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Abstract. To guide the design of better iterative optimisation heuris-
tics, it is imperative to understand how inherent structural biases within
algorithm components affect the performance on a wide variety of search
landscapes. This study explores the impact of structural bias in the mod-
ular Covariance Matrix Adaptation Evolution Strategy (modCMA), fo-
cusing on the roles of various modulars within the algorithm. Through
an extensive investigation involving 435 456 configurations of modCMA,
we identified key modules that significantly influence structural bias of
various classes. Our analysis utilized the Deep-BIAS toolbox for struc-
tural bias detection and classification, complemented by SHAP analysis
for quantifying module contributions. The performance of these config-
urations was tested on a sequence of affine-recombined functions, main-
taining fixed optimum locations while gradually varying the landscape
features. Our results demonstrate an interplay between module-induced
structural bias and algorithm performance across different landscape
characteristics.

Keywords: Structural bias, benchmarking, performance analysis, algorithm be-
haviour

1 Introduction

In light of the rapid advancement of the field of heuristic black-box optimisa-
tion [1], a remarkable array of algorithms is now available to practitioners. The
behaviour of most of these algorithms strongly depends on the settings of nu-
merous hyperparameters, exploding the number of options further and making
the choice of a well-performing algorithm configuration for a specific (real-world)
problem even harder.

And yet, we still don’t understand these algorithms well enough. One thing we
can do is screen (a family of) algorithms or algorithm configurations against some
unwanted characteristics. Although it is unrealistic to examine all settings across
all characteristics, initial efforts are essential. Such screening is expensive but it
not only helps eliminate ineffective configurations but also aids in elucidating the
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Fig. 1: The summary of the overall methodology used. Full details of all steps are
provided in the corresponding sections. Green blocks highlight the contributions
of this paper.

internal dynamics that impedes performance. Modular algorithm designs [2,3],
where each operator option can be selected independently of the choice for other
operators, are particularly well-suited for such analyses.

While in many cases, the unwanted characteristics only manifest within spe-
cific function landscapes (and the correspondence between these landscapes and
characteristics can be unknown), it is hypothesised that at least some character-
istics can be assessed in general. One such aspect that has not been investigated
sufficiently is structural bias (SB) [4] and especially its precise causes and influ-
ence on the algorithm’s performance. SB is the algorithm’s inherent limitation in
locating optima in certain regions of the domain independently of the objective
function’s landscape. It stems from the iterative application of a limited set of
algorithm operators and their interplay [4]. While some families of algorithms
have been screened to some extent [5,2], no clear performance implications have
been established so far. Unfortunately, even though such screening is done for
very large algorithm configuration spaces, it necessarily remains limited due to
the need to discretise numerous continuous hyperparameters, thus potentially
overlooking some interactions. This paper is no exception, however, its experi-
mental design is structured to be as comprehensive as computationally feasible.

This paper aims to explore the impact of SB on algorithm performance by
addressing the following questions: 1. How does the performance of structurally
biased versus unbiased configurations change on sequences of functions where the
landscape progressively shifts from rugged to smooth? 2. How does the location
of the optima within the domain 1 of these functions affect the performance
depending on the class of structural bias? The complete methodology of our
investigation is summarised in Figure 1.

1 This paper focuses on box-constrained minimisation problems.



2 Background

2.1 Modular CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [6] is a robust,
state-of-the-art evolutionary algorithm used for solving non-linear, non-convex
optimisation problems [1]. Central to its approach is the adaptation of a co-
variance matrix which determines the shape and scale of the search distribu-
tion, effectively learning the landscape of the problem space. This self-adaptive
mechanism allows the algorithm to balance exploration of the search space with
exploitation of known good regions, making it particularly effective in a wide
range of practical applications, from machine learning parameter tuning to engi-
neering design optimisation. The Modular CMA-ES (modCMA) [3] is a Python
and C++ modular implementation of the CMA-ES algorithm and many of its
variants, with module options and hyper-parameters that can be switched on
and off independently of each other. In this work we investigate the full scale
of these module options, given in Table 1, leading to a total of 435 456 different
CMA-ES configurations.

2.2 Structural bias

Structural bias in iterative optimisation heuristics [4,7] refers to the tendency of
certain algorithms or configurations of algorithms to favour specific regions of
the search space over others, despite the absence of initial information indicat-
ing where high-quality solutions might reside. Ideally, an optimisation algorithm
should explore the defined domain boundaries without preconceived preferences,
allowing the data collected from sampled points to guide its progression towards
areas with optimal objective function values. However, in practice, some algo-
rithms inherently exhibit a preference, such as a bias towards the centre of the

Table 1: Considered modules of modCMA and their configurations.
Module name Shorthand Domain

Covariance adaptation covariance {false, true}
Elitism elitist {false, true}
Active update active {false, true}
Base sampler base sampler {Gaussian, Halton, Sobol}
Orthogonal sampling orthogonal {false, true}
Threshold convergence threshold {false, true}
Sample Sigma sigma {false, true}
Bound correction bound correction {off, saturate, mirror, COTN, toroidal,

uniform}
Mirrored sampling mirrored {off, mirrored, mirrored pairwise}
Recombination weights weights option {default, equal, λ-decay}
Step size adaptation step size adaptation {CSA, PSR, TPA, MSR, XNES,

MXNES, LPXNES}
Local restarts local restart {none, IPOP, BIPOP}



domain, which can limit their effectiveness in universally discovering the best so-
lutions across the entire feasible domain. This phenomenon, known as structural
bias, can compromise the algorithm’s ability to perform well in general situa-
tions. Detecting structural bias is hard, as the objective function and behaviour
of the algorithm are always entangled. Using a special objective function (f0),
defined as a completely random fitness landscape, allows one to detect structural
bias using statistical tests as introduced in [8]. There are a few related works on
Structural Bias that either introduced a different detection method, like the gen-
eralised signature test [9], or analysed different groups of algorithms regarding
SB [10,11,12].

2.3 SHAP

Shapley Additive Explanations (SHAP), as introduced by Lundberg et al. [13], is
a popular explainable AI (XAI) method for attributing features in model predic-
tions. SHAP quantifies the impact of a specific feature, f , by comparing model
outputs with and without f . The difference in outputs, averaged across models,
defines the SHAP value, which can be positive, negative, or zero, representing
the feature’s marginal contribution.

However, SHAP’s application to large datasets is computationally intensive.
To address this, the TreeSHAP method [14] employs tree-based model struc-
tures to streamline computations, using approximation techniques to enhance
efficiency in scenarios with extensive feature sets. In this work, we use this XAI
method to compute the contributions of different module settings towards spe-
cific structural bias classes. This is done by training Xg-boost regression models
on the one-hot-encoded algorithm configurations as input and the predicted SB
class label from Deep-BIAS as output. Using these models we can approximate
the SHAP values of each module option per configuration.

3 Structural Bias Classification

To assess the structural bias (SB) and in the end the interplay of structural
bias with performance depending on landscape features and the location of the
optima, the first step is to detect and classify structural bias per algorithm config-
uration. We conduct a configuration sweep for modCMA [3] using the modcma
package in Python. In this extensive analysis, we use a full grid of all of the
categorical module options in modCMA, as specified in Table 1. This resulted in
a total of 435 456 configurations. For each of these configurations the population
sizes are fixed to µ = 5, λ = 20. The analysis in this paper is broader and more
in-depth than previous analysis of structural bias for modCMA [12] in the sense
that it contains not just a subset of modCMA module options but the complete
set of all categorical options (and a limited set of continues parameters). In addi-
tion, in this work we propose an explainable AI approach, similar to the approach
used in [5], to analyze the different contributions of different module options to
structural bias and to specific types of structural bias, leading to new insights.



In [5], the XAI approaches was used to analyse the contributions of modules and
hyper-parameters on the performance on different function landscapes, here we
use it to assess the influence of modules on structural bias, and differently from
the approach in [5] we one-hot-encode all categorical module options to see how
each option affects the structural bias individually. We also used the approach
to look at second order interactions in relation with structural bias, however,
these second order interactions were marginal and we therefore do not include
these results in this work.

3.1 Methodology

For the assessment and classification of SB, we used the BIAS toolbox [8], avail-
able on [15]. The toolbox provides an SB detection mechanism based on the
aggregation of the results of 39 statistical tests but also a Deep-learning ap-
proach [16] to detect and classify SB based on distributions of final points (found
minima) of many independent runs on f0. The three bias types we are looking
at in this work are: SB towards the centre of the search space, towards the
bounds, and uniform (no SB detected). SB is detected by first running an op-
timisation algorithm several times on the random objective function f0. Here we
used 100 independent runs with 10.000 function evaluations as budget per run
to make the first classification of SB using the Deep-BIAS toolbox. Due to its
speed and classification accuracy, we leveraged the Deep-BIAS model instead of
the statistical methods in the BIAS toolbox. The Deep-BIAS method classifies
the distribution of (in this case 100) final best points found by the algorithm.
We do have to note that the Deep-learning model is not a perfect predictor. We
therefore also verify the top 20 configurations per SB class, used later in our
experiments, by visual inspection of the final point distributions.

Once we have classified each of the configurations automatically, we can use
the confidence of each SB class to calculate approximate Shapley values using the
TreeSHAP algorithm [14]. The calculated SHAP values for each module option
per structural bias class are shown in Figure 2. We can use these SHAP values
to gain insights into which module options contribute to what kind of structural
bias.



Fig. 2: SHAP values showing module contributions to (from left to right) no structural bias, centre bias and bounds bias classes,
respectively. The baseline prediction of these classes are 0.094, 0.559, 0.054 respectively, meaning that a SHAP value of 0 would
result in the given baseline class probability.



3.2 Module contributions to SB

Based on the output of the Deep-BIAS package, most of the considered con-
figurations of modCMA (82%) are classified as Centre biased, 9% as unbiased
(uniform) and 5% as biased towards the bounds. The remaining fraction (3%)
was classified as discretization bias, however after visual inspection, those con-
figurations were mostly misclassified and should be either centre or unbiased and
therefore we did not take them into account.

Given the SHAP values from Figure 2 and taking into account the base
value (mean classification confidence of each class), we see a few interesting
patterns. Overall, the covariance, elitism, threshold, bound correction and step
size adaptation modules mostly influence the structural bias classification. We
can also observe that in general, option contributions are negatively correlated
between centre SB and bounds SB, in other words, when a module option causes
centre SB it lowers the probability of bounds SB and vice versa. Bounds SB and
uniform (no SB) seem roughly aligned except for the bound correction methods.
Let us discuss the major modules involved in centre, bounds and unbiased below.

Elitism when turned on, reduces centre SB according to the SHAP data.
Since centre SB is the majority class, Elitism seems to reduce SB in general.
When looking at the inner workings of modCMA and also the objective function
f0, this could be explained due to the fact that with elitism the algorithm is
more likely to get stuck in a (local) minimum on f0 early in the optimisation
run, effectively dampening the structural bias effects. Elitism by itself is however
very likely not to be responsible for any structural biased behaviour.

Threshold convergence when turned on has a similar effect as elitism
(though less profound). Again, threshold convergence is likely not causing any
biased algorithm behaviour but amplifies (when turned off) or dampens (when
turned on) the SB effects.

Bound correction saturate shows to have a large effect on bounds SB,
which makes perfect sense and is in line with other research on structural bias
[12]. Upon close inspection, all configurations that were classified with high con-
fidence as bounds SB (confidence > 0.45), all used Saturate as the bound cor-
rection method.

Covariance matrix adaptation seems to play a large role in centre SB.
In the context of a standard CMA-ES (so with the covariance module on), the
search distribution is represented by a multivariate normal distribution. This
distribution is characterized by its covariance matrix, which determines the shape
and orientation of the points (solutions) that are sampled. Geometrically, the
shape of this distribution resembles a hyper-ellipse. The search space, on the
other hand, is typically a hyper-cube. This causes a mismatch in shapes being
explored, likely leading to a structural bias towards the centre of the search space.
The hyper-ellipse will naturally avoid sampling close to the edges and especially
the corners of the hyper-cube because these areas are outside the maximum
reach of the distribution whose radius is limited to the smaller distance from
the center to an edge, rather than to a corner. This effect is amplified as the
dimensionality of the space increases. In higher dimensions, the corners of the



Fig. 3: Examples of the final best point distributions from CMA-ES configura-
tions run on the SB test function f0 in 2D from 500 independent runs (using
different random seed) of configurations (re)classified as no, centre, bounds
and mixed SB.

hyper-cube are exponentially further away from the centre compared to the
edges. Thus, a spherical sampling distribution centred in the hyper-cube will
leave vast regions in the corners significantly undersampled. This results in a
higher concentration of sample points towards the centre of the search space,
and relatively fewer near the boundaries and corners. It could potentially lead
to suboptimal exploration of the search space, especially if the global optimum
lies near the boundaries or corners of the domain.

Other module options seem to have a limited or mixed effect on structural
bias in modCMA.

3.3 Limitations of Deep-BIAS and Mixed SB

While the deep-learning approach of the Deep-BIAS toolbox is very fast, and
therefore allows the evaluation of 400 000+ configurations, it is not perfect. First
of all, it is known [16] that the SB type ‘Clusters’ is often a misclassified ‘Centre’
SB. As a result of this, after visual inspection of (a large fraction) of the con-
figurations that were initially classified here as Cluster SB, we found out that
all of those actually belonged to the Centre class. We therefore discarded the
‘Clusters’ class in our analysis. In addition, after visual inspection of the config-
urations with highest confidence scores for each of the SB classes, we discovered
a mixed class between centre and bounds bias. This mix of two bias directions
was not discovered in earlier structural bias research and was also not taken into
account when developing the (Deep)-BIAS Toolbox. For modCMA, this mixed
SB behaviour seems to occur when there is a configuration that is normally
centre biased and it also uses the Saturate bound correction method (induc-



ing additional bounds SB). For further analysis of the effects of these different
SB classes on performance, we decided to re-classify the top 20 configurations
(sorted by confidence) for each SB class as identified by Deep-BIAS by visual
inspection of the 2D final distributions into four SB classes: Uniform (no SB),
Centre, Bounds and Mixed SB. See Figure 3 for examples of each class of SB
we took into consideration. The complete set of configurations and distributions
of their final best points across runs can be found in the supplemental material
[17].

4 Effects of Structural Bias on Performance

To analyse the effect of SB on algorithm performance, four distinct SB groups
of algorithm configurations are evaluated on a range of affine function combina-
tions. By gradually changing the function landscape properties, it is evaluated
how the performance of these different groups changes under different conditions.

4.1 Affine function pairs

We include as original problems the sphere function (f1 from BBOB, uni-modal)
and four other BBOB functions: f3 (separable Rastrign, multi-modal), f15 (non-
seperable Rastrign, multi-modal), f16 (Weierstrass, multi-modal, adequate global
structure), and f21 (Gallagher’s Gaussian 101-me Peaks Function, multi-modal, weak
global structure). All of these are visualised in 2D in Figure 1 of the supplemental
material. The sphere function was chosen because we would like to tune flatness into
the affine combinations, and the other four were chosen after visual inspection of their
ruggedness (we would like to track structural bias along affine trajectories which begin
at the flatness of the sphere function and gradually become more rugged).

We consider affine combinations between BBOB functions and use the generator
proposed by Vermetten et al. [18] which facilitates combinations of more than two
functions — although we consider only pairs here. Their generator takes three objects

as input in order to construct a function: 1. the desired location for the optimum,
→
Xopt;

2. a vector of length 24 — for each of the 24 BBOB functions — indicating proportions,
→
W ; and 3. a vector of length 24 indicating which instances of the BBOB functions

should be used,
→
I . Of course, to obtain pairwise combinations then the proportions

of 22 functions can be set to zero and the remaining two have non-zero weight. An
affine combination Ξ is constructed by the generator according to the fitness scaling
functions:

Ri(x) =
max(log10(x),−8) + 8

Si
(1)

and its inverse (to reverse back to the original fitness scale):

R−1
i (x) = 10(Si·x−8) (2)

Si is a scale factor and is set at literature-recommended values [18] depending on
the base function: 11.0 for f1, 12.3 for f3 and f15, 10.3 for f16, and 10.7 for f21.

With these defined, we can formally state that Ξ can be obtained by the generator
as such:



Ξ(
→
W,

→
I ,

→
Xopt) = R−1(

24∑
i=1

Wi.Ri(f1, I1(x−
→
Xopt +Oi, Ii)− fi, Ii(Oi, Ii))) (3)

where fi, Ii is instance i of original function fi and Oi, Ii is the location of the
optimum for instance i of function fi.

4.2 Experimental setup

We access the 24 noiseless BBOB functions in 2D through IOHexperimenter [19].

Affine combinations The original BBOB functions involved in the affine pairs
are all 2D, to facilitate visualisation. We consider the region of interest [−4, 4] per
dimension only. For each function pair, a sequence of 51 values α ∈ [0, 1] is defined
equally spaced with a step of 0.02. We define α as the proportion of the Sphere
function, which is BBOB f1. For each combination of two functions with a given alpha,
we generate four affine combinations which differ only in the location of the global
optimum — we use the same instances of the BBOB constituent parts for each of them.
We also keep the instance number and optimum location consistent across increasing
α within each combination of base function pair and optimum placement strategy.
Instances are randomly generated between 1 and 100. The four placement strategies
for the optimum are:

1. near to the boundary (within 0.01) in both coordinates,
2. near the centre (between [−0.01, 0.01] in both coordinates),
3. near to the boundary in one coordinate and central in the other,
4. located randomly for both coordinates between [−2, 2].

In total, we generate 816 affine recombination functions (4 original function pairs ×
51 affine weights × 4 locations for the optimum). The process of affine combination and
placement of the optimum is conducted using functions from the IOHExperimenter
package in Python.

Algorithm performance For assessing algorithm performance on the 816 functions
we consider the top-scoring modCMA configurations for each bias type after careful
visual inspection of the SB distributions (See Section 3.3) (bounds (20 configurations),
centre (19), mixed (7), and none (10)). In total, this amounts to 56 CMAES vari-
ants and 45 696 algorithm and function-pairs. The algorithm configurations for these
are available in Tables 1-4 of the supplemental material [17]. Each CMA-ES config-
uration is instantiated in modCMA, provided a budget of 5000 evaluations, and is
executed 30 times on each of the 816 affine functions. As the performance metric, we
use a normalised area under the curve (AUC) with respect to the empirical cumula-
tive distribution function, implemented by Vermetten et al2. The distribution function
considers the default COCO settings with 51 targets spaced logarithmically beginning
at 10−8 and terminating at 102.

2 https://zenodo.org/records/10376912

https://zenodo.org/records/10376912
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Fig. 4: Example 2D landscapes for affine combinations of functions f3, f15, f16,
f21 (top to bottom) with f1 for 5 affine weights α shown as labels below indi-
vidual plots, where increasing α corresponds to increasing the proportion of f1.
On the instances shown here, the location of the global optimum is fixed near
the centre of the domain and marked in red.

5 Results

Figure 4 presents, for different base BBOB function pairings, states of affine combina-
tion for increasing α (left to right), which is the proportion of the Sphere function f1.
Colour represents fitness and the global optimum is placed here near the centre.

Notice from the left-most plots that with α = 0, the function contains no aspect
of f1. For Figure 4 rows 1 and 2, their intermediate stages (0.25 ≤ α ≤ 0.75) show
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Fig. 5: Median and variance for AUC over 30 runs for CMA-ES variants split into
bias classes across increasing α for optimum placements (left to right) bounds,
centre, centre of bounds, and random — and for base BBOB function pairs
(rows, top to bottom): f3 -f1 ; f15 -f1 ; f16 -f1 ; and f21 -f1.

the influence of the ‘roundness’ from f1 being added into the function. In the case of
Figure 4 rows 3 and 4, the effect of increasing α manifests differently, with the bowl
shape and concentric structure of f1 beginning to appear. We can see that when α = 1,
the function is entirely f1.

Figure 5 presents algorithm performance (AUC median and variance) over 30 runs
for the top-scoring CMA-ES variants in each bias class across increasing α (shown on
the horizontal axis), split by location of the optimum (left to right: bounds, centre,
centre of bounds, and random) and for base function pairs (top to bottom): f3 -f1,
f15 -f1, f16 -f1, and f21 -f1.

The first three rows (that is, the first three function pairs) show similar patterns
and trends. Generally, increasing α (proportion of f1 ) is associated with increasing
performance. Notice by comparing the median lines of, for example, the second plot of



the first row with the other three plots in the same row that placing the optimum at
the centre leads to the best performances by the algorithms, regardless of bias class.
Algorithms perform at their worst when the optimum is placed at the bounds in at
least one of the two co-ordinates (see the first and third columns of plotss).

We now consider how algorithms from the different bias classes compare. Observe
from the first and third plot in the first three rows that the centre and none classes of
algorithms perform best (in that order) when the optimum is located near the bounds
of the function. This is a curious result: intuitively, the bounds algorithms would do the
best. We checked some of the algorithm runs and noticed that centre algorithms appear
to have more freedom of movement — making several small improvements in fitness.
On the other hand, bounds algorithms seem to sometimes get stuck in these cases when
the optimum is on the bounds — struggling to find a fitness improvement and advance
towards the optimum location. We leave a statistical analysis of this phenomenon for
future study. In the cases where the optimum is placed either centrally or randomly,
the best-performing classes of algorithms are bounds and centre (notice the second
and fourth plots in the first three rows). While it makes sense that centre algorithms
would perform best on these, the high performance of bounds is less intuitive. From
examination of a sample of performance runs, it seems that although bounds algorithms
may begin the search as biased towards the bounds, in the specific case where the
optimum is centrally located they seem to be able to navigate towards the centre over
the course of the search. It seems that the performance of bounds-biased algorithms
depends on the location of the optimum, but not in the way which might be expected:
if the optimum is at the bounds, they may struggle; if it is at the centre, they do
better. Note from the Figures that overall, the mixed class of algorithms is the worst
performing.

The last function pairing, shown in the last row, differs from the other pairings
substantially when the optimum is placed centrally (second column). We notice that
performance is excellent (with AUC near to 1 in some cases) and that the trend with
respect to α has reversed: increasing α is here associated with a decrease in performance.
The explanation for this finding can probably be found in the nature of the original
base BBOB function f21, where the global optimum can be found near the bounds
at the bottom of a half-funnel shape. Observe from the lowest-left plot in Figure 4
that when the optimum is placed in the centre, this appears to stretch and mirror
the half-funnel structure which leads to the optimum. We therefore speculate that this
stretched funnel surrounding the optimum (in the case when it is centrally placed) is
the reason for high algorithmic performance.

6 Conclusions

This study has systematically explored the interplay between the performance of con-
figurations of the modular Covariance Matrix Adaptation Evolution Strategy (mod-
CMA) and structural bias within different optimisation landscapes. Through the ex-
tensive configuration testing of modCMA, encompassing 435 456 configurations, we
have shown that specific modules notably influence the algorithm’s structural bias.
Key insights include the significant impact of modules like covariance adaptation and
elitism in modulating structural bias towards the centre of the search space and bound
correction method Saturate towards the boundaries of the search space.

To investigate the effects of different forms of SB on algorithm performance, we
generated pairwise affine recombinations of BBOB functions with varying proportions



of each composite function. For each function we considered four strategies for placing
the optimum. The configurations with highest confidence per SB class (predicted by
the Deep-BIAS tool) of modCMA, were run 30 times on the affine-combined functions.
The results showed that when the optimum is placed at the centre, bounds-biased and
centre-biased algorithms perform best. The reason for this is likely that when the op-
timum is near the centre, bounds-biased algorithms can navigate in the right direction
even if they have an inherent bias towards the bounds — the bounds structural bias is
mainly caused by the bounds correction method saturate, which does not often become
active when the search leads away from the bounds. When the optimum is near the
bounds, centre-biased and unbiased algorithms are performing better. We believe that
centre-biased algorithms have more freedom of movement, and that bounds-biased al-
gorithms with saturate bound correction method become early stuck when the optimum
is at the bounds.

Future research should focus on extending the analysis of structural bias effects
into higher dimensional spaces. As dimensionality increases, the complex interplay be-
tween geometry of high-dimensional spaces, structural bias and landscape features may
exhibit different characteristics that could bring additional insights. This future work
will not only deepen our understanding of structural bias in iterative algorithms but
also guide the development of more robust strategies for tackling complex optimisation
problems.

References
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algorithms be structurally biased? In: Parallel Problem Solving from Nature –
PPSN XVI. pp. 229–242. Springer International Publishing, Cham (2020)

11. Vermetten, D., van Stein, B., Kononova, A.V., Caraffini, F.: Analysis of Structural
Bias in Differential Evolution Configurations, pp. 1–22. Springer Nature Singapore,
Singapore (2022)

12. Vermetten, D., Caraffini, F., van Stein, B., Kononova, A.V.: Using structural bias
to analyse the behaviour of modular CMA-ES. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion. p. 1674–1682. GECCO
’22, Association for Computing Machinery, New York, NY, USA (2022), https:
//doi.org/10.1145/3520304.3534035

13. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
Advances in Neural information processing systems 30 (2017)

14. Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz,
R., Himmelfarb, J., Bansal, N., Lee, S.I.: From local explanations to global under-
standing with explainable ai for trees. Nature Machine Intelligence 2(1), 2522–5839
(2020)

15. van Stein, B., Vermetten, D., Caraffini, F., Kononova V, A.: Deep-bias v1.0.0 (Jan
2023), https://doi.org/10.5281/zenodo.7614586

16. Van Stein, B., Vermetten, D., Caraffini, F., Kononova, A.V.: Deep bias: Detecting
structural bias using explainable ai. In: Proceedings of the Companion Conference
on Genetic and Evolutionary Computation. pp. 455–458 (2023)

17. van Stein, N., Thomson, S., Kononova, A.V.: Supplemental Material for ”A Deep
Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajec-
tories” (Apr 2024), https://doi.org/10.5281/zenodo.10994149
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