
ar
X

iv
:2

40
4.

17
29

7v
1

 [
cs

.P
L

]
 2

6
A

pr
 2

02
4

Denotation-based Compositional Compiler Verification

ZHANG CHENG, Shanghai Jiao Tong University, China

JIYANG WU, Shanghai Jiao Tong University, China

DI WANG, Peking University, China

QINXIANG CAO∗, Shanghai Jiao Tong University, China

A desired but challenging property of compiler verification is compositionality in the sense that the compi-

lation correctness of a program can be deduced from that of its substructures ranging from statements, func-

tions, and modules incrementally. Previously proposed approaches have devoted extensive effort to module-

level compositionality based on small-step semantics and simulation theories. This paper proposes a novel

compiler verification framework based on denotational semantics for better compositionality. Specifically,

our denotational semantics is defined by semantic functions that map a syntactic component to a semantic

domain composed of multiple behavioral sets, and compiler correctness is defined by the behavioral refine-

ment between semantic domains of the source and the target programs. Therefore, when proving compiler

correctness, we can extensively leverage the algebraic properties of sets. Another important contribution

is that our formalization of denotational semantics captures the full meaning of a program and bridges the

gap between those based on conventional powerdomains and what realistic compiler verification actually

needs. We demonstrate our denotation-based framework viable and practical by applying it to the verifica-

tion of the front-end of CompCert and showing that the compositionality from the compilation correctness

of sub-statements to statements, from functions to modules, and from modules to the whole program (i.e.,

module-level compositionality) can be achieved similarly.

Additional Key Words and Phrases: Compiler Verification, Denotational Semantics, Compositionality

1 INTRODUCTION

For several decades, research on compiler verification has received a lot of attention, especially
with the advent of the well-known realistic verified C Compiler—CompCert [Leroy 2009a]. Specif-
ically, CompCert translates programs written in a large subset of C language into optimized assem-
bly code, going through multiple intermediate languages. For each of them, program behavior is
formulated by a labeled state transition system according to the small-step operational semantics.
The compiler correctness is then achieved by showing a backward simulation1 asserting that ev-
ery execution step of the target program can be simulated by several execution steps of the source
program in a behaviorally consistent way, as shown in Fig. 1a.

B1 B2

C1 C2

∗

' '

(a) The Backward Simulation

B1 B2 B3 B4

C1 C2 C3 C4

' ' ' '

(b) A Possible Instance of Backward Simulation

Fig. 1. Backward Simulation Diagrams Used in CompCert

In this paper, we propose a different framework for compiler verification—a denotation-based
approachwhich focuses on the overall properties of programs and enjoys better proof composition-
ality. For example, considering type-safe and non-deterministic programs with the set of program

∗Corresponding author
1In fact, CompCert uses forward simulation to verify each compilation phase, and then flip that to backward simulation

after vertical composition of it.

http://arxiv.org/abs/2404.17297v1
HTTPS://ORCID.ORG/0000-0002-2418-7987

2 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

1a. while 4 do B

1b. block {

loop {

block { if 4 then B else exit 1;

} //continue of B branches here

}

} //break of B branches here

2a. switch (4) {

case N1: B1;

case N2: B2;

default: B ;

}

2b. block {

block {

block {

switch (4) {

N1: exit 0;

N2: exit 1;

default: exit 2;

}

}; B1 //exits shifted by 2

}; B2 //exits shifted by 1

}; B //exits unchanged

Fig. 2. Clight program 1a and Csharpminor program 2a are respectively translated to Csharpminor program

1b and Cminor program 2b, where (exit =) will prematurely terminate (= + 1) layers of nested blocks. In

program 2b, the exiting number in B8 is properly shi�ed according to the level of blocks it resides in.

states state, a textbook denotational semantics [Plotkin 1983, Chapter 8] for a program statement 2
can be defined by a subset of the binary relation on lifted program states (i.e., J2K ⊆ state×state⊥

2),
meaning that for any (f1, f2) ∈ J2K, executing statement 2 from state f1 may eventually terminate
at state f2 if f2 ≠ ⊥, or otherwise (f2 = ⊥) executing statement 2 from state f1 may not terminate.
Thus,

• the sequential statement’s denotation can be defined by composition of binary relations,
namely J21; 22K , J21K ◦ J22K; and

• transformation correctness can be defined by the set inclusion, i.e., a transformation T

is sound iff. ∀2, JT (2)K ⊆ J2K, which allows the transformation result T (2) to have less
possible behavior than the original program, but no extra behavior.

In this setting, if a transformation T satisfies T (21; 22) = (T (21);T (22)), then its transformation
correctness is compositional in terms of the composition relation, i.e.,

if JT (21)K ⊆ J21K and JT (22)K ⊆ J22K, then JT (21)K ◦ JT (22)K ⊆ J21K ◦ J22K (1)

while it is not so straightforward to achieve this within the framework of operational semantics.
In fact, many compilation passes in CompCert are recursively defined program transformations,

such as the transformation of while, do .. while and for loops into infinite loops with appropriate
block and exit constructs, along with statements break and continue into early exits, and the
transformation of multi-branch switch of Csharpminor into a Cminor switch wrapped by the
statements associated with the various branches in a cascade of nested Cminor blocks, as Fig. 2
shows. When using the operational semantics-based approach to verify those recursively defined
program transformations, one has to initially find a global simulation relation ', as shown in Fig.
1b, covering every intermediate correspondence, and such clutter of correspondence makes proofs
unwieldy and brittle as well.
In contrast, our denotational approach simplifies this process and allows us to directly establish

behavior refinement with a matching relation covering initial correspondence and ending corre-
spondence only. Furthermore, the denotation of a statement is recursively defined over its syntax
tree, and can be derived from its substructures with some unified semantic operators, e.g., the
denotation of a sequential statement (21; 22) is defined by the denotations of 21 and 22, and the
denotation of a loop statement is defined based on its loop body’s. When verifying the correctness

2We denote state⊥ = state ∪ {⊥}, where ⊥ represents non-termination.

Denotation-based Compositional Compiler Verification 3

of statement transformations, we can take induction over the syntax of source program statements
and then produce proof obligations asserting that for each syntactic component, its corresponding
semantic operators preserve transformation correctness. As illustrated by (1), this should be easy
to prove with good algebraic properties of denotational semantics.
Although it’s trivial to show transformation correctness with the textbook denotational seman-

tics, we have to address the following key challenges when extending it to realistic compiler veri-
fication:

How to tackle more program features and still keep good algebraic properties? Realistic
denotational semantics has to take more program features into account, e.g., (i) handling traces of
input-output events used to express a program’s observable behaviors in CompCert, (ii) describ-
ing diverging, aborting and terminating behaviors simultaneously, (iii) manipulating a program’s
control flow, and (iv) building refinement relations between heterogeneous denotations of pro-
grams before and after compilation. Our denotational approach aims to exploit graceful algebraic
properties of sets (e.g., the monotonicity and associativity of the composition relation) to facilitate
compiler verification. If we extend the textbook denotational semantics into a realistic one, do
similar algebraic properties still hold? If so, what is the theoretical reason behind it?
Ans. Despite various program features, we find that the composition and refinement relations

for different program behaviors share common algebraic properties, which enable us to formalize
them in a uniform way.

How to distinguish different program behaviors precisely? Theoretically, defining a precise
denotational semantics for programs with non-determinism and non-termination (i.e., unbounded
non-determinism) turns out to be difficult. The early literature [Plotkin 1976; Smyth 1978; Winskel
1985] on the denotational semantics of non-deterministic programs has proposed three kinds of
powerdomains known as the Hoare, Smyth, and Plotkin powerdomain. The word powerdomain
means: the denotation of a program statement is a function from initial program states to the set
of possible ending program states (i.e. the power set of program state set). These powerdomain
constructions can work quite well in specific scenarios, but cannot be used directly for compiler
verification since none of them can capture the full meaning of realistic languages. Specifically,
Hoare powerdomain (for partial correctness) takes an angelic attitude toward non-termination,
and it is usually used for defining Hoare triple validity w.r.t partial correctness. Therefore, it treats
the same all programs that may not terminate. Smyth powerdomain (for total correctness) can be
seen as the dual of Hoare powerdomain and takes a demonic attitude to non-termination. Plotkin
powerdomain is a combination of them but limited to programs with bounded non-determinism
[Back 1983]. In other words, none of the three powerdomains can describe the precise semantics
of a language where a program may terminate, diverge, or abort when executing from a given
initial state. Therefore, they are less expressive than existing operational semantics. To address
the problem, later efforts have proposed two solutions: one is to divide the semantic domain of
programs into different parts, and independently apply suitable fixed point theorems for each of
them (see [Park 1979]); the other is to extend Plotkin’s semantics but have to use transfinite induc-
tion for applying the Scott induction rule. Can we mechanically formalize the precise denotational
semantics for realistic C programs by extending one of them?
Ans. Following Park’s relational semantics [Park 1979], we choose to divide the semantic do-

main of programs into multiple fields and formalize this treatment in the Coq proof assistant with
a record type, each field of which represents different program behaviors that are obtained via
appropriate fixed-point theorems.

4 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

We aim to demonstrate the power of our denotation-based approach by supportingmodule-level

compositional compiler correctness. Before this paper, there have been a series of efforts such
as CompComp [Stewart et al. 2015], CompCertM [Song et al. 2020], CompCertO [Koenig and Shao
2021] and recent work by Zhang et al. [2023] trying to extend CompCert to support it. These ap-
proaches are all based on operational semantics (or, more precisely, interaction semantics), which
makes it necessary to consider the correspondence between the whole stack involving every layer
of function calls. We argue that this somehow increases the difficulty of compositionality proofs,
when one expects to use different simulation relations to verify different compilation passes for
each module and make all the proofs still compositional.
We present a very different method for supporting module-level compositionality, where a mod-

ule’s semantic domain is parameterized by external callee’s behavior and the semantic linking of
two modules (written as J"1K ⊕ J"2K) is defined by taking fixed points on recursive domain equa-
tions. In this way, it becomes unnecessary for us to involve the whole stack in the compiler correct-
ness proof but focus on the top layer of function calls. This approach also enables us to incorporate
the idea of calling convention [Koenig and Shao 2021; Zhang et al. 2023] into our framework and
simplify verification when using different simulation relations for each pass.

Theorem 1.1 (Module-level compositionality). For any group of source modules (1, . . . , (=
and target modules)1, . . . ,)= , if J)8K ⊑ J(8K for each 8 , then

J)1 + · · · +)=K ⊑ J(1K ⊕ · · · ⊕ J(=K

Our main theorem is then formulated as Thm. 1.1 where ⊑ represents behavior refinement and +
represents syntactic linking. This theorem is immediately deduced from two steps: (i) the semantic
linking is monotonic in terms of behavior refinement, i.e., for any module"1,"

′
1,"2 and"

′
2,

if J"′
1K ⊑ J"1K and J"

′
2K ⊑ J"2K, then J"

′
1K ⊕ J"′

2K ⊑ J"1K ⊕ J"2K;

and (ii) semantic linking is equivalent to syntactic linking, i.e., for any module"1 and"2,

J"1K ⊕ J"2K = J"1 +"2K.

We further find that the first step, the monotonicity of semantic linking (also known as horizontal
compositionality), has the same form as the monotonicity of composition shown in (1), which
indicates that we can prove them in the samewaywithin the framework of denotational semantics.
To summarize, we develop a denotation-based framework for compositional compiler verifi-

cation. To demonstrate its practicability, we define the denotational semantics for the front-end
languages of CompCert, provide a structured technique to verify the compilation correctness from
Clight to Cminor, and support module-level compositionality in a language-independent way. All
our definitions and theorems in this paper are formalized and proved in the Coq proof assistant.

Structure of the paper. We organize the rest of this paper as follows.

• In §2 ∼ §5, we develop the denotational semantics of programs starting from simple toy
languages and generalizing to realistic languages. Especially, unified set operations are
formalized in Coq for better proof reuse (§2); a novel semantic linking operator is proposed
through Kleene fixed point and Knaster-Tarski fixed point, so that the connection between
semantic linking and syntactic linking is reduced to concise lemmas about fixed points (§4).

• In §6 ∼ §7, we propose a refinement algebra for unifying various behavior refinements
between denotations, and reprove the compiler correctness of the CompCert front-endwith
our denotation-based approach—our proof supports module-level separate compilation.

• In §8∼§10, we compare our work with existing research on compiler verification, discuss
related work, and conclude this paper.

Denotation-based Compositional Compiler Verification 5

2 UNIFIED SEMANTIC OPERATORS

In this section, we begin with a toy language with non-deterministic and possible non-terminating
behaviors, and show howwe can use set operators and Park’s approach [Park 1979] to define deno-
tations of the toy language. Thenwe discuss how to extend this approach to realistic programming
languages (e.g., Clight).

2.1 A Toy Language and its Denotation

Consider a toy language WHILE whose set of statements Com, ranged over by 2 , is parameterized
on the set of Boolean expressions Exp ranged over by 1, and generated by the following syntax:

2 , skip | 0C>< | choice 21 22 | 21; 22 | if 1 then 21 else 22 | while 1 do 2,

where 0C>< represents the set of atomic statements that cannot be broken into other statements.
Non-determinism can be introduced either by atomic statements like non-deterministic assign-
ments or by choice statements that unpredictably choose 21 or 22 to execute.
Let state be the set of program states. We then define CDenote to represent the denotation of

statements, and BDenote to represent the denotation of Boolean expressions as follows in Coq.

Record CDenote: Type := {

nrm: state → state → Prop; (* nrm ⊆ state × state *)

dvg: state → Prop (* dvg ⊆ state *)

}.

Record BDenote: Type := {

tts: state → Prop; (* tts ⊆ state *)

ffs: state → Prop (* ffs ⊆ state *)

}.

Here, CDenote is composed of two sets nrm and dvg which represent the set of terminating behaviors
and diverging behaviors respectively. For BDenote, tts denotes the set of states satisfying expression
1 and ffs the set of states not satisfying 1. Specifically, (f1, f2) ∈ J2K.(nrm) iff executing 2 from
initial state f1 could terminate on state f2 and f ∈ J2K.(dvg) iff executing 2 from f1 could diverge;
f ∈ J1K.(tts) iff state f satisfies 1 and f ∈ J1K.(ffs) iff state f does not satisfy 1. Throughout the
rest of the paper we will repeatedly overload the notation J·K to represent different denotations
when there is no ambiguity.

2.2 Semantic Operators for WHILE

Naturally, the denotation of statements satisfies the following equations, where 1 is the identity
binary relation on state, i.e., {(f, f) | f ∈ state}, and test(-) defines an identity relation on the
set - , i.e., {(G, G) | G ∈ - }, meaning that the program state is not updated through them.

JskipK.(nrm) , 1 JskipK.(dvg) , ∅

J21; 22K.(nrm) , J21K.(nrm) ◦ J22K.(nrm)

Jchoice 21 22K.(nrm) , J21K.(nrm) ∪ J22K.(nrm)

Jchoice 21 22K.(dvg) , J21K.(dvg) ∪ J22K.(dvg)

Jif 1 then 21 else 22K.(nrm) , test(J1K.(tts)) ◦ J21K.(nrm) ∪ test(J1K.(ffs)) ◦ J22K.(nrm)

The terminating case of if statements means that either the Boolean condition evaluates to true
and then executing 21 terminates normally, or the condition evaluates to false and then executing
22 terminates normally. This style of defining if-branching is not new. Such formulations of test,
sequential composition, and nondeterministic choices are widely used in extensions of Kleene
algebras and in dynamic logics. Obviously, the diverging case of if statements should be defined

6 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

likewise as it has similar meanings to the terminating case. This description can be formalized
with almost the same math formula if we overload the “◦” operator as follows.

'1 ◦ '2 , {(f1, f3) | ∃f2, (f1, f2) ∈ '1 ∧ (f2, f3) ∈ '2} original

' ◦ - , {f1 | ∃f2, (f1, f2) ∈ ' ∧ f2 ∈ - } overloaded

Then the diverging cases for sequential and if statements can be defined as:

J21; 22K.(dvg) , J21K.(dvg) ∪ J21K.(nrm) ◦ J22K.(dvg)

Jif 1 then 21 else 22K.(dvg) , test(J1K.(tts)) ◦ J21K.(dvg) ∪ test(J1K.(ffs)) ◦ J22K.(dvg).

The diverging case of J21; 22K means that either the execution of 21 diverges, or the execution
of 21 terminates normally and then the execution of 22 diverges, which also indicates that the
overloading of “◦” does make sense. Furthermore, the overloaded composition also enjoys the
following common algebraic properties: for any binary relations '1 and '2,

('1 ◦ '2) ◦. = '1 ◦ ('2 ◦ .) associative law

'1 ◦ (.1 ∪ .2) = '1 ◦ .1 ∪ '1 ◦ .2 left distributive law

('1 ∪ '2) ◦. = '1 ◦ . ∪ '2 ◦ . right distributive law

where . , along with .1 and .2, can be either a unary or a binary relation, and the distributive law
can be applied to infinite unions as well.
As we can see, all the denotation for composite statements can be defined by semantic operators

test, “∪”, and “◦”. Besides, the definition for loop statements is postponed to the next section, and
those for atomic cases are independent of the unification of operators, so we omit them here.

2.3 Semantic Operators for Realistic Languages

The above relational style of defining denotational semantics can be naturally extended to realistic
settings. Take Clight language as an example. For a given set �, let �∗ denote the set of all finite
sequences of elements in �, and �∞ the set of all infinite sequences of elements in �. We then use
Denote to represent the denotation of Clight statements where event denotes the set of system-call
results (including input-output events in CompCert).

Record Denote: Type := {

nrm: state → event∗ → state → Prop; (* nrm ⊆ st. × event∗ × st. *)

...

fin_dvg: state → event∗ → Prop; (* fin_dvg ⊆ state × event∗ *)

inf_dvg: state → event∞ → Prop (* inf_dvg ⊆ state × event∞ *)

}.

Compared to WHILE, a Clight program’s terminating behavior is extended to a ternary relation
which additionally records the event trace generated during the execution of programs. In addition,
diverging behavior is divided into finite and infinite parts for distinguishing behaviors with finite
events and infinite events. Other omitted fields of Denote will be further discussed in §3.
Let - ⊆ state, ' ⊆ state × event

∗ × state, and, ⊆ state × (event∗ ∪ event
∞). In order to define

JBK for a Clight statement B in the same way as WHILE, we at least need to overload the following
set operators, where nil denotes the empty sequence and “·” denotes the concatenation of two
sequences. Notably, these operators still conform to the algebraic properties listed in §2.2.

test(-) , {(f, g, f) | f ∈ - ∧ g = nil}

' ◦, , {(f1, g) | ∃f2 g1 g2, (f1, g1, f2) ∈ ' ∧ (f2, g2) ∈, ∧ g = g1 · g2}

'1 ◦ '2 , {(f1, g, f3) | ∃f2 g1 g2, (f1, g1, f2) ∈ '1 ∧ (f2, g2, f3) ∈ '2 ∧ g = g1 · g2}

Denotation-based Compositional Compiler Verification 7

Up to this point, we can see that the key to our semantic-operator unification lies in the unifica-
tion of sequential composition whose differences come from two aspects: heterogeneous fields for
various behaviors in the same language and heterogeneous denotations for different languages. Al-
though there are various definitions of sequential composition on different occasions, fortunately,
they all have common algebraic properties, which allows us to build a unified definition of these
operators, and uniformly prove the algebraic properties they have. As a result, it will be more con-
venient to formally mechanize the semantics of programs and more extensible to support various
program features. This will be further justified in the rest sections of this paper.

3 SEMANTICS OF WHILE LOOPS

So far, we have introduced how to define the denotational semantics of composite statements like
if and sequential statements with set operators dealing with denotations composed of multiple
sets. In this section we proceed to formulate the semantics of loop statements based on Park’s
approach [Park 1979]. It turns out that Jwhile 1 do 2K.(nrm) is the least fixed point of 5 and
Jwhile 1 do 2K.(dvg) is the greatest fixed point of 6, where

5 (G) = test(J1K.(ffs)) ∪
(

test(J1K.(tts)) ◦ J2K.(nrm) ◦ G
)

, and G ⊆ state × state

6(G) = test(J1K.(tts)) ◦
(

J2K.(dvg) ∪ (J2K.(nrm) ◦ G)
)

, and G ⊆ state

We construct these two fixed points using Kleene fixed point theorem and Knaster-Tarski fixed
point theorem.

Definition 3.1. A poset (partially ordered set) (�, 6) is a set � along with a reflexive, antisym-
metric and transitive relation 6 on�. We refer to the standard notions of upper and lower bounds,
least upper bound (lub) denoted by ⊔, greatest lower bound (glb), monotonic functions, and con-
tinuous functions. Let (�,6�) be a poset and P(�) denotes the power-set of �. A chain (in � is
a totally ordered subset of �, i.e., ∀0, 1 ∈ (, 0 6� 1 or 1 6� 0. If every chain in � has a least upper
bound, then � is called a complete partial ordering (CPO).

Theorem 3.2 (Kleene fixed point). If poset (�, 6�) is a CPO and � : � → � is monotonic and
continuous, then � has a least fixed point `� . Let⊥ be the least element of�, and then `� = ⊔{� 8 (⊥) |

8 = 0, 1, 2, ...}.

Definition 3.3 (Complete lattice). A poset (�,6�) is a complete lattice if every subset (of � has
a least upper bound and a greatest lower bound.

Theorem 3.4 (Knaster-Tarski theorem for greatest fixed point). If poset (�,6�) is a com-
plete lattice and � : � → � is monotonic, then � has a greatest fixed point a�and a� = ⊔{G ∈ � |

G 6� � (G)}.

It’s trivial to show that (P(state × state),⊆) is a CPO and 5 is monotonic and continous on
it, and (P(state),⊆) is a complete lattice and 6 is a monotonic function on it. To this end, the
semantics of the while statement in WHILE can be defined as follows:

Jwhile 1 do 2K.(nrm) , `G .test(J1K.(ffs)) ∪
(

test(J1K.(tts)) ◦ J2K.(nrm) ◦ G
)

Jwhile 1 do 2K.(dvg) , aG .test(J1K.(tts)) ◦
(

J2K.(dvg) ∪ (J2K.(nrm) ◦ G)
)

4 SEMANTICS OF PROCEDURE CALL

In this section, we use another toy language PCALL to demonstrate our key design when formal-
izing the semantics of a program with procedure calls. Specifically, a PCALL program consists of a
list of procedures ?1, . . . , ?= . A procedure ? is composed of procedure name 8? and procedure body

8 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

2? whose syntax is shown as follows.

2 , skip | 0C>< | choice 21 22 | 21; 22 | if 1 then 21 else 22 | while 1 do 2 | call 8

Remark that the procedure call here does not have any arguments or return values for simplicity.
The standard way [Back 1983; Park 1979] to define the denotational semantics of such a program
is parameterizing the denotation of procedures with the behavior of invoked procedures, and then
taking fixed points on recursive domain equations. We first summarize this approach in §4.1.

4.1 Terminating Behavior of PCALL

Specifically, the terminating behavior of a PCALL program is defined in three steps: the semantics
of statements, the semantics of procedures, and the semantics of the whole program.
Firstly, consider a semantic oracle j where j ⊆ ident × state × state, and ident is the set of

procedure names such that an element (8, f0, f1) ∈ j if and only if executing the procedure named
8 from state f0 could normally terminate at state f1. Then the terminating behavior of PCALL
statements is a binary relation J2Kj .(nrm). It states that an element (f0, f1) ∈ J2Kj .(nrm) if and
only if executing statement 2 from state f0 could terminate at state f1, in which the semantics of
procedure calls will be given by j , i.e.,

Jcall 8Kj .(nrm) , {(f0, f1) | (8, f0, f1) ∈ j}

Besides, the semantics of other statements only need to be slightly modified based onWHILE. Take
the sequential statement as an example:

J21; 22Kj .(nrm) , J21Kj .(nrm) ◦ J22Kj .(nrm)

Secondly, the terminating behavior of a procedure J?Kj .(nrm) satisfies J?Kj .(nrm) ⊆ {8?} × state ×

state, and is defined by the semantics of its body J2?Kj .(nrm), i.e.,

J?Kj .(nrm) , {(8? , f0, f1) | (f0, f1) ∈ J2?Kj .(nrm)}

Thus, an element (8? , f0, f1) ∈ J?Kj .(nrm) if and only if executing procedure ? at state f0 could
eventually terminate at state f1. Finally, the terminating behavior of a program that contains a list
of procedures ?1, ..., ?= can be defined as:

J?1; ...; ?=K.(nrm) , `j.
(

J?1Kj .(nrm) ∪ · · · ∪ J?=Kj .(nrm)
)

By Kleene fixed point theorem, it says that a procedure call terminates if and only if there exists a
natural number = such that the procedure call terminates with maximally = layers of nested calls.
We proceed to describe howwe extend this approach to support semantic linking of open modules
in §4.2, and how we define the diverging behavior in §4.3.

4.2 Semantics of Modules and Semantic Linking

In a more realistic setting, a program is composed of multiple modules, each of which contains a
list of procedures and is compiled individually. We find that the traditional approach [Back 1983]
(which we summarize in §4.1) can be easily extended to this setting by parameterizing the seman-
tics of open modules with the terminating behavior of external procedures3.

3External procedures are those not defined in the current module.

Denotation-based Compositional Compiler Verification 9

j

?1

cll. @ @ ret. cll. ?1

cll. @ @ ret.

?1 ret. cll. ?2

cll. ?1 ?1 ret.

?2 ret.

(a) Semantics of a Single Procedure ?1
j

?1

cll. @ @ ret. cll. ?1

cll. @ @ ret.

?1 ret. cll. ?2

cll. ?1 ?1 ret.

?2 ret.

(b) Semantics of Module" for Procedure ?1

Fig. 3. Comparison Between the Semantics of Procedures and that of Modules. Here raising edges denote

function calls (abbr. cll.), falling edges denote function returns (abbr. ret.), and the dashed line represents the

behavior of external procedure @. The shaded areas show that for J?1Kj .(nrm), the behavior of every function
call of ?1 is interpreted by j , while for J"Kj .(nrm), only the behavior of external calls are interpreted by j .

Semantics of openmodules. Formally, we use J"Kj .(nrm) to represent the terminating behav-
ior of an open module. It means that an element (8, f0, f1) ∈ J"Kj .(nrm) if and only if there exists a
procedure named 8 in module" and its execution beginning with state f0 could finally terminate
at state f1, in which the terminating behavior of external procedures is given by an oracle j (where
j ⊆ ident× state× state). Then the terminating behavior of an open module" that contains a list
of procedures ?1, ..., ?= can be defined as:

J"Kj .(nrm) , `j0 .
(

J?1Kj0∪j .(nrm) ∪ · · · ∪ J?=Kj0∪j .(nrm)
)

, where" = ?1; . . . ; ?= (2)

It’s worth noting that although both the terminating behavior of a single procedure and that of an
open module are subsets of ident × state × state, they differ in the following aspects:

• Depend on different semantic oracles. The semantics of a procedure depends on the se-
mantics of all invoked procedures, even including recursive calls to itself. In comparison,
the semantics of an open module depends on the semantics of external procedures only, as
shown in Fig. 3;

• Accommodate different possible behaviors. J"Kj .(nrm) can be seen as a function from the
name of a procedure in module " to its terminating behavior, i.e., it interprets the ter-
minating behavior of all procedures in module " , whereas J?Kj .(nrm) only interprets the
terminating behavior of the current procedure ? .

Semantic linking. Semantic linking means composing the behavior of individual modules as
a whole so that cross-module calls between module "1 and module "2 before linking become
“internal” calls after linking. That is, after semantic linking, only external calls outside module"1

and module"2 need to be interpreted by a semantic oracle. Therefore, the definition of semantic
linking is straightforward: assume that the terminating behavior of procedures outside module"1

and"2 are given by an oracle j , the terminating behavior of semantic linking is defined as:

(J"1K ⊕ J"2K)j .(nrm) , `j0 .
(

J"1Kj0∪j .(nrm) ∪ J"2Kj0∪j .(nrm)
)

As we can see, similar to the semantic definition of modules, the semantic linking between two
modules is defined by merging their denotations as if all the procedures reside in one module and

10 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

then taking the fixed point. Based on these definitions, the equivalence between semantic and
syntactic linking is shown as follows.

Theorem 4.1 (Eqivalence between semantic and syntactic linking). For any modules"1

and"2, J"1K⊕ J"2K = J"1+"2K, where “+” is syntactic linking, physically putting modules together.

Proof. The key to this proof relies on the following Lemma 4.2 about Kleene fixed point, and
all the proofs have been formalized in Coq. �

Lemma 4.2 (Coincide theorem 1). Given CPOs �1 and �2, for any monotonic and continuous
functions 5 : �1 × �2 → �1 and 6 : �1 ×�2 → �2,

`(G,~).
(

`G0 .5 (G0,~), `~0 .6(G,~0)
)

= `(G,~).
(

5 (G,~), 6(G,~)
)

In order to prove Thm. 4.1, we only need to instantiate the function 5 and 6 with the denotation
of procedures within module "1 and module "2 respectively, which maps callee’s denotation to
the caller’s denotation. On the left side of the lemma, the semantics of module "1 and module
"2 are first derived individually, and then by the fixed point on the merged denotation of these
two modules, the linked semantics is further derived, which corresponds to semantic linking. On
the right side, we first merge the semantics of procedures in the two modules and then take the
fixed point to obtain the whole semantics of the two modules, which corresponds to syntactic
linking. The essence of Lemma 4.2 is illustrated by Fig. 4, which shows the two different ways of
deriving fixed points will eventually converge to the same fixed point, and we refer to appendix B
for mathematical proofs.

5 -steps

6-steps

l-steps

l-steps

(a) Iteration Process for the LHS

5 -steps

6-steps

1-step

1-step

(b) Iteration Process for the RHS

Fig. 4. An Intuitive Illustration of Lemma 4.2. The right-arrow denotes one step of iterations of 5 on the

x-field with some fixed ~, i.e., (G,~) ↦→
(

5 (G,~), ~
)

. Furthermore, l-steps of 5 is (G,~) ↦→
(

`G0 .5 (G0, ~), ~
)

.

The up-arrow denotes one step of iterations of 6 on the y-field with some fixed G , i.e., (G,~) ↦→
(

G, 6(G,~)
)

,

and l-steps of 6 is (G,~) ↦→
(

G, `~0.6(G, ~0)
)

.

4.3 Diverging Behavior of PCALL

The diverging behavior of a procedure can be induced either by its internal statements, or by
recursive procedure calls. In this case, defining the diverging behavior of a procedure would be
tricky, since the semantic oracle only tells us the terminating behavior of invoked procedures.
We solve this problem as follows: when defining J2Kj and J?Kj , we only consider internal diver-

gence (caused by dead loops) first. Those caused by procedure calls (including dead loops in callee
procedures and infinite layers of nested calls) are captured at the moment of defining J"Kj . For
this purpose, we further add the following set cll to CDenote to record the point of procedure calls,

Denotation-based Compositional Compiler Verification 11

so that an element (f0, (8, f1)) ∈ J2Kj .(cll) if and only if executing statement 2 from state f0 could
eventually reach a point of procedure call named 8 at state f1.

cll: state → call_info → Prop,where call_info , id × state.

The calling behavior J2Kj .(cll) is also recursively defined on the syntax of statements, for example,

J21; 22Kj .(cll) , J21Kj .(cll) ∪
(

J21Kj .(nrm) ◦ J22Kj .(cll)
)

Jcall 8Kj .(cll) , {(f, (8, f)) | f ∈ state}

Correspondingly, the calling behavior of a procedure J?Kj .(cll) is defined by its body, i.e.,

J?Kj .(cll) , {(8? , f, \) | (f, \) ∈ J2?Kj .(cll)}

Diverging behavior of open modules. We use J"Kj .(dvg) to denote the diverging behavior
of open modules. Specifically, (8, f) ∈ J"Kj .(dvg) if and only if there exists a procedure named 8 in
module" and its execution beginning with state f could diverge due to internal statements after
a finite number of procedure calls, or an infinite number of internal procedure calls inside module
" . Thus, assume that the terminating behavior of external procedures is given by semantic oracle
j , and let ĵ = J"Kj .(nrm) ∪ j (i.e., ĵ is the terminating behavior of all procedures, including both
internals and externals), J"Kj .(dvg) can be defined as:

L"Mĵ , J?1Kĵ ∪ · · · ∪ J?=Kĵ

J"Kj .(dvg) , a j0.L"Mĵ .(dvg) ∪
(

L"Mĵ .(cll) ◦ j0
)

where L"Mĵ is defined by simply merging corresponding behavior sets of procedures ?1, . . . , ?=.
We then use J"Kj .(cll) (⊆ ident × state × call_info) to denote the calling behavior of a module.

It means that an internal procedure of module" could eventually call an external procedure after
a finite number of internal calls. Thus, J"Kj .(cll) can be defined as:

O(") , {(\, \) | ∃8? f, \ = (8? , f) ∧ ? ∉ "}

J"Kj .(cll) , `j0 .
(

L"Mĵ .(cll) ◦ O(")
)

∪
(

L"Mĵ .(cll) ◦ j0
)

Diverging behavior of semantic linking. Based on the definitions above, semantic linking
can be easily extended to the dvgfield and cllfield: assume that the terminating behavior of external
procedures outside"1 and"2 is given by semantic oracle j , and let ĵ = (J"1K⊕ J"2K)j .(nrm)∪ j ,

(J"1K ⊕ J"2K)j .(dvg) , a j0.
(

J"1Kĵ .(dvg) ∪ J"2Kĵ .(dvg)
)

∪
(

J"1Kĵ .(cll) ∪ J"2Kĵ .(cll)
)

◦ j0

(J"1K ⊕ J"2K)j .(cll) , `j0 .
(

J"1Kĵ .(cll) ∪ J"2Kĵ .(cll)
)

◦ O("1 +"2) ∪
(

J"1Kĵ .(cll) ∪ J"2Kĵ .(cll)
)

◦ j0

Remark. There may exist traditional approaches that, for example, assume another semantic
oracle j ′ (⊆ ident × state) to interpret the diverging behavior of procedure calls, so that the di-
verging behavior of a module can be defined by taking the greatest fixed point of corresponding
recursive equations similar to formula (2). However, the approach proposed in this subsection has
better extensibility, which will be further justified in §5.3.

5 SEMANTICS OF COMPCERT FRONT-END LANGUAGES

In this section, we focus on how to further extend the PCALL language to the CompCert front-end
languages featured with C-like function calls, control flow, and divergence with event trace.
We will proceed in the following steps: we first extend procedure calls to C-like function calls in

§5.1, then discuss how to support the control flow of CompCert front-end languages (take Clight

12 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

programs as an example) in §5.2, and finally define the diverging behavior of recursive structures
with event trace in §5.3.

5.1 Semantics of C-like Function Calls

The method for handling procedure calls in PCALL can be easily extended to support C-like func-
tion calls which additionally take arguments and return values into account.
Likewise, we need an oracle j to denote the terminating behavior of callee functions, and in this

setting j ⊆ ident× val
∗ × state× event

∗ × state× val such that an element (8, ℓ, f, g, f ′, A) ∈ j if and
only if calling function 8 with arguments ℓ at state f will terminate at state f ′ with a return value
A , producing event trace g , where val is the set of values ranging over integers, floats, pointers,
as well as an undefined value Vundef. Then for a function � that contains function name 8� and
function body B� , its terminating behavior J� Kj .(nrm) satisfies J� Kj .(nrm) ⊆ {8� } × val

∗ × state ×

event
∗ × state × val, and is defined by the semantics of its function body JB� Kj .(nrm). The way that

how we define the semantics of modules and support semantic linking is the same as PCALL.

5.2 Semantics of Control Flow Constructs

Clight. The Clight language provides control flow constructs including break, continue, and
return statements to prematurely terminate the normal execution of statements. To capture these
behaviors, we add the following sets to Denote.

brk: state → event∗ → state → Prop;

ctn: state → event∗ → state → Prop;

rtn: state → event∗ → state → val → Prop.

It means that for any element (f0, g, f1) in JBK.(brk) or JBK.(ctn), the execution of Clight statement
B from f0 will eventually reach state f1 and then exit because of a break or continue statement,
producing a sequence of input-output events g . The rtn set has a similar meaning but additionally
with a return value.

JbreakKj .(brk) , 1, and other fields are assigned the empty set.

JcontinueKj .(ctn) , 1, and other fields are assigned the empty set.

Here 1 , {(f, nil, f) | f ∈ state}. The definitions above mean that once a break or continue
statement is encountered, the execution will end prematurely, and the corresponding set brk or ctn
records how it ends. The denotation of exiting by a return statement is defined similarly.
Clight uses one special loop (loop B1 B2) to encode all the three kinds of C loopswhere (loop B1 B2)

means that statements B1 and B2 will be executed repeatedly in a sequential way, and a “continue”
jump in B1 will branch to B2. Then the for statement of C language for example can be defined as:

for(B1; 4; B2) {B3} , B1; (loop (if (4) then skip else break); B3 B2)

The terminating behavior of Clight loops satisfies the following equations.

#1 = JB1Kj .(nrm) ∪ JB1Kj .(ctn) #2 = #1 ◦ JB2Kj .(nrm) (3)

Jloop B1 B2Kj .(nrm) , `G .JB1Kj .(brk) ∪
(

#1 ◦ JB2Kj .(brk)
)

∪
(

#2 ◦ G
)

(4)

Here #1 denotes the behavior that loop body B1 either ends normally or prematurely due to a
continue statement in B1, and #2 denotes the behavior of a “sequential” execution of loop bodies
B1 and B2. Then, the execution of loops could normally terminate if B1 or B2 breaks the loop after
executing the loop bodies a finite number of times.

Denotation-based Compositional Compiler Verification 13

Csharpminor. The control flow of Csharpminor is structured with the block and exit state-
ment. For instance, the execution of statement block { block { B1; exit(1)}; B2}; B3 is equivalent to the

execution of B1; B3 since the statement exit(=) terminates prematurely the execution of the (=+1)

layers of nested block statements. We then use a set blk (⊆ nat× state × event
∗ × state) to capture

this behavior so that an element (=, f0, g, f1) ∈ JDKj .(blk) if and only if executing the Csharpminor
statement D from f0 could terminate at f1 and = records the layers of nested blocks to exit. Thus,
the denotation of Csharpminor statement JDKj satisfies the following equations.

Jblock{D}Kj .(nrm) , JDKj .(nrm) ∪ JDKj .(blk)0

Jblock{D}Kj .(blk) , {(=, f, g, f ′) | (= + 1, f, g, f ′) ∈ JDKj .(blk)}

Jexit(=)Kj .(blk) , {(=0, f, nil, f) | =0 = =}, other fields are assigned ∅

where (blk)= , {(f, g, f ′) | (=, f, g, f ′) ∈ blk} for any = ∈ nat. The above definitions mean that
the block statement could normally terminate if its internal statement D terminates normally or
exits one layer of block execution prematurely; and the block statement could early exit = layers
if its internal body D early exits = + 1 layers of blocks; the other fields of Jblock{D}Kj .(blk) are
directly determined by the corresponding set of the internal statement D. Simultaneously, when
an exit statement is encountered, the later statements will no longer execute normally and the
layer of blocks to be early exited is recorded by the blk set, and other fields of the exit statement
are assigned the empty set.
In summary, we add two sets brk and ctn to Denote, and add one set blk to Denote respectively so

as to cope with control flow constructs for Clight and Csharpminor. For ease of distinction, we use
Clit.Denote and Cshm.Denote to distinguish these two denotations. Additionally, we add a set err ⊆
state × event

∗ to them to capture the aborting behavior of programs, which can be seen as a kind
of terminating behavior and is even simpler to define.

5.3 Divergence with Event Trace

When event traces are taken into account, handling the divergence of recursive structures (e.g.,
Clight loops) can be tricky. If simply using the greatest fixed point discussed in §3 to define the
diverging behavior of loops, thenwemay obtain more behaviors thanwhat we expect, for example,

Jwhile true do skipK.(dvg) = aG .1 ◦ (∅ ∪ 1 ◦ G) = aG .G = state × (event∗ ∪ event
∞)

This is wrong! Since executing (while true do skip) should only generate the empty event trace.
The problem here is similar to the classic stuttering problem [Leroy 2009b] when defining an
operational-semantics-based simulation relation.

Our solution. We use silent operator △ and non-silent operator N to explicitly filter silent and
non-silent event trace when defining the diverging behavior of recursive structures as follows,
where ' ⊆ � × �∗ ×� and - ⊆ � × �∗ for given sets �, �.

N' , {(f, g, f ′) | (f, g, f ′) ∈ ' ∧ g ≠ nil}

△' , {(f, g, f ′) | (f, g, f ′) ∈ ' ∧ g = nil}

△- , {(f, g) | (f, g) ∈ - ∧ g = nil}

Recall that we use JBKj .(fin_dvg) and JBKj .(inf_dvg) to denote the diverging behavior with finite and
infinite event traces generated by executing statement B , respectively. Then the silently diverging
behavior of Clight loops can be defined as follows, where #1 and #2 are defined by formula (3).

Jloop B1 B2Kj .(fin_dvg) , `G .JB1Kj .(fin_dvg) (5)

∪ #1 ◦ JB2Kj .(fin_dvg) (6)

14 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

∪ △ (aG0.#2 ◦ G0) (7)

∪ #2 ◦ G (8)

It indicates that a Clight loop could silently diverge since the loop body B1 does (5), or the loop
body B2 does (6), or the entire loop itself silently diverges (7), or it belongs to one of the above three
cases after being executed a finite number of times (8).
The non-silently diverging behavior (i.e, reacting behavior) of Clight loops is defined as follows.

Jloop B1 B2Kj .(inf_dvg) , aG .B ◦D ∪ (B ◦ N#2) ◦ G

where B = `G .1 ∪ △#2 ◦ G, and

D = JB1Kj .(inf_dvg) ∪
(

#1 ◦ JB2Kj .(inf_dvg)
)

Here, B denotes the behavior of silently executing the loop body a finite number of times, and D
denotes the non-silently diverging behavior when executing loop body B1 or B2. It indicates that
either the loop body diverges non-silently (i.e., reacts) after silently executing it a finite number of
times (i.e., B ◦ D), or one observable behavior must be triggered after silently executing the loop
body a finite number of times (i.e., B ◦ N#2) and then this process repeats infinitely.
We can similarly define J"Kj .(fin_dvg) and J"Kj .(inf_dvg) like how we handle loops. The key

point is to use △L"Mj .(cll) and NL"Mj .(cll) in the definition so that we can distinguish the cases
that zero events happen before a call and the cases that at least one event happens before the call.

Remark. When defining J"Kj .(fin_dvg) and J"Kj .(inf_dvg), the approach to using another se-
mantic oracle j ′ to interpret the diverging behavior of callee functions remarked in §4.3 is not
available here, since silent divergence and non-silent divergence, as illustrated at the beginning of
this subsection, can not be defined by trivially taking the greatest fixed point.

6 BEHAVIOR REFINEMENT

Compilation correctness is ubiquitously formulated as a behavior refinement relation which states
that every behavior of the target program is one possible behavior of the source. In this section, we
start from typical examples of behavior refinements (§6.1) and then introduce a kind of refinement
algebra capable of covering all these cases (§6.2). We end this section by demonstrating that our
framework can easily support module-level compositionality (§6.3).

6.1 Examples of Behavior Refinement

Example 6.1 (Behavior refinement for simple transformation). Consider simple transformations
like removing sequenced skip statements, ormaking sequenced sequential statements (e.g., (21; 22); 23)
right-associative. Such program transformation is a function T that turns a program 2 into another
program T (2) in the same language, where the initial (ending) states before and after the trans-
formation are unchanged. In this case, the state-matching relation in the refinement diagram (as
Fig. 1a shows) can be the identity relation. Therefore, if we consider such program transformation,
behavior refinement JT (2)K ⊑ J2K can be defined as:

JT (2)K.(nrm) ⊆ J2K.(nrm) and JT (2)K.(dvg) ⊆ J2K.(dvg)

Example 6.2 (Behavior refinement for original CompCert). In CompCert, behavior refinement is
originally described as simulation diagrams for small-step semantics, which can be adapted to our
denotation-based setting shown in Fig. 5, where g0 6) g means that g0 is the prefix of g .
Fig. 5 says that for every terminating (or diverging) behavior of the target program, there will

exist consistent behavior in the source end, or the source program aborts (denoted as) at some
middle point. This definition is valid since compilation correctness implies that once the source

Denotation-based Compositional Compiler Verification 15

fB f ′
B

fC f ′
C

fB

fC f ′
C

or

g

JBK .(nrm)

g

JCK .(nrm)

g0

JBK .(err)

g

JCK .(nrm)

' ' ' g0 6) g

(a) Refinement of Terminating Behavior

fB ∞

fC ∞

fB

fC ∞

or

g

JBK .(dvg)

g

JCK .(dvg)

g0

JBK .(err)

g

JCK .(dvg)

' ' g0 6) g

(b) Refinement of Diverging Behavior

Fig. 5. Behavior Refinement for Original CompCert

program may abort, the compiled target program could do anything unpredictable. In this case,
behavior refinement JCK ⊑ JBK can be formally defined as: for a given state-matching relation ',

∀fC g f
′
C fB , (fC , g, f

′
C) ∈ JCK.(nrm) ⇒ (fB , fC) ∈ ' ⇒

(

∃f ′
B , (fB , g, f

′
B) ∈ JBK.(nrm) ∧ (f ′

B , f
′
C) ∈ '

)

∨
(

∃g0, (fB , g0) ∈ JBK.(err) ∧ g0 6) g
)

; and

∀fC g fB , (fC , g) ∈ JCK.(dvg) ⇒ (fB , fC) ∈ ' ⇒

(fB , g) ∈ JBK.(dvg) ∨
(

∃g0, (fB , g0) ∈ JBK.(err) ∧ g0 6) g
)

.

As is well-known, the verification results of original CompCert are limited to separate compila-
tion by the same compiler. In order to support horizontal compositionality between heterogeneous
languages (e.g., C and assembly), a series of derivative works after CompCert, such as CompComp
[Stewart et al. 2015] and CompCertM [Song et al. 2020], adopt open simulations to establish corre-
spondence between the interaction semantics of the source and the target program. Latest findings
made by CompCertO [Koenig and Shao 2021] and Zhang et al. [2023] propose a kind of Kripke
Logic Relation to establish correspondences between open module interactions. We interpret their
approach into our denotation-based framework as follows.

fB f ′
B

fC f ′
C

{�

jB

jC

'� F� '�F ′
�

(a) Refinement of Callee’s Behavior

fB f ′
B

fC f ′
C

fB

fC f ′
C

{� or

JBKjB .(nrm)

JCKjC .(nrm)

JBKjB .(err)

JCKjC .(nrm)

'� F� '�F ′
� '� F�

(b) Refinement of Caller’s Behavior

Fig. 6. Behavior Refinement for OpenModules. Here '� and '� are Kripke relations used for relating callee’s

behavior and caller’s behavior respectively. Semantic oracle jB and jC are respectively used for interpreting

function calls of the source program and that of the target program.

Example 6.3 (Behavior refinement for open modules). Given sets �1, �2, and, , a Kripke relation
' : , → {- | - ⊆ �1 × �2} is a family of relations indexed by the set of Kripke worlds , ,
written as K, (�1, �2). As the program executes from an initial state to some termination state,
the Kripke worlds (e.g., memory injections) may evolve from a beginning world F to an ending
worldF ′ governed by an accessibility relation{ (written as F { F ′). Such evolution is used to
formulate rely-guarantee reasoning, which is essential for achieving horizontal compositionality.

16 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

As shown in Fig. 6, the evolution of worlds in the refinement of callee’s behavior provides rely
conditions for the refinement of caller’s behavior. In turn, by assuming F� {� F ′

�
, the evolution

of worlds in the refinement of caller’s behavior should respect the guarantee conditionF� {� F ′
� .

For instance, the caller’s behavior refinement JCKjC ⊑nrm JBKjB (for terminating case) can then be
formally defined as:

∀F� fC g f
′
C fB , (fC , g, f

′
C) ∈ JCKjC .(nrm) ⇒ (fB , fC) ∈ '� (F�) ⇒

(

∃F ′
� f ′

B , (fB , g, f
′
B) ∈ JBKjB .(nrm) ∧F� {� F ′

� ∧ (f ′
B , f

′
C) ∈ '� (F

′
�)
)

∨
(

∃g0, (fB , g0) ∈ JBKjB .(err) ∧ g0 6) g
)

6.2 Refinement Algebra

Definition 6.4 (Refinement algebra). A refinement algebra is a tuple (N , E,D,∪, ◦, W), where

• N , E and D are behavior sets. For instance, N and D are the set of terminating behaviors
for the source and the target program respectively, and E is the set of aborting behaviors.

• ∪ and ◦ are semantic operators whose instances are introduced in §2. Recall that ∪ is used
for merging two behavior sets, and ◦ for the composition of them.

• W : N×E → D is a gamma function which, for instance, maps the pair of source program’s
behavior sets to the target program’s behavior set.

• Semantic operators and the gamma function conform to the following algebraic properties:

∀#1 #2 �1 �2, #1 ⊆ #2 ⇒ �1 ⊆ �2 ⇒ W (#1, �1) ⊆ W (#2, �2) (9)

∀#1 #2 �1 �2, #1 = #2 ⇒ �1 = �2 ⇒ W (#1, �1) = W (#2, �2) (10)

∀#1 #2 �1 �2, W (#1, �1) ∪ W (#2, �2) ⊆ W (#1 ∪ #2, �1 ∪ �2) (11)

∀# " �1 �2, W (#, �1) ◦ W (", �2) ⊆ W (# ◦", �1 ∪ # ◦ �2) (12)

∀# " �1 �2, `G .W (", �2) ∪ W (#, �1) ◦ G ⊆

W (`G ." ∪ # ◦ G, `G .(�1 ∪ �2) ∪ # ◦ G)
(13)

∀# " �1 �2, aG .W (",�2) ∪ W (#, �1) ◦ G ⊆

W (aG ." ∪ # ◦ G, `G .(�1 ∪ �2) ∪ # ◦ G)
(14)

Properties (9) and (10) indicate the gamma function are monotonic and congruent; properties
(11) ∼ (14) mean that the gamma function is homomorphic in terms of the union operator, the
composition operator, the least and greatest fixed points, which are respectively named as the
union-inclusion property, the composition-inclusion property, the least- and greatest-fixed-point-
inclusion property. Besides, for behaviors with event trace, the gamma function should also enjoy
the silent inclusion and non-silent inclusion properties shown as follows.

∀# �,△W (#, �) ⊆ W (△#, �) (15)

∀# �, NW (#, �) ⊆ W (N#, �) (16)

Instances of refinement algebra. We then explain how various behavior refinements shown
in §6.1 can be defined through the refinement algebra. The key to this is to find an appropriate
definition of gamma that makes all the algebraic properties hold. It’s worth noting that these alge-
braic properties can extremely help us to prove behavior refinement in an algebraically structured
way.

Denotation-based Compositional Compiler Verification 17

For Example 6.1, behavior sets4 N andD can be P(state× state), and W (#1, �1) , #1. Then the
behavior refinement JT (2)K ⊑ J2K in Example 6.1 is reinterpreted as:

JT (2)K.(nrm) ⊆ W (J2K.(nrm),∅) and JT (2)K.(dvg) ⊆ W (J2K.(dvg),∅)

To interpret the behavior refinement in Example 6.3, we define the gamma function as follows. Let
stateB and stateC be the set of source program states and that of target program states respectively.
For given sets #B ⊆ stateB × event

∗ × stateB and �B ⊆ stateB × event
∗,

∀(fC , g, f
′
C) ∈ W (#B , �B) iff ∀F fB , (fB , fC) ∈ '(F) ⇒

(∃F ′ f ′
B , (fB , g, f

′
B) ∈ #B ∧F {, F ′ ∧ (f ′

B , f
′
C) ∈ '(F ′)) ∨

(∃g0, (fB , g0) ∈ �B ∧ g0 6) g) .

Here the gamma instance is parameterized with a Kripke relation K, (stateB , stateC) for relating
the source and the target program states. We have formally proved in Coq that the gamma func-
tion defined here satisfies all the algebraic properties listed above. Then the behavior refinement
JCKjC ⊑nrm JBKjB shown in Fig. 6b can be redefined as:

JCKjC .(nrm) ⊆ W (JBKjB .(nrm), JBKjB .(err))

The refinement of other behaviors (e.g., the diverging behavior) shown in §5 can be interpreted
with the refinement algebra in a similar way, based on which, we next show the refinement of
denotations for CompCert front-end languages.

Definition 6.5 (Refinement between statement denotations). Given natural numbers5 =1 , =2 and
the aborting behavior of external functions j4 ⊆ call_info × event∗. A denotation �2 of Cshm.Denote
is said to be a refinement of a denotation �1 of Clit.Denote, written as �2 -(=1 ,=2 ,j4) �1 if and only
if:

�2.(nrm) ⊆ W (�1 .(nrm), �1.(err) ∪ �1 .(cll) ◦ j4)

�2.(blk)=1 ⊆ W (�1 .(brk), �1 .(err) ∪ �1 .(cll) ◦ j4)

�2.(blk)=2 ⊆ W (�1.(ctn), �1 .(err) ∪ �1 .(cll) ◦ j4)

�2.(fin_dvg) ⊆ W (�1 .(fin_dvg), �1 .(err) ∪ �1.(cll) ◦ j4)

�2.(inf_dvg) ⊆ W (�1 .(inf_dvg), �1 .(err) ∪ �1.(cll) ◦ j4)

Here, we mainly list the refinement for terminating behaviors, control-flow-related behaviors,
and diverging behaviors of Clight and Csharpminor statements for simplicity. In addition, for the
translation of Csharpminor statements to Cminor statements, the refinement between a denotation
�3 of Cmin.Denote and �2 of Cshm.Denote is defined similarly (see appendix D for details).

The definition of refinement between function denotations shown as follows is similar to the
definition of refinement between statement denotations.

Definition 6.6 (Refinement between function denotations). Let Φ1 and Φ2 be the denotation of
source functions and that of target functions respectively. Φ2 is said to be a refinement of Φ1,
written as Φ2 ⊑ Φ1 if and only if for any jC , j= and j4 such that jC ⊆ W (j=, j4), the following
conditions hold, where �1 = (Φ1)jB and �2 = (Φ2)jC :

�2.(dom) = �1 .(dom), where dom is the set of function names

�2.(nrm) ⊆ W (�1 .(nrm), �1.(err) ∪ �1 .(cll) ◦ j4)

4Here behavior set E can be ignored, since aborting behavior is not considered in this trivial example.
5Natural numbers=1 and=2 are arguments of the CSharpMinorGen transformation in CompCert, which are used to count

the exiting number from nested blocks (i.e., exit =1 and exit =2 compiled from break and continue respectively).

18 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

�2.(fin_dvg) ⊆ W (�1 .(fin_dvg), �1 .(err) ∪ �1.(cll) ◦ j4)

�2.(inf_dvg) ⊆ W (�1 .(inf_dvg), �1 .(err) ∪ �1.(cll) ◦ j4)

6.3 Module-level Compositionality

Based on the definition of refinement between function denotations, we then have the following
results, where Lemma 6.7 helps derive the refinement of modules from the refinement of functions,
Thm. 6.8 is used to compose the correctness of each compilation phase, and Thm. 6.9 shows the
correctness of module-level compositionality.
Specifically, in our implementation, we follow Koenig et al.’s approach [Koenig and Shao 2021;

Zhang et al. 2023] to support vertical compositionality and use denotation-based semantic linking
along with fixed-point-related theorems to support horizontal compositionality.

Lemma 6.7. For any modules"B and "C , if L"C M ⊑ L"BM, then J"C K ⊑ J"BK.

Theorem 6.8 (Vertical compositionality). For any modules "1, "2 and "3, if J"1K ⊑ J"2K
and J"2K ⊑ J"3K, then J"1K ⊑ J"3K.

Theorem 6.9 (Horizontal compositionality). For any modules)1,)2, (1 and (2, if J)1K ⊑ J(1K
and J)2K ⊑ J(2K, then J)1K ⊕ J)2K ⊑ J(1K ⊕ J(2K.

Finally, by the horizontal compositionality (Thm. 6.9) and the equivalence between semantic
linking and syntactic linking (Thm. 4.1), we have the following separate compilation correctness.

Corollary 6.10 (Separate compilation). For any modules)1,)2, (1 and (2, if J)1K ⊑ J(1K and
J)2K ⊑ J(2K, then J)1 +)2K ⊑ J(1 + (2K.

7 COMPILATION CORRECTNESS

Translation Correctness from Clight to Csharpminor. Let T1 be the partial function trans-
lating a Clight statement to a Csharpminor statement (a translation example is shown in Fig. 2) and
T2 translating a Clight function to a Csharpminor function. Then we have the following results.

Lemma 7.1. For any natural numbers6 =1 , =2 such that =1 ≠ =2 , and behaviors jC , jB , j4 such that
jC ⊆ W (jB , j4), and for any Clight statement B and Csharpminor statement D,

if T1(=1, =2 , B) = succeed(D), then JDKjC -(=1,12 ,j4) JBKjB

Proof. By taking induction on statement B , we obtain proof obligations asserting that for every
syntactic construct of B , if each of its substructures satisfies the statement refinement relation with
the compiled one, so does statement B .
As an illustration, we show one of the interesting proof obligations—when B is a sequential

statement (B1; B2). Since T1(=1, =2 , B1; B2) = succeed(D), then T1(=1, =2 , B1) = succeed(D1) and
T1(=1 , =2 , B2) = succeed(D2). The proof obligation is to show:

JD1KjC -(=1 ,12 ,j4) JB1KjB ⇒ JD2KjC -(=1 ,12 ,j4) JB2KjB ⇒

JD1;D2KjC -(=1 ,12 ,j4) JB1; B2KjB

For simplicity, let #8 , �8 and �8 respectively represent JB8KjB .(nrm), JB8KjB .(err) and JB8KjB .(cll) for
8 = 1, 2. Then according to Def. 6.5, the terminating case is to show:

JD1;D2KjC .(nrm) = JD1KjC .(nrm) ◦ JD2KjC .(nrm) (17)

⊆ W (#1, �1 ∪�1 ◦ j4) ◦ W (#2, �2 ∪�2 ◦ j4) (18)

6Clight statements break and continue are compiled into Csharpminor’s (exit =1) and (exit =2) respectively.

Denotation-based Compositional Compiler Verification 19

⊆ W (#1 ◦ #2, (�1 ∪�1 ◦ j4) ∪ #1 ◦ (�2 ∪�2 ◦ j4)) (19)

⊆ W (#1 ◦ #2, (�1 ∪ #1 ◦ �2) ∪ (�1 ∪ #1 ◦�2) ◦ j4) (20)

= W (JB1; B2KjB .(nrm), JB1; B2KjB .(err) ∪ JB1; B2KjB .(cll) ◦ j4) (21)

The equivalence in (17) and between (20) ∼ (21) are deduced by definition. The inclusion between
(17) and (18) is deduced by the first and second induction hypotheses. The inclusion between (18)
and (19) is deduced by the composition-inclusion property of the gamma function. The inclusion
between (19) and (20) is deduced by the associative and distributive law of sequential composition
and the commutative law of set union. Thus, the refinement of terminating behavior is proved.
The refinement of diverging behavior for sequential statements can be proved in a similar way
where the union inclusion of the gamma function will be used additionally.

It’s worth noting that when B is an atomic statement (e.g., an assignment statement), the origi-
nal CompCert proof is reused. Other proof obligations for the induction like the refinement for
loop statements are also proved by the same technique, where properties including the least-
and greatest-fixed-point-inclusion, silent and non-silent inclusion of the gamma function will be
used. �

Theorem 7.2. For any Clight function �B and Csharpminor function �D ,

if T2 (�B) = succeed(�D), then J�DK ⊑ J�BK

Remark that Thm. 7.2 is deduced from the translation correctness of Clight statements (i.e.,
Lemma 7.1), and the original CompCert proof is reused for verifying the translation of initialization
when entering the function and the translation of memory freeing when leaving the function.

Translation Correctness from Csharpminor to Cminor. Let T ′
2 be the partial function of

CompCert translating a Csharpminor function to a Cminor function. Similarly, we have the fol-
lowing results for the second compilation phase.

Theorem 7.3. For any Csharpminor function �D and Cminor function �C ,

if T ′
2 (�D) = succeed(�C), then J�C K ⊑ J�DK

Summary. In our framework, almost all the proofs (including proofs of all the theorems in §6.3
and in this section) have the following main proof steps (as shown in the proof of Lemma 7.1):

• By gamma’s algebraic properties listed in (9) ∼ (14), the behavior refinements of substruc-
tures are composed into an overall refinement, without unfolding the concrete definition
of gamma (except for proofs for atomic statements);

• By the properties of semantic operators ∪, ◦, and fixed points, proofs are finished in a
purely relational subsystem like the deduction from (19) to (20) in Lemma 7.1.

Finally, by Thm. 7.2, Thm. 7.3, Thm. 6.9 and Thm. 4.1, our final theorem is shown as follows:

Theorem 7.4 (Final theorem). For any Clight module (1, . . . , (= and Cminor module)1, . . . ,)= ,
if)8 is successfully compiled from (8 by the CompCert front-end for each 8 , then

J)1 + · · · +)=K ⊑ J(1K ⊕ · · · ⊕ J(=K

8 COMPARISON WITH PREVIOUS WORK

Compositional compiler verification has been an important research topic for a long time, as ev-
idenced by extensive research efforts such as Beringer et al. [2014], Ramananandro et al. [2015],
Stewart et al. [2015], Song et al. [2020], Koenig and Shao [2021], Zhang et al. [2023].

20 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

?1

T(?1)

� � �' '

(a) Refinment in Small-step Semantics

?1

T(?1)

jB

jC

J"B KjB

J"C KjC

⊑ ⊑

(b) Refinement in Denotational Semantics

Fig. 7. Comparison between the refinement process for small-step semantics and that for denotational se-

mantics, where ' and� respectively represent rely and guarantee conditions, vertical curved arrows denote

the matching relation between the source and the target program states held throughout the execution, and

vertical shaded arrows denote the refinement between function denotations.

The common style of developing compositional semantics for supporting module-level compo-
sitionality is based on small-step semantics (including Beringer et al. [2014], Stewart et al. [2015],
Song et al. [2020], Koenig and Shao [2021], Zhang et al. [2023]), in which the description of behav-
ior refinement must introduce extra mechanisms to capture inter-module function calls. Because
C functions in a module can both be called by other modules and call other modules, a C module’s
compilation correctness described by small-step semantics looks like the following, as shown in
Fig. 7a:

• If an incoming call in the target language corresponds to a call in the source language
(i.e., the arguments and programs states match with each other), then the first outgoing
calls would match; and further, if the returned value and program states of these two first
outgoing calls match with each other, then the second outgoing calls would match, etc.
until the original incoming call returns.

• For horizontal compositionality, the compilation correctness of internal functions relies on
external calls satisfying certain well-behavedness conditions (known as rely-conditions;
e.g., external calls do not modify the private memory of callers). In turn, the execution of in-
ternal functions itself guarantees some well-behavedness conditions (known as guarantee-
conditions, e.g., they do not modify the private memory of their calling environments).

In contrast, the definition of our behavior refinement is much different. Since the behavior of
open modules is modeled as a function from callee’s denotation to caller’s denotation, i.e., the
behavior of every external call is interpreted by semantic oracle jB (for the source module) and
jC (for the target module), our compilation correctness is described as (shown in Fig. 7b): if the
behavior of external source functions is refined by the behavior of external source functions, then
the denotation of source module is refined by the denotation of the compiled target module. The
refinement of semantic oracles (i.e., callee’s behavior) provides rely conditions for the refinement
of caller’s behavior, and the refinement of caller’s behavior itself satisfies guarantee conditions.
Ramananandro et al. [2015] develop a compositional semantics on top of small-step semantics

by modeling the behavior of external function calls as special events. Such a special event records
the function name and the memory state before and after the external call. When composing the
denotation of multiple functions, one has to interpret these special traces, in which when an ex-
ternal function is called, instead of asking an oracle to obtain its semantics, the special event trace
of the invoked function is used to interpret it, and so on. For example, consider two procedures

Denotation-based Compositional Compiler Verification 21

? and @ that form two separate modules and do not use any memory state for simplicity. If the
behavior of ? is sequentially calling @ three times, and the behavior of @ is sequentially outputting
zero for two times, then their semantics can be J?K = Extcall(@)::Extcall(@)::Extcall(@)::nil and J@K
= OUT(0)::OUT(0)::nil, where Extcall(@) is a special event and OUT(0) is the original event of Com-
pCert. After the semantic linking, the behavior of ? would be outputting zero for six times, i.e.,
OUT(0)::OUT(0)::OUT(0)::OUT(0)::OUT(0)::OUT(0)::nil. That is, they compose semantics by replacing special
events (based on the small-step semantics of CompCert), which can be viewed as progressing incre-
mentally over the program’s execution time. The key to proving behavior refinement for them is
to establish the correspondence between events step by step. Therefore, their main proof structure
is similar to that of small-step semantics.
Interaction tree [Xia et al. 2020] also provides a denotational approach for modeling recursive,

effectual computations that can interact with their environment. Much different from the textbook
denotational semantics and the denotational semantics used in this paper, interaction trees are ex-
ecutable via code extraction, making them suitable for debugging, testing, and implementing soft-
ware artifacts. Defining refinement (a.k.a. weak simulation) in interaction trees uses coinduction
(similar to the greatest fixed point used in this paper). In comparison, our formalization directly
uses event trace to caption observable behaviors.

9 RELATED WORK

Denotational semantics. The foundational work of Dana Scott andChristopher Strachey [Scott
1970; Scott and Strachey 1971] in domain theory provides a mathematical framework for the deno-
tational semantics of deterministic programs. Following their work, later efforts [Apt and Plotkin
1981; Back 1983; Broy et al. 1978; Park 1979] attempt to extend the framework for supporting non-
deterministic programs, especially programs that can produce an infinite number of different re-
sults and yet be certain to terminate. Among them, Back [Back 1983] describes a path semantics
for nondeterministic assignment statements indicated by semantic models described for CSP pro-
grams [Francez et al. 1979] and data flow programs [Kosinki 1978] based on paths; the relational
style of denotational definition in this paper is inspired from the relational semantics proposed
by Park et al. [Park 1979], which originally aims to address unbounded nondeterminism in the
fair scheduling problem. This means that although each intermediate language of CompCert is
deterministic, our implementation is also available for non-deterministic programs. Most recently,
denotational semantics is also adapted to build the semantic model of probabilistic programming
languages such as Barthe et al. [2018] and Wang et al. [2019a].

Compositional compiler verification. To our surprise, despite the long history of research
on denotational semantics and its good compositionality, very little work has actually applied it
to scenarios of realistic compiler verification. Many existing work has extended the small-step
semantics of CompCert for supporting cross-module semantic linking. Among them, Ramananan-
dro et al. [Ramananandro et al. 2015] model the behavior of external function calls as a special
event recording the function name and memory states before and after function calls so as to
signal state transitions made by the environment and then big-step the small-step semantics to
obtain the compositional semantics for semantic linking. Beringer et al. [Beringer et al. 2014] pro-
pose a novel interaction model, called core semantics (also known as interaction semantics), that
describes communication between a local thread with its environment, which is widely used by
later efforts such as CompComp, i.e., Compositional CompCert [Stewart et al. 2015], CompCertM
[Song et al. 2020] and CASCompCert [Jiang et al. 2019]. Specifically, with the interaction seman-
tics, CompComp proves a general correctness result for semantic linking where programs can be

22 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

written with heterogeneous languages such as C and assembly code. However, to achieve horizon-
tal (module-level) and vertical compositionality, it introduces complicated structured simulations
which require a large number of changes to the original proofs of CompCert.

Compared to CompComp, SepCompCert [Kang et al. 2016] greatly reduces the complexity of
proofs by limiting all sourcemodules to be compiled by the same compiler. Furthermore, both Com-
pCertM [Song et al. 2020] and CompCertO [Koenig and Shao 2021] have developed a lightweight
verification technique for supporting semantic linking of heterogeneous languages. CompCertM
proposes a RUSC (Refinement Under Self-related Contexts) theory for composing two open simu-
lations together, while CompCertO characterizes compiled program components directly in terms
of their interaction with each other and achieves compositionality through a careful and composi-
tional treatment of calling conventions. Recently, Zhang et al. [Zhang et al. 2023] have proposed
an fully composable and adequate approach to verified compilation with direct refinements be-
tween open modules based on CompCertO. We believe that their approach to handling calling
conventions of heterogeneous languages can be applied to our framework.
Daniel Patterson and Amal Ahmed [Patterson and Ahmed 2019] make a comprehensive conclu-

sion of compositional compiler correctness. They take existing compiler correctness theorems as
a spectrum which ranges from CompCert, SepCompCert, CompCertX [Gu et al. 2015; Wang et al.
2019b], CompCompup to compilers verifiedwithmulti-language technique. Kumar et al. [Kumar et al.
2014] have formally verified a compiler for a functional language called CakeML, which is origi-
nally based on big-step semantics. We believe that our approach can also be used for it.

Relationship between unified semantic operators and Kleene algebra. A Kleene algebra
(KA) [Kozen 1994] is a tuple (�,+, ·, 0, 1) together with a unary operator ∗ : � → � satisfying cer-
tain axioms (e.g., the associative law and commutative law of +), where� is a carrier set containing
identity elements 0 (for binary operator + : � ×� → �) and 1 (for binary operator ·: � ×� → �).
In fact, the semantic operators ∪, ◦,∅,1 defined in §2 almost form a Kleene algebra on a seman-

tic domain � , i.e., (�,∪, ◦,∅,1) as long as we define '∗ , '0∪'∪' ◦' ∪ ...∪'= , so that semantic
equivalence can be verified in a purely equational subsystem using the axioms of Kleene algebra.
Besides, the test operator, as an essential ingredient for modeling conventional programming con-
structs such as conditionals and while loops, is also widely used in extensions of Kleene algebra
(known as Kleene algebra with test [Kozen and Patron 2000; Kozen and Smith 1996]).

We use Kleene fixed point to define the terminating behavior of a program instead of the asterisk
form (i.e., ∗), since in addition to dealing with termination as traditional Kleene algebras do, we also
need to deal with divergence, and we find that separately using Kleene fixed point and Knaster-
Tarski fixed point to define termination and divergence would be better.

10 CONCLUSION

We have proposed a denotation-based framework for compositional compiler verification, which
we conclude in the following three aspects.

• Semantic definitions. We extend relational semantics to realistic settings in an easy-to-
formal manner, and propose unified set operators for better proof reuse, thus solving the
limitations of traditional powerdomains in compiler verification scenarios. More impor-
tantly, we define a novel semantic linking operator based on fixed-point theorems, such
that its equivalence with syntactic linking is reduced into concise fixed-point properties.

• Behavior refinements.Wepropose a refinement algebra to unify various forms of refinement
relations, and algebraically verify compiler correctness in a unified framework.

Denotation-based Compositional Compiler Verification 23

• Applications. We define the denotational semantics for the front-end languages of Com-
pCert, reprove the compilation correctness from Clight to Cminor, and support module-
level compositionality in a language-independent way.

24 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

REFERENCES

Krzysztof R Apt and Gordon D Plotkin. 1981. A Cook’s tour of countable nondeterminism. In International Colloquium on

Automata, Languages, and Programming. Springer, 479–494.

Ralph-Johan Back. 1983. A Continuous Semantics for Unbounded Nondeterminism. Theor. Comput. Sci. 23 (1983), 187–210.

https://doi.org/10.1016/0304-3975(83)90055-5

Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. An Assertion-

Based Program Logic for Probabilistic Programs. In Programming Languages and Systems - 27th European Symposium

on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10801), Amal Ahmed

(Ed.). Springer, 117–144. https://doi.org/10.1007/978-3-319-89884-1_5

Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W. Appel. 2014. Verified Compilation for Shared-

Memory C. In Programming Languages and Systems - 23rd European Symposium on Programming, ESOP 2014,

Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,

April 5-13, 2014, Proceedings (Lecture Notes in Computer Science, Vol. 8410), Zhong Shao (Ed.). Springer, 107–127.

https://doi.org/10.1007/978-3-642-54833-8_7

Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal Verification of a C Compiler Front-End. In FM 2006:

Formal Methods, 14th International Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006, Proceedings

(Lecture Notes in Computer Science, Vol. 4085), Jayadev Misra, Tobias Nipkow, and Emil Sekerinski (Eds.). Springer, 460–

475. https://doi.org/10.1007/11813040_31

Manfred Broy, Rupert Gnatz, and Martin Wirsing. 1978. Semantics of Nondeterministic and Noncontinuous Con-

structs. In Program Construction, International Summer School, July 26 - August 6, 1978, Marktoberdorf, Germany

(Lecture Notes in Computer Science, Vol. 69), Friedrich L. Bauer and Manfred Broy (Eds.). Springer, 553–592.

https://doi.org/10.1007/BFb0014683

Nissim Francez, C. A. R. Hoare, Daniel J. Lehmann, and Willem P. de Roever. 1979. Semantics of Nondeterminism, Concur-

rency, and Communication. J. Comput. Syst. Sci. 19, 3 (1979), 290–308. https://doi.org/10.1016/0022-0000(79)90006-0

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,

Sriram K. Rajamani and David Walker (Eds.). ACM, 595–608. https://doi.org/10.1145/2676726.2676975

Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards certified separate compilation

for concurrent programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM,

111–125. https://doi.org/10.1145/3314221.3314595

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight verification of

separate compilation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM,

178–190. https://doi.org/10.1145/2837614.2837642

Jérémie Koenig and Zhong Shao. 2021. CompCertO: compiling certified open C components. In PLDI ’21: 42nd ACM

SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June

20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 1095–1109. https://doi.org/10.1145/3453483.3454097

Paul R. Kosinki. 1978. A Straightforward Denotational Semantics for Non-Determinant Data Flow Programs. In

Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages, Tucson, Arizona,

USA, January 1978, Alfred V. Aho, Stephen N. Zilles, and Thomas G. Szymanski (Eds.). ACM Press, 214–221.

https://doi.org/10.1145/512760.512783

Dexter Kozen. 1994. A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Inf. Comput. 110, 2

(1994), 366–390. https://doi.org/10.1006/INCO.1994.1037

Dexter Kozen and Maria-Christina Patron. 2000. Certification of Compiler Optimizations Using Kleene Algebra with

Tests. In Computational Logic - CL 2000, First International Conference, London, UK, 24-28 July, 2000, Proceedings (Lec-

ture Notes in Computer Science, Vol. 1861), John W. Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber, Kung-

Kiu Lau, Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey (Eds.). Springer, 568–582.

https://doi.org/10.1007/3-540-44957-4_38

Dexter Kozen and Frederick Smith. 1996. Kleene Algebra with Tests: Completeness and Decidability. In Computer Science

Logic, 10th International Workshop, CSL ’96, Annual Conference of the EACSL, Utrecht, The Netherlands, September 21-27,

1996, Selected Papers (Lecture Notes in Computer Science, Vol. 1258), Dirk van Dalen and Marc Bezem (Eds.). Springer,

244–259. https://doi.org/10.1007/3-540-63172-0_43

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implemen-

tation of ML. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

https://doi.org/10.1016/0304-3975(83)90055-5
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-642-54833-8_7
https://doi.org/10.1007/11813040_31
https://doi.org/10.1007/BFb0014683
https://doi.org/10.1016/0022-0000(79)90006-0
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1145/2837614.2837642
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/512760.512783
https://doi.org/10.1006/INCO.1994.1037
https://doi.org/10.1007/3-540-44957-4_38
https://doi.org/10.1007/3-540-63172-0_43

Denotation-based Compositional Compiler Verification 25

POPL ’14, San Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 179–192.

https://doi.org/10.1145/2535838.2535841

Xavier Leroy. 2009a. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115.

https://doi.org/10.1145/1538788.1538814

Xavier Leroy. 2009b. A Formally Verified Compiler Back-end. J. Autom. Reason. 43, 4 (2009), 363–446.

https://doi.org/10.1007/s10817-009-9155-4

DavidMichael Ritchie Park. 1979. On the Semantics of Fair Parallelism. InAbstract Software Specifications, 1979 Copenhagen

Winter School, January 22 - February 2, 1979, Proceedings (Lecture Notes in Computer Science, Vol. 86), Dines Bjørner (Ed.).

Springer, 504–526. https://doi.org/10.1007/3-540-10007-5_47

Daniel Patterson and Amal Ahmed. 2019. The next 700 compiler correctness theorems (functional pearl). Proc. ACM

Program. Lang. 3, ICFP (2019), 85:1–85:29. https://doi.org/10.1145/3341689

Gordon Plotkin. 1983. Domains. University of Edinburgh (1983).

Gordon D. Plotkin. 1976. A Powerdomain Construction. SIAM J. Comput. 5, 3 (1976), 452–487.

https://doi.org/10.1137/0205035

Tahina Ramananandro, Zhong Shao, Shu-Chun Weng, Jérémie Koenig, and Yuchen Fu. 2015. A Compositional Se-

mantics for Verified Separate Compilation and Linking. In Proceedings of the 2015 Conference on Certified Pro-

grams and Proofs, CPP 2015, Mumbai, India, January 15-17, 2015, Xavier Leroy and Alwen Tiu (Eds.). ACM, 3–14.

https://doi.org/10.1145/2676724.2693167

Dana Scott. 1970. Outline of amathematical theory of computation. Oxford University Computing Laboratory, Programming

Research Group Oxford.

Dana S Scott and Christopher Strachey. 1971. Toward a mathematical semantics for computer languages. Vol. 1. Oxford

University Computing Laboratory, Programming Research Group Oxford.

Michael B. Smyth. 1978. Power Domains. J. Comput. Syst. Sci. 16, 1 (1978), 23–36.

https://doi.org/10.1016/0022-0000(78)90048-X

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2020. CompCertM: CompCert

with C-assembly linking and lightweight modular verification. Proc. ACM Program. Lang. 4, POPL (2020), 23:1–23:31.

https://doi.org/10.1145/3371091

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert.

In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 275–287.

https://doi.org/10.1145/2676726.2676985

Di Wang, Jan Hoffmann, and Thomas W. Reps. 2019a. A Denotational Semantics for Low-Level Probabilistic Programs

with Nondeterminism. In Proceedings of the Thirty-Fifth Conference on the Mathematical Foundations of Programming

Semantics, MFPS 2019, London, UK, June 4-7, 2019 (Electronic Notes in Theoretical Computer Science, Vol. 347), Barbara

König (Ed.). Elsevier, 303–324. https://doi.org/10.1016/J.ENTCS.2019.09.016

YutingWang, PierreWilke, and Zhong Shao. 2019b. An abstract stack based approach to verified compositional compilation

to machine code. Proc. ACM Program. Lang. 3, POPL (2019), 62:1–62:30. https://doi.org/10.1145/3290375

Glynn Winskel. 1985. On Powerdomains and Modality. Theor. Comput. Sci. 36 (1985), 127–137.

https://doi.org/10.1016/0304-3975(85)90037-4

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2020.

Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL (2020), 51:1–

51:32. https://doi.org/10.1145/3371119

Ling Zhang, Yuting Wang, Jérémie Koenig, and Zhong Shao. 2023. A Bottom-Up Approach to a Unified Semantic Inter-

face for Verified Compositional Compilation. CoRR abs/2302.12990 (2023). https://doi.org/10.48550/arXiv.2302.12990

arXiv:2302.12990

https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/3-540-10007-5_47
https://doi.org/10.1145/3341689
https://doi.org/10.1137/0205035
https://doi.org/10.1145/2676724.2693167
https://doi.org/10.1016/0022-0000(78)90048-X
https://doi.org/10.1145/3371091
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1016/J.ENTCS.2019.09.016
https://doi.org/10.1145/3290375
https://doi.org/10.1016/0304-3975(85)90037-4
https://doi.org/10.1145/3371119
https://doi.org/10.48550/arXiv.2302.12990
https://arxiv.org/abs/2302.12990

26 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

A SEMANTIC ANALYSIS FOR WHILE LOOPS

A.1 Nondeterminism and Powerdomains

The semantics of non-deterministic programs is given by a recursively defined function mapping
to a subset of domain � , where � contains interpretations of all possible running results. To apply
the least fixed point theorem for continuous functions onCPOs, researchers have proposed various
powerdomain constructions from the ground domain � so as to augment the system of domains
used in the Scott-Strachey style of description. Consider a flat domain (�, 6�), satisfying for any
G and ~ in � ,

G 6� ~ ⇔ (G = ⊥ ∨ G = ~)

A powerdomain of � , written M(�), is a complete poset involving the subsets of the ground
domain� and a new partial order ⊑ on these subsets. For any- and. inM(�), there are generally
three natural ways to construct a new ordering:

- ⊑0 . ⇔ ∀G ∈ -,∃~ ∈ ., G 6� ~

- ⊑1 . ⇔ ∀~ ∈ ., ∃G ∈ -, G 6� ~

- ⊑2 . ⇔ (∀G ∈ -, ∃~ ∈ ., G 6� ~) ∧ (∀~ ∈ ., ∃G ∈ -, G 6� ~)

The Hoare powerdomain. The Hoare powerdomain is established with the first ordering ⊑0

meaning that everything - can do, . can do better. However, this ordering is just a preorder but
not a partial order since it fails antisymmetry. An appropriate solution is to define an equivalence
relation: - ∼ . iff - ⊑0 . and . ⊑0 - . Thus, every set - in M(�) is equivalent to its downward
closure, written ↓ - :

↓ - , {G0 ∈ � | ∃G ∈ -, G0 6� G}

In particular, a downward closed set is called a downset, i.e., ↓ - = - . The Hoare powerdomain
focuses just on the downsets as being themeaningful sets onwhichwewill reach an angelic seman-
tics for nondeterminism, since the downsets always include element ⊥. That is, in the following
example, program 1 and 3 will have the same semantics.

Example A.1. Let anynat() produce a natural number nondeterministlcally and consider the fol-
lowing four programs in WHILE:

1. skip

2. while true do skip

3. choice (while true do skip) skip

4. while (y == 2 | | x > 0) do

if (y == 2)

then y = 1; x = anynat()

else x = x − 1

The Smyth powerdomain. In contrast, the Smyth powerdomain is obtained from the preorder
⊑1 which says that everything . can do is approximated by some behavior of - . Likewise with
this ordering every set - in M(�) is equivalent to its upward closure, written ↑ - :

↑ - , {G0 ∈ � | ∃G ∈ -, G 6� G0}

The elements of the Smyth powerdomain are at least upward closed sets (upsets). As a result, we
will achieve a demonic semantics since any program that can diverge has the semantics ↑ {⊥} = � .
For instance, programs 2 and 3 will have the same semantics under this powerdomain.

The Plotkin powerdomain. The Plotkin powerdomain uses the intersection of the first two
orderings, which is also known as the Egli-Milner ordering. With this ordering, every set - in
M(�) is equivalent to its convex closure:

2>=E (-) , {G1 ∈ � | ∃G0, G2 ∈ -, G0 6� G1 6� G2}

Denotation-based Compositional Compiler Verification 27

The elements of the Plotkin powerdomain are sets closed under the addition of all intermediate
elements. With this powerdomain all the first three programs in Example A.1 will have different
meanings as one would expect. However, some constructs like program 4 that can produce infin-
itely many different results and yet be certain to terminate, i.e., unbounded nondeterminism, are
excluded (see [Back 1983] for details). In other words, the semantics obtained from the Plotkin
powerdomain is limited to settings where the execution of a program only can produce a finite
number of different results, or otherwise the execution may not terminate.
As is indicated in the introduction, none of the three powerdomains is perfect and can be used to

define denotational semantics for compiler verification. Park [Park 1979] pointed out that this does
not at all rule out denotations obtained as subsets of domains and what seems to require careful
formulation is the problem of choosing appropriate domains for use. As suggested by Park, we
adapt the relational semantics and formalize it as denotations composed of multiple sets, making
the algebraic ideas as accessible as possible.

A.2 Semantics of the While Statement

Firstly, consider the denotation of termination case for the while statement with the function 5 :

5 (G) = test(J4K.(ffs)) ∪ test(J4K.(tts)) ◦ J2K.(nrm) ◦ G

Then we know Jwhile 4 do 2K.(nrm) will be a fixed point of 5 , i.e.,

Jwhile 4 do 2K.(nrm) = test(J4K.(ffs)) ∪ test(J4K.(tts)) ◦ J2K.(nrm) ◦ (Jwhile 4 do 2K.(nrm))

It indicates that for any (f0, f) ∈ Jwhile 4 do 2K.(nrm), either f0 ∈ J4K.(ffs) and f = f0, or there
exists f1 such that executing the loop body one time from f0 reaches f1 and restarting the cycle
from f1 finally reaches f , i.e., (f1, f) ∈ Jwhile 4 do 2K.(nrm).
For any fixed point - of 5 , i.e., - = 5 (-), we then analyse the properties that - should have.

Consider an initial state f0 ∈ state, and we have:

• If f0 does not satisfy 4 , i.e., f0 ∈ J4K.(ffs), then (1) (f0, f0) ∈ test(J4K.(ffs)), (2) for any
f ≠ f0, (f0, f) ∉ test(J4K.(ffs)), and (3) for any f, (f0, f) ∉ test(J4K.(tts)). That is, if
f0 ∈ J4K.(ffs), then ∀f ∈ state, (f0, f) ∈ - iff f = f0.

• If f0 satisfies 4 , namely f0 ∈ J4K.(tts), and the while loop ends at state f= normally after
executing the loop body = (= > 0) times, then ∀f ∈ state, (f0, f) ∈ - iff f = f=.

The two cases indicate that in the termination case, any fixed point of 5 can capture the expected
meanings of the while statement. If the while loop does not terminate, we expect that there will
not exist any f s.t. (f0, f) ∈ - . For example, we expect the program 2 in Example A.1 to satisfy
Jwhile true do skipK.(nrm) = ∅, though in this case 5 (G) = ∅ ∪ 1 ◦ 1 ◦ G = G and any subset of
binary relations on state will be its fixed point. This indicates the Jwhile 4 do 2K.(nrm) should be
defined as the least fixed point of function of 5 .
Secondly, considering the denotation of diverging case with the function 6:

6(G) = test(J4K.(tts)) ◦
(

J2K.(dvg) ∪ J2K.(nrm) ◦ G
)

Obviously Jwhile 4 do 2K.(dvg) will be a fixed point of 6, i.e.,

Jwhile 4 do 2K.(dvg) = test(J4K.(tts)) ◦
(

J2K.(dvg) ∪ J2K.(nrm) ◦ Jwhile 4 do 2K.(dvg)
)

It means that for any f0 ∈ Jwhile 4 do 2K.(dvg), f0 can always pass through the loop condition
and then lead to divergence either by the execution of loop body or by the loop itself.
Then we analyse the properties of fixed points of 6. For any - such that - = 6(-),

• any state that does not satisfy 4 is not included by - , and then any state from which the
execution of the loop may terminate is excluded;

28 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

• for any f0 ∈ J4K.(tts), if f0 ∈ J2K.(dvg), then ∀f ∈ state ∈ - iff f = f0, and
• for any arriving state f= by executing the loop body = times from f0, if f= ∈ J4K.(tts) and
f= ∈ J2K.(dvg), then ∀f ∈ state, f ∈ - iff f = f= .

In summary, any fixed points of 6 can correctly classify the diverging behavior for the while state-
ment. However, most of them cannot totally cover the cases where the loop body terminate nor-
mally every time and yet the loop itself are not terminate. For example, in terms of program 2,
6(G) = 1◦ (∅∪1◦G) = G . Any subset of state will be a fixed point of it and what we really expect
for Jwhile true do skipK.(dvg) is the greatest one, namely the whole set state. This indicates the
Jwhile 4 do 2K.(dvg) should be defined as the greatest fixed point of function 6.

B SEMANTICS OF COMPCERT FRONT-END LANGUAGES

B.1 Languages and Semantic Domain

Syntax of Clight. The full syntax of Clight statements Clit.stmt, ranged over by B , can be found
in [Blazy et al. 2006] and we present what we are interested in as follows.

B , skip | B1; B2 | if(4) B1 else B2 | loop B1 B2 | call 83
? 4 4∗ |

break | continue | return 4? | switch 4 (>? : B)∗ | ...

5 , (parameter 838 of type c8)
∗ : return type c

{ (local addressable variable 83 9 of type c 9)
∗;

(local non-addressable variable 83: of type c:)
∗;

function body B5 }

Following Blazy et al’s convention, for a syntactic construct G here we use G? to denote the optional
occurrence of G and G∗ for zero or multiple times occurrence of G . All the above definitions are
self-explained except for the loop statement which will repeatedly execute B1 and then B2, and a
“continue” jump in B1 will branch to B2 such that the definition C loops can be derived from it. For
example, the for statement can be defined as:

for(B1; 4; B2) {B3} , B1; (loop (if (4) then skip else break); B3 B2)

Semantic domain for Clight. The program state of Clight Clit.state, as shown below, is de-
fined as the Cartesian product of the global environment Clit.genv, the local environment Clit.env,
the temporary environment tenv and the memory state mem whose definition is shared by all the
intermediate languages of CompCert. We refer to [Blazy et al. 2006; Leroy 2009b] for the details
of these notions.

Clit.state , Clit.genv × Clit.env × tenv × mem.

Clit.fstate , Clit.genv × mem.

call_info {fstate} , id × val∗ × fstate.

Eliminating the internal environment of a function, we obtain the set of function states Clit.fstate.
Similarly we will have Cshm.genv, Cshm.state, Cshm.fstate for Csharpminor and Cmin.genv, Cmin.state,
Cmin.fstate for Cminor, and the prefix name will be omitted if there is no ambiguity. The set of
calling information call_info is the Cartesian product of the set of function identifiers id, the set
of arguments val

∗ and the given function states set fstate, where val is the set of values ranging
over 32-bit integers, 64-bit floats, memory locations, and an undefined value that represents for
instance the value of uninitialized variables. Then the semantic domain for Clight statements is
shown as follows.

Record Clit.Denote: Type := {

Denotation-based Compositional Compiler Verification 29

nrm: state → event∗ → state → Prop;

brk: state → event∗ → state → Prop;

ctn: state → event∗ → state → Prop;

rtn: state → event∗ → state → val → Prop;

err: state → event∗ → Prop;

cll: state → event∗ → call_info → Prop;

fin_dvg: state → event∗ → Prop;

inf_dvg: state → event∞ → Prop

}.

Firstly, CompCert divides program behavior into four categories: terminating, aborting, silently
diverging, and reacting behavior. In our case, the first two are denoted by the sets nrm and err re-
spectively, and the latter two, to make it clearer, are called finite divergence and infinite divergence,
denoted by the sets fin_dvg and inf_dvg respectively. Secondly the sets brk, ctn, rtn are used to ma-
nipulate the control flow of Clight featured with break, continue, and return statements. This
means for any initial state f0, the execution of a fragment of Clight programs from f0 will even-
tually reach state f1 and then exit because of the break, continue, or return statement (with a
return value), producing a sequence of input-output events. Finally, the set cll denotes that execut-
ing the program from some f0 will reach a program point that generates a function call recorded
as an element of call_info.

Syntax of Csharpminor and Cminor. Csharpminor is an untyped low-level imperative lan-
guage featured with infinite loops, blocks and early block exits, and its syntax is shown as follows.

D , skip | D1;D2 | if(4) D1 else D2 | loop {D} | 83? = 4 (4∗) : B86 |

block{D} | exit(=) | return 4? | switch 1 4 (>? : D)∗ | ...

5 , (parameter 838)
∗ : signature B86

{ (local addressable variable 83 9 of size I 9)
∗;

(local non-addressable variable 83:)
∗;

function body D5 }

The syntax of Cminor is almost the same as that of Csharpminor. In addition to further converting
the switch statement into a simpler jump table form, the main feature of this language is the pre-
allocation of stack space for local addressable variables, as is shown below.

C , skip | C1; C2 | if(4) C1 else C2 | loop {C} | 83? = 4 (4∗) : B86 |

block{C} | exit(=) | return 4? | switch 1 4 C1; = | ...

5 , (parameter 838)
∗ : signature B86

{ stack size I; (local non-addressable variable 83:)
∗;

function body D5 }

Semantic domain for Csharpminor and Cminor. To this end, the Csharpminor and Cminor
enjoys the same form of denotation in which only their state sets differ.

Cshm.state , Cshm.genv × env × tenv × mem.

Cmin.state , Cmin.genv × val × tenv × mem.

Record Cshm.Denote: Type := {

nrm: state → event∗ → state → Prop;

blk: nat → state → event∗ → state → Prop; (* NEW *)

rtn: state → event∗ → state → val → Prop;

30 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

err: state → event∗ → Prop;

cll: state → event∗ → call_info → Prop;

fin_dvg: state → event∗ → Prop;

inf_dvg: state → event∞ → Prop

}.

Compared to Clight, the local environment of Csharpminor envmaps a local variable to its memory
locations only while that of Clightmaps a local variable to its block identifier and the data type of it.
For Cminor, since all local variables whose addresses are taken are stored on the stack, its program
states record the stack pointer of type val but no longer the local environment. In addition, the
control flow of them is structured with the block and exit statement. For instance, the execution
of statement block { block { B1; exit(1)}; B2}; B3 is equivalent to the execution of B1; B3 since the state-

ment exit(=) terminates prematurely the execution of the (=+1) layers of nested block statements.
This behavior is captured by the set blk, namely for any (=, f0, g, f1) ∈ blk, executing the program
from f0 will reach state f1 and = records the layers of nested blocks to exit. The meaning of other
fields are the same as that of Clight.

Record FDenote {F V A B C T}: Type := {

dom: F → Prop;

nrm: T → F → V∗ → A → B∗ → A → V → Prop;

err: T → F → V∗ → A → B∗ → Prop;

cll: T → F → V∗ → A → B∗ → C → Prop;

fin_dvg: T → F → V∗ → A → B∗ → Prop;

inf_dvg: T → F → V∗ → A → B∞ → Prop

}.

The denotation of functions are polymorphically defined by parameterizing the type of function
names F, the type of variable values V, the type of states A, the type of events B, the type of calling
information C and the type of normally terminating behavior of callees T. Thus, function denotation
for different languages can be instantiated from the FDenote. For instance, the denotation of Clight
functions is instantiated as:

TN { fstate } , id × val × fstate × event∗ × fstate × val.

Clit.FDenote , @FDenote id val Clit.fstate event (Clit.call_info (@TN Clit.fstate)).

Given the normally terminating behavior of callees, a function name in the set of valid names (i.e.,
dom) and its arguments, the function’s execution may either terminate with a return value (if not,
an undefined value will be returned), abort, finitely or infinitely diverge, and these behaviors are
captured by sets nrm, err, fin_dvg and inf_dvg of FDenote respectively.

B.2 Semantics of Clight

Traditionally, the semantic function for Clight statements C : stmt → TN→ Denote is parameterized
by callee’s behavior TN, written as JBKj for given statement B ∈ stmt and behavior j ⊆ TN. Let
1 , {(f, nil, f) | f ∈ state} and then we selectively list some key cases for the definition of C.
Among them, the cases of if and sequential statements are similar to those in theWHILE language,
and here we focus on the semantics of control flow, loops and function calls.

JskipKj .(nrm) , 1, and other fields are assigned the empty set.

JbreakKj .(brk) , 1, and other fields are assigned the empty set.

JcontinueKj .(ctn) , 1, and other fields are assigned the empty set.

#1 = JB1Kj .(nrm) ∪ JB1Kj .(ctn) #2 = #1 ◦ JB2Kj .(nrm)

Jloop B1 B2Kj .(brk) = Jloop B1 B2Kj .(ctn) , ∅

Denotation-based Compositional Compiler Verification 31

Jloop B1 B2Kj .(nrm) , `G .JB1Kj .(brk) ∪ #1 ◦ JB2Kj .(brk) ∪ #2 ◦ G

Jloop B1 B2Kj .(rtn) , `G .JB1Kj .(rtn) ∪ #1 ◦ JB2Kj .(rtn) ∪ #2 ◦ G

Firstly, for the denotation of the break (continue) statement, only the brk (ctn) field is a reflexive
relation, and other fields are assigned the empty set, which means that once a break (continue)
statement is encountered, the execution will end prematurely. It can be imaged that the denota-
tion of the return statement is defined in a similar way, except for coping with the return value
additionally.
Next we discuss the denotational semantics of Clight loops. For convenience, let #1 denote that

the loop body B1 either ends normally or prematurely due to a continue statement in B1 and #2

denote a “sequential” execution of the loop bodies B1 and B2. Since the loop itself will not induce the
statements following it to end prematurely, the brk and ctn fields of its denotation are both assigned
the empty set. The execution of loops will normally terminate because of a break statement in
either B1 or B2 after executing the loop body several times. In the same way, we can define the
denotation of exiting cases by a return statement.
The interesting cases are those for finitely diverging and infinitely diverging behavior of Clight

loops. We use silent and non-silent operators to explicitly filter silent and non-silent event traces
when defining the diverging behavior of Clight loops, as shown below: given sets �, �, and rela-
tions - ⊆ � × �∗ ×�, . ⊆ � × �∗,

N- , {(f, g, f ′) | (f, g, f ′) ∈ - ∧ g ≠ nil}

△- , {(f, g, f ′) | (f, g, f ′) ∈ - ∧ g = nil}

△. , {(f, g) | (f, g) ∈ . ∧ g = nil}

Then the diverging behavior of Clight loops is defined as follows.

Jloop B1 B2Kj .(fin_dvg) , `G .JB1Kj .(fin_dvg) ∪ #1 ◦ JB2Kj .(fin_dvg)

∪ △K ∪ #2 ◦ G

where K = aG .JB1Kj .(fin_dvg) ∪ #1 ◦ JB2Kj .(fin_dvg) ∪ #2 ◦ G

Jloop B1 B2Kj .(inf_dvg) , aG .B ◦D ∪ (B ◦ N#2) ◦ G

where B = `G .1 ∪ △#2 ◦ G, and

D = JB1Kj .(inf_dvg) ∪ #1 ◦ JB2Kj .(inf_dvg)

The former indicates that the loop, after being executed several times, will diverge since the loop
body B1 or B2 does, or the entire loop itself silently diverges. Let B denote the behavior of silently
executing the loop body a finite number of times, andD denote the non-silently diverging behavior
due to the execution of loop body B1 or B2. Then, the later indicates that either the loop body
diverges non-silently after executing it a finite number of times, or a non-silent event occurs after
executing the loop body a finite number of times and then this process repeats infinitely. As we
will see soon, defining the diverging behavior of recursive function calls suffers from the same
problem as that of loops when evaluating a module’s semantics in §B.4, and it is solved in the
same way.

Jcall 83? 4 4∗Kj .(nrm) , {((64 , ;4 , C4 ,<), g, (64 , ;4 , C
′
4 ,<

′)) | ∃ℎ E∗ A ,

(ℎ, E∗) ∈ eval_args(4, 4∗, (64 , ;4 , C4 ,<)) ∧

(ℎ, E∗, (64 ,<), g, (64 ,<
′), A) ∈ j ∧

C ′4 = set_temp(83?, A , C4) }

32 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

Jcall 83? 4 4∗Kj .(cll) , {((64 , ;4 , C4 ,<), nil, (ℎ, E∗, \)) | \ = (64 ,<) ∧

(ℎ, E∗) ∈ eval_args(4, 4∗, (64 , ;4 , C4 ,<))}

Last but not least, the normal termination of a call statement defined above means that starting
from the program state f = (64 , ;4 , C4 ,<), we first evaluate the function name and parameters
of the callee according to 4 and 4∗ respectively. Then by the denotation of callees j , we obtain
the function state (64 ,<

′) and the return value A after the function call. Finally, the temporary
environment C4 is updated for local variable 83 (if any) with return value A . At the same time, its
cll field records the calling information, i.e., the callee’s function name, parameters and current
function state. Other fields except err are assigned the empty set.
The semantic function for Clight functions F : id × function → FDenote, written as J(ℎ, 5)K for a

given function name ℎ and its definition 5 , are defined as follows.

J(ℎ, 5)Kj .(dom) , {ℎ}, i.e., the singleton set including function name ℎ only

J(ℎ, 5)Kj .(nrm) , {(ℎ, E∗, (64 ,<0), g, (64 ,<3), A) | ∃;4 C4 <1,

function_entry(64 , 5 , E
∗,<0, ;4 , C4 ,<1) ∧

∃f f ′ <2, f = (64 , ;4 , C4 ,<1) ∧ f ′
= (64 , _, _,<2) ∧

(((f, g, f ′) ∈ JB5 Kj .(nrm) ∧ A = Vundef) ∨ (f, g, f ′, A) ∈

JB5 Kj .(rtn)) ∧ free_list(<2, block_of_env (64 , ;4)) = ⌊<3⌋}

J(ℎ, 5)Kj .(cll) , {(ℎ, E∗, (64 ,<0), g, X) | ∃;4 C4 <1,

function_entry(64 , 5 , E
∗,<0, ;4 , C4 ,<1) ∧

∃f, f = (64 , ;4 , C4 ,<1) ∧ (f, g, X) ∈ JB5 Kj .(cll)}

The terminating behavior of a function is recorded by the nrm set and is denoted according to
5 ’s function body B5 which would exit normally or exit by a return statement. Specifically, the
local environment ;4 , temporary environment C4 and memory state after initialization of the local
variables <1 are evaluated from the function definition 5 with its parameters E∗ and the initial
function state (64 ,<0). Then after executing the function body B5 , the return value A , and memory
state <2 are known through the denotational semantics of B5 . Finally the memory state <3 is
updated from<2 by releasing the local variables of 5 . Other fields like cll are defined similarly,
i.e., the behavior of the function is determined by the behavior of its body.

B.3 Semantics of Csharpminor and Cminor

For the denotational semantics of Csharpminor andCminor,most of the content is similar to Clight,
and the difference lies in the manipulation of control flow shown as follows.

Jblock{D}Kj .(nrm) , JDKj .(nrm) ∪ JDKj .(blk)0

Jblock{D}Kj .(blk) , {(=, f, g, f ′) | (= + 1, f, g, f ′) ∈ JDKj .(blk)}

Jexit(=)Kj .(blk) , {(=0, f, nil, f) | =0 = =}, other fields are assigned ∅

where (blk)= , {(f, g, f ′) | (=, f, g, f ′) ∈ blk} for any = ∈ nat. The above definitions mean that the
block statement will normally terminate if its internal statement D terminates normally or exits
one layer of block execution prematurely; and it will early exit = layers ifD early exits =+1 layers of
block execution. The other fields of Jblock{D}Kj .(blk) are directly determined by the correspond-
ing set of the internal statement D. On the other hand, when an exit statement is encountered, the
following statements will no longer execute normally and the layer of blocks to be exited early are
recorded by the set blk.

Denotation-based Compositional Compiler Verification 33

B.4 Semantics of Modules

Before defining the semantics of a module, we first need an auxiliary function F ∗ : (id × function)∗

→ FDenote, written as L"M, which maps a list of functions to the union of their denotations7 , i.e.,

L(ℎ1, 51); ...; (ℎ=, 5=)M , J(ℎ1, 51)K ∪ · · · ∪ J(ℎ=, 5=)K

We then discuss the definition of semantic functionM: (id × function)∗ → FDenote for a module" ,
written as J"K, which maps a list of functions within the module to the “full” denotation of each
function.
First of all, given the denotation of callees outside the module j : TN, the normally terminating

behavior of each function in moudle" , namely J"Kj .(nrm), is defined as follows:

J"Kj .(nrm) , `j0 .L"Mj0∪j .(nrm)

Recall that the least fixed point of 5 (j0) = L"Mj0∪j .(nrm) is ⊔{5
8 (∅) | 8 = 0, 1, ...}. The intuition

behind it is that with more and more times of iteration, we can constantly approximate the seman-
tics (similar to the definition of loops’ semantics) that a function can normally terminate after a
finite number of calls.

1 bool even(int n) {

2 print(n);

3 if (n == 0) return true;

4 else return odd(n − 1);

5 }

6 void print(int n) {

7 printf("%d ", n);

8 }

9 bool odd(int n) {

10 print(n);

11 if (n == 0) return false;

12 else return even(n − 1);

13 }

(a) The Parity Judgement Program

even

print

odd

"2

"1

(b) Calling Relation Between Them

Fig. 8. Check if a Number = is Odd or Even

For example, consider a parity judgement program implemented by two mutually recursive
functions shown in Fig. 8a. The even function tells us that a number = is even if = is 0, or (= − 1) is
odd; the odd function says that = is odd if (= − 1) is even. Both of them they call a print function for
displaying the value of =. Their calling relation and residing modules are shown in Fig. 8b.
Let an event of outputting an number = be output(=). For the first iteration j0 = ∅, and then

J"1Kj .(nrm)(even) = ∅, J"1Kj .(nrm)(print) = {(print, =, \, g, \, Vundef) | \ ∈ fstate ∧ g = output(=)}.
For the second iteration, J"1Kj .(nrm)(even) = {(even, 0, \, g, \, true) | \ ∈ fstate∧g = output(0)} ∪

{(even, =, \, g, \ ′, A) | = > 0∧∃g ′, (odd, =−1, \, g ′, \ ′, A) ∈ j∧g = output(=) ·g ′} and J"1Kj .(nrm)(print)
is unchanged. In this way, we can obtain the terminating behavior of a module correctly after a
finite number of iterations.

7where the union of two elements in domain FDenote is defined as the union of their corresponding sets.

34 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

For a given j : TN, let j= = J"Kj .(nrm) ∪ j . The other cases for a module’s denotation semantics

are defined as follows8.

O(") , {(X, nil, X) | ∃5 E∗ \, X = (5 , E∗, \) ∧ 5 ∉ L"M.(dom)}

J"Kj .(cll) , `j0 .L"Mj= .(cll) ◦ O(") ∪ L"Mj= .(cll) ◦ j0

J"Kj .(err) , `j0 .L"Mj= .(err) ∪ L"Mj= .(cll) ◦ j0

J"Kj .(fin_dvg) , `j0 .L"Mj= .(fin_dvg) ∪ △K(") ∪ L"Mj= .(cll) ◦ j0

where K(") , a j0.L"Mj= .(fin_dvg) ∪ L"Mj= .(cll) ◦ j0

J"Kj .(inf_dvg) , a j0.B ◦ L"Mj= .(inf_dvg) ∪
(

B ◦ NL"Mj= .(cll)
)

◦ j0

where B = `j0 .1 ∪ △L"Mj= .(cll) ◦ j0

where O(") defines an identity relation on the set of external calls.
The J"Kj .(cll) means that a function inside themodule" will eventually call a function outside

the module after a finite number of internal calls. For example, the calling denotation of even in
module"1 is defined as

J"1Kj .(cll)(even) = {(even, =, \, g, X) | X = (odd, = − 1, \) ∧ g = output(=)}.

Similarly, J"Kj .(err) represents aborting behavior inside the module, i.e., a function inside the
module errors if its internal statements abort or the function passes through a finite number of
function calls and one of them fails. Furthermore, as we define the semantics of the loop statement,
we follow the same way to distinguish silent and nonsilent divergence of function calls. That is,
a function either diverges from the function body of a certain callee, or it gets stuck in infinitely
many recursive calls.

B.5 Semantic Linking

Following the approach to the evaluation of a module’s semantics, we can easily define the seman-
tic linking betweenmodules, written as J"1K⊕J"2K. Firstly, given the denotation of callees outside
the two module "1 and "2, namely j : TN, the normally terminating behavior of each function
within them J"Kj .(nrm), is defined as follows:

(J"1K ⊕ J"2K)j .(nrm) , `j0 .(J"1K ∪ J"2K)j0∪j .(nrm)

It indicates that with the behavior of functions outside the two modules, we can reach the seman-
tics of a given function by a finite iteration of function calls. Analogy to evaluating the semantics
of each function in a module (shown in §B.4), the semantics of each function within the two mod-
ules can be evaluated by treating their denotations as if they reside in one module. Once again, for
a given j : TN, let j= = (J"1K ⊕ J"2K)j .(nrm) ∪ j . Then the other fields of J"1K ⊕ J"2K are defined
as follows.

(J"1K ⊕ J"2K)j .(err) , `j0 .(J"1K ∪ J"2K)j= .(err) ∪

(J"1K ∪ J"2K)j= .(cll) ◦ j0

(J"1K ⊕ J"2K)j .(cll) , `j0 .(J"1K ∪ J"2K)j= .(cll) ◦O("1 +"2) ∪

(J"1K ∪ J"2K)j= .(cll) ◦ j0

(J"1K ⊕ J"2K)j .(fin_dvg) , `j0 .(J"1K ∪ J"2K)j= .(fin_dvg) ∪ △K ∪

(J"1K ∪ J"2K)j= .(cll) ◦ j0

8Let the currying and uncurrying between id×val∗×fstate×event∗×call_info and call_info×event∗×call_info

happen as needed so that we freely use the sequential composition operator.

Denotation-based Compositional Compiler Verification 35

where K = a j0 .(J"1K ∪ J"2K)j= .(fin_dvg) ∪ (J"1K ∪ J"2K)j= .(cll) ◦ j0

(J"1K ⊕ J"2K)j .(inf_dvg) , a j0.B ◦ (J"1K ∪ J"2K)j= .(inf_dvg) ∪

(B ◦ N(J"1K ∪ J"2K)j= .(cll)) ◦ j0

where B = `j0 .1 ∪ △(J"1K ∪ J"2K)j= .(cll) ◦ j0

With the semantic linking defined by taking fixed points, we are able to demonstrate the equiv-
alence between semantic linking and syntactic linking in an algebraic style. In this process, it is
necessary to show some coinciding properties of fixed points, such as Lemma B.1 and Lemma B.2.

Lemma B.1 (Coincide theorem 1). Given a CPO (�,⊆), for any monotonic and continuous func-
tions 5 : � → � and 6 : � → �,

`I.
(

`G .5 (G ∪ I) ∪ `G .6(G ∪ I)
)

≡ `G . (5 (G) ∪ 6(G))

Proof. Let !(I) = `G .5 (G ∪I) ∪`G .6(G ∪I), and '(G) = 5 (G) ∪6(G). We have to prove `! ⊆ `'

and `' ⊆ `!. Here we show the proof of the former only, since the latter is even easier to prove.
`! ⊆ `': It is sufficient to show that ∀=, != (∅) ⊆ `'. By taking induction on =, the key is to

prove: if != (∅) ⊆ `', then !(!= (∅)) ⊆ `', i.e., `G .5 (G ∪ != (∅)) ∪ `G .6 (G ∪ != (∅)) ⊆ `'.
Let � (G) = 5 (G ∪ != (∅)), and � (G) = 6(G ∪ != (∅)). It is sufficient to show that `� ⊆ `' and

`� ⊆ `'. These two cases can be proved similarly, and we show the proof for the first case: It’s
sufficient to prove ∀<, �< (∅) ⊆ `'. By taking induction on<, the key is to prove if �< (∅) ⊆ `',
then � (�< (∅)) ⊆ `', which holds since 5 (�< (∅) ∪ != (∅)) ⊆ 5 (`' ∪ `') ⊆ 5 (`') ∪6(`') ⊆ `'.

�

Lemma B.2 (Coincide theorem 2). Given sets � and �. For any relations �1, �2 ⊆ � × �∗ and
#1, #2, "1, "2 ⊆ � × �∗ ×�, let 51 (G) = �1 ∪ #1 ◦ G , 52 (G) = �2 ∪ #2 ◦ G , 61(G) = #1 ◦"1 ∪ #1 ◦ G

and 62(G) = #2 ◦"2 ∪ #2 ◦ G , then

`I. (`51 ∪ `52 ∪ (`61 ∪ `62) ◦ I) ≡ `G .�1 ∪ �2 ∪ (#1 ∪ #2) ◦ G

with side condition that "8 ◦ #8 ≡ ∅,"8 ◦ �8 ≡ ∅,"8 ◦ # 9 ≡ # 9 ,"8 ◦ � 9 ≡ � 9 for 8 = 1, 2 and 8 ≠ 9 .

The Lemma B.2 says that (# +
1 ◦"1 ∪ # +

2 ◦"2)
∗ ◦ (# ∗

1 ◦ �1 ∪ # ∗
2 ◦ �2) ≡ (#1 ∪ #2)

∗ ◦ (�1 ∪ �2)

where -+ denotes the transitive closure of - and - ∗ denotes the reflexive-transitive closure of -
for a relation - ⊆ � × �∗ × �.

Theorem B.3 (Eqivalence between semantic and syntactic linking). For any modules"1

and "2, J"1K ⊕ J"2K ≡ J"1 +"2K, where equivalence between elements of FDenote is defined as the
equivalence of their corresponding sets.

Proof. The first case is to show that for any given j ,

(J"1K ⊕ J"2K)j .(nrm) ≡ J"1 +"2Kj .(nrm) iff

`j0 .(J"1K ∪ J"2K)j0∪j .(nrm) ≡ `j0 .L"1 +"2Mj0∪j .(nrm) iff

`j0 .J"1Kj0∪j .(nrm) ∪ J"2Kj0∪j .(nrm) ≡

`j0 .L"1Mj0∪j .(nrm) ∪ L"2Mj0∪j .(nrm)

Let 5 (j0) = L"1Mj0∪j .(nrm) and6(j0) = L"2Mj0∪j .(nrm). It’s not hard to see 5 and6 are monotonic
and continuous, and then it’s proved by applying Lemma B.1.
The second case is to show that for any given j , (J"1K⊕ J"2K)j .(err) ≡ J"1 +"2Kj .(err) which

can be proved by applying Lemma B.2. Other cases are proved similar to the second case with
proper coincide theorems. �

36 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

C FORMAL DEFINITION OF GAMMA INSTANCES

As we can see, there should be various instances of the gamma function for relating each field of
the statement or function denotations. We next discuss how they are formally defined. Given sets
�1, �2 and, , a Kripke relation ' :, → {- | - ⊆ �1 × �2} is a family of relations indexed by a
Kripke world, , written asK, (�1, �2). For any two sequences of events g0 and g1, we say g0 6) g

if and only if g0 is the prefix of g . Let (,, 6,) be a preorder. For given sets #B and �B , we define
instances of the gamma function Wnrm, Wrtn, Wcll and Wdvg as follows:

∀(fC , g, f
′
C) ∈ Wnrm(#B , �B) iff ∀F fB , (fB , fC) ∈ '(F) ⇒

∃F ′ f ′
B , (fB , g, f

′
B) ∈ #B ∧F 6, F ′ ∧ (f ′

B , f
′
C) ∈ '(F ′)

∨ ∃g0, (fB , g0) ∈ �B ∧ g0 6) g .

∀(fC , g, f
′
C , A) ∈ Wrtn(#B , �B) iff ∀F fB , (fB , fC) ∈ '(F) ⇒

∃F ′ f ′
B A

′, (fB , g, f
′
B , A

′) ∈ #B ∧F 6, F ′ ∧

(A , A ′) ∈ + (F ′) ∧ (f ′
B , f

′
C) ∈ '(F ′)

∨ ∃g0, (fB , g0) ∈ �B ∧ g0 6) g .

∀(fC , g, XC) ∈ Wcll(#B , �B) iff ∀F fB , (fB , fC) ∈ '(F) ⇒

∃F ′ XB , (fB , g, XB) ∈ #B ∧F 6, F ′ ∧ (XB , XC) ∈ Δ(F ′)

∨ ∃g0, (fB , g0) ∈ �B ∧ g0 6) g .

∀(fC , g) ∈ Wdvg(#B , �B) iff ∀F fB , (fB , fC) ∈ '(F) ⇒

(fB , g) ∈ #B ∨ ∃g0, (fB , g0) ∈ �B ∧ g0 6) g .

Note that each gamma instance may be parameterized with different Kripke relations for relating
the states, arguments or return values as needed between the source and the target. The above
definitions can be naturally extended to supporting relating function denotations. For instance,
the normally terminating case for the refinement of function denotations is defined as:

∀(ℎ, E∗C , fC , g, f
′
C , A) ∈ Wnrm(#B , �B) iff

∀E∗B F fB , (fB , fC) ∈ '(F) ⇒ (E∗B , E
∗
C) ∈ + ∗ (F) ⇒

∃F ′ f ′
B A

′, (ℎ, E∗B , fB , g, f
′
B , A

′) ∈ #B ∧F 6, F ′ ∧

(A , A ′) ∈ + (F ′) ∧ (f ′
B , f

′
C) ∈ '(F ′)

∨ ∃g0, (ℎ, E
∗
B , fB , g0) ∈ �B ∧ g0 6) g .

D FULL DEFINITION OF REFINEMENT BETWEEN DENOTATIONS

Definition D.1 (Statement refinement between Clight and Csharpminor). Given natural numbers
=1 , =2 and the aborting behavior of external functions j4 ⊆ call_info × event∗. A denotation �2 of
Cshm.Denote is said to be a refinement of a denotation �1 of Clit.Denote, written as �2 -(=1 ,=2 ,j4) �1

if and only if:

�2.(nrm) ⊆ W (�1 .(nrm), �1.(err) ∪ �1 .(cll) ◦ j4) (1)

�2.(blk)=1 ⊆ W (�1 .(brk), �1 .(err) ∪ �1 .(cll) ◦ j4) (2)

�2.(blk)=2 ⊆ W (�1.(ctn), �1 .(err) ∪ �1 .(cll) ◦ j4) (3)

�2.(rtn) ⊆ W (�1 .(rtn), �1.(err) ∪ �1 .(cll) ◦ j4) (4)

�2.(err) ⊆ W (∅, �1 .(err) ∪ �1.(cll) ◦ j4) (5)

�2.(cll) ⊆ W (�1 .(cll), �1.(err) ∪ �1 .(cll) ◦ j4) (6)

Denotation-based Compositional Compiler Verification 37

�2.(fin_dvg) ⊆ W (�1 .(fin_dvg), �1 .(err) ∪ �1.(cll) ◦ j4) (7)

�2.(inf_dvg) ⊆ W (�1 .(inf_dvg), �1 .(err) ∪ �1.(cll) ◦ j4) (8)

Definition D.2 (Statement refinement between Csharpminor and Cminor). Given the exit environ-
ment b , and the aborting behavior of external functions j4 ⊆ call_info × event∗ . A denotation �2

of Cmin.Denote is said to be a refinement of a denotation �1 of Cshm.Denote, written as �2 -(b,j4) �1

if and only if condition (1) and (4) ∼ (8) in Def. D.1 hold, and additionally:

∀=,�2 .(blk)shift(b,=) ⊆ W (�1 .(blk)=, �1 .(err) ∪ �1 .(cll) ◦ j4) (9)

The definition of refinement between function denotations is similar to the definition of refine-
ment between statement denotations.

Definition D.3 (Refinement between function denotation). For any elements �1 and �2 in FDenote,
�2 is said to be a refinement of �1, written as �2 ⊑ �1 if and only if for any jC , j= and j4 such that
jC ⊆ W (j=, j4), the following conditions hold, where �1 = (�1)jB and �2 = (�2)jC :

�2.(dom) ≡ �1.(dom)

�2.(nrm) ⊆ W (�1 .(nrm), �1.(err) ∪ �1 .(cll) ◦ j4)

�2.(err) ⊆ W (∅, �1 .(err) ∪ �1.(cll) ◦ j4)

�2.(cll) ⊆ W (�1 .(cll), �1.(err) ∪ �1 .(cll) ◦ j4)

�2.(fin_dvg) ⊆ W (�1 .(fin_dvg), �1 .(err) ∪ �1.(cll) ◦ j4)

�2.(inf_dvg) ⊆ W (�1 .(inf_dvg), �1 .(err) ∪ �1.(cll) ◦ j4)

E COQ COMPARISON WITH COMPCERT AND COMPCERTOU

We name our work as VComp, and name [Zhang et al. 2023] as CompCertOU, which is based on
CompCertO. Generally speaking, compared with small-step semantics, we differ with them in

• The definition of states;
– CompCert/CompCertOU: There are three constructors of state for small-step seman-

tics: ItnlState, CallState, RtrnState. For example, the state of Clight:

state = | ItnlState: function → statement → cont → env → temp_env → mem → state

| Callstate: val → list val → cont → mem → state

| RtrnState: val → cont → mem → state.

– VComp: state = temp_env × mem.
• We do not have to relate continuations in matching due to denotational definition.
• Initialization of function entry and memory release of function exit. The location of their
semantic definition is different.
– CompCert/CompCertOU: at the definition of step, following the semantics of function

calls;
– VComp: at the definition of functions’ denotation.

More specifically, a pass-to-pass comparison is shown as follows.

Clight to Csharpminor. All the constraints are the same except for:

• CompCert/CompCertOU: match_env resides in match_states;
• VComp: [Cshmgenproof] match_env is a side precondition for statement refinement, which
is satisfied at the moment of function entry.

38 Zhang Cheng, Jiyang Wu, Di Wang, and Qinxiang Cao

Csharpminor to Cminor.

• For CompCertOU:
– injp = world × (world → meminj) × rel world × 'world (mem, mem), where injp_acc w w’

∈ rel world is defined as (informally):

+ ro_unchanged: readonly memmory is unchanged;

+ max_perm_decrease: The maximum permission is decremented;

+ unchanged_on (loc_out_of_reach j sm1): outside mapped locations by j from sm1 is unchanged;

+ unchanged_on (unmapped j): unmapped location is unchanged;

+ inject_incr:memory injection is increased;

+ inject_separated: except newly increased, original injection is unchanegd.

These constraints make injp_acc a preorder, which may not be kept if removing some
of them.

– match_states constrains:

+ SPFresh: spwan new stack pointer from the old one;

+ MINJ: Mem.inj f sm tm; memory injection;

+ MCS: match callstack;

∗ MTemp: temporary environment is related;

∗ MEnv: relating local environment to stack pointer;

∗ SPBoundt: stack pointer is within nextblock of memory

∗ MBounds: the addresses of variables in loc-env with permissions are within variable size;

∗ PaddingFreeable, used for releasing the memory of local variables when exiting funciton;

• Comparison with VComp:
– Only the following (state-related) constraints remain in match_states:

+ MINJ: Mem.inj f sm tm

+ MTemp: temporary environment is related;

– Other constraints are moved to:
+ well-definedness of semantics: nextblock_incr, maybe part of injp_acc such as un-

changed properties on the unmapped or out-of-reach memory.
+ side precondition for statement refinement: MEnv, MGenv, SPBoundt, HiBounds, HiBoundt.

– Remark that
+ SPFresh is removed since calling stack is not involved in our semantics;
+ MBounds and PaddingFreeable is removed from match_states. They are established in

function entry, and preserved since the injp_acc of statement refinement;
+ match_env is less constrained, eliminating low bounds and high bounds. Com-

pCert and CompCertOU originally require the addresses of local variables are
whthin (lo, hi);

+ CompCertOU use self-defined (match_genvs) to build relationship between global
environments. We keep the match_globenv in CompCert, so we additionally state
the high bound of global definitions.

	Abstract
	1 Introduction
	2 Unified Semantic Operators
	2.1 A Toy Language and its Denotation
	2.2 Semantic Operators for WHILE
	2.3 Semantic Operators for Realistic Languages

	3 Semantics of WHILE Loops
	4 Semantics of Procedure Call
	4.1 Terminating Behavior of PCALL
	4.2 Semantics of Modules and Semantic Linking
	4.3 Diverging Behavior of PCALL

	5 Semantics of CompCert Front-end Languages
	5.1 Semantics of C-like Function Calls
	5.2 Semantics of Control Flow Constructs
	5.3 Divergence with Event Trace

	6 Behavior Refinement
	6.1 Examples of Behavior Refinement
	6.2 Refinement Algebra
	6.3 Module-level Compositionality

	7 Compilation Correctness
	8 Comparison with Previous Work
	9 Related Work
	10 Conclusion
	References
	A Semantic Analysis for WHILE Loops
	A.1 Nondeterminism and Powerdomains
	A.2 Semantics of the While Statement

	B Semantics of CompCert Front-end Languages
	B.1 Languages and Semantic Domain
	B.2 Semantics of Clight
	B.3 Semantics of Csharpminor and Cminor
	B.4 Semantics of Modules
	B.5 Semantic Linking

	C Formal Definition of Gamma Instances
	D Full Definition of Refinement between Denotations
	E Coq Comparison with CompCert and CompCertOU

