.
In Proceedings of the seventh annual symposium on Computational geome-
try, pages 142–151, 1991.
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