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ON THE INDEX OF POWER COMPOSITIONAL POLYNOMIALS

SUMANDEEP KAUR, SURENDER KUMAR, AND LÁSZLÓ REMETE

Abstract. The index of a monic irreducible polynomial f(x) ∈ Z[x] having a root θ

is the index [ZK : Z[θ]], where ZK is the ring of algebraic integers of the number field
K = Q(θ). If [ZK : Z[θ]] = 1, then f(x) is monogenic. In this paper, we give necessary
and sufficient conditions for a monic irreducible power compositional polynomial f(xk)
belonging to Z[x], to be monogenic. As an application of our results, for a polynomial
f(x) = xd +A · h(x) ∈ Z[x], with d > 1, deg h(x) < d and |h(0)| = 1, we prove that for
each positive integer k with rad(k) | rad(A), the power compositional polynomial f(xk)
is monogenic if and only if f(x) is monogenic, provided that f(xk) is irreducible. At the
end of the paper, we give infinite families of polynomials as examples.

1. Introduction and statements of the results

Let f(x) ∈ Z[x] be a monic irreducible polynomial with a root θ, and set K = Q(θ).
If ZK denotes the ring of algebraic integers of K, then the index of f(x) is the index
[ZK : Z[θ]]. It is well known that the index of f(x) is always finite. We say that f(x) is
monogenic, if the index of f(x) is equal to 1.

Let k be a positive integer and q be a prime divisor of k. Suppose f(x) ∈ Z[x] is a
monic polynomial. If f(xk) is irreducible, then the roots α and β of f(xq) and f(xk)
respectively, give rise to a tower of fields as shown below.

Q

Q(α)

Q(β)

Note that β
k
q = α. In this paper, our main motive is to discuss the relation between
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the indices [ZL : Z[β]] and [ZK : Z[α]], where L = Q(β) and K = Q(α), i.e., the relation
between the index of f(xq) and the index of f(xk), where q | k. Moreover, we give
necessary and sufficient conditions for these indices to be equal to 1.
It is well known, that if f(x) is the minimal polynomial of an algebraic integer θ over Q,

then the discriminant D(f) of f(x) and the discriminant ∆(K) of K = Q(θ) are related
by the formula

D(f) = [ZK : Z[θ]]2 ·∆(K). (1.1)

Clearly, if D(f) is squarefree, then f(x) is monogenic. But the converse is not always
true. Several classes of monogenic polynomials with non squarefree discriminants are
known and their properties have been studied (cf. [3] - [4], [6] - [15], [19]). L. Jones in [13]
studied the monogenity of power compositional Shanks polynomials. In [14], L. Jones
constructed infinite collections of monic Eisenstein polynomials f(x) ∈ Z[x] such that the
power compositional polynomials f(xdn) are monogenic for all integers n ≥ 0 and any
integer d > 1, where f(x) is Eisenstein with respect to every prime divisor of d. In this
paper, we study the monogenity of a monic irreducible power compositional polynomial;
i.e., a monic irreducible polynomial of the form f(xk) ∈ Z[x].
Throughout the paper, the irreducibility of a monic polynomial belonging to Z[x] is

meant over Q, unless stated otherwise. Note, that for a positive integer k, the irreducibil-
ity of a monic polynomial f(xk) implies the irreduciblity of f(x). For a positive integer
z, the radical of z, denoted by rad(z), is defined as the largest squarefree integer dividing
z.
Next, we state our main theorems.

Theorem 1.1. Let f(x) be a monic polynomial with integer coefficients. Let k ≥ 2 be
an integer such that f(xk) is irreducible. Then f(xk) is monogenic if and only if

(1) f(x) is monogenic,
(2) p does not divide the index of f(xp) for all primes p | k and
(3) f(0) is squarefree.

Remark 1.2. Note, that for a monic polynomial f(x) ∈ Z[x], if the irreducible polynomial
f(xk) is monogenic, then by using Lemma 2.6 it is easy to conclude that f(xt) is also
monogenic for each divisor t of k.

In the proof of Theorem 1.1 we will see that if f(x) is monogenic, then only the prime
divisors of k and f(0) can divide the index of f(xk), so we obtain the following corollary
to be used in the proof of Theorem 1.8.

Corollary 1.3. Let f(x) be a monic polynomial having integer coefficients. Let k be a
positive integer such that f(xk) is irreducible. Suppose, that

(1) f(x) is monogenic and
(2) p does not divide the index of f(xp) for any prime p | k.

Then every prime divisor of the index of f(xk) will divide f(0).
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In view of the above corollary, if |f(0)| = 1 or the divisors of f(0) do not divide the
index of f(xk), then (1) and (2) together are equivalent to the monogenity of f(xk). This
happens, for example, in the case of polynomials that are Eisenstein with respect to any
prime divisor of f(0), see Lemma 2.12. These polynomials can be given of the form
f(x) = xd + A · h(x), where |h(x)| = 1 and A is squarefree. Adding a further condition,
the monogenity of f(x) will be equivalent to the monogenity of f(xk).

Corollary 1.4. Let f(x) ∈ Z[x] be a polynomial of the form f(x) = xd + A · h(x),
where d > 1, |h(0)| = 1 and deg h(x) < d. Let k be a positive integer such that f(xk)
is irreducible. If rad(k) divides rad(A), then f(x) is monogenic if and only if f(xk) is
monogenic.

Note, that Theorem 1.1 implies that if f(xpu) is monogenic, then f(x) is monogenic and
f(0) is squarefree. In the following theorem we prove, that its converse is true with an
additional requirement. More precisely, we give sufficient conditions for the monogenity
of a monic irreducible prime power compositional polynomial.

Theorem 1.5. Let u be a positive integer, p a prime number and f(x) ∈ Z[x] a monic
polynomial. Suppose that f(xpu) is irreducible. Then the following statements hold:

(1) If f(x) is monogenic and f(0) is squarefree, then the index of f(xpu) is equal to
ps, with some non-negative integer s.

(2) p does not divide the index of f(xpu) if and only if f(xp)−f(x)p

p
is coprime to f(x)

modulo p.

Remark 1.6. Note, that if u = 1 in the above theorem, then the condition (2) of Theorem

1.1 is equivalent to the condition that f(xp)−f(x)p

p
is coprime to f(x) modulo p, for every

prime p | k.

Combining the Corollary 1.4 and Theorem 1.5 we get the statement below, which also
follows from Lemma 3.1 of L. Jones [14].

Corollary 1.7. Let p be a prime number. Suppose, that f(x) ∈ Z[x] is a monic and
Eisenstein polynomial with respect to p. If f(0) is squarefree, then f(x) is monogenic if
and only if f(xpu) is monogenic for any positive integer u.

Taking Remark 1.6 into account, when f(x) = xd+A ·h(x) ∈ Z[x], with |h(0)| = 1 and
deg h(x) < d, we can provide necessary and sufficient conditions for the monogenity of
the irreducible power compositional polynomial f(xk). As an application of this theorem,
we constructed an infinite family of polynomials for a specific choice of h(x), given in the
last section.

Theorem 1.8. Let f(x) ∈ Z[x] be a polynomial of the form f(x) = xd + A · h(x),
where d > 1, |h(0)| = 1 and deg h(x) < d. Let k be a positive integer such that f(xk) is
irreducible. Then f(xk) is monogenic if and only if
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(1) f(x) is monogenic, and

(2) A·h(xp)+(−A·h(x))p

p
is coprime to f(x) modulo p, for any prime p | k.

2. Preliminary results

In what follows, for a prime p and a polynomial g(x) ∈ Z[x], g(x) will denote the
polynomial obtained by reducing each coefficient of g(x) modulo p. For a subset S ⊂ Z[x],
let 〈S〉 be the ideal generated by S. If S = {s1, s2, . . . , sk} is finite, then

〈S〉 = {s1a1 + s2a2 + . . .+ skak | ai ∈ Z[x], 1 ≤ i ≤ k}.

To investigate the monogenity of f(x), we will follow the approach of K. Uchida, so we
recall Lemma 2.A and Theorem 2.B proved in [20].

Lemma 2.A. An ideal M of Z[x] containing a monic polynomial is maximal if and only
if M = 〈p, g(x)〉 for some prime number p and a monic polynomial g(x) belonging to Z[x]
which is irreducible modulo p.

Theorem 2.B. Let K = Q(θ) with θ in ZK having minimal polynomial f(x) over Q,
then ZK = Z[θ] if and only if f(x) does not belong to M

2 for any maximal ideal M of
the polynomial ring Z[x].

In particular, a prime p divides the index [ZK : Z[θ]] if and only if f(x) belongs to
the square of a maximal ideal of the form M = 〈p, g(x)〉, where g(x) ∈ Z[x] is a monic
polynomial which is irreducible modulo p. We can split the condition f(x) ∈ 〈p, g(x)〉2

into two parts.

Lemma 2.1. Let p be a prime and g(x) ∈ Z[x] be a monic polynomial which is irreducible
modulo p. Then 〈p, g(x)〉2 = 〈p2, g(x)〉 ∩ 〈p, g2(x)〉.

Proof. Clearly, 〈p, g(x)〉2 ⊆ 〈p2, g(x)〉 ∩ 〈p, g2(x)〉. To obtain the other direction of the
containment, suppose that the polynomial f(x) belongs to both 〈p2, g(x)〉 and 〈p, g2(x)〉,
i.e., there exist a(x), b(x), c(x), d(x) belonging to Z[x], such that

p2 · a(x) + g(x) · b(x) = f(x) = p · c(x) + g2(x) · d(x).

Since g(x) is irreducible modulo p, it is irreducible in Z[x]. So 〈g(x)〉 is a prime ideal of
Z[x]. By the above equation, p · (c(x)−p ·a(x)) is a multiple of g(x), i.e., it belongs to the
prime ideal 〈g(x)〉. Obviously, p does not belong to 〈g(x)〉, thus c(x) − p · a(x) ∈ 〈g(x)〉
and therefore c(x) ∈ 〈p, g(x)〉. This implies that p · c(x) ∈ 〈p2, p · g(x)〉, and from there
f(x) = p · c(x) + g2(x) · d(x) ∈ 〈p2, p · g(x), g2(x)〉. Hence f(x) ∈ 〈p, g(x)〉2. �

If f(x) ∈ 〈p, g2(x)〉, then g(x) is a multiple factor of f(x). On the other hand, f(x) ∈
〈p2, g(x)〉 implies that the remainder of f(x) divided by g(x) is a multiple of p2. Therefore,
the results of Uchida [20] say that p divides the index of f(x) if and only if there exists
a monic polynomial g(x) ∈ Z[x], which is a multiple irreducible factor of f(x) modulo
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p, such that the remainder of f(x) divided by g(x) is a multiple of p2. This also follows
from the results of Ore [17].

Corollary 2.2. Let f(x) and g(x) belonging to Z[x] be monic polynomials and let p be
a prime number such that g(x) is irreducible modulo p. Suppose that f(x) ∈ 〈p, g2(x)〉,
then

f(x) ∈ 〈p, g(x)〉2 ⇐⇒ f(x) ∈ 〈p2, g(x)〉.

Considering a prime divisor p of f(0), it is easy to see that x is a factor of f(x) modulo
p and it is a multiple factor of f(xℓ) modulo p if ℓ > 1. So, by using the above corollary,
we obtain the following result.

Proposition 2.3. Let f(x) ∈ Z[x] be a monic polynomial and p be a prime, such that
p2 | f(0). Then p divides the index of f(xℓ) for any positive integer ℓ > 1.

Proof. Since p2 divides f(0), we can see that x is a multiple factor of f(xℓ) modulo p for
any integer ℓ > 1. Therefore f(xℓ) ∈ 〈p, x2〉. Moreover, the remainder of f(xℓ) divided by
x is f(0), which is a multiple of p2, thus f(xℓ) ∈ 〈p2, x〉. By Corollary 2.2 and Theorem
2.B, p divides the index of f(xℓ). �

In the following theorem, we show that if ḡ(x) is a multiple irreducible factor of f̄(x),
then the remainder of f(x) divided by g(x) is a multiple of p2 if and only if the remainder
of f(xp) divided by g(x) is a multiple of p2. This observation is important for the proof
of our main results and it is of independent interest as well.

Theorem 2.4. Let f(x) and g(x) belonging to Z[x] be monic polynomials and let p be
a prime number such that g(x) is irreducible modulo p. Suppose that f(x) ∈ 〈p, g2(x)〉.
Then

f(x) ∈ 〈p, g(x)〉2 ⇐⇒ f(xp) ∈ 〈p, g(x)〉2.

Proof. Write f(x) = g2(x) · q(x) + p · r(x) for some q(x), r(x) belonging to Z[x]. Let
r(x) = g(x) · s(x) + t(x), where deg t(x) < deg g(x). Then

f(x) = g2(x) · q(x) + p · g(x) · s(x) + p · t(x). (2.1)

Since g2(x) ∈ 〈p, g(x)〉2 and p · g(x) ∈ 〈p, g(x)〉2, we get that

f(x) ∈ 〈p, g(x)〉2 ⇐⇒ p · t(x) ∈ 〈p, g(x)〉2. (2.2)

Substituting xp in place of x in (2.1),

f(xp) = g2(xp) · q(xp) + p · g(xp) · s(xp) + p · t(xp). (2.3)

Using the fact, that p | (g(xp) − g(x)p) we get g(xp) ∈ 〈p, g(x)〉. This implies that both
g2(xp) and p · g(xp) belong to the ideal 〈p, g(x)〉2. Thus, f(xp) ∈ 〈p, g(x)〉2 if and only if
p · t(xp) ∈ 〈p, g(x)〉2. Since p | (t(x)p − t(xp)) for any polynomial t(x) ∈ Z[x], then

p · t(xp) ∈ 〈p, g(x)〉2 ⇐⇒ p · t(x)p ∈ 〈p, g(x)〉2. (2.4)
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Thus, from (2.3) and (2.4),

f(xp) ∈ 〈p, g(x)〉2 ⇐⇒ p · t(x)p ∈ 〈p, g(x)〉2. (2.5)

In view of (2.2) and (2.5), to prove the statement it is enough to show that

p · t(x) ∈ 〈p, g(x)〉2 if and only if p · t(x)p ∈ 〈p, g(x)〉2.

Clearly, p · t(x) ∈ 〈p, g(x)〉2 implies that p · t(x)p ∈ 〈p, g(x)〉2. Assuming that p · t(x)p ∈
〈p, g(x)〉2, we can write

p · t(x)p = p2 · a(x) + p · g(x) · b(x) + g2(x) · c(x),

for some a(x), b(x), c(x) ∈ Z[x]. Therefore, g2(x) · c(x) belongs to the prime ideal 〈p〉 of
Z[x]. Since g(x) is monic and irreducible modulo p, then c(x) ∈ 〈p〉 and t(x)p ∈ 〈p, g(x)〉.
Equivalently, t(x) ∈ 〈p, g(x)〉 and therefore p · t(x) ∈ 〈p, g(x)〉2. This completes the
proof. �

Corollary 2.5. Let u be a positive integer. For a monic polynomial f(x) ∈ Z[x], a prime
p divides the index of f(xp) if and only if p divides the index of f(xpu), provided that
f(xpu) is an irreducible polynomial.

Proof. Let g(x) ∈ Z[x] be a monic polynomial such that g(x) is an irreducible factor
of f(x) modulo p. As f(xp) ≡ f(x)p mod p, g(x)p is a factor of f(xp) modulo p, i.e.,
f(xp) ∈ 〈p, g2(x)〉. By Theorem 2.4,

f(xp) ∈ 〈p, g(x)〉2 ⇐⇒ f(xp2) ∈ 〈p, g(x)〉2.

Applying induction on u, we get

f(xp) ∈ 〈p, g(x)〉2 ⇐⇒ f(xpu) ∈ 〈p, g(x)〉2.

Keeping Theorem 2.B in mind, p divides the index of f(xp) if and only if p divides the
index of f(xpu). �

Lemma 2.6. Let f(x) ∈ Z[x] be a monic polynomial and ℓ a positive integer such that
f(xℓ) is irreducible. If a prime p divides the index of f(x), then p divides the index of
f(xℓ).

Proof. If p divides the index of f(x), then by Theorem 2.B, there exists a monic polyno-
mial g(x) ∈ Z[x], such that g(x) is irreducible modulo p and f(x) ∈ 〈p, g(x)〉2. There-
fore, f(xℓ) ∈ 〈p, g(xℓ)〉2. Let h(x) be an irreducible factor of g(xℓ) modulo p. Then
g(xℓ) ∈ 〈p, h(x)〉, so 〈p, g(xℓ)〉 ⊂ 〈p, h(x)〉. This implies, that f(xℓ) belongs to the square
of the maximal ideal 〈p, h(x)〉. Hence, by Theorem 2.B, p divides the index of f(xℓ). �

To investigate all of the possible primes that may divide the index of f(xℓ), we need to
find its discriminant. We shall use the following lemma, which describes the properties
of the resultant of two polynomials.
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Lemma 2.7. Let f(x) = amx
m+am−1x

m−1+· · ·+a0 and g(x) = bnx
n+bn−1x

n−1+· · ·+b0
be two polynomials with integer coefficients of degrees m and n, and let λ1, · · · , λm and
µ1 · · · , µn be the roots of f(x) and g(x), respectively. Then

(1) R(f, g) = anmb
m
n

∏

1≤i≤m
1≤j≤n

(λi − µj),

(2) R(f, g) = anm

m
∏

i=1

g(λi) = (−1)mnbmn

n
∏

j=1

f(µj),

(3) R(f, gh) = R(f, g)R(f, h), for any h(x) ∈ Z[x],
(4) R(f, ag) = amR(f, g), for any a ∈ Z.

Note, that the discriminant of a monic polynomial f(x) ∈ Z[x] of degree n and the
resultant R(f, f ′) are related by the following formula.

D(f) = (−1)
n(n−1)

2 R(f, f ′), (2.6)

where f ′ is the derivative of f.

Lemma 2.8. Let f(x) ∈ Z[x] be a monic polynomial of degree d, and ℓ a positive integer.
Then the discriminant of f(xℓ) is

D(f(xℓ)) = ±D(f(x))ℓ · ℓdℓ · f(0)ℓ−1.

Proof. Using (2.6), we get

D(f(xℓ)) = (−1)
dℓ(dℓ−1)

2 · R(f(xℓ), ℓxℓ−1f ′(xℓ)).

Applying (3) and (4) of Lemma 2.7,

D(f(xℓ)) = (−1)
dℓ(dℓ−1)

2 · ℓdℓ ·R(f(xℓ), xℓ−1) · R(f(xℓ), f ′(xℓ)).

Using (2) of Lemma 2.7,

D(f(xℓ)) =(−1)
dℓ(dℓ−1)

2
+dℓ+ℓ−1 · ℓdℓ ·

ℓ−1
∏

i=1

f(0) · R(f(xℓ), f ′(xℓ)),

=(−1)
dℓ(dℓ+1)

2
+ℓ−1 · ℓdℓ · f(0)ℓ−1 · R(f(xℓ), f ′(xℓ)),

=(−1)
dℓ(dℓ+1)

2
+ℓ−1 · ℓdℓ · f(0)ℓ−1 ·

dℓ
∏

i=1

f ′(λℓ
i),

where f(λℓ
i) = 0, for 1 ≤ i ≤ dℓ. Note, that if µ1, · · · , µd are roots of f(x), then we can

assume that λℓ
i+j−1 = µj for 1 ≤ i ≤ ℓ and 1 ≤ j ≤ d. Therefore, (1) and (2) of Lemma

2.7 imply that

D(f(xℓ)) =(−1)
dℓ(dℓ+1)

2
+ℓ−1 · ℓdℓ · f(0)ℓ−1 ·

(

d
∏

i=1

f ′(µi)

)ℓ

.
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Hence, the result follows from (2) of Lemma 2.7. �

The following lemma is proved in [16, Proposition 4.15], and it suggests that if f(x) is
monogenic, then the discriminant of the field generated by a root of f(xℓ) cannot be too
small.

Lemma 2.9. Let K and L be number fields with K ⊂ L. Then

∆(K)[L:K] | ∆(L).

The next proposition is essential for the proof of our main theorems. It completely
describes the possible prime divisors of the index of f(xℓ).

Proposition 2.10. Let f(x) ∈ Z[x] be a monic polynomial of degree d, p a prime and
ℓ an integer greater than 1. If p ∤ ℓ and f(xℓ) is irreducible, then p divides the index of
f(xℓ) if and only if either

(1) p divides the index of f(x), or
(2) p2 | f(0).

Proof. By Lemma 2.6 and Proposition 2.3, both (1) and (2) imply that p divides the
index of f(xℓ). To prove the converse, we assume that p does not divide the index of f(x)
and p2 ∤ f(0). We split the proof into two cases.
Case 1. p ∤ f(0). Equation (1.1) shows, that

[ZK : Z[θ]]2 =
D(f(x))

∆(K)
,

where ∆(K) is the discriminant of the number field K generated by a root θ of f(x). Let
L be a number field generated by a root of f(xℓ). From Lemma 2.8,

D(f(xℓ)) = ±D(f(x))ℓ · ℓdℓ · f(0)ℓ−1.

Using Lemma 2.9, we get

D(f(xℓ))

∆(L)
|
D(f(x))ℓ

∆(K)ℓ
· ℓdℓ · f(0)ℓ−1,

where ∆(L) is the discriminant of the number field L. Since p ∤ D(f(x))
∆(K)

and p ∤ ℓ · f(0),

then p does not divide the index of f(xℓ).
Case 2. p | f(0). In view of Theorem 2.B, we have to show that f(xℓ) does not belong
to 〈p, h(x)〉2, where h(x) ∈ Z[x] is monic and irreducible modulo p. By Lemma 2.1, it is
enough to show that f(xℓ) does not belong to either 〈p, h2(x)〉 or 〈p2, h(x)〉. If h(x) = x,
then f(xℓ)− f(0) ∈ 〈x〉 ⊂ 〈p2, x〉. But f(0) 6∈ 〈p2, x〉, so f(xℓ) 6∈ 〈p2, x〉. First, we show
that f(xℓ) has a multiple irreducible factor modulo p different from x if and only if f(x)
has a multiple irreducible factor modulo p different from x.



ON THE INDEX OF POWER COMPOSITIONAL POLYNOMIALS 9

Let g(x) be a monic irreducible polynomial modulo p, then gcd(g(x), g′(x)) = 1. Since
the derivative of g(xℓ) is ℓxℓ−1g′(xℓ) and p ∤ ℓ, g(xℓ) is separable if and only if g(x) 6= x.
Thus, gcd(g(xℓ), g′(xℓ)) = 1. We can conclude, that whenever a monic irreducible polyno-
mial g(x) 6= x is a single factor of f(x) modulo p, then all irreducible factors of g(xℓ) are
single factors of f(xℓ) modulo p. Furthermore, if g1(x) and g2(x) are distinct irreducible
factors of f(x) modulo p, then gcd(g1(x), g2(x)) = 1 and so gcd(g1(x

ℓ), g2(x
ℓ)) = 1. Thus,

h(x) 6= x is a multiple irreducible factor of f(xℓ) modulo p if and only if f(x) has a
multiple irreducible factor g(x) modulo p such that h(x) | g(xℓ).

Let g(x) ∈ Z[x] be a monic polynomial which is a multiple irreducible factor of f(x)
modulo p. Then f(x) ∈ 〈p, g2(x)〉. By Corollary 2.2 and Theorem 2.B, with the hypothesis
that p does not divide the index of f(x), we get f(x) 6∈ 〈p2, g(x)〉. Let us write f(x) =
g(x) · c(x) + r(x), where deg r(x) < deg g(x) and c(x), r(x) ∈ Z[x]. Clearly, r(x) ∈ 〈p〉
and g(x) | c(x). Set r(x) = p · s(x), for some s(x) ∈ Z[x]. Then, for certain polynomials
a(x), b(x) ∈ Z[x], we can write f(x) = g2(x) · a(x)+ p · g(x) · b(x)+ p · s(x). Consequently,

f(xℓ) = g2(xℓ) · a(xℓ) + p · g(xℓ) · b(xℓ) + p · s(xℓ). (2.7)

As g(x) is irreducible modulo p and deg s(x) = deg r(x) < deg g(x) = deg g(x), then
gcd(g(x), s(x)) = 1. Thus, there exists a polynomial t(x) ∈ Z[x] such that s(x) · t(x) ∈
1 + 〈p, g(x)〉 and so s(xℓ) · t(xℓ) ∈ 1 + 〈p, g(xℓ)〉. Let h(x) ∈ Z[x] be a monic polynomial
which is an irreducible factor of g(xℓ) modulo p, then g(xℓ) ∈ 〈p, h(x)〉, and

s(xℓ) · t(xℓ) ∈ 1 + 〈p, h(x)〉. (2.8)

Since h(x) is a multiple factor of f(xℓ) modulo p, f(xℓ) ∈ 〈p, h2(x)〉. We have to show
that f(xℓ) 6∈ 〈p2, h(x)〉. Since g(xℓ) ∈ 〈p, h(x)〉, we can see that

g2(xℓ) ∈ 〈p, h(x)〉2 ⊂ 〈p2, h(x)〉

and

p · g(xℓ) ∈ 〈p2, p · h(x)〉 ⊂ 〈p2, h(x)〉.

Using Equation (2.7), we get that f(xℓ) ∈ 〈p2, h(x)〉 if and only if p · s(xℓ) ∈ 〈p2, h(x)〉.
We can write s(xℓ) = h(x) ·u(x)+ v(x), where deg v(x) < deg h(x) and u(x), v(x) ∈ Z[x].
Thus, p · s(xℓ) ∈ 〈p2, h(x)〉 if and only if p · v(x) ∈ 〈p2, h(x)〉. As deg v(x) < deg h(x), p ·
v(x) ∈ 〈p2, h(x)〉 if and only if v(x) ∈ 〈p〉. If v(x) is a multiple of p, then s(xℓ) ∈ 〈p, h(x)〉,
which is a contradiction to Equation (2.8). Therefore, f(xℓ) 6∈ 〈p2, h(x)〉. Hence, Theorem
2.B together with Lemma 2.1 implies that p does not divide the index of f(xℓ). �

Remark 2.11. The main idea behind the last part of the proof is that if g(x) is irreducible
modulo p and deg s(x) < deg g(x), then g(xℓ) and s(xℓ) are coprime. But f(xℓ) belongs
to 〈p2, h(x)〉 if and only if h(x) is a common divisor of g(xℓ) and s(xℓ).

The following lemma proved in [16, Lemma 2.17] will be used in the proof of the
Theorem 1.8.
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Lemma 2.12. Let α be an algebraic integer, and let L = Q(α) be the field generated by
it. If the minimal polynomial f(x) of α over Q is an Eisenstein polynomial with respect
to the prime p, i.e., it has the form xn + an−1x

n−1 + · · ·+ a0, with a0, · · · , an−1 divisible
by p and p2 ∤ a0, then the index of f(x) is not divisible by p.

3. Proof of the main results

Proof of Theorem 1.1. First, assume that f(xk) is monogenic. Then by Lemma 2.6, f(x)
and f(xp) are also monogenic for all p | k, so (1) and (2) hold. Furthermore, there is no
prime p that divides the index of f(xk), so by Proposition 2.3, p2 ∤ f(0) for any prime p,
i.e., f(0) is squarefree.

Conversely, assume that (1), (2) and (3) hold. By Proposition 2.10, if p ∤ k, then (1)
and (3) together imply that p does not divide the index of f(xk). Let p | k and write
k = puℓ, where p ∤ ℓ. Using Corollary 2.5 and (2), we see that p does not divide the index
of f(xpu). Now, using (3) and Proposition 2.10, we get that p does not divide the index
of f(xk). Thus, f(xk) is monogenic. �

Proof of Corollary 1.3. Let p be a prime divisor of the index of f(xk). Suppose, that
p ∤ f(0). If p ∤ k, then by Proposition 2.10, p divides the index of f(x), which contradicts
(1). On the other hand, if p | k, then we can write k = puℓ, where p ∤ ℓ. By Proposition
2.10, p divides the index of f(xpu), hence, by Corollary 2.5, p divides the index of f(xp).
This contradicts (2), so p must be a divisor of f(0). �

Proof of Corollary 1.4. One can easily see that the monogenity of an irreducible polyno-
mial of the type f(x) = xd+A ·h(x) ∈ Z[x], with d > 1, and deg h(x) < d, implies that A
is squarefree. Let p | A. Then f(x) ∈ 〈p, x2〉, so by Corollary 2.2 and Theorem 2.B, the
monogenity of f(x) implies that A is squarefree. In this situation, f(x) is an Eisenstein
polynomial with respect to p and hence by Lemma 2.12, p does not divide the index of
f(x). Therefore the proof is complete keeping Theorem 1.1 in mind. �

Proof of Theorem 1.5. Set deg f(x) = d. Using Lemma 2.8, we get

D(f(xpu)) = ±D(f(x))p
u

· pudp
u

· f(0)p
u−1.

(1) In view of Lemma 2.9, Equation (1.1) and the hypothesis that f(x) is monogenic, we
conclude that any prime divisor of the index of f(xpu) is either p or a divisor of f(0).
If |f(0)| = 1, then the index of f(xpu) is equal to ps, for some non-negative integer s.
Let q 6= p be a prime divisor of f(0). Since f(x) is monogenic and f(0) is squarefree,
Proposition 2.10 implies that q does not divide the index of f(xpu). Hence, p is the only
possible prime divisor of the index of f(xpu).
(2) Using Corollary 2.5, it is enough to prove that p does not divide the index of f(xp)
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if and only if f(xp)−f(x)p

p
is coprime to f(x) modulo p. Let f(x) =

t
∏

i=1

geii (x) be the

factorization of f(x) into a product of powers of distinct irreducible polynomials gi(x),
where each gi(x) ∈ Z[x] monic. Here, f(xp) ∈ 〈p, g2i (x)〉 for all 1 ≤ i ≤ t. We can write

f(x) =

t
∏

i=1

geii (x) + p · a(x),

for some a(x) ∈ Z[x]. Then

f(x)p =

( t
∏

i=1

geii (x) + p · a(x)

)p

=

( t
∏

i=1

geii (x)

)p

+ p2 · t(x),

for some t(x) ∈ Z[x]. Therefore, f(x)p ∈ 〈p2, gi(x)〉 for each 1 ≤ i ≤ t. Notice, that
f(xp) ∈ 〈p2, gi(x)〉 if and only if f(xp)− f(x)p ∈ 〈p2, gi(x)〉. Set f(x

p)− f(x)p = p · c(x),
for some c(x) ∈ Z[x]. Then, f(xp) ∈ 〈p2, gi(x)〉 if and only if p · c(x) ∈ 〈p2, gi(x)〉. Since
gi(x) ∈ Z[x] is monic and irreducible modulo p for each i, it is clear that p·c(x) ∈ 〈p2, gi(x)〉
if and only if c(x) = gi(x) · u(x) + p · v(x), for certain u(x), v(x) ∈ Z[x]. Equivalently,

f(xp) ∈ 〈p2, gi(x)〉 if and only if f(xp)−f(x)p

p
is divisible by gi(x) modulo p. Thus, we get

that f(xp) 6∈ 〈p2, gi(x)〉 for any 1 ≤ i ≤ t if and only if f(xp)−f(x)p

p
is coprime to f(x)

modulo p. Using Corollary 2.2, f(xp) 6∈ 〈p, gi(x)〉
2 for any 1 ≤ i ≤ t if and only if

f(xp)−f(x)p

p
is coprime to f(x) modulo p. Hence, our result follows from Theorem 2.B. �

Proof of Theorem 1.8. Let us start by proving that any prime divisor p of k does not
divide the index of the irreducible polynomial f(xp) if and only if (2) holds. Let p be a
prime divisor of k, and write

f(xp) =
(

xd + A · h(x)− A · h(x)
)p

+ A · h(xp)

=
(

f(x)− A · h(x)
)p

+ A · h(xp)

=f(x)p + (−1)pAp · h(x)p + p · f(x) · r(x) + A · h(xp),

where

r(x) =
1

p

( p−1
∑

i=1

(

p

i

)

f i−1(x)
(

−A · h(x)
)p−i

)

.

This implies, that

f(xp)− f(x)p

p
=

(

− A · h(x)
)p

+ p · f(x) · r(x) + A · h(xp)

p
.

Therefore, f(xp)−f(x)p

p
is coprime to f(x) modulo p if and only if 1

p
[(−A ·h(x))p+A ·h(xp)]

is coprime to f(x) modulo p. Thus, using Theorem 1.5, p does not divide the index of
f(xp) if and only if 1

p
[(−A · h(x))p + A · h(xp)] is coprime to f(x) modulo p.
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Using Lemma 2.6, the monogenity of f(xk) implies that both (1) and (2) hold. Con-
versely, suppose that both (1) and (2) hold. If |A| = 1, then the result follows from
Corollary 1.3. Let p be a prime dividing A. If p2 | A then Proposition 2.3 shows that
p divides the index of f(xp), a contradiction to (2). Thus, A must be squarefree. Since
|h(0)| = 1 and A is squarefree, we can see that f(xk) is an Eisenstein polynomial with
respect to p. Therefore, by Lemma 2.12, p does not divide the index of f(xk). This shows,
that the index of f(xk) and A are coprime. Hence, Corollary 1.3 implies that f(xk) is
monogenic. �

4. Infinite examples

In this section, we introduce some well-known infinite parametric families of polyno-
mials for which Theorem 1.1 can be applied efficiently. The first example is the family of
pure polynomials obtained by choosing f(x) = x−A, where A is an integer. In this case,
our theorems imply the following well-known result (see [5, Theorem 1.3]).

Proposition 4.1. Let k > 1 be an integer and f(x) = x − A ∈ Z[x]. If f(xk) is
irreducible, then f(xk) is monogenic if and only if

(i) p2 ∤ Ap − A for any prime p | k and
(ii) A is squarefree.

Proof. The polynomial f(x) = x− A is always monogenic, so (1) of Theorem 1.1 is true
for any A ∈ Z. In view of Theorem 1.1, it is enough to prove that (2) of Theorem 1.1 and
(i) are equivalent. Here f(xp) ≡ (x− A)p mod p. Theorem 2.B together with Corollary
2.2 imply that p divides the index of f(xp) if and only if the remainder of f(xp) divided
by x−A, which is Ap − A, is a multiple of p2. This completes the proof. �

The next example is the family of simplest cubic polynomials of the form

f(x) = x3 −mx2 − (m+ 3)x− 1.

In some special cases, we can deal with this family by using Theorem 1.1.

Proposition 4.2. Let m ∈ Z and f(x) = x3 −mx2 − (m+ 3)x− 1. Let k be a positive
integer such that f(x) is reducible modulo every odd prime p | k. Then f(xk) is monogenic
if and only if

(i) f(x) is monogenic, and

(ii) m 6≡
r3p − 3rp − 1

rp(rp + 1)
mod p2, for any odd prime p | k and r = 1, . . . , p− 2.

Proof. We note, that f(xk) is always irreducible in Z[x] (see [13, Lemma 3.1]). Referring
back to Theorem 1.1, we only have to prove that (2) of Theorem 1.1 is equivalent to (ii).
Let p be an odd prime. The Galois group of f(x) is the cyclic group of order three, so the
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reducibility of f(x) modulo p implies that it splits into three linear factors. Therefore,
the multiple irreducible factors of f(xp) modulo p are of the form x− r. Since f(0) = −1
and f(−1) = 1, then r 6≡ 0,−1 mod p. By Theorem 2.B and Corollary 2.2, p divides the
index of f(xp) if and only if f(xp) ∈ 〈p2, x−r〉 for some r = 1, . . . , p−2, i.e., if and only if
f(rp) ≡ 0 mod p2. Since r 6≡ 0,−1 mod p, we have f(rp) = r3p−mr2p−(m+3)rp−1 ≡ 0
mod p2 if and only if

m ≡
r3p − 3rp − 1

rp(rp + 1)
mod p2.

Finally, it can be easily checked that for p = 2, f(x) is always irreducible modulo 2, and
f(x2) is never contained in 〈2, f(x)〉2, so 2 can never divide the index of f(xk). �

Remark 4.3. In Proposition 4.2, the condition f(x) is reducible modulo every odd prime
p | k can not be dropped. For example, if k = 13 and m ≡ 6 mod 13, then f(x) is
irreducible modulo 13, however, if m = 71, then both (i) and (ii) are true, but 13 divides
the index of f(xk). For the sake completeness, see [13, Lemma 3.3], in which the author
gives a characterization of the monogenity of f(xp), where f(x) = x3−mx2−(m+3)x−1
is irreducible modulo p.

In the last example, we apply Theorem 1.8 to f(x) = xd+A(Bx+1)m. The monogenity
of f(x) is investigated in [15].

Proposition 4.4. Let A and B be integers and d and m positive integers such that
d > m. Assume, that gcd(d,mB) = 1. Let f(x) = xd + A(Bx + 1)m and let k be a
positive integer such that f(xk) is irreducible. Then f(xk) is monogenic if and only if the
following statements hold:

(1) Both A and dd + (−1)d+mBdmm(d−m)d−mA are squarefree.
(2) For any prime p dividing k,

(

− A(Bx+ 1)m
)p

+ A(Bxp + 1)m

p

is coprime to f(x) modulo p.

Furthermore, if rad(k) | rad(A), then f(xk) is monogenic if and only if both A and
dd + (−1)d+mBdmm(d−m)d−mA are squarefree.

Proof. If A 6= ±1 is a squarefree integer, then f(xk) is an Eisenstein polynomial with
respect to a prime divisor of k, thus f(xk) is irreducible. This implies, that there exist an
infinite number of irreducible polynomials of the form f(xk) = xdk+A(Bxk+1)m. By [15,
Theorem 1.1], f(x) is monogenic if and only if both A and dd+(−1)d+mCdmm(d−m)d−mA

are squarefree. Set h(x) = (Bx + 1)m, then h(0) = 1 and deg h(x) < d, and our result
follows from Theorem 1.8. �
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