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ABSTRACT B Original Ours
Empirical defenses for machine learning privacy forgo the provable 10° 332x .. 53.7x
guarantees of differential privacy in the hope of achieving higher . 13.5x 7.0x
utility while resisting realistic adversaries. We identify severe pit- a 4.3x
falls in existing empirical privacy evaluations (based on member- © 10771
ship inference attacks) that result in misleading conclusions. In - . .
o
particular, we show that prior evaluations fail to characterize the g 10-2 4 - - - —
privacy leakage of the most vulnerable samples, use weak attacks, &
and avoid comparisons with practical differential privacy baselines.
In 5 case studies of empirical privacy defenses, we find that prior 1073 -
evaluations underestimate privacy leakage by an order of magni- (900%\ X \/09(’ (ﬁk ¢ O &
N N Q

tude. Under our stronger evaluation, none of the empirical defenses
we study are competitive with a properly tuned, high-utility DP-
SGD baseline (with vacuous provable guarantees).

1 INTRODUCTION

Machine learning models can memorize sensitive information from
their training data, enabling privacy attacks such as membership
inference [48] and data extraction [8]. Training with differential
privacy [17]—in particular with DP-SGD [1]—provides provable
protection against such attacks. Yet, achieving strong guarantees
with good utility remains a challenge [19]. This has led to growing
interest in empirical privacy defenses, which might offer a better
privacy-utility tradeoff against practical attacks, but no formal
guarantees [9, 12, 28, 39, 46, 52, 61].

Most evaluations of such empirical defenses for private machine
learning use membership inference attacks [48] as the canonical
approach to obtain a bound on privacy leakage. Under the notion
of membership privacy, many heuristic defenses claim to achieve
a better privacy-utility tradeoff than DP-SGD against state-of-the-
art attacks [9, 12, 28, 52]. However, we find that such empirical
evaluations can be severely misleading:

(1) Current membership inference evaluations fail to reflect a
model’s privacy on the most vulnerable data, and instead ag-
gregate the attack success over a population. But privacy is
not an average-case metric! [51] We show that a blatantly
non-private defense that fully leaks one training sample passes
existing evaluations (even with recent proposals to report an
attack’s true-positive rate at low false-positive rates [4]).

(2) Many defenses apply either a weak inference attack that
does not reflect the current state-of-the-art [4, 63], or fail
to properly adapt the attack to account for unusual defense
components or learning paradigms. This issue is reminis-
cent of well-known pitfalls for non-adaptive evaluations of
machine learning robustness [2, 54].

(3) Empirical defenses are typically compared to weak DP-SGD
baselines [9, 12, 28, 52] with utility below the state-of-the-art.
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Figure 1: Empirical privacy evaluations provide a false sense
of security. We study five heuristic defenses and a properly tuned
DP-SGD baseline that all achieve > 88% accuracy on CIFAR-10. We
first run a standard membership inference evaluation and report
the attack’s TPR at a low FPR across the dataset (following [4]).
Our new evaluation methodology, which adapts the attack to each
defense and targets the least-private samples, reveals an order-of-
magnitude higher privacy leakage. Our DP-SGD baseline provides
better privacy (at similar utility) than all the empirical defenses.

To address the first issue, we introduce an efficient evaluation
methodology that accurately reflects a defense’s privacy on the most
vulnerable data points. Inspired by work on worst-case privacy
auditing [7, 27], we inject canary samples that mimic the most
vulnerable data, and focus our audit on those canaries only.

Then, for five representative empirical defenses, we design adap-
tive membership inference attacks based on LiRA [4], the state-
of-the-art, and evaluate privacy using our new methodology. As
Figure 1 shows, we reveal much stronger privacy leakage and a
completely different ranking than the original evaluations suggest.
None of the five defenses provide effective protection against prop-
erly adapted attacks targeted at the most vulnerable samples.

Finally, we show that none of these defenses are competitive
with a strong DP-SGD baseline. By using state-of-the-art improve-
ments to the original DP-SGD algorithm (e.g., [14]), and by tuning
hyperparameters to achieve both high utility and high empirical pri-
vacy (at the expense of meaningful provable guarantees), we obtain
a better empirical privacy-utility tradeoff than all other defenses.

Our work adds to the growing literature on pitfalls in evaluations
of ML privacy defenses [5, 13, 57]. We aim to provide researchers
a more principled evaluation framework, and an overview of pit-
falls and misconceptions in existing evaluations. To promote repro-
ducible research, we release all code for our evaluation methodology
and our implementation of each empirical defense we study.!

!https://github.com/ethz- spylab/misleading-privacy-evals
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2 PRELIMINARIES AND RELATED WORK
2.1 Privacy Attacks

Machine learning models can memorize parts of their training data,
enabling various privacy attacks. Membership inference—which we
focus on in this work—corresponds to the most general form of
data leakage: inferring whether a particular data point was part
of a model’s training set [48]. Stronger attacks such as attribute
inference [21] or data extraction [7, 8] aim to recover partial or full
training samples by interacting with a model.

Membership inference attacks. In a membership inference
attack, an adversary tries to guess whether some target sample was
in the training data of a machine learning model.

Most membership inference attacks follow a common blueprint:
For a trained model f and target sample x, the attack computes a
score S(f;x), typically related to the training loss function (e.g.,
the sample’s negative cross-entropy loss). Then, the attack guesses
that x is a member if S(f;x) > ¢ for some threshold ¢.

Early membership inference attacks use a global threshold t for
all samples [48, 64]. A number of follow-up works highlight that a
global threshold is suboptimal, as some samples are harder to learn
than others [4, 45, 59, 63]. Thus, calibrating the attack threshold to
each sample greatly improves membership inference.

The Likelihood Ratio Attack (LiRA). In this work, we build
upon the LiRA framework of Carlini et al. [4], which frames mem-
bership inference as a hypothesis testing problem. Given a target
sample x, LIRA models the score distributions under the hypotheses
that x is a member of the training data, and that x is a non-member.
Given the score of the victim model f on x, the attack then applies
a likelihood ratio test to distinguish between the two hypotheses.

To estimate the score distributions, LiRA trains multiple shadow
models [48] by repeatedly sampling a training set D (from the same
or similar distribution as the training set of f), and training models
fout on D and fi, on D U {x}. Given sufficiently many shadow mod-
els, LiRA fits two Gaussians N (ixin, a)zc’m) and N (i, out, criout) to
the scores from the “in” and “out” models on the target sample x.
Finally, LiRA applies a standard Neyman-Pearson test to determine
whether the observed score S(f;x) from the victim model f is
more likely if x is a member or a non-member:

N (scorex | iy ins anc,in)

A(f,x) =

, where scorey, = S(f;x).
N (scorex | pix,out, ayZC,out) * (5%)

As an optimization, if the training algorithm relies on data aug-
mentation, we can query the model on multiple augmentations of
the target input x. LiRA then fits a multivariate Gaussian distribu-
tion to the corresponding scores. Follow-up work also considers
querying models on additional samples (e.g., [60]), and improving
the attack’s computational efficiency (e.g., [68]).

2.2 Privacy Defenses

Defenses against privacy attacks, in particular against membership
inference, fall into two broad categories.

Provable defenses. A differential privacy (DP) [17] machine
learning algorithm provably bounds the success of typical privacy
attacks. Differentially private models are often trained using the DP-
SGD algorithm [1], which protects each individual training step by

clipping and noising per-sample gradients. For many tasks, achiev-
ing strong provable privacy (e.g., € ~ 1) with DP-SGD requires a
large noise magnitude, which deteriorates model utility.

If some public data is available, better privacy-utility tradeoffs are
possible with techniques such as PATE [43], or public pretraining
followed by private fine-tuning [14, 44, 53]. This paper focuses on
the strict privacy setting, where all training data has to be protected.

Empirical defenses. Due to the high utility cost of provable
privacy guarantees, many heuristic defenses aim for empirical pri-
vacy against realistic attacks. Existing heuristic defenses rely on
techniques such as adversarial training [39], modifications to a
model’s loss or confidence [9, 12, 28, 61], or indirect access to pri-
vate features or labels (e.g., through distillation [52], self-supervised
learning [11, 23], or synthetic data generation [16, 18, 35, 65]).

2.3 Empirical Privacy Evaluation

Membership inference evaluations. Membership inference
(MI) attacks and defenses are typically evaluated on a dataset con-
taining the victim model’s training data and an equal number of
non-member samples. Early works on MI use average-case success
metrics, such as the attack’s accuracy at guessing the membership
of every sample in the evaluation set (see, e.g., [33, 48]).

Carlini et al. [4] critique this evaluation methodology, noting
that it does not reflect an attacker’s ability to confidently breach the
privacy of any individual sample. They instead propose to measure
the attacker’s ability to infer membership—the true positive rate
(TPR)—at a low false positive rate (FPR). Many recent works have
adopted this metric (e.g., [3, 12, 60, 63, 68]). Yet, as we argue in this
paper, reporting the TPR and FPR aggregated over a data population
still fails to capture individual privacy, in particular for the most
vulnerable sample(s). We will thus instead propose a membership
inference evaluation tailored to individual least-private samples.
Similar metrics to ours appear in prior work (e.g., [6, 26, 34]), but
not to empirically evaluate the privacy of defenses.

DP auditing. Differential privacy bounds an attacker’s ability to
perform membership inference [29]. Specifically, for any dataset D
and target sample x, a DP guarantee bounds the TPR-to-FPR ratio
of any MI attack that distinguishes between a model trained on D
vs. D U {x}. Crucially, the TPR and FPR here are calculated with
respect to the randomness of the privacy mechanism (and attacker),
but not with respect to a random choice of the dataset D or target
sample x. Instead, DP provides a worst-case bound on membership
inference for every choice of dataset and target sample.

This connection can be leveraged in the opposite direction—by
using membership inference attacks to lower-bound the DP guar-
antees of an algorithm [27, 41, 50, 57]. These auditing mechanisms
crucially differ from typical membership inference evaluations: to
get the tightest bounds, DP auditing measures the attacker’s TPR
and FPR solely for the least-private sample(s) (often referred to as
“canaries” [7]), rather than over the entire data population.

3 PITFALLS IN PRIVACY EVALUATIONS

We identify three common pitfalls in existing empirical evaluations
of privacy defenses. As mentioned in Section 2.3, existing evalua-
tions typically rely on membership inference attacks, and report
some aggregate measure of attack success across a standard dataset



(e.g., CIFAR-10). Additionally, many of these evaluations suggest
that their empirical defense achieves significantly higher utility
than a differentially private baseline (e.g., DP-SGD). We briefly re-
view how existing evaluations lead to misleading empirical findings
below, and propose an evaluation protocol that more accurately
reflects a defense’s privacy in Section 4.

Pitfall I: Aggregating attack success over a dataset. Existing
evaluations of membership inference attacks and defenses report
privacy metrics that are aggregated over all samples in a dataset,
either explicitly or implicitly.

Early evaluations (e.g., [40, 48, 64]) explicitly report average met-
rics such as attack accuracy or AU-ROC over a dataset of members
and non-members. These metrics thus express the average leak-
age of a defense across the population. Carlini et al. [4] highlight a
critical issue of such metrics: they fail to characterize whether an at-
tacker can confidently infer membership of any sample (rather than,
say, just guess better than random on average). Carlini et al. [4]
thus propose to evaluate an attack’s true positive rate at a low false
positive rate (e.g., 0.1%), that is, the fraction of members that the
attack can identify while making only few errors on non-members.

Yet, we note that their evaluation methodology still computes
an attack’s success at identifying membership (i.e., the TPR) across
all members. That is, an attacker issues guesses for all samples in
the population, and privacy leakage corresponds to the proportion
of all training set members that are correctly identified (while con-
trolling the rate of false positives over the entire data population).
Informally, this evaluation thus captures how many records in a
training set can be identified while keeping the number of false
guesses over the population low.

We argue that this metric (and prior ones) fail to properly capture
individual privacy. Indeed, existing metrics view privacy leakage
as a property of a data population, rather than of each individual
sample (i.e., does the model leak my data?). If a model violates
the privacy of an individual, that individual likely does not care
whether the model also leaks 0.1% or 10% of the remaining samples;
the individual cares about the fact that an attacker can confidently
recover their data. To make this point more concrete, we note that
existing metrics can be arbitrarily “diluted” by adding new members
for which a defense preserves privacy, even if the same defense fully
leaks the membership of a fixed number of samples. We illustrate
this point further in Section 4, where we showcase a defense that
fully violates one user’s privacy, yet passes existing evaluations.

Pitfall II: Weak or non-adaptive attacks. Empirical defense
evaluations aim to capture the privacy leakage under a realistic
adversary. It is thus important that evaluations consider strong
attacks which exploit all the capabilities of a presumed attacker. In
particular, attacks must be adaptive, that is, fully know the defense
mechanism, and adjust their attack strategy accordingly.

Yet, in practice, many empirical defense evaluations either use
weak attacks that are no longer state-of-the-art, or fail to adapt
the attacks to peculiarities of the defense. This situation is remi-
niscent of challenges in the field of adversarial examples, where
early defense evaluations misleadingly suggest robustness using
non-adaptive attacks (e.g., [2, 54]). For ML privacy, Choquette-Choo
et al. [13] already show that some defenses explicitly or implicitly
perturb a model’s loss to make standard membership inference

attacks fail, while remaining susceptible to different strategies. Yet,
we find that the issue of weak and non-adaptive attacks still prevails
among a number of empirical privacy evaluations.

Pitfall III: Comparison to weak DP baselines. Given that
privacy defenses with theoretical guarantees exist (e.g., DP-SGD),
a heuristic defense should demonstrate some clear advantage over
them. Most existing works hence argue that their proposed defense
provides a better empirical privacy-utility tradeoff? than DP-SGD—
usually in the form of higher utility at reasonable privacy.

However, we find that privacy evaluations typically consider
DP-SGD baselines that are incomparable to the proposed defense,
since the DP baselines attain only a very low accuracy. For example,
among the five evaluations in our case studies, none considers a
DP-SGD baseline with more than 80% CIFAR-10 test accuracy.

The pitfall here is twofold: First, most defense evaluations only
compare to “vanilla” DP-SGD (as proposed in [1]), without incorpo-
rating state-of-the-art techniques that can significantly boost utility
(e.g., [14, 47]). Second, existing evaluations typically only compare
to DP-SGD baselines that achieve “moderate” provable guarantees
(e.g., € < 8). On datasets like CIFAR-10, such guarantees are not
achievable alongside high utility with current techniques. Yet, since
empirical defenses forgo provable guarantees anyhow, it makes
sense to compare against a heuristic DP-SGD baseline with noise
low-enough to achieve high utility. While such a heuristic DP-SGD
instantiation will not provide meaningful privacy guarantees, it is
a perfectly reasonable empirical defense to consider. Indeed, such
heuristic DP uses are common in practice, with some deployments
achieving only very weak guarantees (say € = 50) [15].

4 RELIABLE PRIVACY EVALUATION

To avoid misleading conclusions, we propose a reliable and efficient
evaluation protocol for empirical ML privacy. Our protocol relies on
three key points, each targeting one of the aforementioned pitfalls
we identify in existing evaluations.

(1) Evaluate membership inference success (specifically TPR at
low FPR) for the most vulnerable sample in a dataset, instead
of an aggregate over all samples. To make this process com-
putationally efficient, audit a set of canaries whose privacy
leakage approximates that of the most vulnerable sample.

(2) Use a state-of-the-art membership inference attack that is
properly adapted to specifics of the defense.

(3) Compare to DP baselines (e.g., DP-SGD) that use state-of-the-
art techniques and reach similar utility to the defense.

In the remainder of this section, we elaborate on each point, and
discuss the practical implementation of our protocol.

4.1 Focus on the Most Vulnerable Samples

Most membership inference evaluations split a benchmark dataset
D (e.g., CIFAR-10) into two disjoint sets of members Dj, and non-
members Doyt (typically of equal size), and apply a membership
inference attack A. Given a model f trained on Dj, and a target
sample x € D as input, the attack outputs a membership score
s « A(f,x) that indicates the attacker’s confidence of x being
2A defense could also aim to be more computationally efficient than DP-SGD, but few

empirical defenses claim this as a main goal. Moreover, we find that the computational
cost of heuristic DP-SGD baselines is close to the most efficient defenses we study.
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(a) Population-level evaluations fail to capture the privacy leakage of the
most vulnerable samples. We compare the TPR@0.1% FPR of LiRA on every
CIFAR-10 sample in isolation (sample-level) to an aggregate over all samples
(population-level, as in Carlini et al. [4]). The attack’s success at inferring
membership of the most vulnerable sample is orders of magnitude higher
than the attack’s success at inferring membership across the dataset.
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(b) Well-chosen canaries are crucial to capture privacy of the most vulnerable
sample. Measuring success over the top-500 most vulnerable samples (red)
severly underestimates the worst-case privacy leakage (yellow) because the
sample-level TPRs in (a) decay rapidly. However, our well-chosen canaries
(blue, mislabeled samples in this instance) closely approximate the most
vulnerable sample in terms of attack success.

Figure 2: Membership inference evaluations should focus on the leakage of the most vulnerable sample(s), which can be
approximated efficiently using a canary set. In (a), we train 20,000 shadow models on CIFAR-10 to compute the MI attack success
(TPR at 0.1% FPR) independently for each individual sample. We find that the most vulnerable sample is considerably easier to attack than a
population-level evaluation suggests. In (b), we show that constructing an appropriate canary set allows us to capture the worst-case privacy
leakage in a computationally efficient manner. Note that both plots use a linear y-axis; see Appendix A.2 for experimental details.

a member of the training set. Crucially, existing evaluations then
quantify privacy leakage via the aggregated attack success on every
sample in D—for example, by computing an ROC curve over the
attacker’s confidence on all samples. Such evaluations thus measure
the fraction of samples an attacker can confidently identify.

We argue that this measure fails to capture the privacy of each
individual sample. In particular, for existing evaluations, a model’s
purported privacy can be arbitrarily improved by adding “safe”
examples to the dataset, even though the leakage of the most vul-
nerable samples does not change. We illustrate this phenomenon
with an extreme example below.

Name and shame: A blatantly non-private defense that passes
existing privacy evaluations. Consider the following simple
“name-and-shame”? defense NSz that fully leaks the membership
of one fixed target sample x:

1 ifx € Dy,

NS;(Din) =
#(Din) {O otherwise.

That is, the defense NSy outputs 1 if and only if the target x is in the
training set (obviously, this does not yield a useful ML model). This
defense completely violates the membership privacy of x, while
fully protecting all other training samples.

If we evaluate any MI attack over the entire dataset D of members
and non-members, we get that

TPR < FPR + 1/|D|.

3Such mechanisms often appear in discussions of (€, §)-differential privacy [49] to
motivate the need for the parameter & to be much smaller than the size of the dataset.

Thus, in existing evaluations, this defense can be made arbitrarily
private by increasing the size of D. Evaluating on more samples
indeed improves the defense’s privacy on average across the popu-
lation (i.e., a smaller proportion of the dataset is at risk of privacy
leakage); yet, from the individual perspective of %, the defense never
provides any privacy at all.

Privacy is non-uniform in practice. The name-and-shame
defense is pathological, but illustrates an important point: the pro-
portion of samples whose privacy is violated does not reflect the
privacy leakage of the most vulnerable samples. We now show that
this issue also affects privacy measurements on typical ML datasets.
We consider the standard setting from Carlini et al. [4] where
the victim model f is trained on a dataset Dj, containing half of
the samples from the CIFAR-10 training set (i.e., 25,000 training
points). We run the LiRA attack A with 64 shadow models trained
on random splits of CIFAR-10, and evaluate the results in two ways:
(1) Population-level: We apply the attack to each of the 50,000
samples in the CIFAR-10 dataset D = Dj, U Dy, and report the
TPR at 0.1% FPR across all samples—the original setting of Carlini
et al. [4]. More precisely, we define
FPR(T) = PDr [A(f,x) > T],
X~Dou

t

TPR(T) = PB [A(f,x) > T],

and select the threshold T as
T = arg max {FPR(t) < 0.1%} )
t
In words, we set the threshold so that the attack makes false mem-

bership guesses for at most 0.1% of the non-members, and then
report the proportion of all members that are correctly identified.



(2) Sample-level: We compute the attack’s TPR and FPR for each
sample individually. To do this, we perform the MI experiment
20,000 times by repeatedly resampling half of the CIFAR-10 training
set, and fitting a model on the resulting D;,.* For each sample x in
the full CIFAR-10 training data, we then define

TPRy (Ty) = [A(f,x) > Tx | x € Dy,

Pr
Din, f~Train(Djn )

FPRy(Ty) = [A(f,x) > Tx | x € Dinl,

Pr
Diy, f~Train(Djy )
and select sample-specific attack thresholds Ty as

Ty = arg max {FPRx(t) < 0.1%} .
¢

That is, we now set the (sample-specific) attack threshold so that
the attack makes at most 0.1% of false membership guesses for that
specific sample, across multiple possible training runs. Then, we re-
port the probability of the attacker correctly inferring membership
(again, taken over multiple training runs).

In Figure 2a, we rank all CIFAR-10 samples by their individual
TPR at 0.1% FPR (sample-level), and compare those values to the
TPR at 0.1% FPR when aggregating attack success across all the full
dataset (population-level). The results confirm that, even in CIFAR-
10, a small fraction of samples is significantly more vulnerable to
membership inference than the average data point. In particular,
the TPR at 0.1% FPR of the most vulnerable sample is 99.9%—orders
of magnitude higher than the population-level metric (4%) suggests.

Our proposed evaluation metric: TPR at low FPR for the most
vulnerable sample. We thus argue that empirical evaluations of
privacy defenses should target membership inference attacks at the
most vulnerable sample in a dataset,? and report the corresponding
TPR at a low FPR. Our metric answers how likely a real-world
attacker is to confidently identify a specific sample in the dataset,
instead of measuring leakage across the entire population.

This metric reconciles empirical MI evaluations with the privacy
semantics of DP, which guard against reliable membership inference
for any individual sample, regardless of how private a defense may
be on other samples. Our approach also accurately captures privacy
of the “name and shame” defense: for the most vulnerable sample,
our metric yields a TPR of 100% at 0% FPR; thus, the “name and
shame” defense clearly fails to pass our evaluation.

Efficient approximation using canaries. Ideally, our privacy
evaluation would directly estimate the TPR at a low FPR for the
most vulnerable sample(s) in a dataset by repeating the membership
inference attack many times. However, this is computationally
highly expensive: to estimate an attack’s TPR at FPR «, even for a
single sample, we need to run the attack O(1/«) times.

If we train S models and evaluate the attack on C samples, we
thus want S - C > 1/a, introducing a tradeoff between tightness
of the privacy bound and computational efficiency. Existing works
mainly focus on two extremes:

4We thank Matthew Jagielski for providing us with these models.

SWe could also consider a fully adversarial dataset and target sample, as often done
for auditing DP implementations [41, 57]. Yet, the rationale for heuristic defenses is
precisely that such worst-case scenarios are unrealistic in practice. In keeping with
this motivation, we thus aim to measure the privacy that a defense confers for “natural”
datasets and samples, but while focusing on the most vulnerable of these samples.

e Standard MI evaluations run the attack on the full dataset D
(i.e., C = |D|). Hence, even a small number of victim models S
(as few as one) can provide sufficient statistical power if the
dataset is large. Yet, as previously discussed, this approach
yields a population-level measure of privacy.

e Techniques for DP auditing [41, 57] often evaluate the attack
on a single worst-case sample (i.e., C = 1), and must thus train
S > 1/a models for a strong privacy bound. At a typical FPR
of @ = 0.1%, this corresponds to training thousands of models.

Our (illustrative) approach in Figure 2a follows the latter extreme:
we used 20,000 models to tightly approximate the per-sample attack
success at low FPRs. Such an approach is of course impractical in
general, especially since many privacy defenses add computational
overhead over standard training.

We thus adopt a natural middle ground: we evaluate member-
ship inference on a small set of 1 « C < |D| samples (called
“canaries” [7]), where each canary is inserted independently at
random in the training data of a small number S of models. The
evaluation then reports membership inference success only over
the canary set, ignoring the remaining data.

Crucially, we design canaries to mimic the most vulnerable sam-
ples in the data, instead of simply selecting a subset of the data
(either at random, or in decreasing order of vulnerability). This
ensures that an attack’s performance on canaries approximates (or
upper-bounds) the performance on the most vulnerable sample.
Figure 2b highlights the importance of properly designed canaries.
Here, we choose a set of C = 500 canaries and train S = 64 models,
which allows us to reliably measure FPRs on the order of 0.1% over
the canary set. If we were to simply pick 500 samples from the
dataset at random, we would obtain a TPR at 0.1% FPR close to that
computed over the full dataset (i.e.,  4%). One might hence be
tempted to use the 500 most vulnerable samples. However, due to
the small number of highly vulnerable samples, this approach still
underestimates the TPR@0.1% FPR of the least-private sample (63%
vs. 99.9%). If we instead design an appropriate canary set (random
mislabeled samples from CIFAR-10 in this case), we can closely
approximate the ROC curve of the most vulnerable sample—but
crucially, only train 64 models instead of 20,000 (as in Figure 2a).

Our approach is similar to the DP auditing procedure proposed
by Steinke et al. [50]. While they focus on “extreme” computational
efficiency by auditing an algorithm using just one single training
run (ie., S = 1), we repeat the training algorithm multiple times to
obtain tighter empirical privacy estimates using the LiRA attack. As
we discuss in the following, the tightness of the estimate ultimately
hinges on an appropriate choice of the membership inference attack
and canary set—both depending on the specifics of the defense.

4.2 Adapt Attacks and Canaries to the Defense

Reliable defense evaluations must adapt their attacks and canary
choice to the defense. Indeed, a robust defense should protect the
most vulnerable samples against the strongest adversary within its
threat model. Yet, the nature of the most vulnerable samples, and
of the strongest attack, may depend on specifics of the defense.

Adapting attacks. State-of-the-art membership inference at-
tacks rely on the assumption that a model’s loss (or confidence)
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Figure 3: Mislabeled, ambiguous, and atypical samples are
most vulnerable to privacy attacks. The most vulnerable CIFAR-
10 samples in the setting of Figure 2a are images that are mislabeled
(e.g., humans labeled “truck”), ambiguous (e.g., a bird on a car), or

atypical (e.g., a boat on land or an airplane without wings). See
Appendix B.5 for more samples and TPR@0.1% FPR values.
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on a sample contains the strongest membership signal. However,
some defense designs might violate this assumption.

One well-known example is confidence masking [13], where a
defense explicitly obfuscates model predictions at deployment-time.
Choquette-Choo et al. [13] show that such defenses are vulnerable
to adaptive label-only attacks, that is, attacks that only rely on a
model’s predicted label (which those defenses preserve).

More broadly, generic membership inference attacks may be in-
adequate for defenses that depart the standard supervised training
regime. For example, consider a defense based on self-supervised
learning that first trains an encoder using unlabeled data, followed
by a simple supervised fine-tuning stage. For such a defense, mem-
orization could occur in either of the two training stages, but a
generic attack such as LiRA might fail to fully exploit memoriza-
tion of unlabeled data during pretraining. Similar concerns might
arise for other multi-stage defenses, for example, ones that use
synthetic data generation or distillation.

Adapting canaries. Recall that the purpose of canaries in our
evaluation protocol is to construct a set of samples such that (1) the
privacy leakage for the population of canaries approximates the
leakage of the most vulnerable sample in the dataset, and (2) the
set is large enough to obtain a robust measure of low attack FPRs
(e.g., 0.1%) with a reasonable number of models.

Which samples are particularly vulnerable typically depends on
the type of defense that is employed. Similarly, a defense might
affect the interactions between different canaries that are simulta-
neously present in the training data. As a result, a good choice of
canary is inherently defense-dependent. Figure 3 highlights some
of the most vulnerable CIFAR-10 samples for standard training,
that is, the samples with the highest TPR@0.1% FPR in Figure 2a.
These examples suggest that atypical images (e.g., a ship on land)
and mislabeled samples (e.g., humans labeled as “truck”) are strong
canary candidates for CIFAR-10—at least for undefended models.

However, we must also consider interactions between canaries.
For example, suppose we use many pictures of “boats on land” as ca-
naries. Those will no longer be “atypical”, as the model will learn to

generalize to such images. As a result, each individual canary might
exhibit significantly less memorization than the most vulnerable
sample in the original CIFAR-10 dataset. We thus want canaries
whose privacy leakages are as independent as possible from one
another. That is, the inclusion of one canary in the dataset should
minimally influence the model’s ability to fit the other canaries.

Mislabeled samples are a strong default candidates for canaries;
indeed, such samples are common in DP auditing [41, 50]. If we
choose the incorrect labels at random, a model provably cannot
generalize to the canary set. As long as the canary set is reasonably
small, using mislabeled samples also minimally affects a model’s
utility. Hence, for standard supervised learning, mislabeled samples
satisfy both desiderata for good canaries, and approximate the most
vulnerable sample in the original dataset well.

Yet, similar to attacks, the choice of canaries crucially depends
on both the dataset and the defense. For example, as we discuss
in Section 5.4, defenses that ignore label information are not vul-
nerable to mislabeled samples. Hence, a robust empirical defense
evaluation must adapt its canaries to the defense. Doing so requires
a careful analysis of the defense mechanism, either analytically or
through a form of red teaming; systematically determining strong
canaries for any given defense is still an open problem. We hence
illustrate a heuristic approach using our case studies.

4.3 Use Strong DP Baselines

Since defenses with provable DP guarantees exist, heuristic defenses
should provide some distinct practical advantage over them. In
this paper, we focus on the presumed utility advantage: heuristic
defenses claim to provide higher accuracy than DP algorithms,
while still defending against realistic adversaries.

Forgoing theoretical guarantees for practical advantages is com-
mon in computer security. For example, empirical defenses against
adversarial examples (such as adversarial training [36]) are often
preferred over techniques with provable robustness, as the for-
mer yield higher accuracy models while still defending against all
known attacks. More broadly, many practical deployments of cryp-
tographic algorithms rely on techniques with no theoretical guar-
antees (e.g., hash functions like SHA-3, or symmetric encryption
like AES)—even though there exist (much more expensive) schemes
whose security can be provably reduced to a well-characterized
mathematical problem (e.g., factorization).

While the first two principles of our methodology focus on prop-
erly evaluating heuristic defenses, our third principle calls for a
more rigorous comparison with provable baselines. In particular,
empirical privacy evaluations should compare heuristic defenses to
state-of-the-art DP baselines at a comparable utility level.

Focus on high utility regime. Existing defense evaluations
typically use a DP-SGD baseline with low utility and moderately
strong provable privacy guarantees (e.g., € often around 4-8).

Yet, a defense with a drastic utility cost is unlikely to be used
in practice. We hence argue that a comparison to low-utility DP
baselines is unwarranted. Moreover, since heuristic defenses forgo
theoretical guarantees anyhow (under the assumption that these
guarantees are loose in practice), there is no reason to hold DP
baselines to the higher standard of proper provable guarantees.



We thus instead propose to tune DP baselines such that they
(1) attain some minimal utility, comparable to that of the heuristic
defense, and (2) maximize empirical privacy under this utility con-
straint. Notably, we do not enforce meaningful provable guarantees,
and potentially treat DP-SGD as a purely empirical defense.

Use state-of-the-art DP-SGD methods. The “vanilla” DP-SGD
algorithm of Abadi et al. [1] employs a similar training setting as
standard supervised learning models, with the addition of gradient
clipping and noising. Many works show that certain techniques
can substantially improve the utility of DP-SGD while retaining
the same privacy guarantees [14, 47] (e.g., by using a different data
augmentation strategy). A fair evaluation should thus account for
these state-of-the-art methods when comparing to DP-SGD.

Overall, we note that the current literature rarely studies DP-
SGD in the high-utility regime (e.g., > 91% accuracy on CIFAR-10).
One potential reason is that achieving very high utility currently
requires hyperparameters (e.g., batch size and noise magnitude)
that yield meaningless worst-case guarantees (e.g., € > 108). Yet,
even without provable privacy, DP-SGD constitutes a perfectly
valid heuristic defense—which we find to consistently outperform
other methods in our case studies.

5 CASE STUDY EXPERIMENTS

We now illustrate pitfalls in defense evaluations and motivate our
evaluation strategy among five diverse empirical defenses against
membership inference. We first briefly introduce these defenses
and our experimental setup in Sections 5.1 and 5.2, respectively.
We then instantiate the three prongs of our evaluation strategy:
(1) we develop strong adaptive attacks in Section 5.3; (2) design
strong canaries for each defense in Section 5.4; and (3) compare
these empirical defenses with DP-SGD in Section 5.5 (and show
that none are competitive with a properly tuned DP-SGD baseline).
We do not claim that the attacks or canaries we design for each
defense are optimal, but they suffice to highlight the stark differ-
ences between our proposed focus on the most vulnerable sample
compared to weaker, non-adaptive population-level evaluations.

5.1 Defenses

The five defenses we study fall into two categories: four are peer-
reviewed defenses that explicitly aim to protect privacy, and one is
a “folklore” defense that illustrates how departing from a standard
supervised learning setting can impede state-of-the-art attacks. We
omit certain well-known empirical membership inference defenses
[16, 28, 39, 61] that have been circumvented in prior work [5, 13].

HAMP. HAMP [12] combines training-time modifications (i.e.,
entropy regularization and label smoothing; not important for our
attacks) and a test-time defense that explicitly randomizes a model’s
confidence. Specifically, given a trained model f and input image x,
the defense output a random confidence vector such that the order
of predicted classes matches the original prediction f(x). This is
an obvious case of confidence masking [13].

RelaxLoss. RelaxLoss [9] reduces overfitting by constraining the
training loss to be above a fixed threshold. Concretely, for every
training batch, the defense first computes the cross-entropy loss
bpatch = 1/B ZiB:I L(xi,y;) as in standard training. Then, RelaxLoss

compares the batch loss to a target loss threshold ¢;: If #,ich > r,
the defense continues with standard gradient descent; however,
if fyatch < fr then RelaxLoss instead takes a (modified) gradient
ascent step, with the goal of raising the loss above #;.

Self Ensemble Architecture (SELENA). SELENA [52] is a dis-
tillation defense that heuristically mimics the provable guarantees
of PATE [43], without the need for public data or noise addition.
SELENA first splits the training data into (partially overlapping)
chunks Dy, Dy, . .., Dy and independently trains one teacher model
fi on each chunk. In a second distillation stage, the defense trains a
model fgydent using the soft predictions from the k teacher models.
To promote membership privacy, for every sample x, SELENA only
distills soft prediction from the teachers f; that were not trained on
x (i.e., x € D;). The rationale is that fgydent is trained to mimic the
responses of the teachers on non-members only.

Data-Free Knowledge Distillation (DFKD). DFKD [10, 35, 65,
70] transfers knowledge from a teacher model—trained on private
data—to a student model trained solely using synthetic data. While
data privacy is a primary motivation for DFKD, we are not aware of
prior work evaluating this defense against membership inference
attacks (some works argue privacy by visually comparing the syn-
thetic data to the training data [22, 69]). As a representative from
this line of work, we study the state-of-the-art method of Fang et al.
[18]. At a high level, their method proceeds in four steps: (1) train
a teacher model f on the private training set; (2) train a generative
model to produce synthetic data using an inversion loss (e.g., by
matching the batch-normalization statistics of the teacher model);
(3) distill a student model f,dent using synthetic images from the
generator and soft labels from the teacher model; (4) repeat steps 2
and 3 iteratively until the model converges. The privacy intuition
is that the student model only observes noisy synthetic data, not
the original (private) training data. Yet, as we will see, such “visual”
privacy arguments can be highly misleading.

Self-Supervised Learning (SSL). Self-Supervised Learning is
a technique to learn feature representations from unlabeled data.
Given a labeled dataset {(x1,y1),...,(xn,yn)}, the SSL defense
first trains a feature encoder ¢ in an unsupervised fashion, using
only the features {xi, ..., x, }. We consider two popular methods,
SimCLR [11] and MoCo [23], both employing a contrastive loss
which ensures that different augmentations of an input yield similar
features (i.e., ¢(x) = ¢(aug(x))). Then, in a second stage, we train
a linear classifier f(x) = W¢(x) + b on top of the frozen encoder,
using the full labeled training set and a standard cross-entropy loss.
SSL is not explicitly a defense against membership inference, but
has received a lot of study regarding its privacy [25, 30, 32]. We
include this SSL-based defense to illustrate a shortcoming of a naive
privacy evaluation that applies a LiRA-like attack out-of-the-box
without accounting for the unsupervised nature of the encoder’s
training.

5.2 Experimental Setup

Dataset. We run all experiments on CIFAR-10 [31], a canonical
benchmark dataset used by most existing empirical evaluations of
privacy defenses. Due to the relatively high computational cost of
our experiments, we refrain from studying more datasets and focus



our efforts on a single one. As our goal is to reveal pitfalls in existing
evaluations, we believe that case studies on the most standard
dataset used in the field are sufficient. Similarly, previous works on
pitfalls in adversarial robustness evaluations typically use a single
dataset to show that existing evaluations are incomplete [2, 54].

Shadow models and audit samples. Similar to Carlini et al.
[4], we train multiple models on random subsets of the CIFAR-10
training set. However, rather than subsampling the entire training
set as in [4], we follow Steinke et al. [50]: we designate 500 random
data points as “audit samples” on which we evaluate membership
inference; we always include the remaining 49,500 samples in every
model’s training data.® For population-level evaluations, we attack
these audit samples as-is (since the audit samples are a random
sample from the population, the expected attack success on the audit
samples is the same as on the full population). For our evaluation
that focuses on the most vulnerable samples, we replace the 500
audit samples with appropriately chosen canaries.

For each defense, we train 64 models, randomly including each
audit sample in exactly half of the models’ training datasets. For
evaluation, we use a leave-one-out cross-validation (as in [56]),
where we evaluate the attack 64 times, once with each model as
the victim and the remaining 63 models as the attacker’s shadow
models. We then calculate the attack’s TPR and FPR over the 64-500
guesses of the attacker on all canaries and victim models.

To control for randomness in our evaluation, all experiments use
the same non-audit samples, shadow model assignments, and audit
samples given a fixed choice of canaries. Hence, two experiments
using the same type of canaries use exactly the same data; datasets
with different canaries are identical up to the 500 audit samples.

Defense implementation. We further control neural network
architecture and capacity: all defenses except SSL use a WRN16-4
base model [67]; for SSL, we could not achieve sufficiently high
utility with the WRN16-4 architecture, and thus follow [11, 23] by
using a ResNet-18 [24] instead.

Moreover, we re-implement all defenses (carefully following all
original design decisions). This allows us to use exactly the same set-
ting in all case studies, and enables straightforward reproducibility
of our results. We then tune all privacy-related defense hyperpa-
rameters (where available) to maximize privacy constrained to at
least 88% CIFAR-10 test accuracy. and otherwise use the values
proposed in each defense’s original paper. See Appendix A.4 for
specific hyperparameters and implementation details.

LiRA attack. ForLiRA, we always report the maximum TPR@0.1%
FPR over the strongest approaches proposed in [4]. More precisely,

we consider the Hinge vs. Logit scores, and attacking just the origi-

nal sample vs. 18 augmented versions (since not all defenses employ

data augmentation). The augmentations consist of horizontal flips,

and shifting images by +4 pixels on each axis.

5.3 Adaptive Attacks

A reliable privacy evaluation must use the strongest possible at-
tack in a given threat model. We hypothesize that for two defenses

SFixing most of the training data may put adversaries at an advantage, as the shadow
models and target models are more similar in our setting. Yet, we show in Appendix A.3
that this has a negligible effect on attack success rates.

in our case studies—SSL and HAMP—the standard LiRA attack
is not strong, because both defenses violate some of the attack’s
implicit assumptions. We thus develop custom attacks tailored to
the specifics of SSL and HAMP. While we do not claim either at-
tack to be optimal, our simple adaptations suffice to highlight how
evaluations using weak attacks can yield misleading results.

Adapting attacks to contrastive losses in SSL. SimCLR and
MoCo, the two SSL techniques that we consider, train an encoder
neural network ¢ using a contrastive loss to learn representations
from unlabeled images. The full defense trains an additional linear
classifier on top of this (fixed) encoder, using the private labels.

We hypothesize that the cross-entropy loss of the full defense
encodes only a weak membership signal, since this loss is only used
to train the final layer. Thus, applying LiRA out-of-the-box to the
full defense is unlikely to be effective. This has also been highlighted
in concurrent work [58], which shows that SSL encoders tend to
memorize training images despite not using any labels for training.
We hence adapt LiRA to the SSL setting by specifically targeting
the contrastive loss used to train the encoder.

When training an encoder, both MoCo and SimCLR maximize
the similarity between representations of augmented version of the
same image (positive pairs), and minimize the similarity between
augmented versions of different images (negative pairs). We thus
expect that representations of an image under different augmenta-
tions are more similar if that image is a training member—analogous
to overconfident predictions in supervised learning.

Specifically, given a target image, we apply two random augmen-
tations to the image, and calculate the cosine similarity between the
corresponding defense outputs.” We consider two attack variants
here: (1) a white-box attack that directly computes similarity over
the outputs of the encoder ¢; (2) a black-box attack that applies the
contrastive loss to the logits output by the full defense (including
the linear classifier). Finally, to account for randomness in the data
augmentations, we repeat this procedure six times for every image,
and average the similarities.

The results in Figure 4a (for SimCLR) support our hypothesis
that most memorization happens during self-supervised training.
Directly attacking the SSL encoder (white-box) using our adaptive
attack yields a threefold increase in privacy leakage compared
to standard LiRA on the full defense. In a black-box setting, our
adaptation of the attack’s loss increases the TPR against the full
defense from 5.8% to 7.1% (at a FPR of 0.1%). In the remainder of this
section, we build upon the stronger white-box attack, and present
black-box results in Appendix B.1.

While our results already highlight the importance of strong
adaptive attacks, more sophisticated strategies might reveal even
higher privacy leakage. Indeed, our current attack only considers
the positive part of the contrastive loss (i.e., similarity between two
augmentations of an image), while ignoring the negative part (i.e.,
dissimilarity between augmentations of different images).

An orthogonal, but interesting observation from this experiment
is that there do exist defenses where a white-box MI adversary
outperforms a black-box attacker. As noted by Carlini et al. [4], it

"Since the cosine similarity is a value p € [—1, 1], we apply a Fisher transformation,
log (1+ p)/(1 — p), to obtain empirically normally distributed statistics.
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(a) Adapting to the pretraining loss yields a stronger attack for SSL. In both a
black-box (attacking the final classifier) and especially in the white-box set-
ting (directly attacking the SSL encoder), our score that exploits contrastive
losses increases the success of the standard LiRA attack. We only present
the SimCLR-based defense for brevity; see Appendix B.1 for MoCo.
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(b) A label-only attack circumvents confidence masking in HAMP. The test-
time defense provides good privacy against state-of-the-art confidence-based
attacks such as LiRA (yellow), but our simple label-only attack (blue) achieves
almost threefold privacy leakage. See Appendix B.2 for more details.

Figure 4: Adaptive membership inference attacks that exploit defense-specific mechanisms improve over the standard LiRA
attack. We show results for the (a) SSL and (b) HAMP defenses, with LiRA evaluated across the entire dataset.

remains unknown whether we can build stronger white-box attacks
for standard supervised learning defenses.

Circumventing confidence masking in HAMP with label-only
attacks. In contrast to SSL, HAMP uses a fairly standard super-
vised learning approach, for which LiRA is appropriate. However,
since the defense actively obfuscates the model’s predicted confi-
dences at test time, the standard attacks achieve a low TPR of only
2.1% at 0.1% FPR. This (presumed) protection stems primarily from
HAMP’s test-time defense, as the same attack on non-obfuscated
predictions is significantly stronger (see Appendix B.2).

The test-time defense erases all information in model predictions
besides the predicted label order, thereby performing confidence
masking [13]. We hence follow Choquette-Choo et al. [13], and
develop a straightforward label-only attack.

Our attack queries the model on 18 fixed data augmentations
of the target sample, and checks whether the model classifies each
input correctly. This yields a binary vector of 18 entries. Using the
shadow models, we then fit a logistic regression classifier, which
takes this binary vector as input, and predicts membership of the
target sample. Finally, we use the confidence of each classifier as a
membership score A(f;x), and calculate the usual TPR and FPR
statistics. See Appendix A.4 for further details.

Figure 4b compares our label-only attack with standard LiRA.
Our adaptive label-only attack achieves a consistent increase in
TPRs compared to the original LiRA attack. Based on the results
in [13], we conjecture that computationally more expensive label-
only attacks (e.g., using strategies from black-box adversarial exam-
ple attacks) would be even stronger. But, as we will see in Section 5.4,
our simple adaptive attack suffices to break the privacy of HAMP
on the most vulnerable samples.

Other defenses. The other heuristic defenses we study (Re-
laxloss, SELENA and DFKD) use more standard supervised learning

methods, without any obvious confidence masking. We thus apply
the original LiRA attack to these, and show in the following section
that this suffices to breach privacy of the most vulnerable samples.

Nevertheless, it is possible that stronger adaptive MI attacks exist
for some of these defenses. In particular, DFKD’s use of generative
modeling and synthetic data introduces a layer of indirection that
could be exploited. However, our attempts at building a stronger
attack than LiRA for this defense were unsuccessful.

5.4 Sample-Level Privacy using Canaries

We now focus on the most important part of our evaluation protocol:
measuring the attack success on the most vulnerable samples in a
dataset, rather than on the dataset as a whole. Recall that evaluating
attack success on each sample independently would be computa-
tionally expensive, as it requires thousands of shadow models. We
instead measure the attack’s success on a set of canaries that are
designed to mimic the (suspected) most vulnerable sample.

Figure 5 provides a summary for all our case studies. We consis-
tently find that approximating the most vulnerable samples using
defense-specific canaries yields a TPR@0.1% FPR that is between 2x
and over 50X higher compared to population-level evaluations on
a random CIFAR-10 subset. Crucially, our evaluation substantially
changes the ranking between defenses: DFKD, for example, appears
to be one of the most private defenses when success is aggregated
over the full dataset, yet exhibits the second-worst privacy leakage
for the most vulnerable samples. We discuss our canary choices
(Table 2 in the appendix) and stress the importance of adapting
canaries to evaluated defenses in the remainder of this section.

Mislabeled samples are a strong baseline. As discussed in Sec-
tion 4.2, mislabeled samples are a good default choice of canaries.
Intuitively, those samples are naturally vulnerable to membership
inference in supervised learning: a model capable of memorization
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Figure 5: Our improved evaluation uncovers substantial pri-
vacy leakage for the most vulnerable samples. While most
defenses appear private at the population-level (original), our eval-
uation with strong adaptive attacks targeted at defense-specific
canaries reveals large privacy leakage for the most vulnerable sam-
ples. Note that the defense that appears to be the most private on a
population-level (DFKD) is the second-least private on a sample-level!

and generalization will tend to assign high confidence to the wrong
class if a mislabeled sample is a training member (memorization),
but low confidence if the sample is not in the training data (general-
ization). Because practical datasets tend to contain some label noise
(e.g., [37, 42, 71]), mislabeled samples may hence approximate the
most vulnerable samples in such datasets well.

To generate mislabeled samples as canaries, we independently
change the labels of all 500 audit samples to a uniformly random
new class. For HAMP, RelaxLoss, and DFKD, a MI attack on those
canaries yields a TPR@0.1% FPR of around 30% to 70% in Figure 5.

For DFKD in particular, this highlights the importance of rigor-
ous privacy evaluations, compared to visual inspections or intu-
itions (as done in some prior work [22, 69]). Even though DFKD’s
distillation process uses synthetic data—and hence omits wrong
labels—the defense exhibits a TPR@0.1% FPR of 72.2%. We defer a
more detailed investigation to future work, and now focus on two
defenses that are robust against label noise: SSL and SELENA.

Out-of-distribution images are strong SSL canaries. Real-
world data is often long-tailed, that is, it contains many “typical”
samples, and few outliers (e.g., mislabeled or atypical images). For
standard supervised learning, Feldman [19] argues that the only
way to fit outliers and perform well on similar test samples is by
memorizing labels. However, self-supervised learning itself solely
relies on unlabeled data; changing a sample’s class does hence
not influence memorization. We thus hypothesize that our SSL
defenses, which heavily rely on pretraining with unlabeled data,
do not memorize most label noise. In fact, we find that both SSL
defenses have an average training accuracy on mislabeled canaries
of only 1.3%—significantly below random guessing (10%).

Hence, we consider atypical images as a different type of outliers.
Indeed, recent work by Wang et al. [58] found that SSL feature

encoders tend to memorize atypical images, and such memorization
can be necessary for good downstream generalization.

However, since rare images constitute only a small fraction
of CIFAR-10 by definition, we use a proxy as canaries: out-of-
distribution (OOD) data. More concretely, we replace the original
audit set with 500 downsampled ImageNet images. To decrease
correlation between canaries, we pick each sample from a different
ImageNet class, and assign labels independently at random.

The results in Figure 6a confirm our hypothesis, and highlight
how the choice of canaries depends on the specifics of a defense.
In a white-box setting, our attack on OOD canaries achieves a
TPR@0.1% FPR as high as 65%—between 2.2X and 2.7x times higher
than on the original/mislabeled audit set.

The choice of canaries is even more important in the black-box
setting. Indeed, mislabeled samples yield a slightly lower TPR@0.1%
FPR compared to the original (in-distribution) audit set. In contrast,
OOD canaries are much more vulnerable. We defer those and addi-
tional results to Appendix B.1 for brevity.

(Near)-duplicates are strong canaries for SELENA. Recall
that SELENA first trains an ensemble of models fi, . .., fx on over-
lapping subsets of the training data. SELENA then distills each
sample x into a student model using only predictions from the
teacher models that were not trained on x. Tang et al. [52] prove
that SELENA’s ensemble mechanism leaks nothing about a sample’s
membership if queried only on that specific sample.

Unfortunately, this proof ignores interactions between samples.
Concretely, suppose that training a model on a mislabeled sample
(x,7) also affects the model’s prediction on a different training
image x’, for example, because x” and x are similar. When SELENA
distills x” into the student model, it will only query teachers f;
not trained on x’. However, some of these teachers will have been
trained on the mislabeled sample (x, 7). In that case, we expect that
fi(x") = fi(x) = g, that is, the incorrect label may leak into the
student via predictions on other samples. We find evidence of this
effect in practice: if we evaluate SELENA on mislabeled canaries,
we get a TPR of 13.8% at 0.1% FPR, about twice as high as for the
correctly labeled audit set.

Thus, SELENA might not protect some samples due to other
samples with similar features in the training data (we investigate
this more thoroughly in Appendix B.3). More precisely, we expect
that the most vulnerable samples for SELENA are mislabeled images
(x,§) for which a near-duplicate x” ~ x also exists in the training
set (x’ may be correctly labeled).

Tang et al. [52, App. A.3] conjecture that such samples are un-
likely to exist in practice. Yet, we find that CIFAR-10 does contain
mislabeled/ambiguous samples with near-duplicates in the training
data (see the examples in Figure 11 in Appendix B.3).

This inspires our canary choice: We duplicate half of the original
audit set, and mislabel one sample per pair. We then use these 500
samples as the new audit set (i.e., we randomly include each of those
samples as a member with 50% probability) but we only evaluate
the attack on the mislabeled 250 instances. Figure 6b confirms
our hypothesis: attacks on mislabeled samples with duplicates in
the audit set achieve a TPR of 52.7% at 0.1% FPR—a roughly 3.8x
increase compared to mislabeled samples in isolation.
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(a) OOD samples are strong canaries for SSL defenses. For SInCLR, using our
adaptive white-box attack, OOD ImageNet data (blue) is more vulnerable
to membership inference than the population average (yellow). Note that
neither the SSL encoder nor our white-box attack depend on labels; hence,
mislabeling an audit sample does not change its privacy leakage. See Ap-
pendix B.1 for more details and the MoCo-based defense.
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(b) (Near)-duplicates in the training data create particularly vulnerable samples
for SELENA. Mislabeled canaries in isolation (red) only mildly increase
privacy leakage over a population-level evaluation (yellow). However, those
mislabeled samples become highly vulnerable if they have a duplicate in the
training set (blue).

Figure 6: The right choice of canary set reveals privacy leakage that is much higher than when the attack success is aggregated
over the entire dataset. Different defenses require different canaries. While mislabeled samples are often a reasonable choice, we find that
(a) OOD data for SSL and (b) mislabeled duplicated samples for SELENA are particularly vulnerable.

Note that the TPR is just above 50%, even at very low FPRs. This
is because the attack succeeds when the mislabeled sample (x, §) is
a member, conditioned on the near-duplicate x” also being a member.
Since we vary membership of all audit samples independently at
random, this happens with probability 50%—bounding the expected
number of successes. In Appendix B.3, we consider a stronger set-
ting, where the near-duplicates are always part of the training data;
we find that this enables near-perfect membership inference.

5.5 Strong DP-SGD Baselines

As we have shown, none of the heuristic defenses we study provides
reasonable privacy protection for the most vulnerable samples. We
hence ask whether this indicates that such leakage is inherent for
a high-accuracy model trained on CIFAR-10, or if other heuristic
defenses could provide a better tradeoff.

We consider DP-SGD [1] as a natural baseline to answer this ques-
tion. However, for a fair comparison with other heuristic defenses,
we focus on a high-utility regime; that is, we view DP-SGD as a
purely heuristic defense while possibly forgoing meaningful prov-
able guarantees. Concretely, we consider two DP-SGD instances:
a medium utility baseline that maximizes empirical privacy con-
strained to at least 88% CIFAR-10 test accuracy, and a high utility
baseline with 91% test accuracy. We show that high-utility DP-SGD
yields a very competitive privacy-utility tradeoff, surpassing all the
other heuristic defenses we consider (at a similar utility level).

DP-SGD baselines. Both baselines rely on state-of-the-art DP-
SGD training techniques [14, 47]. We use a modified WRN16-4
architecture that replaces batch normalization with group normal-
ization, swaps the order of normalization and ReLU, and uses the
custom initialization scheme of [14]. We further employ augmen-
tation multiplicity [14] using the modified Opacus [66] library of

Sander et al. [47], and return an exponential moving average of the
model weights with decay factor 0.9999.

We tune the hyperparameters of the medium utility baseline
in the same way as for all case studies (see Section 5.2), that is, to
maximize privacy (measured by € at § = 107°) subject to at least 88%
CIFAR-10 test accuracy. Crucially, we do not enforce meaningful DP
guarantees; the provable privacy guarantees € of all our DP-SGD
baselines are in the thousands. For the high utility baseline, we
rely on recent scaling laws [47] to increase the medium baseline’s
utility at the cost of privacy (primarily by decreasing batch size
while carefully scaling noise). See Table 3 for all hyperparameters,
and the average CIFAR-10 test accuracy over 64 models.

Adaptive attacks and canaries for DP-SGD. We consider the
same threat model as in our case studies, in contrast to typical
DP-SGD audits, where adversaries can observe and influence all
model updates [41].

As canaries, we consider three types of outlier data that have
been used for DP-SGD auditing in prior work [38, 41, 50]: misla-
beled samples, OOD data, and uniform images. We explicitly omit
adversarial examples (as used in [41]), since auditing many of these
samples in parallel induces a weak (non-adaptive) form of adver-
sarial training [55]. This would cause each individual canary to be
less effective, as the partially robust model would be more likely to
correctly classify the canaries that are not in the training set.

For attacks, we consider the same setting as for other defenses,
where the attacker only gets access to the final model after training.
In the DP-SGD literature, this is often called a black-box attacker,
as opposed to a white-box attacker who can see each noisy gradient
step. In this threat model, there are (to the best of our knowledge)
no known adaptive attacks on DP-SGD that outperform standard
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Figure 7: DP-SGD is a strong empirical privacy defense. We
compare the privacy-utility tradeoff of the 5 heuristic defenses we
study to two DP-SGD baselines tuned for high test accuracy. For
both baselines, the DP-SGD privacy analysis yields near-vacuous
guarantees (e > 1,000), yet both provide much better empirical pri-
vacy for the most vulnerable samples, according to our evaluation.

attacks like LiRA. We thus use LiRA on the final trained model, but
report the maximum TPR@0.1% FPR over all canary types.

Results. Figure 7 compares the heuristic defenses we consider
to our DP-SGD baselines (all evaluated according to our protocol,
with adaptive attacks and strong canaries). Despite meaningless
provable guarantees (¢ > 10%), our high utility DP-SGD baseline
shows decent empirical privacy: all heuristic defenses with similar
test accuracy yield a TPR@0.1% FPR that is at least 5.5X worse.
Compared to the medium utility DP-SGD baseline (¢ > 3,000), even
the most private heuristic defense we study (HAMP) leaks 10x
more membership privacy, at a slightly worse test accuracy.

Two defenses in our case studies (DFKD and SELENA) achieve
slightly higher utility than our best DP-SGD baseline (x 92-93%
CIFAR-10 test accuracy)—albeit at the cost of much higher privacy
leakage. This raises the question if any defense can provide mean-
ingful membership privacy for the most vulnerable samples in this
very high utility regime (without using public data). There is evi-
dence to suggest that the answer may be negative. In particular, the
work of Feldman [19] proves that classifiers trained on heavy-tailed
data distributions necessarily need to memorize some training la-
bels to achieve optimal generalization. Correctly classifying the
tail of the CIFAR-10 test data might thus require memorization of
similar rare examples during training, rendering those examples
susceptible to membership inference. To give more credence to this
hypothesis, Appendix B.4 shows that even DP-SGD fails to provide
reasonable privacy when pushed to reach around 92% test accuracy.

Ultimately, we do not claim that DP-SGD is the best membership
inference defense in all settings. Yet, we show how—even absent
meaningful provable guarantees (¢ > 1,000)—DP-SGD is a strong
empirical defense with competitive utility on CIFAR-10. Thus, future
heuristic defenses that aim to claim a better privacy-utility tradeoff
than DP-SGD should show a clear advantage over our baselines.

6 CONCLUSION

Throughout this paper, we have illustrated three major method-
ological pitfalls in empirical privacy evaluations using membership
inference attacks. Existing evaluations report metrics that do not
convey meaningful individual privacy semantics, use weak attacks,
and consider subpar DP baselines. The evaluation methodology we
propose is one way to fix these issues. Our work exposes a number
of possible takeaways and future research directions.

Privacy semantics in-between average-case and worst-case.
As we show, the exact way we measure the privacy of a defense
matters a lot. Before evaluating a defense—or an attack—we thus
need to clearly define the privacy semantics that the evaluation
targets (e.g., do we care about the proportion of samples that can
be inferred, or if any sample can be inferred).

These privacy semantics are often implicit in the formal mem-
bership inference game that a work starts from (e.g., are the dataset
and target sample chosen randomly or by the adversary?), but this
is rarely explicitly discussed. Ultimately, these choices interpolate
between an average-case setting—where the data and target are
randomly chosen—and a worst-case setting—where the dataset and
target are adversarial. The design of heuristic privacy defenses is
often motivated by the fact that the latter worst-case setting is
overly pessimistic. But this need not imply that the other extreme
(the fully average-case setting) is appropriate either.

A theory of “natural” privacy leakage. A possibly surprising
finding from our work is that “heuristic DP-SGD” (with hyperpa-
rameters that do not provide meaningful provable guarantees) is by
far the best defense in practice. Yet, the DP-SGD analysis is tight in
worst-case (possibly pathological) settings [1, 20, 41]. A formal un-
derstanding of DP-SGD’s performance in “natural” settings might
thus lead to tighter provable privacy under realistic assumptions.

Another intriguing question raised by our work (and others [27,
41]) is how to create strong canaries for a given defense. That is, how
do we design or efficiently identify samples that are most vulnerable
to privacy attacks? In our setting, an additional goal is to design
a collection of such samples, where each sample is independently
highly vulnerable. For now, we rely primarily on heuristics to select
such samples, rather than on a principled approach.

DP-SGD is a pragmatic defense. A welcome finding from our
work is that DP-SGD may be the “best-in-class” defense to apply
in practice, whether one cares about stringent provable privacy
guarantees or not. As a result, a single infrastructure and set of
tools can be used for cases where data privacy is paramount (by
setting hyperparameters to get strong provable privacy), as well
as for cases where absence of memorization is a “nice to have” (by
setting hyperparameters to get high utility).
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A EXPERIMENTAL DETAILS
A.1 Experimental Details in Figure 1

Figure 1 compares typical evaluations of membership privacy de-
fenses to our proposed protocol. The bars labeled “Original” indicate
the TPR@0.1% FPR of LiRA on a population-level, while “Ours” cor-
responds to a sample-level evaluation using adaptive attacks (see
Section 5.3) and strong canaries (see Table 2). We otherwise use the
same experimental setup as in the rest of this paper; see Section 5.2
for details.

For brevity, we only display the high utility DP-SGD baseline,
and skip the medium utility baseline (which is more private). Simi-
larly, for SSL, we only show the results from a white-box attack on
SimCLR, and omit the (stronger) results for MoCo (see Figure 10c).

We list the full TPR@0.1% FPR values and test accuracy in Ta-
ble 1 for completeness. Note that our canary choices and our audit
setup only marginally affect test accuracy, but uncover significantly
higher privacy leakage.

A.2 Experimental Details in Figure 2

The experiments in Figure 2 use 20,000 shadow models trained on
CIFAR-10 without any defense. Each model randomly includes or
excludes every CIFAR-10 sample in its training data such that each
sample is a member in exactly half (10,000) of the models.

To obtain comparable results for population-level and sample-
level evaluations, we first randomly select 64 models as shadow
models, and use the remaining 19,936 as victim models.

For every CIFAR-10 sample x, we then use the 64 shadow mod-
els as in the standard LiRA attack to calculate member and non-
member score distributions N (pix in, 0')26 in) and N (pxout, U)Zc,out)’
respectively, and obtain test scores A(f, x) for every victim model
f. The only difference between the population-level and sample-
level metrics is how we aggregate those test scores.

Population-level. For the population-level evaluation in Fig-
ure 2a, we calculate an ROC curve over test scores A(f, -) for each
victim model f individually. This hence results in 19,936 population-
level ROC curves, each over 50,000 test scores per victim f. We
then determine the TPR@0.1% FPR for each individual per-model
ROC curve, and report the average over all victim models. This cor-
responds to 19,936 population-level evaluations as done in previous
work; we report the mean to control for randomness in different
victim models.

Sample-level. For sample-level evaluations, we instead calculate
a ROC curve for each sample x individually, aggregating the test
scores A(+, x) from all 19,936 victim models. This hence results in
50,000 sample-level ROC curves, each based on 19,936 test scores.
We report the TPR@0.1% FPR for each sample’s curve in Figure 2a,
and the full curve of the most vulnerable sample in Figure 2b.

Top-500 most vulnerable samples and 500 canaries. First, for
the top-500 most vulnerable samples in Figure 2b, we determine the
500 samples with the highest sample-level TPR@0.1%, and aggre-
gate their test scores on all victim models (resulting in an ROC curve
over 500 - 19,936 test scores). Second, we use mislabeled samples
as the 500 canaries in Figure 2b. We audit those canaries using the
same setup as for all case studies in this work (see Section 5.2), but
also randomly vary the membership of non-audit samples between
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Table 1: Full privacy (TPR@0.1% FPR) and utility (CIFAR-10 test accuracy) values for each defense.

Method TPR@0.1% FPR CIFAR-10 Test Accuracy
Population-Level, LIRA  Sample-Level, Adaptive Attack Population-Level ~ Sample-Level
HAMP 2.1% 28.5% 88.29% (+£0.04)  88.00% (£0.04)
RelaxLoss 2.2% 74.1% 88.86% (£0.03)  88.60% (+£0.03)
SELENA 6.8% 52.7% 93.05% (+£0.02)  92.88% (+0.02)
SSL (SimCLR) 5.8% 40.6% 88.18% (+£0.02)  88.11% (+0.03)
SSL (MoCo) 2.0% 65.0% 88.44% (£0.04)  88.41% (£0.04)
DFKD 1.3% 72.2% 92.39% (+£0.03)  91.84% (+0.03)
DP-SGD (medium utility) 0.7% 2.7% 88.29% (+£0.03)  88.29% (£0.03)
DP-SGD (high utility) 2.2% 9.5% 91.13% (£0.03)  91.12% (£0.02)
DP-SGD (very high utility) 4.8% 63.2% 91.89% (+0.03)  91.79% (+0.03)
Undefended 13.4% 100.0% 94.52% (£0.02)  94.10% (+0.02)

shadow models (i.e., include or exclude every CIFAR-10 sample in
each shadow model such that every sample is in exactly half of the
models’ training data) to yield a comparable setting.

A.3 Validation of Our Auditing Setup

The goal of our evaluation protocol is to mimic realistic model
deployments. However, most existing evaluations vary the mem-
bership of all samples in a dataset. For CIFAR-10, this yields 25k
training samples in expectation—underestimating utility, and likely
increasing memorization. We hence use an approach similar to
Steinke et al. [50]: audit only a small subset of the training data,
and always include all other samples in the training data.

While our approach results in realistic models, it yields a stronger
adversary that knows almost all training data. In the extreme case
of a single audit sample, such an adversary might even reconstruct
that sample’s features [62]. We thus verify that our approach yields
ROC curves comparable to previous methodology.

As in our case studies, we train 64 models, and attack a small
“audit” subset of CIFAR-10 using LiRA in a leave-one-out fashion.
We compare the effects of varying and fixing the membership of
non-audit samples as follows:

(1) Varying membership: Resample the training set member-
ship of all CIFAR-10 samples for each shadow model.

(2) Fixed membership: Resample only the membership of audit
samples between shadow models, and use the same fixed
(random) membership for non-audit samples.

Note that both approaches yield an expected training set size of
25k samples; the only difference is whether non-audit samples
are the same for different shadow models. Varying membership
corresponds to most existing evaluations, while fixed membership
mimics our procedure. For a full picture, we consider both 500
audit samples as in our case studies, and audit sets of size 250,
proportional to half of CIFAR-10.

The results in Figure 8 show that using the same non-audit sam-
ples in all shadow models (dashed lines) has mild effects. While
the TPR@0.1% FPR minimally increases compared to varying the
membership of all 50k samples in every shadow model (solid lines),
the difference is negligible compared to the effects of different at-
tacks or canaries. Considering the setting in our case studies (dotted

line), i.e., including all 49.5k non-audit CIFAR-10 samples in the
training data of all shadow models, we find that the corresponding
ROC curve matches or lies below all four other settings. Hence,
our evaluation protocol allows us to judge a defense’s real-world
privacy-utility tradeoff without inflating privacy leakage.
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Figure 8: Our threat model yields comparable privacy esti-
mates to prior work. Recall that prior work trains shadow models
by randomly sampling the membership of each dataset point. In
contrast, we only sample the images that we audit, and keep the re-
maining parts of the training set fixed. While this gives the attacker
more power than in prior evaluations (i.e., the attacker knows a
large fraction of the target model’s training set), we show this has a
negligible effect on evaluation outcomes. For audit sets of size either
250 or 500, we compare the setting where we resample each image
(solid lines) or where we only resample the audit set (dashed lines)
and keep ~ 25,000 images fixed (to ensure training sets of similar
sizes in both settings). Our audit setting (dotted line) just samples
the audit set, and always uses the remaining CIFAR-10 training data
(49,500 images) to train all shadow models. Our approach never
overestimates privacy leakage.



A.4 Defense-Specific Hyperparameters and
Implementation Details

HAMP. We tune the two hyperparameters that directly control
the privacy-utility tradeoff (entropy threshold and regularization
strength), and otherwise use the same hyperparameters as the origi-
nal paper [12], including the same optimizer, learning rate schedule,
number of training epochs, and not using data augmentation. As
the set of potential privacy hyperparameters in [12] yields sub-par
privacy in our setting, we consider a logarithmic grid of stronger
values: entropy thresholds in [0.684,0.9999] and regularization
strengths in [0.001,5.0]. From the Pareto-optimal set, we fix the
largest regularization strength that yields stable results, and pick
the largest entropy threshold, subject to 88% test accuracy. This
results in a regularization strength of 0.005 and an entropy thresh-
old of 0.9996837722339832. For our simple label-only attack, we do
not tune the ridge regularization strength of the logistic regression
classifiers (because tuning would require us to train a separate set
of shadow models), and use a default value of 1.0 instead. However,
we find that even tuning the ridge regularization strength directly
on the victim models does not significantly affect the TPR@0.1%
FPR; see Appendix B.2.

RelaxLoss. As for HAMP, we tune the loss threshold (as it di-
rectly controls the privacy-utility tradeoff), but otherwise use the
same hyperparameters as the original paper [9]. In particular, we
also omit data augmentation, and restrict posterior flattening only
to misclassified samples; we resolve ambiguities in the original pa-
per by following the authors’ implementation.® To find the optimal
loss threshold in our setting, we search a logarithmic grid of values
in [0.0100, 2.1813], and pick the largest threshold that yields at least
88% CIFAR-10 test accuracy; this yields a loss threshold of 0.5946.

SELENA. Since it is unclear how the number of queries and
ensemble members affect privacy, we use the values proposed by
SELENA’s authors, that is, performing 10 queries over 25 models.
We further use the same training procedure and hyperparameters
as the original paper [52].

SSL. For both SimCLR and MoCo, we train an encoder with fea-
ture dimension 128 for 800 epochs, and then fit a linear classifier for
an additional 100 epochs while fixing the encoder. Encoder training,
uses a batch size of 512, momentum 0.9, weight decay 0.0005, and a
learning rate of 0.06. For the linera classifier, we use a cross-entropy
loss, a learning rate of 0.5 and batch size 256. MoCo additionally
relies on a queue during training, we set the size to 4096.

DFKD. Following the setting in [18], we find that only using the
“BN” loss (i.e., matching the batch-normalization statistics of the
teacher model, widely used in many DFKD methods) yields a suf-
ficiently high accuracy of at least 88%. Therefore, for the sake of
simplicity, we only employ that loss for the generation of synthetic
data. This approach facilitates the generalization of our evaluation
to numerous other DFKD methods. Apart from that, we perform
for 240 iterations: In each iteration, we first generate 256 new im-
ages, obtain teacher model predictions, and store the result into a
“memory bank”. We then train the student model for 5 epochs on
the full memory bank.

8https://github.com/DingfanChen/RelaxLoss/

Undefended. For the undefended baseline in Figure 7, we aim to
mimic the hyperparameters of defenses in our case studies. Con-
cretely, we train WRN16-4 models using SGD with momentum 0.9
and weight decay 0.0005, batch size 256, and typical data augmen-
tation (random horizontal flips and shifts of up to 4 pixels). We
optimize for 200 epochs with a base learning rate of 0.1; we linearly
warm up the learning rate during the first epoch, and then decay
the learning rate with a factor of 0.2 at epochs 60, 120, and 160.

A.5 Canaries

Table 2 summarizes the adaptive canaries that we use to audit each
defense in our study.

Table 2: Canaries have to be adapted to the defense. Mislabeled
samples are powerful canaries for most defenses that rely on a
standard supervised learning paradigm, but fail to reliably mimic
the leakage of the most vulnerable samples for SELENA or SSL.

Method Canary Choice

HAMP mislabeled samples
RelaxLoss mislabeled samples
SELENA mislabeled duplicates
SSL (SimCLR and MoCo) OOD data (ImageNet)
DFKD mislabeled samples
DP-SGD mislabeled samples, or

OOD data (ImageNet),
or uniform data

B ADDITIONAL EXPERIMENTS

B.1 Investigating Adaptive Attacks and OOD
Effectiveness for SSL

In this section, we present the full results and additional details for
both SimCLR and MoCo in white-box and black-box settings.

Adaptive attacks on a population level. Figure 10a shows
the performance of our adaptive attack for MoCo on a population
level (analogous to the SimCLR results in Figure 4a). We again find
that using our adaptive score S(f;x) in LiRA mildly increases the
TPR@0.1% FPR over standard confidence-based scores in a black-
box setting (2.0% to 3.6%), and significantly in a white-box setting
(to 23.6%, more than an 11x increase).

Adaptive attacks on OOD canaries. Figures 10b and 10c depict
the full ROC curves of our adaptive attacks on both SSL defenses,
comparing different types of canaries. Given that labels neither in-
fluence the SSL encoders nor our white-box attack, the ROC curves
for mislabeled samples and the original audit set are identical in
the white-box setting. Furthermore, in a black-box setting, misla-
beled samples even yield slightly reduce TPR values. In contrast,
we find that OOD data is a strong canary choice, since such outliers
are significantly more vulnerable for both SSL methods and threat
models.


https://github.com/DingfanChen/RelaxLoss/
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(a) Full HAMP ROC curves on a population-level (original audit set).
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(b) Full HAMP ROC curves on mislabeled canaries.

Figure 9: Full results for HAMP (a) across the dataset and (b) on mislabeled canaries. In both instances, HAMP’s training-time
defense alone (red) does provide moderate privacy, but renders models highly private against LiRA when combined with the test-time
defense (yellow). Yet, our simple label-only attack (blue) successfully circumvents the test-time defense. We further tune the hyperparameters
of the label-only attack (black); this yields the default parameters for the population-level evaluation, and only marginally influences the

ROC curve for the sample-level evaluation on mislabeled canaries.
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(a) Our adaptive attack on the contrastive loss in-
creases privacy leakage for models trained with MoCo,
especially in the white-box setting.

(b) Full SimCLR ROC curves on OOD canaries.

(c) Full MoCo ROC curves on OOD canaries.

Figure 10: Additional SSL results. We show the attack success of our adaptive attack for MoCo on a population-level in (a), and the full

ROC curves on OOD data for (b) SimCLR and (c) MoCO.

B.2 Full HAMP Results

As discussed in Section 5.3, HAMP’s test-time defense provides
strong privacy against confidence-based attacks such as LiRA. The
full population-level results in Figure 9a confirm that, while the
training-time defense alone moderate protects privacy, the test-time
defense reduces privacy leakage by an order of magnitude. Notably,
LiRA achieves a TPR@0.1% FPR of only 2.1%—worse than against
our high utility DP-SGD baseline! Yet, our simple label-only attack
undoes part of that protection.
For mislabeled canaries, the differences are even more pronounced:

as seen in Figure 9b, our label-only attack increases the TPR@0.1%

FPR by over ten percentage points. Nevertheless, there is still over
a 2X difference between our label-only attack and LiRA directly
targeting the training-time defense. We suspect that stronger (and
more expensive) label-only attacks can close this gap.

Finally, note that in both cases, tuning the hyperparameters of
our label-only attack only marginally influences the TPR@0.1% FPR
compared to using default values; for population-level evaluations,
the default and tuned hyperparameters even coincide.
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Figure 11: Examples of near-duplicates with different labels
in CIFAR-10. Our canary set for the SELENA defense mimics such
samples. We highlight a selection of samples (top) and their nearest
neighbors (bottom), where the two samples have different labels.
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B.3 Disentangling Privacy Leakage of SELENA

Mislabeled near-duplicates in CIFAR-10. We base our canary
choice on the intuition that certain mislabeled/ambiguous CIFAR-
10 samples leak privacy through a near-duplicate in the training
data. To show that such samples indeed exist, we calculate Open-
CLIP embeddings® of all CIFAR-10 samples, and use the pairwise
cosine similarity to determine each sample’s nearest neighbor with
a different label. We then inspect the pairs with the highest cosine
similarity and plot a selection in Figure 11.

This process reveals multiple samples that match our hypothesis,
many with correct labels, and some mislabeled. For example, we
identify an image of a bird that closely resembles a different bird
labeled “airplane”, or an image of a Sphynx cat that resembles a
different image of a small dog. Since we use CLIP embeddings to
identify those examples, we argue they are similar not only visually,
but also in terms of neural network features. Further note that our
goal is to identify the most vulnerable sample in CIFAR-10; hence,
while the selection in Figure 11 is small, a single example suffices.

Investigating SELENA’s ensemble mechanism. SELENA’s
first stage, called “Split-Al”, is the defense’s main privacy mecha-
nism. Given an ensemble of models f; and a query sample x, Split-Al
aggregates predictions only from models not trained on x. Hence,
in isolation, predictions on a training member and non-member
should be similar. The second stage, distillation, serves to reduce
computational cost during inference, and to avoid privacy leakage
from certain Split-Al edge-cases. Yet, SELENA seems to leak more
privacy of mislabeled samples than of the same data with original
labels—even without explicit duplicates (see Figure 12b). We hence
analyze Split-Al more thoroughly to better understand SELENA’s
behavior on those samples.

Concretely, we consider two SELENA ensembles, one trained
with the original 500 audit samples, and one with 500 mislabeled
audit samples (but without adding duplicates). We then directly
attack Split-Al in two ways: To obtain predictions on a target sample
x, we either query Split-Al on x itself, or on its nearest neighbor
(in the non-audit part of CIFAR-10). As before, we use the cosine
similarity of OpenCLIP embeddings as a similarity metric, and

“https://github.com/mlfoundations/open_clip/, model ViT-S0400M-14-Sigl IP-384
pretrained on the webli dataset.

calculate a maximum-weight matching between audit and non-
audit samples to ensure unique nearest neighbors.

The results in Figure 12a provide further evidence that near-
duplicates are responsible for SELENA’s privacy leakage on misla-
beled samples. If an attacker directly queries Split-AI on the audit
samples, the resulting ROC curve is close to a random guessing
baseline—even for mislabeled samples. However, if LIRA queries
each audit sample’s nearest neighbor instead, the attack achieves a
significantly higher TPR. Notably, the distillation stage of SELENA
queries Split-Al on the full training set, including nearest neigh-
bors of audit samples. Hence, the privacy leakage persists in the
final student model, thus explaining the matching ROC curves on
mislabeled canaries for attacks on Split-Al and the distilled student.

Stronger threat models. Attacking Split-Al on our canaries
yields almost perfect membership inference (a TPR of 99.7% at 0.1%
FPR, and 96.3% at 0% FPR), yet, attacking the distilled student on
the same canaries reduces attack success by about half (52.7% TPR
at 0.1% FPR). As argued in the main matter, we suspect that the
cause is varying membership of near-duplicates. We hence consider
a stronger threat model, where only the membership of canaries
varies, and near-duplicates are in the training data of all models.

More concretely, we now mislabel all 500 original audit samples,
create a copy of the full audit set (including the wrong labels), and
append this copy to the training data of all models. As a baseline,
we also consider the same procedure with a clean audit set; that
is, we use the same 500 audit samples and copies, but all with the
correct labels. The results in Figure 12b show that this stronger
model is highly effective: if duplicates of mislabeled canaries are in
the training data of all models, LiRA achieves an almost perfect TPR
of 99.7% at 0.1% FPR (and 99% with zero false positives)—without
explicitly exploiting the presence of duplicates.

While those results are impressive, the threat model is not en-
tirely realistic. For one, we could not find any pairs of near-duplicate
CIFAR-10 samples that are both mislabeled (neither with the same
or different classes). What is more, the threat model resembles data
poisoning; for example, the “Truth Serum” attack of Tramér et al.
[56] renders target samples more vulnerable to membership infer-
ence by inserting copies into the training data of a victim model.

B.4 Pushing DP-SGD Utility

Given the strong empirical privacy of our medium and high utility
DP-SGD baselines in Section 5.5, we ask if we can push DP-SGD’s
accuracy even further, yet maintain reasonable privacy. We thus
continue tuning the high utility baseline with the goal of reaching
around 92% CIFAR-10 test accuracy.

However, as Table 3 shows, we are unable to achieve our goal. In
particular, our best result raises the test accuracy by less than one
percentage point (to 91.79%), yet exhibits a sample-level TPR@0.1%
FPR of 63.2%. Notably, this is the first instance that one of our case
studies (SELENA) yields stronger privacy at a higher utility than
DP-SGD (even though, at over 50% TPR@0.1% FPR, both defenses
are unsuitable for critical applications). Ultimately, it is likely that
achieving very high utility while maintaining strong privacy is
unachievable in practice. although a formal statement remains an
open research question.


https://github.com/mlfoundations/open_clip/
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(a) Naturally occurring near-duplicates in CIFAR-10 render mislabeled samples
more vulnerable for SELENA. We directly attack SELENA’s ensemble mecha-
nism (Split-Al) on either original or mislabeled audit samples. If we directly
query the audit samples, the attack never performs better than random
guessing. However, if we attack a mislabeled sample (x, §J) by querying
its nearest neighbor x’ (the most similar image in the non-audit part of
CIFAR-10), the resulting ROC curve is close to the one of the final distilled
student.
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(b) Including copies of mislabeled canaries in the training data completely
breaks SELENA’s privacy. We compare SELENA evaluations using original
and mislabeled audit samples, once as-is, and once by including a copy of the
audit set in every model’s training data. The latter enables close-to-perfect
membership inference, almost doubling the TPR@0.1% FPR compared to our
proposed canaries—albeit in the stronger “privacy poisoning” threat model
introduced in Tramer et al. [56].

Figure 12: Additional results for privacy leakage in SELENA. In (a), we directly attack SELENA’s first defense stage (Split-Al), querying
either target samples directly, or their nearest neighbor in the non-audit data. In (b), we consider a slightly stronger threat model, where
mislabeled duplicates enable almost perfect membership inference—even on the full defense.

Table 3: Full details for DP-SGD baselines on CIFAR-10.

Medium High Very High
Test accuracy  88.29% (+0.03)  91.13% (£0.03)  91.79% (+0.03)
DP e (8 =107°) ~ 3558 ~1.8-108 ~1.1-10°
Noise multiplier 0.2 0.00625 0.003125
Clipping norm 1 1 1
Batch size 2048 64 64
Training epochs 200 16 25
Learning rate 4 4 4
Augmult 8 8 8

B.5 Extended Version of Figure 3

In Figure 3, we show a subset of the most vulnerable CIFAR-10 sam-
ples (for standard training) to highlight different types of potential
canaries. Figure 13 contains the full list of the 40 most vulnerable
samples and their corresponding sample-level TPR@0.1% FPR.
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Figure 13: The 40 CIFAR-10 samples most vulnerable to membership inference, in the setting of Figure 2a. The samples are in
order of decreasing privacy leakage. Titles above each image indicate the original label in CIFAR-10, and the sample-level TPR@0.1% FPR.
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