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UniRGB-IR: A Unified Framework for Visible
-Infrared Downstream Tasks via Adapter Tuning

Maoxun Yuan∗, Bo Cui∗, Tianyi Zhao and Xingxing Wei‡

Abstract—Semantic analysis on visible (RGB) and infrared
(IR) images has gained attention for its ability to be more
accurate and robust under low-illumination and complex weather
conditions. Due to the lack of pre-trained foundation models on
the large-scale infrared image datasets, existing methods prefer
to design task-specific frameworks and directly fine-tune them
with pre-trained foundation models on their RGB-IR semantic
relevance datasets, which results in poor scalability and limited
generalization. In this work, we propose a scalable and efficient
framework called UniRGB-IR to unify RGB-IR downstream
tasks, in which a novel adapter is developed to efficiently
introduce richer RGB-IR features into the pre-trained RGB-
based foundation model. Specifically, our framework consists
of a vision transformer (ViT) foundation model, a Multi-modal
Feature Pool (MFP) module and a Supplementary Feature
Injector (SFI) module. The MFP and SFI modules cooperate
with each other as an adpater to effectively complement the
ViT features with the contextual multi-scale features. During
training process, we freeze the entire foundation model to inherit
prior knowledge and only optimize the MFP and SFI modules.
Furthermore, to verify the effectiveness of our framework, we
utilize the ViT-Base as the pre-trained foundation model to
perform extensive experiments. Experimental results on various
RGB-IR downstream tasks demonstrate that our method can
achieve state-of-the-art performance. The source code and results
are available at https://github.com/PoTsui99/UniRGB-IR.git

Index Terms—RGB-IR Downstream Tasks, Multi-modal Fu-
sion, Adapter, Transformer.

I. INTRODUCTION

Single visible (RGB) image semantic analysis is a common
practice in computer vision and has been widely used in
a variety of vision tasks [1]–[3]. With the development of
physical devices, more and more general-purpose foundation
backbones [4], [5] pre-trained on a large-scale dataset (e.g.,
ImageNet [6] and COCO [7]) have been designed for various
downstream tasks. Since these pre-trained foundation models
implicitly encode a large amount of prior knowledge, many
researchers [8], [9] always fine-tune them on their semantic
relevance datasets to significantly improve the performance
on downstream tasks and speed up training convergence.

However, visible cameras have proved to be difficult in
providing reliable imaging [11], [12], due to their limited
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Fig. 1. Existing full fine-tuning methods vs. our UniRGB-IR framework.
(a) Existing methods use pre-trained RGB-based foundation models and fully
fine-tune them on their RGB-IR semantic relevance datasets. (b) We utilize
the Adpater [10] to propose a new unified framework called UniRGB-IR,
which can efficiently introduce richer RGB-IR features into the pre-trained
foundation model for downstream tasks.

bandwidth across the spectrum. Especially in low-illumination
and complex weather conditions, the useful information of
RGB images is relatively scarce. Therefore, infrared (IR)
modality with stronger low-light adaptability are used as
additional information to supplement RGB modality [11], [13].
Afterwards, the joint use of RGB and IR images has been
applied in more and more semantic analysis tasks.

Due to the lack of pre-trained foundation models on the
large-scale infrared image datasets, most existing methods
[14], [15] prevailing trend to use pre-trained RGB base-
lines and fine-tune them on their RGB-IR semantic rele-
vance datasets as shown in Figure 1 (a). For example, RGB-
IR object detectors [14], [16] utilize RGB-based models as
strong baselines and fine-tune them to extract RGB and IR
features. SwinNet [17] is explored based on the RGB-based
transformer to extract hierarchical features of each modality
for the detection of salient RGB-IR objects. Similarly, Ha
et al. [18] propose a new baseline by aggregating infrared
modality features into the RGB-based framework and retrain
it in the RGB-IR semantic segmentation benchmark. Among
the efforts to achieve competitive results, these approaches
still suffer from two major issues. (1) Different downstream
tasks require customized model structures, resulting in poor
model scalability and excessive parameter storage. (2) Full
fine-tuning strategy impairs the prior knowledge encoded
in the foundation model, which limits the generalization
potential of the fine-tuned model. Based on these issues, a
question that naturally arises is whether we can adapt the
RGB-based foundation model to efficiently construct a unified
framework for RGB-IR downstream tasks.

To achieve this purpose, in this paper, we explore an
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efficient and scalable framework for RGB-IR downstream
tasks and, for the first time, propose a Unified model for
RGB-IR downstream tasks called UniRGB-IR as shown in
Figure 1 (b). Drawing inspiration from recent advances in
adapters [10], [19], which is initially used to yield a exten-
sible model to effectively exploit the potential representation
of foundation models in natural language processing (NLP)
field, we aim to develop an adapter to dynamically intro-
duce richer RGB-IR features into the pre-trained foundation
model through an additional CNN branch. Therefore, without
modifying the original foundation model, the powerful pre-
trained weights can be directly loaded and frozen to acceler-
ate training convergence and achieve efficient fine-tuning on
downstream tasks. Specifically, we design two core modules in
our UniRGB-IR: a Multi-modal Feature Pool module (MFP)
and a Supplementary Feature Injector module (SFI). In the
MFP module, the multi-receptive field convolution and the
feature pyramid are deployed to capture contextual multi-
scale features from RGB and IR images. These features are
fused at different scales to complement foundation models for
different RGB-IR downstream tasks. For the SFI module, a
cross-attention mechanism is used to dynamically inject the
required features into the pre-trained foundation model, which
facilitates our UniRGB-IR framework with a robust feature
representation ability. To inherit prior knowledge of founda-
tion model pre-trained on large-scale datasets, we utilize the
adapter tuning paradigm instead of the full fine-tuning manner.
In specific, we freeze the entire pre-trained weights and only
optimize the MFP module and the SFI module. Therefore, our
framework can be utilized as a unified framwork to efficiently
fine-tune on various RGB-IR downstream tasks.

Overall, our contributions are summarized as follows:
• We explore an efficient and scalable framework called

UniRGB-IR to unify RGB-IR downstream tasks. To the
best of our knowledge, this is the first attempt to construct
a unified framework for RGB-IR downstream tasks.

• We design a Multi-modal Feature Pool module and a
Supplementary Feature Injector module. The former ex-
tracts contextual multi-scale features from two modality
images, and the latter dynamically injects the required
features into the pre-trained model. These two modules
can be efficiently fine-tuned with adapter tuning paradigm
to complement the pre-trained foundation model with
richer RGB-IR features for RGB-IR downstream tasks.

• We incorporate the vision transformer foundation model
into the UniRGB-IR framework to evaluate the effec-
tiveness of our method on RGB-IR downstream tasks,
including RGB-IR object detection, RGB-IR semantic
segmentation, and RGB-IR salient object detection. Ex-
tensive experimental results demonstrate that our methods
can efficiently achieve superior performance on these
RGB-IR downstream tasks.

II. RELATED WORK

A. Vision Foundation Models

Recently, thanks to the powerful long-distance modeling
capability, vision transformers (ViT) [4] have been widely used

as the foundation model in many vision tasks to achieve com-
petitive results. The original ViT is a plain, non-hierarchical
structure for image classification. Based on it, ViTDet [20]
also constructs a non-hierarchical model by incorporating
the feature pyramid. However, the non-hierarchical structure
lacks rich feature representation, resulting in unsatisfactory
performance. Subsequently, various hierarchical transformers
[5], [21]–[23] have been proposed for different downstream
vision tasks. Swin Transformer [21] and Multiscale Vision
Transformer [22] are designed based on the ViT model to ex-
plore multi-scale features to improve the performance of image
classification and object detection tasks. Besides, PVT [24]
performs global attention on the downsampled key and value
maps for dense prediction. In this paper, we also introduce the
ViT model as the pre-trained foundation model to construct a
unified framework for different RGB-IR downstream tasks.

B. RGB-IR Downstream Tasks

Since infrared cameras have stronger low-light adaptability
to capture object thermal radiation, infrared images have been
widely used together with RGB images in various RGB-IR
downstream tasks in recent years.
RGB-IR Object Detection. Zhang et al. [25] explore a two-
stream SSD [26] structure to capture the contextual enhanced
features for RGB-IR object detection. Besides, AR-CNN [27]
is presented based on faster R-CNN [28] to align RGB and IR
features. With the emergence of transformers, Yuan et al. [29]
propose a complementary fusion transformer (CFT) module
to achieve advanced detection results. Furthermore, C2Former
[12] is a novel transformer block and can be incorporated into
exited pre-trained models to increase intra- and inter-modality
feature representations.
RGB-IR Semantic Segmentation. MFNet [18] is proposed to
incorporate infrared features into the RGB-based framework
to perform RGB-IR semantic segmentation. Based on the
transformer structure, Wu et al. [30] propose a novel CCFFNet
to excavate discriminative and complementary modality fea-
tures for RGB-IR semantic segmentation. Moreover, CMX
[31] is designed as a universal cross-modal fusion framework
for RGB-IR semantic segmentation in an interactive fusion
manner.
RGB-IR Salient Object Detection. SwinNet [17] is designed
based on the Swin Transformer to extract hierarchical infor-
mation of each modality, which achieves impressive results.
CAVER [32] introduces the transformer to rethink the bi-
modal salient object detection from a sequence-to-sequence
perspective, which increases the model interpretability. Re-
cently, Zhou et al. [33] transfer a large amount of knowl-
edge learned in the transformer-based network to lightweight
WaveNet through the distillation method.

The above methods attempt to design task-oriented struc-
tures to improve performance on corresponding downstream
tasks. They either train the designed model from scratch or
adopt a full fine-tuning strategy on a pre-trained model. Unlike
these methods, we take a further step and deploy an adapter
based on the pre-trained foundation model to unify the RGB-
IR downstream tasks.
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Fig. 2. The overall architecture of our UniRGB-IR. In our framework, a ViT model with different numbers of ViT blocks is deployed as a foundation model,
which is divided into N (usually N = 4) stages for feature interaction. Besides, a Multi-modal Feature Pool (MFP) is designed to extract contextual multi-scale
RGB-IR features and a Supplementary Feature Injector (SFI) is explored to introduce these features into the ViT foundation model. During training, we freeze
the entire ViT model weights and only optimize the MFP and SFI modules.

C. Adapter

In the NLP field, Adapter [10] first fixes the original
foundation backbone and introduces new modules into the
transformer for task-specific fine-tuning, thereby effectively
adapting the pre-trained backbone to downstream NLP tasks.
Afterwards, Adapter has been widely studied in computer
vision. ViT-Adapter [34] and Low-Rank Adapter [35] are
designed to introduce a modest number of trainable parameters
into the ViT and fine-tuning efficiently for dense prediction
tasks. In addition, PC-Adapter [36] explores an attention-
based adapter to preserve global shape knowledge for domain
adaptation on point cloud data. Recently, Adapter is also used
as a parameter-efficient training technology for vision-and-
language tasks [37], [38].

In this paper, we aim to explore an adapter capable of
converting the IR features into the RGB features to fit the
pre-trained foundation model, which remains challenging to
design this unified framework. Our UniRGB-IR is the first to
propose utilizing adapter to unify RGB-IR downstream tasks.

III. METHOD

A. Overall Architecture

The overall framework of UniRGB-IR is illustrated in Fig-
ure 2, which consists of three parts: vision transformer model,
Multi-modal Feature Pool (MFP) module, and Supplementary
Feature Injector (SFI) module. In our framework, the ViT
model is utilized as the pre-trained foundation model and
frozen during the training process. Specifically, for the ViT
model, the RGB image is directly fed into the patch embedding
process to obtain the D-dimensional feature tokens, which are
usually 1/16 of the original image resolution. To complement
the richer features required for various RGB-IR downstream
tasks, we feed the RGB and IR images into the MFP module
to extract contextual multi-scale features from two modalities
(eg. 1/8, 1/16 and 1/32 of the original image resolution).
Afterwards, these richer features are dynamically injected into
the features of ViT model through the SFI module, which

can adaptively introduce the required RGB-IR features into
the ViT model. To fully integrate the extracted features into
the ViT model, we add the SFI module at the beginning of
each stage. Thus, after N stages of feature injection, the final
features from ViT model can be leveraged for various RGB-IR
downstream tasks.

B. Multi-modal Feature Pool

To complement the rich feature representations for differ-
ent RGB-IR downstream tasks, we introduce a multi-modal
feature pool (MFP) module, including multiple perception
and feature pyramid. The former can extract the contextual
features with different convolution kernels, which achieve the
long-distance modeling capability of CNNs. Different from
existing works [39], [40] that increase the width or depth of the
model, we efficiently achieve multi-receptive field perception
in the channel dimension. As for feature pyramid, it can obtain
multi-scale features to enhance the small object features. Thus,
these two operations are connected in series to construct MFP
module, as shown in Figure 3.

Specifically, for the input RGB (H × W × 3) and IR
(H × W ) images, we first employ a stem block borrowed
from ResNet [41] to extract two modality features F rgb

1 and
F ir
1 ∈ RH/4×W/4×C . Then, these two features are split into

four equal parts by utilizing the channel splitting technique
[42]. To extract multi-receptive field perception, each part is
subjected to convolution operations with different kernel sizes
(3× 3, 3× 3, 5× 5 and 7× 7). Then, we fuse each processed
feature from two modalities by using a SE attention module
(shown in Figure 3). Therefore, we concatenate each fused
part to obtain RGB-IR contextual features Ffus. The above
process can be represented as:

Ffus = Γ 4
k=1(Fusion(W rgb

k ∗ frgb
k ,W ir

k ∗ f ir
k )), (1)

where Ffus ∈ RH/4×W/4×C , frgb
k and f ir

k are the k-th part
of F rgb

1 and F ir
1 features respectively, Wk is the convolution

with k-th kernel size, Γ is the concatenation operation.
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Fig. 3. Structure of the multi-modal feature pool (MFP) module. We explore the multiple perceptions to expand the receptive field of contextual feature
extraction and utilize the feature pyramid to obtain the multi-scale features. In this module, Squeeze-Excitation(SE) attention is utilized to fuse two modality
features. Thus, the contextual multi-scale features can be provided for the various RGB-IR downstream tasks.

 

Fig. 4. Structure of supplementary feature injector (SFI) module. A gated
fusion unit (GFU) is utilized to dynamically fuse the current and the last
injected features.

For the feature pyramid, a stack of three 3×3 convolutions
with stride = 2 is conducted to downsample the size of the
feature maps. Then, features of each scale are fed into a 1×
1 convolution to project the feature maps to D dimensions.
Therefore, we can obtain a set of multi-scale features {F2, F3,
F4} with 1/8, 1/16, and 1/32 of the original image resolution,
respectively. Finally, we flatten and concatenate these features
into feature tokens Fmfp ∈ R(HW

82
+HW

162
+HW

322
)×D, which will

be used as supplementary features for the ViT model.

C. Supplementary Feature Injector

As shown in Figure 4, we propose a supplementary feature
injector (SFI) module to adaptively introduce the contextual
multi-scale features without altering the ViT structure. Since
the sequence lengths of contextual multi-scale features Fmfp

and the ViT features F i
vit are different, to address this, we em-

ploy sparse attention (eg. [43] and [44]) to dynamically sample
supplementary features from each scale. To be specific, we

utilize the ViT features F i
vit ∈ R

HW
162

×D as the query, and the
contextual multi-scale features Fmfp ∈ R(HW

82
+HW

162
+HW

322
)×D

as the key and value:

F̃ i
sfi = Attention(LN(F i

vit), LN(Fmfp)), (2)

where Attention(·) is the attention layer and LN(·) is Layer-
Norm [45] which is intended to reduce modality discrenpancy.
Furthermore, we adopt progressive injection to introduce con-
textual multi-scale features, which can balance the foundation
model features and the injected features F i

sfi. Thus, a gated
fusion unit is explored to predict the fusion weight z to
gate F i−1

sfi and F̃ i
sfi for dynamic fusion. Specifically, we

concatenate the two features F i−1
sfi and F̃ i

sfi and feed it into
linear layer to predict the weight z. Then, z and 1−z are used
to fuse F i−1

sfi and F̃ i
sfi features respectively. The final output

features F i
sfi of SFI module can be formulated as:

F i
sfi =

{
F̃ i
sfi, i = 1

GFU(F̃ i
sfi, F

i−1
sfi ), i = 2 . . . N

(3)

where GFU(·, ·) is the gated fusion unit shown in Figure 4.

D. Adapter Tuning Paradigm
To fully inherit the prior knowledge of the ViT pre-

trained on large-scale datasets, we explore the adapter tuning
paradigm instead of the full fine-tuning manner. For the dataset
D = {(xj , gtj)}Mj=1 of the downstream task, full fine-tuning
process calculates the loss between the prediction and the
ground truth, which can be formulated as:

L(D, θ) =

M∑
j=1

loss(Fθ(xj), gtj), (4)
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TABLE I
COMPARISON RESULTS (MAP, IN%) ON THE FLIR AND LLVIP DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND-BEST ARE

HIGHLIGHTED IN BLUE. “–” INDICATES THAT THE AUTHOR DID NOT PROVIDE THE CORRESPONDING RESULTS.

FLIR LLVIP
Methods Modality

mAP mAP50 mAP75 mAP mAP50 mAP75

SSD [26] IR 24.6 57.0 18.0 53.5 90.2 57.9
RetinaNet [46] IR 31.5 66.1 25.3 55.1 94.8 57.6

Faster R-CNN [28] IR 37.6 75.8 31.6 54.5 94.6 57.6
Cascade R-CNN (ViT-B) [47] IR 41.9 78.6 37.3 60.4 94.9 67.5

DDQ-DETR [48] IR 37.1 73.9 32.2 58.6 93.9 64.6

SSD [26] RGB 18.8 46.3 13.1 39.8 82.6 31.8
RetinaNet [46] RGB 21.9 51.2 15.2 42.8 88.0 34.4

Faster R-CNN [28] RGB 27.7 62.2 21.2 45.1 87.0 41.2
Cascade R-CNN (ViT-B) [47] RGB 33.3 69.3 26.2 51.7 90.3 54.7

DDQ-DETR [48] RGB 30.9 64.9 24.5 46.7 86.1 45.8

GAFF [49] RGB+IR 37.4 74.6 31.3 55.8 94.0 60.2
ProbEn [50] RGB+IR 37.9 75.5 31.8 51.5 93.4 50.2
LGADet [51] RGB+IR - 74.5 - - - -
CSAA [52] RGB+IR 41.3 79.2 37.4 59.2 94.3 66.6

UniRGB-IR (Ours) RGB+IR 44.1 81.4 40.2 63.2 96.1 72.2

TABLE II
COMPARISON RESULTS (MR-2 , IN%) UNDER ‘ALL-DATASET’ SETTINGS OF DIFFERENT PEDESTRIAN DISTANCES, OCCLUSION LEVELS, AND LIGHT

CONDITIONS (DAY AND NIGHT) ON THE KAIST DATASET. THE BEST AND SECOND RESULTS ARE HIGHLIGHTED IN RED AND BLUE RESPECTIVELY.

Methods Near Medium Far None Partial Heavy Day Night All

ACF [53] 28.74 53.67 88.20 62.94 81.40 88.08 64.31 75.06 67.74
Halfway Fusion [54] 8.13 30.34 75.70 43.13 65.21 74.36 47.58 52.35 49.18
FusionRPN+BF [55] 0.04 30.87 88.86 47.45 56.10 72.20 52.33 51.09 51.70

IAF R-CNN [56] 0.96 25.54 77.84 40.17 48.40 69.76 42.46 47.70 44.23
IATDNN+IASS [57] 0.04 28.55 83.42 45.43 46.25 64.57 49.02 49.37 48.96

CIAN [25] 3.71 19.04 55.82 30.31 41.57 62.48 36.02 32.38 35.53
MSDS-R-CNN [58] 1.29 16.19 63.73 29.86 38.71 63.37 32.06 38.83 34.15

AR-CNN [27] 0.00 16.08 69.00 31.40 38.63 55.73 34.36 36.12 34.95
MBNet [59] 0.00 16.07 55.99 27.74 35.43 59.14 32.37 30.95 31.87

TSFADet [16] 0.00 15.99 50.71 25.63 37.29 65.67 31.76 27.44 30.74
CMPD [60] 0.00 12.99 51.22 24.04 33.88 59.37 28.30 30.56 28.98

CAGTDet [29] 0.00 14.00 49.40 24.48 33.20 59.35 28.79 27.73 28.96
C2Former [12] 0.00 13.71 48.14 23.91 32.84 57.81 28.48 26.67 28.39

UniRGB-IR (Ours) 0.00 13.44 38.21 20.26 31.67 55.03 25.93 23.95 25.21

where loss represents the loss function and Fθ denotes the
entire network parameterized by θ. Afterwards, θ is optimized
through the formula:

θ ← argmin
θ
L(D, θ). (5)

However, in our adapter tuning paradigm, the parameter θ
consists of two parts, one part is the parameter in the original
ViT model θV , and the other part is the parameter in our
UniRGB-IR θA. During training, we freeze the parameter θV
and only optimize the parameter θA. Thus, the loss function
and optimization of our a can be represented as:

L(D, θV , θA) =

M∑
j=1

loss(FθV ,θA(xj), gtj), (6)

θA ← arg
θA

minL(D, θV , θA). (7)

IV. EXPERIMENTS

To evaluate the effectiveness of our UniRGB-IR, we utilize
the ViT-Base model (pre-trained on COCO [7] dataset) as the
foundation model and utilize this framework to perform dif-
ferent RGB-IR downstream tasks. During training, we freeze
the ViT-Base model and only optimize the MFP and SFI
modules. We evaluate and compare our method with various
competitive models, including CNN-based and Transformer-
based models. Besides, our evaluation spans various tasks,
including RGB-IR object detection on FLIR [70], LLVIP [71],
and KAIST [53] datasets, RGB-IR semantic segmentation on
MFNet [18] and PST9000 [63] datasets and RGB-IR salient
object detection (see supplementary materials). Furthermore,
ablation experiments on the designed modules and qualitative
experiments are also conducted to verify that the UniRGB-
IR framework can be leveraged as a unified framework to
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TABLE III
RESULTS ON THE PST900 DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND-BEST ARE HIGHLIGHTED IN BLUE.

“–” INDICATES THAT THE AUTHOR DID NOT PROVIDE THE CORRESPONDING RESULTS.

Methods
Background Fire-Extinguisher Backpack Hand-Drill Survivor

mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

MFNet [18] 99.9 98.7 71.8 67.4 52.8 52.4 46.7 39.3 18.8 18.9 58.0 55.3
RTFNet [61] 99.9 99.0 78.6 54.8 62.5 60.8 76.7 61.0 65.2 62.5 76.6 67.6
CCNet [62] 99.6 98.7 88.1 73.8 76.0 73.0 54.1 51.0 49.5 33.5 73.46 66.0
PSTNet [63] - 98.9 - 70.1 - 69.2 - 53.6 - 50.0 - 68.4
ACNet [64] 99.8 99.3 84.9 60.0 85.6 83.2 53.6 51.5 69.1 65.2 78.7 71.8

FDCNet [65] 99.7 99.2 91.8 71.5 77.5 72.2 82.5 70.4 78.4 72.4 86.0 77.1
CGFNet [66] 99.7 99.3 96.3 71.7 87.6 82.0 70.5 59.7 86.3 77.4 88.1 78.0
EGFNet [67] 99.5 99.2 95.2 71.3 94.2 83.1 98.0 64.7 83.3 74.3 94.0 78.5

CCFFNet [30] 99.9 99.4 87.0 79.3 80.2 77.8 88.3 77.4 77.9 73.4 86.7 81.5
RSFNet [68] - 99.4 - 75.4 - 84.9 - 72.9 - 70.1 - 80.5
SGFNet [69] 99.8 99.4 89.4 75.6 90.4 85.4 94.0 76.7 82.7 76.7 91.2 82.8

UniRGB-IR (Ours) 99.7 99.5 97.0 72.0 93.3 87.7 95.5 78.0 86.1 77.8 94.3 82.8

Fig. 5. The Miss rate curves for all detectors are plotted against False Positives
Per Image (FPPI) under the IoU threshold of 0.5 on the KAIST dataset.

efficiently introduce IR features into the foundation model to
achieve superior performance.

A. RGB-IR Object Detection

Datasets. Our object detection experiments are based on the
three paired RGB and IR object detection datasets. FLIR
[70] is a paired visible and infrared object detection dataset,
including daytime and night scenes, which has 4,129 aligned
RGB-IR image pairs for training and 1,013 for testing. For
LLVIP [71] dataset, it contains 15,488 aligned RGB-IR image
pairs, of which 12,025 images are used for training and 3,463
images for testing. As for KAIST [53] dataset, it is a aligned
multispectral pedestrian deteciton dataset, in which 8,963 and
2,252 image pairs are utilized for training and testing.
Metrics. For FLIR and LLVIP datasets, we employ mean Av-
erage Precision (mAP) to evaluate the detection performance.
As for KAIST dataset, we use log-average miss rate MR over
the false positive per image (FPPI) with the range of [10−2,
100] to evaluate the pedestrian detection performance.
Settings. All the experiments are conducted with NVIDIA
GeForce RTX 3090 GPUs. We implement our framework on

the MMDetection library and use the Cascade R-CNN [47] as
the basic framework to perform RGB-IR object detection. The
detector is trained with an initial learning rate of 2×10−4 for
48 epochs. The batch size is set to 16, and the AdamW [72]
optimizer is employed with a weight decay of 0.1. Horizontal
flipping is also used for data augmentation.
Results on FLIR and LLVIP datasets. We compare our
method with five common mono-modality methods and four
competitive multi-modality methods. As shown in Table I, it
can be seen that most of the multi-modality detectors are even
worse than mono-modality detectors (eg. Faster R-CNN in
IR modality). Since the RGB feature interfere with infrared
feature under limited illumination conditions, it has a negative
impact on the fused features utilized for object detection tasks.
However, our UniRGB-IR can effectively solve this problem
through the SFI module, enabling the detector to achieve better
classification and localization processes.
Results on KAIST dataset. The quantitative results of the
different methods on the KAIST dataset are shown in Ta-
ble II. The experiments are conducted under ‘All-dataset’
settings [53]. We compare our UniRGB-IR with thirteen multi-
modal object detection methods. Our model achieves the
best performance on the ‘All’, ‘Day’, and ‘Night’ conditions
and the other four of five subsets (‘Near’, ‘Far’, ‘None’,
‘Partial’ and ‘Heavy’), and rank second in the ‘Medium’
subset. Furthermore, our detector surpasses the previous best
competitor C2Former by 3.18% on the ‘All’ condition, which
indicates UniRGB-IR is robust to the complex scenes. Intu-
itively, we draw the log-average Miss Rate (MR) over the False
Positive Per Image (FPPI) curve of these detectors as shown
in Figure 5. The above results verify the superiority of our
UniRGB-IR.

B. RGB-IR Semantic Segmentation

Datasets. Our semantic segmentation experiments are per-
formed on the two public RGB-IR semantic segmentation
datasets: PST900 [63] and MFNet [18]. The PST900 dataset
is divided into 597 pairs for training and 288 pairs for testing,
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TABLE IV
RESULTS ON THE MFNET DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND-BEST ARE HIGHLIGHTED IN BLUE.

“–” INDICATES THAT THE AUTHOR DID NOT THE CORRESPONDING RESULTS.

Methods
Unlabeled Car Person Bike Curve Car Stop Guardrail Color Cone Bump

mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

MFNet [18] 98.7 96.9 77.2 65.9 67.0 58.9 53.9 42.9 36.2 29.9 12.5 9.9 0.1 0.0 30.3 25.2 30.0 27.7 45.1 39.7
RTFNet [61] 99.4 98.5 93.0 87.4 79.3 70.3 76.8 62.7 60.7 45.3 38.5 29.8 0.0 0.0 45.5 29.1 74.7 55.7 63.1 53.2
PSTNet [63] 98.8 97.4 89.4 77.0 74.8 67.2 65.8 50.8 42.5 35.2 34.6 25.2 0.0 0.0 32.7 29.9 61.1 55.0 55.5 48.6
FuseSeg [73] 99.0 97.6 93.1 87.9 81.4 71.7 78.5 64.6 68.4 44.8 29.1 22.7 63.7 6.4 55.8 46.9 66.4 47.9 70.6 54.5

ABMDRNet [74] 98.6 97.8 94.3 84.4 90.0 69.6 75.7 60.3 64.0 45.1 44.1 33.1 31.0 5.1 61.7 47.4 66.2 50.0 69.5 54.8
MFFENet [75] 99.3 97.8 91.4 87.1 82.6 74.4 76.7 61.3 58.7 45.6 44.9 30.6 60.0 5.2 64.4 57.0 72.7 40.5 72.3 55.5
EGFNet [67] 98.7 98.0 95.8 87.6 89.0 69.8 80.6 58.8 71.5 42.8 48.7 33.8 33.6 7.0 65.3 8.3 71.1 47.1 72.7 54.8
MTANet [76] 98.4 98.0 95.8 88.1 90.9 71.5 80.3 60.7 75.3 40.9 62.8 38.9 38.7 13.7 63.8 45.9 70.8 47.2 75.2 56.1
MLFNet [77] - 97.3 - 82.3 - 68.1 - 67.3 - 27.3 30.4 - 15.7 - 55.6 - 40.1 - 53.8
FEANet [78] 99.3 98.2 93.3 87.8 82.7 71.1 76.7 61.1 65.5 46.5 26.6 22.1 70.8 6.6 66.6 55.4 77.3 48.9 73.2 55.3
GMNet [79] 99.2 97.5 94.1 86.5 83.0 73.1 76.9 61.7 59.7 44.0 55.0 42.3 71.2 14.5 54.7 48.7 73.1 47.4 74.1 57.3

CCFFNet [30] 98.8 98.3 94.5 89.6 83.6 74.2 73.2 63.1 67.2 50.5 38.7 31.9 30.6 4.8 55.2 49.7 72.9 56.3 68.3 57.6
CCAFFMNet [80] 97.4 95.2 95.0 88.6 86.1 72.9 82.1 67.1 71.2 45.9 32.1 24.8 57.1 17.8 58.0 50.1 76.2 57.8 72.8 57.8

CMX [31] - 98.3 - 89.4 - 74.8 - 64.7 - 47.3 - 30.1 - 8.1 - 52.4 - 59.4 - 58.2
FDCNet [65] 98.8 98.2 94.1 87.5 91.4 72.4 78.1 61.7 70.1 43.8 34.4 27.2 61.5 7.3 64.0 52.0 74.5 56.6 74.1 56.3

ECGFNet [81] 99.3 97.5 89.4 83.5 85.2 72.1 72.9 61.6 62.8 40.5 44.8 30.8 45.2 11.1 57.2 49.7 65.1 50.9 69.1 55.3
LASNet [82] 97.6 97.4 94.9 84.2 81.7 67.1 82.1 56.9 70.7 41.1 56.8 39.6 59.5 18.9 58.1 48.8 77.2 40.1 75.4 54.9

UniRGB-IR (Ours) 98.3 97.2 94.0 83.7 88.7 64.9 88.0 69.8 53.3 36.8 58.5 41.0 69.7 36.7 77.6 56.2 55.2 47.3 75.7 59.3

TABLE V
QUANTITATIVE COMPARISON OF RGB-IR SALIENT OBJECT DETECTION TASK ON VT821, VT1000 AND VT5000 DATASETS. * REPRESENTS RGB-D

SOD TRANSFORMED INTO RGB-T SOD. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND-BEST ARE HIGHLIGHTED IN BLUE.

Model
VT821 VT1000 VT5000

S ↑ adpE ↑ adpF ↑ MAE ↓ S ↑ adpE ↑ adpF ↑ MAE ↓ S ↑ adpE ↑ adpF ↑ MAE ↓
MMCI* [83] 0.763 0.784 0.618 0.087 0.886 0.892 0.803 0.039 0.827 0.859 0.714 0.055
TANet* [84] 0.818 0.852 0.717 0.052 0.902 0.912 0.838 0.030 0.847 0.883 0.754 0.047
S2MA* [85] 0.811 0.813 0.709 0.098 0.918 0.912 0.848 0.029 0.853 0.864 0.743 0.053
JLDCF* [86] 0.839 0.830 0.726 0.076 0.912 0.899 0.829 0.030 0.861 0.860 0.739 0.050
MTMR [87] 0.725 0.815 0.662 0.109 0.706 0.836 0.715 0.119 0.680 0.795 0.595 0.114

M3S-NIR [88] 0.723 0.859 0.734 0.140 0.726 0.827 0.717 0.145 0.652 0.780 0.575 0.168
SGDL [89] 0.765 0.847 0.731 0.085 0.787 0.856 0.764 0.090 0.750 0.824 0.672 0.089
FMSF [90] 0.760 0.796 0.640 0.080 0.873 0.899 0.823 0.037 0.814 0.864 0.734 0.055
MIDD [91] 0.871 0.895 0.803 0.033 0.915 0.933 0.880 0.027 0.868 0.896 0.799 0.043
ADF [92] 0.810 0.842 0.717 0.077 0.910 0.921 0.847 0.034 0.864 0.891 0.778 0.048

LSNet [93] 0.877 0.911 0.827 0.033 0.924 0.936 0.887 0.022 0.876 0.916 0.827 0.036

UniRGB-IR (Ours) 0.881 0.895 0.806 0.039 0.939 0.943 0.894 0.018 0.906 0.935 0.849 0.027

containing five categories (background, fire extinguisher, back-
pack, hand drill, and survivor). The MFNet dataset provides
1,569 pairs and contains nine classes (Car, Curve, Person,
Guardrail, Car stop, Bike, Bump, Color cone, and Back-
ground). The dataset is divided into three parts: training,
verification and testing according to the ratio of 2:1:1.
Metrics. Two metrics are utilized to evaluate the performance
of semantic segmentation, namely mean accuracy (mAcc)
and mean intersection over union (mIoU). Both metrics are
calculated by averaging the ratios of the intersection and union
of all categories.
Settings. Similarly, as the RGB-IR object detection task, we
incorporate our method into the SETR [94] basic framework
and implement it on the MMSegmentation library. The fine-
tuning process spins a total of 10K iterations with an initial

learning rate of 0.01. We employ the SGD optimizer and set
the batch size to 16.

Results. The quantitative results of the different RGB-IR
segmentation methods on the PST900 and MFNet dataset are
shown in Table III and Table IV respectively. The comparison
results show that our model significantly outperforms other
methods. Specifically, our model obtains the best performance
in terms of both the mACC and mIoU. In PST900 dataset,
our model performs competitive performance in the Backpack,
Hand-Drill and Survivor, outperforming the second-best meth-
ods by 2.3%, 0.6% and 0.4% IoU, respectively. In predicting
Color Cone class on MFNet dataset, our model achieves the
first and second best in terms of both evaluation metrics, with
about 11% Acc higher than that of the second-best. These
results show that our UniRGB-IR can also be used flexibly for
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Fig. 6. Saliency maps of proposed UniRGB-IR and seven representative SOTA RGB-IR SOD methods in difference scenes. From top to bottom are visualization
examples from the VT821, VT1000 and VT5000 datasets respectively.

TABLE VI
ABLATION STUDIES OF KEY COMPONENTS ON THE FLIR AND PST900

DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

FLIR PST900
MFP SFI

mAP mAP50 mAP75 mAcc mIoU
39.6 76.3 35.9 90.1 77.5

✓ 41.2 77.9 36.5 91.7 78.8
✓ ✓ 44.1 81.4 40.2 94.3 82.8

segmentation tasks without any modification, which validates
its universality.

C. RGB-IR Salient Object Detection

Datasets. Our salient object detection (SOD) experiments are
performed on the three public datasets: VT821 [87], VT1000
[89] and VT5000 [92]. The VT821 dataset includes 821 regis-
tered RGB and IR images. The VT1000 dataset contains 1000
registered RGB-IR images with simple scenes and aligned
images. The VT5000 dataset is a recent large-scale RGB-IR
dataset, including a full-day scene under various limited light
conditions. As usual in [92], we utilize 2500 image pairs in
the VT5000 dataset as the training dataset, and the remaining
image pairs along with the image pairs from the VT821 and
VT1000 datasets are used as the test datasets.
Metrics. Four metrics are utilized to evaluate the performance
of salient object detection namely F-measure (adpF ↑), E-
Measure (adpE ↑), S-Measure (S ↑) and Mean absolute error
(MAE ↓). ↑ and ↓ denote the higher the better and the lower
the better, respectively.
Settings. As same as the RGB-IR semantic segmentation task,
we incorporate our method into the SETR basic framework and

TABLE VII
ABLATION OF ADDING SFI MODULE TO DIFFERENT STAGES.

Different Stages with SFI module
mAP mAP50 mAP75

Stage 1 Stage 2 Stage 3 Stage 4
✓ 41.7 80.0 37.2
✓ ✓ 43.3 81.6 39.7
✓ ✓ ✓ 44.1 81.4 40.2
✓ ✓ ✓ ✓ 42.7 79.9 38.2

TABLE VIII
ABLATION OF THE DIFFERENT ATTENTION MECHANISMS.

Attention Mechanism Complexity mAP mAP50 mAP75

Global Attention [95] Quadratic 36.1 72.8 30.6
Pale Attention [43] Linear 31.6 68.4 24.6

Deformable Attention [44] Linear 44.1 81.4 40.2

also implement it on the MMSegmentation library. The fine-
tuning process spins a total of 10K iterations with an initial
learning rate of 0.01. We use the SGD optimizer and set the
batch size to 64. For convenience, all input images are resized
to 224 × 224 for testing.
Quantitative Comparison. Table V reports the quantitative
comparison results. As can be seen from Table V, our
UniRGb-IR outperforms SOTA methods both on VT1000
and VT5000 datasets in all evaluation metrics. Specifically,
the S, adpE, adpF and MAE matrics of our UniRGB-IR
achieve 0.906, 0.935, 0.849 and 0.027 on VT5000, all of
which are higher than the previous competitor LSNet [93].
These remarkable results clearly indicate that the saliency
maps predicted by UniRGB-IR are close to the corresponding
ground-truths, which verifies the effectiveness of our method.
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Fig. 7. Visualization of intermediate results. The Fmfp and Fsfi features from the first stage are visualized in the third and fourth columns. The tSNE
visualizations are also shown in the last two columns.
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Fig. 8. Training efficiency analysis on the FLIR dataset.

Qualitative Evaluation. Qualitative RGB-IR SOD compar-
isons are shown in Figure 6. The first and third rows show
scenes containing small objects. The second and fifth rows
show the salient object with the complex backgrounds. All
these scenes are suitably handled by our UniRGB-IR, which
verifies that our UniRGB-IR is more effective and robustness
while providing high-quality results with appropriate detection
capabilities.

D. Ablation Study

Ablation for components. To investigate the contribution of
the SFI and MFP modules, we gradually add each module to
the baseline model as shown in Table VI. We stack RGB and
IR images and feed them into the Cascade R-CNN detector
and SETR framework (ViT backbone) for full fine-tuning on
the corresponding tasks, which are considered as our baseline
models. Then, we freeze the ViT model and introduce the MFP
module to extract contextual multi-scale features (element-
wise addition), which results in 1.6% mAP and 1.3% mIoU
improvements. Finally, we replace the element-wise addition
operation with the SFI module and further improve the mAP
and mIoU metrics by 2.9% and 4.0% respectively, which
achieve the best performance on both datasets.
SFI module at different stages. We add the SFI module to
the ViT pre-trained model at the beginning of different stages.
From Table VII, we can find that by adding the SFI module
at the first stage, the detector achieves 41.7% mAP on FLIR
dataset. After adding the SFI module in the second and third

stages, the performance further improved by about 2% and
3% mAP, respectively. However, continuing to add it to the
final stage will reduce the detection performance while also
increasing computational overhead. Therefore, we add the SFI
module from the first stage to the third stage of ViT model.
Attention type in SFI module. Since the attention mecha-
nism in our SFI module is replaceable, we adopt three popular
attention mechanisms in our UniRGB-IR to discuss their
impact on model performance. As shown in Table VIII, the de-
tector achieves the best performance with linear complexity by
utilizing deformable attention. Thus, the deformable attention
is more suitable for our framework and utilized as the default
configuration. It is worth noting that it can be replaced by other
attention mechanisms to further achieve superior performance.

E. Visualization Analysis

Intermediate results. To illustrate the effectiveness of the SFI
module, we visualize the intermediate results on the FLIR
dataset. From Fmfp and Fsfi in Figure 7, we can find that
the foreground objects in the Fsfi become salient through
the SFI module. Furthermore, we also visualize the tSNE
maps of Fmfp–Fvit and Fsfi–Fvit respectively. After using
the SFI module, the distribution of injected features Fsfi is
more concentrated thain the distribution of ViT features Fvit,
indicating that the required richer RGB-IR features can be well
supplemented into the ViT model through the SFI module.
Training efficiency. We further plot the mAP curves for
each epoch of UniRGB-IR with different training paradigm to
demonstrate the efficiency of UniRGB-IR, as shown in Fig-
ure 8. During the training process, all hyperparameters of the
two models are the same. From Figure 8, we can find that the
convergence speed of the adapter tuning paradigm surpasses
that of the full fine-tuning strategy. Moreover, by utilizing the
adapter tuning paradigm, our UniRGB-IR achieves superior
performance with a smaller number of trainable parameters
(about 10% of the full fine-tuning model). The above results
verify the efficiency of our method.

V. CONCLUSION

In this paper, we proposed an efficient and scalable frame-
work (named UniRGB-IR) to unify RGB-IR downstream



10

tasks. Our framework contains a Multi-modal Feature Pool
module and a Supplementary Feature Injector module. The for-
mer extracts contextual multi-scale features from two modality
images, and the latter adaptively injects the features into the
transformer model. These two modules can be efficiently
optimized to complement the pre-trained foundation model
with richer RGB-IR features. To evaluate the effectiveness
of our method, we incorporated the ViT-Base model into the
framework as the pre-trained foundation model and performed
various RGB-IR downstream tasks. Extensive experiments
verify that our UniRGB-IR can be effectively leveraged as a
unified framework for RGB-IR downstream tasks. We believe
that our method can be applied to more multi-modal real-world
applications.
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