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Abstract

Ultra-large make-on-demand compound libraries now contain billions of read-
ily available compounds. This represents a golden opportunity for in-silico drug
discovery. One challenge, however, is the time and computational cost of an
exhaustive screen of such large libraries when receptor flexibility is taken into
account. We propose an evolutionary algorithm to search combinatorial make-on-
demand chemical space efficiently without enumerating all molecules. We exploit
the feature of make-on-demand compound libraries, namely that they are con-
structed from lists of substrates and chemical reactions. Our novel algorithm
RosettaEvolutionaryLigand (REvoLd) explores the vast search space of combina-
torial libraries for protein-ligand docking with full ligand and receptor flexibility
through RosettalLigand. A benchmark of REvoLd on five drug targets showed
improvements in hit rates by factors between 869 and 1,622 compared to ran-
dom selections. REvoLd is available as an application within the Rosetta software
suite.

Scientific contribution statement: This work formulates an evolutionary
algorithm for optimization and exploration of ultra-large make-on-demand



libraries. We demonstrate that our approach results in strong and stable enrich-
ment, offering the most efficient algorithm for drug discovery in ultra-large
chemical space to date.

Keywords: Computer-aided drug discovery, evolutionary algorithm, ultra-large
chemical space, make-on-demand library, small molecules, screening

1 Introduction

Drug discovery is a complex and time-consuming process. A campaign typically starts
with target selection, followed by hit identification. Hit identification is usually done
through screening experiments. While other factors play a role, chances of success
increase with the number of tested compounds. However, acquiring a large number
of molecules is expensive and testing them in bulk requires specialized infrastructure
[52]. One widely adopted solution is virtual high throughput screening (VHTS), where
molecules are pre-screened on computers and filtered for predicted activity [46]. One
of the most significant challenges limiting vHTS is the size of the chemical space,
which is estimated to contain up to 10%° possible drug-like molecules [5]. In addition
to the lack of computational capacity to store and screen such a large number of
molecules, defining a chemical space that is drug/lead-like and synthetically accessible
presents a hindrance [9, 15, 26]. A wide range of technologies have been developed to
generate molecules tailored to specific areas of interest. However, many computational
approaches are never thoroughly tested as the barrier for synthesis is too high and,
thus, compounds are unavailable for in-vitro testing [9, 16, 23, 31, 42, 53]. Make-on-
demand combinatorial libraries can overcome this challenge if vHTS algorithms can
be tailored to sample this focused but still prodigious chemical space. These libraries
combine simple building blocks through robust reactions to form billions of readily and
economically available molecules. In the best-case scenario, they allow the confirmation
of bioactive hit molecules from in-silico prediction through in-vitro evaluation within
a few weeks [22, 34, 54]. However, the increased make-on-demand chemical space is not
only an opportunity but also a challenge. A small number of vHTS campaigns have
been conducted on molecule libraries exceeding a hundred million compounds, even
fewer exceeding billions, and they all required substantial computational resources
[1, 21, 34, 35]. Additionally, most of the computational time in such campaigns is
spent on molecules of no further interest for the following steps of the drug discovery
campaign due to low hit rates.

To date, several solutions have been proposed to address this problem. The Deep
Docking platform [18, 19] utilizes a mixture of conventional docking algorithms and
neural networks to screen a subset of the target space and quantitative structure-
activity relationship (QSAR) models to evaluate the remaining target space. However,
this approach still requires the docking of tens to hundreds of millions of molecules and
calculating QSAR descriptors for the whole billion-sized molecular library. A similar
idea is used by Luttens et al. [33].



Another promising solution is V-SYNTHES [44, 45]. Instead of docking the final
molecules, V- SYNTHES starts with docking of single fragments, picking the most
promising ones and iteratively adding more fragments to the growing scaffolds until
final molecules are built. Chemical Space Docking is essentially the same approach
as V- SYNTHES, but is a general instruction instead of being a ready-to-use soft-
ware [4]. A similar approach, called Targeted Exploration [40], filters the synthons of
Enamine’s REAL space [14] for similarity to known binders. The most promising syn-
thons are used to enumerate ligand libraries. Search on chemical space near functional
molecules requires previous structural knowledge of the molecules, which is not always
available. To create such space, millions of computational docking procedures have to
be performed.

Recently, [37] published an evolutionary algorithm called Galileo, to optimize
molecules in chemical combinatorial space. The algorithm is not tailored towards a
specific optimization goal or chemical space but accepts any function which assigns
a score to a molecule and treats reaction rules as general as possible. The algorithm
was tested for a similarity search and optimization of pharmacophores, although with
mixed success. A total of five million fitness calculations in the context of structure-
based drug design makes expansive docking models unfeasible. However, the algorithm
showed promising performance. This is in line with recent analysis on the potentials
of genetic algorithms, showing that their capabilities are on par with modern deep
learning methods [17, 51]. Evolutionary algorithms have been used for decades in
computer-aided drug discovery (CADD) and were implemented by multiple research
groups [8, 25, 31, 47, 48]. They were all highly successful in finding and optimizing
promising compounds but shared one common drawback - synthetic accessibility. One
recently published evolutionary algorithm even puts most of its research effort into
assuring easy synthesizability [28].

Building on these findings, we propose RosettaEvolutionaryLigands or short
REvoLd: An evolutionary algorithm optimizing entire molecules from the Enamine
REAL space [14]. It reveals promising compounds with just a few thousand docking
calculations, continues to discover new scaffolds if run multiple times, and enforces
high synthetic accessibility. Furthermore, REvoLd’s enrichment capabilities seem to
be independent of the size of the space searched.

2 Implementation

Evolutionary algorithms mimic Darwinian evolution [13]. Starting from a random
population, individuals are altered, and selective pressure is applied through a fitness
function. In each iteration, individuals that are discarded due to their fitness will be
replaced by new individuals created through reproduction. In CADD, evolutionary
algorithms often utilize docking scores as fitness functions to minimize the free energy
between the protein target and the ligand. Reproduction typically consists of mutation
and crossover, where mutation alters small parts of the current molecule, like removing
or adding a single atom or functional group. Crossover, on the other hand, recom-
bines two or more promising solutions, for example by cutting two molecules in half
and recombining their fragments [30]. Our proposed algorithm sticks to this paradigm



[25]. REvoLd allows for all parameters to be changed and adapted by the user. Sev-
eral selection and reproduction methods can be freely combined to form customized
evolutionary protocols.

2.1 Combinatorial Libraries

While our reproduction functions follow the core ideas of evolutionary algorithms,
their main novelty is their strict limitation to the chemical space defined by the
make-on-demand library. Examples of such libraries are Enamine REAL space, Otava
CHEMTriya space, and WuXi LabNetwork GalaXi space [14, 41, 55]. While they all
differ in size and include different molecules, they all define chemical reactions and
sets of fragments that can be combined through these reactions. This causes an expo-
nentially larger chemical space of billions of molecules defined through a few hundred
reactions and hundreds of thousands or at most single-digit million fragments [3, 22].
These definitions are exploited by our reproduction functions. Each individual in our
algorithm represents a single molecule. It is defined through a reaction and a list of
fragments used for that specific reaction (figure 1).
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Fig. 1 Example of fragment combinations. A Fragments are defined with attachment points or
reaction handles. These are used as hinges to freely combine multiple fragments from predefined lists.
For example, the yellow pentagon can be combined with all three fragments in list 2 to form three
different products. The product space grows exponentially as both fragment lists grow linearly. B An
example of mutation and crossover. The mutation aims to replace the fragment from list 1. A local
similarity search through all those fragments yielded the blue hexagon. Next, a crossover between the
new molecule and another one happens. Both parents contribute one fragment each and create again
a new molecule which resembles both its predecessors.

2.2 Algorithm overview

Following typical evolutionary algorithms, REvoLd starts with a random population.
An overview of the optimization process is given in figure 2. Initial molecules, called
individuals, are generated through picking a random reaction and picking one ran-
dom suitable synthon for each of the reaction’s positions. The reaction is picked by



a weighted random selection. The weight is the number of possible distinct educts
of each reaction. Next, each of these random molecules is docked against the target
protein following the RosettaLigand protocol resulting in 150 complexes per molecule
[12, 36]. Each of these complexes is used to calculate interface energies between lig-
and and protein. The lowest calculated interface energy is used as fitness score. The
first population is formed through appliance of selective pressure through a freely cho-
sen main selector in order to reduce the number of individuals down to the selected
maximum size.
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Fig. 2 General overview of REvoLd’s optimization cycle. Starting from a random population, fitness
scores are calculated through ligand docking and solutions are discarded through selective pressure.
Alterations to molecules are introduced through offspring factories iteratively. The cycle is continued
until a set number of generations is reached.

An evolutionary optimization cycle follows to successively select fit individuals, e.g.,
molecules, for reproduction. Every cycle consists of a sequence of reproduction steps.
Each step selects individuals from the previous generation for a given reproduction
pattern. The selected individuals remain in the pool for further reproduction steps per
default but can be removed if desired. Next, new molecules are docked to calculate
their fitness and the main selector is applied to reduce the new population down to
the selected maximum. A cycle is finished by checking if the maximum number of
generations is reached. If not, another cycle follows, otherwise the algorithm ends and
reports all analyzed molecules.



2.3 Selectors

In the current version of REvoLd, three different selectors were implemented, all
of which can be utilized as the main selector and for selecting individuals for
reproduction. The simplest selector, called ElitistSelector, simply selects the fittest
individuals. The other two selectors, TournamentSelector and RouletteSelector, are
non-deterministic and may allow worse scoring individuals to be selected for repro-
duction and to advance generations, in order to explore chemical space further and
potentially escape local minima [20]. The RouletteSelector takes the relative differ-
ences of fitness scores into account by assigning selection chances based on them. If
an individual has a fitness two times better than another individual the first will have
a two times higher chance of selection. TournamentSelector on the other hand solely
considers the ranking of individuals. A set number of individuals is selected randomly
to participate in a tournament. This number is referred to as tournament size. All
individuals are sorted by their fitness and are granted a chance to accept their selec-
tion. Therefore, a larger tournament size means a smaller chance to be selected for
less fit individuals. In addition, all selectors have the option to either remove selected
individuals from the pool, or to keep them in the pool to potentially participate in
more reproduction steps.

2.4 Reproduction

Reproduction is implemented through three different offspring factories. Each factory
needs to be linked to one selector which provides it with a set of selected individuals.
Each factory uses these individuals to produce a set number of offspring individu-
als. This is applied sequentially following a user specified evolutionary protocol. The
IdentityFactory simply copies the input individuals unchanged into the offspring gen-
eration. This is done to preserve and keep already found solutions and allow them to
proceed through multiple generations.

The MutatorFactory applies point mutation to all its input individuals. A point
mutation is either the change of one fragment to another fitting fragment or a change
of reaction. This is expected to introduce small local perturbations to guide individuals
into local energy minima. Switching fragments is easy since each reaction provides
a list of suitable synthons for all positions and those can be freely replaced by each
other. RDKit’s implementation of extended connectivity fingerprints and Tanimoto
similarity are used to control the impact of synthon mutation [2, 29, 43]. Fingerprints
are calculated for all fragments during database loading at program initialization.
When a new fragment needs to be selected, all suitable replacements are collected into
one list and their similarity to the origin fragment is calculated. Next, cutoff values are
applied to ensure a minimal and maximum similarity. The final new fragment is then
selected using a weighted random sample with similarity as weights. This can be used
to enforce drastic mutations or to allow only fine-grained changes. The mutation of
reactions is more challenging. First, a new reaction is selected. Second, new fragments
for each position are selected based on maximal Tanimoto similarity to previously
used fragments, to limit the changes induced on the molecule.



The last possibility to create offspring is the CrossoverFactory. It randomly com-
bines all its input individuals into parental pairs which are used to create offspring
inheriting traits from them. One parent provides the reaction used for the offspring,
and each parent provides a random number of fragments, but always at least one. If
both parents use the same reaction, their fragments can be freely combined. If they use
different reactions, a local similarity search is used to find the most similar fragments
in the reaction used by the offspring, as it is done in the MutatorFactory.

2.5 Score calculation

Each individual represents a molecule which is a potential hit candidate. To estimate
its fitness, or score, we use the ligand docking protocol RosettaLigand and its recom-
mended preprocessing steps [12, 36]. First, RDKit [29] is used to turn the SMARTS and
SMILES representations of the individual’s reaction and fragments, respectively, into
RDKit reactions and molecules and to run the reaction with the selected fragments.
RDKit is further used to calculate a three-dimensional embedding of the molecule
and a list of low-energy conformers. These are passed to the RosettaLigand docking
protocol to calculate the protein-ligand complex following a Monte Carlo optimiza-
tion. Briefly, the RosettaLigand protocol consists of an initial placement of the ligand
in a user-defined position, which is ideally a previously identified or known binding
site. Next, a coarse-grained docking step successively applies rotation, translation, and
conformer sampling to guide the ligand into close contact with the protein. This is
followed by a high-resolution docking step, which applies only small changes to the
ligand and optimizes protein sidechains. Lastly, a final minimization step optimizes
the current solution into a local minimum. This protocol is repeated 150 times, and
the lowest (best) reported protein-ligand interface energy is used as the basis of the
efficiency score.

2.6 Final Protocol

There are a total of seven different reproductions in our final protocol, but protocols
can be freely adapted. This protocol was developed through optimizing hit rates,
which is explained is section 3.2. The first two steps are intended to cause small
refinements on promising molecules from the previous generation. The next two steps
potentially use the same molecules but make sure more impactful changes are applied
to enhance exploration of chemical space, where step 3 increases exploration within
the same reaction and step 4 ensures different reactions are explored as well. Step 5
moves the best molecules unchanged to the next generation and removes them from
the pool of reproduction candidates. This is done to preserve the best solutions for
future generations and to allow optimization of less optimal molecules through the
final two steps.

1. Moderate mutations: A roulette wheel selector selects 15 individuals and a total
of 30 new molecules are produced through mutation, with every parent being used
twice. Mutations occur twice as often on fragments instead of reactions. Fragment
selection is biased towards high similarity with an enforced minimal Tanimoto
similarity of 0.6. Selected parents remain unchanged in the current pool.



2. Excessive crossover: A roulette wheel selector selects 15 individuals and a total
of 60 new molecules are produced through crossover. Parents are randomly paired
to generate one new molecule. This is repeated until enough offspring are generated.
Selected parents remain unchanged in the current pool.

3. Drastic mutations: Like step 1, but only fragments can be mutated, not reac-
tions. Furthermore, fragment selection is still biased towards higher similarity, but
a maximum similarity of 0.25 is used as hard cutoff.

4. Reaction mutation: Like step 1, but only reactions are mutated to guarantee
exploration of chemical spaces defined by different reactions.

5. Identity: The 15 best molecules from the current pool are passed unchanged to
the next generation. They are removed from the current pool afterwards.

6. Moderate mutations: Same as step 1, but since the 15 best molecules were
removed in step five, individuals with a worse fitness have a higher chance to be
selected.

7. Excessive crossover: Same as step 2, but again with a higher chance for worse
molecules.

These steps strike a good balance between exploration and exploitation of chemical
space. This cycle is repeated until 30 generations are done, and all molecules from
all generations are reported. REvolLd saves the best-scoring protein-ligand complexes
calculated during docking for each individual. Our final protocol uses a tournament
selector as main selector with tournament size 15 and acceptance chance of 0.75. The
initial population size is 200, the maximum number of individuals to pass between
generations is 50.

3 Results
3.1 Ligand Efficiency

Since many of RosettalLigand’s energy terms depend on the size of the molecule,
we observed the well-known bias towards larger ligands in our first REvold runs.
Molecules were getting larger and larger with every generation, since larger molecules
can form more interactions with the target protein and therefore receive better scores.
However, this does not accurately reflect experimental findings [24]. To address this
issue, we normalized the interface energy and tested four different methods with n €
{1,2,3,4}:

energy(x)
Y/ heavyatoms(x)

fitness, (x) = (1)

where energy(z) is the interface energy between the protein target and ligand
calculated by Rosettaligand and heavyatoms(x) is the number of non-hydrogen atoms
in the ligand z. Increasing n essentially decreases the penalty for large molecules. We
found n = 2 to perform best. Detailed results can be found in Appendix A. This
measure is the geometric mean between the predicted binding energy and the ligand
efficiency. It strikes a good balance between biasing against too large and too small
molecules. We call this score “ligand interface delta square root normalized” or short



lid_root2. It will be used throughout the rest of the paper whenever we report fitness
or docking scores.

3.2 Hyperparameter and protocol optimization

REvoLd is very flexible and has endless potential protocols (e.g., combinations of
selectors, reproduction steps, and several global parameters). To allow for quick testing
and optimization of the evolutionary protocol, we created a subset of the Enamine
REAL Space consisting of one million molecules. Our test set was produced through
four two-component reactions and 500 fragments per reagent positions. The reactions
and fragments were selected to minimize similarity between all fragments used in
order to create a rigid similarity landscape, which is usually harder to navigate and
optimize within, and to provide a high diversity of possible molecules. All one million
molecules were docked with RosettaLigand against the human dopamine D3 receptor
(PDB ID: 3PBL, [7]) to have their scores readily available, and to allow us to assess
how close the algorithm gets to the global minimal score. We set the best scoring
1,000 molecules (0.1%) from this set as virtual hits. The selection of a rigid similarity
landscape as well as optimizing only for a single target is potentially suboptimal
for protocol optimization, but we did not observe a deterioration of hit rates when
switching to the later explained more realistic benchmark.

An iterative approach was used to test different combinations of selection and
reproduction mechanics and run parameters. Initially, we selected parameters to bias
towards the fittest individuals, allowing only them to mutate and reproduce. This
setting proved to converge very fast towards hit molecules. Its downside was limited
exploration of the target space. We introduced several changes to our protocol to off-
set that effect. First, we increased the number of crossovers between fit molecules
to enforce more variance and recombination between well-suited ligands. Second, we
added an additional mutation step which switches single fragments to low similar-
ity alternatives. This keeps well-performing parts of promising molecules intact but
enforces huge changes on small parts of it. And third, another mutation step which
only changes the reaction of a molecule and searches for similar fragments within the
new reaction group. This opens larger parts of the combinatorial space for screen-
ing. These changes increased the number and diversity of virtual hits tremendously.
As a last change, we introduced a second round of crossover and mutation excluding
the fittest molecules, thus allowing worse scoring ligands to improve and carry their
molecular information forward. These changes reliably improved hit rates. Details on
tested parameter combinations as well as their hit rates can be found in Appendix B.

Regarding the size of the random start population, we found that 200 initially
created ligands offer enough variety to start the optimization process. More initial
ligands might increase the chance to discover good binders immediately, but greatly
increases run time costs. Fewer initial molecules on the other hand have less chance to
capture promising structural elements. Next, we tested how many individuals should
be allowed to advance to the next generation and found 50 to perform best. Larger
populations carry more noise through the generations which decreases the effectiveness
of all reproduction steps, but smaller populations are too homogeneous and therefore
hinder exploration of chemical space. Lastly, we found 30 generations of optimization



to strike a good balance between convergence and exploration. Good solutions are
usually unveiled after 15 generations, but only after 30 generations a flattening of
discovery rates has been observed. The algorithm never fully converges and continues
to discover good new molecules even after 400 generations, but the hit rates become
smaller and smaller. Therefore, we advise multiple independent runs instead. The
random starting population seeds different paths which yield different high scoring
motifs. Since each run unveils new promising molecules, the exact number of required
runs is solely depending on desired amount of hits.
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Fig. 3 Examples of score development during single REvoLd runs against each selected target. Solid
lines show the best score found up to a certain generation. The dashed line shows the 10th best score,
the dotted the 100th best score and dashed-dotted the median. The runs which reported the best
scoring molecule for each target were selected as examples here. All scores within the grey area are
better than the best scoring known active.

10



Additionally, we observed that our algorithm was unable to discover the lowest
scoring molecule of the benchmark test subset of one million molecules. This might
be related to the mentioned intended ruggedness of our scoring landscape which traps
runs at local minima. On the other side, it is not uncommon to observe only close-
to-optimal solutions from meta-heuristic optimization algorithms like evolutionary
algorithms. Considering REvoLd’s purpose we postulate that this is not a flaw, since
structure-based CADD campaigns almost never want to discover the single best scoring
compound, but many promising compounds which will enrich hit rates in in-vitro
experiments.

3.3 Benchmark under realistic conditions

Based on the first results and selected parameters, we moved on to more realis-
tic benchmarking conditions, utilizing our largest available Enamine REAL space
[14] with over 20 billion molecules at that time. The reaction SMARTS and reagent
SMILES were obtained directly from Enamine under a non-disclosure agreement in
January 2022. We assembled a benchmark-set of five proteins as drug targets. All are
well-researched with high throughput screening (HTS) data available and high-quality
crystal structures deposited in the protein databank (PDB), namely the G protein-
coupled receptor (GPCR) orexin receptor type 1 OX1 (PDB: 4ZJC, [57]), the GPCR
muscarinic acetylcholine receptor M1 (PDB: 5CXV [50]), the DNA repair enzyme
tyrosyl DNA-phosphodiesterase 1 TDP1 (PDB: 6MYZ, [32]), the GPCR neuropeptide
Y Y1 receptor (PDB: 5ZBQ, [56]), and last, the tyrosine-protein kinase ABL1 (PDB:
2HZI, [11]). The corresponding HTS data is taken from curated lists of actives from
PubChem [6], with the exception of the ABLI kinase. Its screening data was provided
through the directory of useful decoys enhanced (DUD-E), which curated ChEMBL
entries [11, 38]. Between 188 and 801 molecules are utilized as known actives. All
structures were prepared following the presteps of the Rosettalligand protocol with
target sites derived from co-crystallized ligands resolved in complex with the protein
structures. All known binders from the used HTS data were docked, again following
the Rosettaliigand protocol, to use their docking scores to ensure that lid_root2 helps
to enrich molecule sets. Additionally, we sampled 100,000 random molecules from the
Enamine REAL space and docked them against each target to compare REvoLd sam-
pling efficiency. We found that the known actives score distribution is more negative
than the random sample, indicating that lid_root2 indeed enriches sets of molecules.
Details can be found in Appendix C.

Twenty runs of REvoLd were conducted against each target, docking between
49,000 and 76,000 unique molecules in total per target. The difference in sampled
molecules per target is due to the stochastic nature of evolutionary optimization, as one
run might produce more duplicates than another. This includes all docked molecules
during the evolutionary optimization, not just the last generation. Figure 3 shows the
development of scores in a selected run for each target. All runs successfully reported
molecules with hit-like scores. Due to the size of the defined chemical space searched
and the stochastic nature of our protocol, there was only a small overlap between the
runs. We found that between 1.5% and 3% of tested compounds have a Tanimoto
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similarity of 1.0 to another compound tested against the same target. These duplicates
were removed for further analysis.
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Fig. 4 We tested REvoLd against five different protein targets, namely Tyrosyl (A), Orexin 1 (B),
Muscarinic M1 (C), Y1 Receptor (D) and ABL1 (E). We combined the results of 20 independent
REvoLd runs against each target into single hit lists and removed duplicates with a Tanimoto sim-
ilarity of 1.0. A molecule is to be considered a hit if its score is below a given hit limit. The total
number of hits from REvoLd for various hit limits is shown together with the number of hits from a
random sample on a logarithmic scale. REvoLld tested in total between 49,000 and 76,000 molecules,
the random samples always consisted of 100,000 molecules. Therefore, we additionally plot the nor-
malized enrichment of REvoLd over the random sample for various hit limits.

To assess the overall sampling performance we use enrichment factors. As it is
often the case for in-silico evaluations, we assume a perfect predictive power for a
scoring function at a given threshold and that all compounds scoring better than this
threshold will be active in experimental validation. This decouples the performance of
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a sampling algorithm from its underlying scoring method. The number of hits achieved
through a selected sampling method is compared to the number of hits from a random
sample. For better comparability, we followed the enrichment factor proposed with V-
SYTNHES [44] but added a normalization factor for sample sizes. This is implicitly
still the same function as V-SYNTHES as they used samples of same size:
HitRate;(x)
EF(x) = ————~ 2
i() HitRate,(x) 2)
where EF; is the enrichment factor of method i, x defines the score limit, rs is the
random sample and

HitRate;(z) = [{m |m € Miﬁéfre(m) <o}l (3)

where M; is the set of all molecules sampled with method i. The enrichment rate
can be interpreted as how many more hits can be expected from a constant sample
size or how much less molecules need to be sampled for the same amount of hits.
We propose to use this calculation for all following exploration algorithms for better
comparability.

Figure 4 reports absolute hit numbers of REvoLd and the random sample for
different hit limits as well as the normalized enrichment of REvoLd over the random
sample. REvoLd achieves maximum enrichments up to 869 and 1,622 between all five
targets, outperforming all currently available algorithms which enable drug discovery
in ultra-large libraries. Additionally, figure 4 shows, that REvol.d is able to report
hundreds of hits for much stricter hit limits than a random sampler. We also want
to report the enrichment rates using the score of the best scoring known active as
hit limit following widespread practice. REvol.d achieves enrichments in four cases
between 200 and 532. No such enrichment can be reported for the ABL1 kinase, since
the random sample did not include a single molecule scoring better than the best
scoring known active, but REvoLd unveiled 99 such compounds. Using the best scoring
known active as hit limit can be important because scoring functions tend to overrate
molecules showing certain artificially favored structural features. At the same time,
this limit alone falls short to compare sampling strategies capabilities to optimize into
local minima.

3.4 Qualitative analysis of reproduction mechanics

We conducted a qualitative investigation of the effects of mutation and crossover on
a few examples using REvoLd’s reproduction functionalities. We found that the in-
silico functionalities effectively mimic the alterations to molecules typically conducted
by medicinal chemists. Mutation enabled the introduction of small local changes, such
as increased flexibility of certain parts of the molecules or alteration of its geome-
try through changing the attachment atom of a ring. Crossover, on the other hand,
recombined promising motifs into new molecules, effectively transferring and combin-
ing knowledge from two separate ligands. This resemblance of medicinal chemistry
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was never intentionally developed or encoded but emerges naturally from evolution-
ary optimization paradigms. Figure 5 illustrates both operations for one example,
including the change of fitness scores. The observed worsening of scores between C
to D and G to H respectively also highlights the importance of selective pressure to
allow temporally worse scores for new molecules. Both shown mutation steps introduce
disadvantageous changes, but the resulting molecules recombine into the best-found
solution.
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Fig. 5 Example of the family tree for the best scoring molecule for ABL1 showcasing mutation and
crossover. A and B recombined through crossover into C, which mutated to D. Here, A includes a
tetrazole ring, a common motif in many FDA approved drugs. Both A and B are containing a 1,2,4-
triazole, representing the basis-structure to combine it to C. From C to D a mutation changes the
position of the oxymethylpyridine at the benyzl-group from 4 to 3. Again, in E a compound containing
a tetrazole and a 1,2,4-triazole is recombined through crossover, but this time while adding a 3-
methyl,4-bromo-benzyl group from F to the offspring G. A mutation derivatizes the [1,2,4]triazolo[1,5-
a]pyridine from G to H'’s oxybenzyl-moiety. Finally, both D and H recombine into I, introducing the
tetrazole-triazole-system from both H and D while including the pyrazole from D and the 3-methyl,4-
bromo-benzyl group from H. All reproduction steps happened in different generations. Positive and
negative numbers are observed unfavorable and favorable score changes.

3.5 Runtime analysis

All runs were conducted on Leipzig University’s high parallel computing cluster
equipped with AMD EPYC 7713 @ 2.0GHz - Turbo 3.7GHz processors. We tested
REvoLd runs with 20, 40, 60 and 100 cores per run. Only the first core, acting as
control and distribution core, loaded the entire Enamine REAL space database using
around 23GB of memory for the current library size. Most of the memory is taken by
representing each fragment with a RDKit molecule object. All other cores were used
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for docking alone and required less than 4GB, mainly depending on the size of the
protein structure. The highly parallel code of REvoLd and its efficient development in
C++ caused very fast computation times. A single run with standard settings needs
between 24 and 48 hours to finish, depending on the number of used CPUs.

As visualized in Figure 6, more than 99% of the time was spent on docking
molecules as REvol.d causes close to no overhead, enabling it to use fully flexible
protein and ligand models. Within the time spent on computations outside of dock-
ing, most of it is caused by loading and preparing the database. The speedups gained
through the usage of more CPUs are acceptable. 20 to 40 cores yield a speedup of
1.679 (optimal 2.0), 40 to 60 cores yield 1.479 (optimal 1.5). The poor speedup from
60 to 100 (1.152, optimal 1.666) is due to the implementation. The docking of a single
molecule can only be executed on a single CPU and if all molecules for one generation
are distributed, a CPU is idle until the next generation should be docked. There-
fore, CPU numbers should be integer fractions of the number of new individuals in
each generation. Since this is subject to randomness, higher CPU number have higher
chances of being idle and therefore reduced speedups.

Avg. time usage on different number of cores Avg. time usage on different number of cores 100
160000 - setup
W DB load [ 600
140000 mmm Optimization
«» 120000 W Scoring k500 1
° °
§ s
§ 100000 Laoo §
c c
= 80000 -
£ -
€ 60000 =
& F200&
40000
20000 100
0 -0
20 40 60 100 20 40 60 100
Number of cores Number of cores

Fig. 6 The average runtime of REvoLd on different numbers of CPU cores on the high-performance
compute cluster. Over 99% of all computational time is spent on docking. More than half of the
remaining time is spent loading and preparing the Enamine REAL space data. The evolutionary
optimization and setup of Rosetta is extremely fast and therefore neglectable.

3.6 Impact of database sizes

We ran REvolLd on different sizes of chemical spaces during its development process.
From one million for the hyperparameter optimization, to around 300 million, 1.3 bil-
lion, and finally 20.1 billion, following the growth of the Enamine REAL space. The size
of the chemical space had severe impact on our code development and required several
restructurings. The biggest consequence of larger chemical spaces are library initial-
ization times and memory requirements. They grew from a few seconds and several
hundred megabytes to six minutes and 23GB, respectively. However, we found no sign
that REvoLd’s capability to unveil low scoring compounds is affected by the database
size. We found it helpful to increase the exploration parts of the protocol slightly, but
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the number of individuals and generations remained constant. That means the number
of required docking runs stays constant, even if the library size increases dramatically.
It should be noted though that REvoLd was optimized for efficient runtimes whilst
neglecting database preparation times and memory requirements. With the continued
growth of combinatorial spaces, this would need reconsideration to adapt for larger
quantities of reagents.

4 Discussion

With the increased availability of three-dimensional protein structures and easily
accessible chemical spaces expanding into billions of molecules, structure-based drug
discovery and ultra-large library screening is becoming more and more important
[22, 27, 45, 54]. Tt is therefore crucial to improve the available protein-ligand-docking
technologies to handle compound libraries of these sizes. Besides reducing the required
computational time for available tools, it is also beneficial to reduce the number of
required dockings. We have shown that REvold is a promising tool to help in that
regard. Its evolutionary optimization has proven to be reliable and efficient. We were
able to create highly enriched datasets for five different protein targets with only
a minimal overhead of computational time. We were additionally able to observe
optimization behavior comparable to medicinal chemistry practices.

REvoLd is one of several approaches which try to solve the problem of size of
chemical spaces with an efficient sampling algorithm, like V-SYNTHES and Galileo
[37, 44]. V-SYNTHES uses a greedy heuristic, Galileo is another evolutionary algo-
rithm. While neither greedy nor evolutionary are inherently better than the other,
the implementations of all algorithms show different performances. Galileo is more a
proof of concept and is not combined with a docking protocol but accepts any score
as fitness and relies on external protocols. Additionally, the authors reported that
they were not able to generate good results for all their targets. REvoLd on the other
hand showed convergence in all test cases. V-SYNTHES is available as a ready-to-
use software and reported good results on all benchmarks, just as REvoLd. However,
REvoLd shows greater enrichment (between 869 and 1,622 for REvoLd and 250 to
460 for V-SYNTHES respectively) and requires overall fewer docking runs to achieve
these results (between 49,000 and 76,000 for REvoLd and 500,000 to 1,000,000 for
V-SYNTHES). It should also be mentioned that V-SYNTHES requires additional
docking of intermediate libraries and single fragments, causing a computational over-
head of 20-35%. Additionally, we observed that REvoLd did not require more docking
runs for larger combinatorial databases, whereas V-SYNTHES reported a linear com-
plexity relation with the number of used fragments. This relationship exists within
REvoLd as well, but only for memory requirements and preprocessing. It should be
noted though that V-SYNTHES reported success in follow-up in-vitro experiments,
while REvoLd is so far only benchmarked in-silico.

Alternative methods like Deep Docking and Chemical Space Docking propose a
mixture of structure-based docking protocols and QSAR machine learning instead
of sampling-based optimization [4, 18, 19]. They dock subsets of the whole chemical
space, generate molecular fingerprints for all molecules and train a QSAR model on
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the in-silico docking scores. This gives them an advantage over methods like REvol.d,
because they consider information for all molecules and are therefore better suited to
discover globally best hit candidates. But this is also a huge disadvantage, because they
still require analyzing every molecule, which continues to become more expensive as
chemical space grows. Additionally, both methods still require several million docking
runs and therefore, fall short to REvoLd and V-SYNTHES. A similar number of
docking runs is required for Targeted Exploration, which uses prior knowledge about
binding fragments to guide the molecule selection [40]. However, the dependence on
prior knowledge is also a big limitation. Together with the required number of dockings
Targeted Exploration becomes less optimal as a universal solution for structure-based
drug design in ultra-large chemical space.

REvoLd is well positioned among these methods and provides with its sampling
capabilities a promising solution for the problem of ultra-large library screens in gen-
eral. With that, two main topics require further analysis. The biggest barrier for
REvoLd right now is the runtime of the employed docking protocol. Reducing the
time spent docking will increase REvoLd’s speed tremendously as over 99% of the run-
time is used for docking. New docking tools like DiffDock, EquiBind and DeepDock
are promising candidates to lift these restrictions [10, 39, 49]. The other important
topic is the reliability of our deployed scoring function when transferring REvoLd’s in-
stlico results to in-vitro testing. Future experiments will need to investigate how prone
REvoLd is to overfitting the fitness function. This can happen if a scoring function
overestimates certain interactions or substructures in a molecule compared to actual
in-vitro findings. Overfitting becomes more important with increasing library size [35].

5 Conclusion

REvoLd is a promising novel algorithm tackling the problem of searching for potential
ligands in combinatorial libraries spanning billions of compounds. Through advanced
evolutionary optimization, it enables expansive docking methods for such a task. Our
benchmarks have shown promising results and REvoLd reliably outperformed a ran-
dom sampler over five different targets. Unlike its competing algorithms, REvoLd
is capable of discovering molecules with high predicted affinity with the same num-
ber of protein-ligand dockings even in increasingly larger libraries. To date, it is the
only complete pipeline to generate in-silico enriched, target-specific compound lists
out of combinatorial chemical libraries without the need to dock several hundreds of
thousands of molecules or even more. The availability of compounds through indus-
trial make-on-demand services allows easy experimental validation of suggested hits
and completely negates the need for synthetic accessibility scores. Future research
will need to focus on improving the currently applied docking protocol. Speeding up
the docking calculations will have a significant impact on REvoLd’s runtime perfor-
mance. Additionally, while we found that lid_root2 can be used to distinguish actives
from random samples, further experiments need to investigate the predictive power of
RosettalLigand and our normalization approach.

Supplementary information. Not applicable.
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Appendix A Comparison of different
normalization methods

We tested our normalization method (section 3.1) with four different n, where the
penalty for high numbers of heavy atoms decreases with increasing n. To do so, we
docked known actives for four of the five targets mentioned in section 3.3 against their
respective proteins. These docking scores where then normalized and plotted against
the number of heavy atoms (Figure A1). The results confirm the negative correlation
between unnormalized scores and the number of heavy atoms as well as our expected
impact of n. Whilst n = 3 and n = 4 seem to be more successful in negating the
correlation, we opted to use n = 2. Higher n can sometimes reintroduce the negative
correlation, for example for the orexin receptor. Additionally, we found a slight positive
correlation desirable to actively limit the size of ligands during evolutionary optimiza-
tion. However, n = 1 is too strict and favors fragment-like molecules. Figure A2 shows
the lowest scoring molecules from the known actives for their respective targets and
each normalization method. This reaffirms our findings that n = 3 and n = 4 are very
similar to unnormalized scores and that n = 1 can result in fragment-like molecules.

Appendix B Hyperparameter optimization

Table B1 shows all settings we tested for the hyperparameter optimization on the
artificial benchmark explained in section 3.2. Every setting was tested with 20 indepen-
dent runs and the average enrichment is reported if not stated otherwise. Tournament
selector was used for all protocols as main selector, but with varying tournament sizes.
A larger tournament size means a smaller chance for less optimal molecules to remain
in the population. Initially, we tested the impacts of number of generations, the size
of population passing between generations and the initial population size of random
molecules. The reported enrichment factor is over the empirically known hit rate of
the artificial test set, which is 0.001 mo’??; 1> since we selected the best 1,000 molecules
from the one million set as hits. Whilst this list is far from covering all possible com-
binations, we could observe a strong increase in enrichment and found a set of well
performing and reliable parameters.

The mentioned vanilla protocol was our initial protocol focusing on optimization.
No individuals were ever removed from the reproduction candidate pool which allowed
already good scoring molecules to reproduce several times. The protocol passed the
15 best molecules of each generation unchanged into the next generation, produced 30
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Fig. A1 Quantitative comparison of all four investigated normalization method across four targets
with unnormalized scores. The same known actives as in section 3.3 were docked and their interface
scores in Rosetta energy units plotted against the number of heavy atoms. The normalization methods
are mentioned in section 3.1. Results of different targets are plotted all together as grey crosses, but
their linear regressions are plotted individually. The unnormalized scores clearly shows the expected
negative correlation between score and number of heavy atoms. Normalization with n = 1 on the
other hand has a strong positive correlation. This correlation becomes less with increasing n until
n = 4 starts to show a negative correlation again.

new molecules through small mutations with a bias towards changes in reagents instead
of reactions and 30 more molecules through crossover. We made two slight changes
to it by decreasing the reproduction numbers (Vanilla low rep) and increasing them
(Vanilla high rep). Next, we came up with the protocol mentioned in section 2.6, but
with only 30 molecules from each crossover instead of 60. This is named Exploration
in table B1. Finally, we increased the amount of crossover to 60 which is labeled as
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Fig. A2 Qualitative comparison of all four investigated normalization method across four targets
with unnormalized scores. The same known actives as in section 3.3 were docked and the lowest
(and therefore best) scoring compounds are shown for each target and normalization method. The
normalization methods are mentioned in section 3.1. The best molecules increase in size with less
strong normalization for all tested targets. n = 4 reports the same molecule as the unnormalized
scoring. This is also true for n = 3 except for OX1. Additionally, ABL1 still has the same best
molecule for n = 3.

Explore-Crossover. Although the same protocol has higher hit rates if run for more
generations, we found that this would tremendously increase the runtime. Therefore,
we opted for the settings highlighted in bold.

Appendix C Score distribution of co-crystallized
ligand, known actives, random
samples and REvoLd

We compared the results from docking known actives, the co-crystallized ligands, and
the random samples as mentioned in section 3.3. Figure C3 shows that in all cases the
average of the actives has a lower energy score than the random compounds, which
indicates that optimizing over lid_root2 is a valid method of finding actives. In all
but one case (M1) the crystallized ligand is within the bulk of the active compounds,
making it a decent proxy for the reference level of an active compound. However, the
score is not a perfect classifier since there is still a large overlap between the random
sample and known binders. This can be due to actual unknown binders being included
in the random sample or artifacts from the in-silico docking. Nonetheless, it shows that
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Table B1 Different hyperparameters tested in the artificial benchmark

Enrichment  Generations Population Size Initial Size  Tournament Protocol
16.14 30 50 100 5 Vanilla
15.05 15 50 100 5 Vanilla
17.01 50 50 100 5 Vanilla
16.03 75 50 100 5 Vanilla
17.35 100 50 100 5 Vanilla
15.71 30 50 50 5 Vanilla
18.52 30 50 150 5 Vanilla
16.83 30 50 200 5 Vanilla
13.65 30 20 100 5 Vanilla
16.77 30 30 100 5 Vanilla
17.85 30 40 100 5 Vanilla
15.58 30 60 100 5 Vanilla
13.70 15 30 50 5 Vanilla
9.64 15 30 50 5 Vanilla low rep
13.29 10 50 100 5 Vanilla high rep
17.56 30 50 100 5 Exploration
18.43 30 50 200 5 Exploration
26.03 30 50 200 10 Exploration
27.43 30 50 200 15 Exploration
30.41 30 50 200 15 Explore-Crossover
24.81 15 50 200 15 Explore-Crossover
34.39 50 50 200 15 Explore-Crossover
37.291 100 50 200 15 Explore-Crossover
38.612 150 50 200 15 Explore-Crossover
28.452 400 50 200 15 Explore-Crossover

The reported enrichment is averaged over 20 runs if not stated otherwise. The bold line are the
settings we used for our final protocol.

10nly five runs were conducted

20nly a single run was conducted

RosettaLigand and the lid_root2 normalization assign more negative scores to known
binders and therefore enrich binding in sets of molecules.
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Fig. C3 Score distribution for all five targets used in section 3.3 for their known actives, all REvoLd
results, the random sample and the ligand co-crystallized with the used protein structure. The vio-
lin plots show the density for given scores. The blue horizontal lines are from top to bottom the
highest reported score, the first quantile, the second quantile (or median), the third quantile and
lowest reported score. The bulk of the known actives report more negatives scores than the random
sample, indicating that lid_root2 can be used to enrich for activity. This is further supported by the
co-crystallized score which is in all but one case within the known actives and below most of the ran-
dom sample. REvoLd reports a much more negative score distribution, highlighting its optimization

capabilities.
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