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Abstract
The most common spoofing attacks on automatic speaker

verification systems are replay speech attacks. Detection of
replay speech heavily relies on replay configuration informa-
tion. Previous studies have shown that graph Fourier transform-
derived features can effectively detect replay speech but ignore
device and environmental noise effects. In this work, we pro-
pose a new feature, the graph frequency device cepstral co-
efficient, derived from the graph frequency domain using a
device-related linear transformation. We also introduce two
novel representations: graph frequency logarithmic coefficient
and graph frequency logarithmic device coefficient. We evalu-
ate our methods using traditional Gaussian mixture model and
light convolutional neural network systems as classifiers. On
the ASVspoof 2017 V2, ASVspoof 2019 physical access, and
ASVspoof 2021 physical access datasets, our proposed features
outperform known front-ends, demonstrating their effectiveness
for replay speech detection.

1. Introduction
Automatic speaker verification (ASV) systems are now com-
monly used in various application scenarios that leverage the
differences in vocal tract shape, tone, and pronunciation habits
of speakers to recognize them by comparing the target utterance
with the registered one [1]. While the emergence of deep learn-
ing and artificial neural networks have greatly improved the
recognition ability of ASV systems, these systems face threats
from spoofing attacks [2, 3].

ASV systems encounter four primary types of spoofing at-
tacks, namely, impersonation, text-to-speech synthesis (TTS),
voice conversion (VC), and replay attacks [2]. Among these,
TTS and VC are logical access attacks that require the attack-
ers to know about TTS and VC systems to produce the target
speaker’s speech [4, 5]. Impersonation is found to show com-
paratively less threat to ASV systems as it mainly tries to mimic
the behavioral characteristics of the target speaker [6]. On the
other hand, replay attacks are much easiser to produce by us-
ing recorded samples of the target speaker and also show a very
high threat to break ASV systems [7]. In this work, we focus on
the detection of replay speech attacks.

The replay speech contains the recording as well as play-
back device information and the characteristics of the back-
ground environment. It is critical to capture such information
for the detection of replay attacks as they contain strong traits
of the target speaker. In this regard, we focus on exploring
novel signal representations that can help to expose the device
information. Some of the strong feature representations that
have been explored previously include constant-Q cepstral co-

efficients (CQCC) [8, 9], linear frequency cepstral coefficients
(LFCC), cochlear filter cepstral coefficient and instantaneous
frequency [10]. However, these feature representations did not
consider utilizing any device information explicitly.

In general, a replay attack involves recording a registered
sound in a specific environment and subsequently replaying it
using speakers to deceive an ASV system. The difference be-
tween genuine speech and replayed speech is mainly due to the
physical characteristics of the recording device, loudspeaker,
and ambient noise. This creates a filter in the frequency do-
main that affects the intrinsic differences between the two types
of speech. Hence, in our recent work, we proposed a novel
device-related linear transformation strategy to separate non-
device information from replay speech by using the correspond-
ing genuine speech to emphasize device information in the re-
play speech [11]. This is based on the rationale that the dif-
ference between genuine speech and replayed speech is mainly
due to the physical characteristics of the recording device, loud-
speaker, and ambient noise [12]. We then developed three novel
device features based on this device-related linear transforma-
tion strategy, which were obtained from the octave domain by
combining constant-Q transform and octave subband transform,
the linear domain on LFCC, and the mel domain on mel fre-
quency cepstral coefficient (MFCC).

Graph signal processing (GSP) is another emerging method
that has been useful for several applications including speech
processing. It constructs the graph topology by the potential
relationship between speech samples and then utilizes graph
Fourier transform (GFT) to transform speech signal from the
graph domain to the graph frequency domain for reflecting the
structural relationship between speech samples. We utilized it
to derive a feature namely, graph frequency cepstral coefficient
(GFCC) in [13]. Although GFCC captures more hidden infor-
mation in speech and emerged as a promising front-end com-
pared to existing front-ends, it did not consider any specific
device-related information to handle replay speech attacks.

In this work, we use the device-related linear transforma-
tion on the GFCC feature to propose a novel feature referred to
as graph frequency device cepstral coefficient (GFDCC) that is
expected to benefit from both explicit device-related informa-
tion along with the GSP technology. Moreover, spectrogram
analysis following different times of using logarithmic process-
ing on the features revealed more pronounced distinctions be-
tween original and single logarithmic processed spectrograms
of genunie and spoofed speech, as illustrated in Figure 1 and
Figure 2. Consequently, we applied logarithmic operations to
the features after GFT and introduced two novel representa-
tions, namely, graph frequency logarithmic coefficient (GFLC)
and graph frequency logarithmic device coefficient (GFLDC)
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Figure 1: Spectrograms of a genuine speech, using different numbers of logarithmic operations (a) original spectrogram (GFCC). (b)
spectrogram after single logarithimic processing (GFLC). (c) spectrogram after twice logarithmic processing. (d) spectrogram after
thrice logarithmic processing.

(a) (b) (c) (d)

Figure 2: Spectrograms of a spoofed speech, using different numbers of logarithmic operations (a) original spectrogram (GFCC). (b)
spectrogram after single logarithmic processing (GFLC). (c) spectrogram after twice logarithmic processing. (d) spectrogram after
thrice logarithmic processing.

based on GFCC and GFDCC. We study these features with two
different classifiers Gaussian mixture model (GMM) and light
convolutional neural network (LCNN) for replay speech detec-
tion on ASVspoof 2017 V2, ASVspoof 2019 physical access
and ASVspoof 2021 physical access datasets [14–17].

The rest of this paper is organized as follows. Section 2 de-
scribes the proposed feature GFLC with logarithmic processing,
and Section 3 presents the proposed GFDCC and GFLDC with
device-related linear transformation. Section 4 introduces the
datasets used in the experiment and the detailed experimental
setup. The experimental results and analysis on replay speech
detection are given in Section 5. Finally, the work is concluded
in Section 6.

2. Logarithmic processing in GFLC
2.1. GFCC feature

First, we would like to briefly discuss about GFCC feature that
we proposed earlier in [13]. It is a short-term processing based
feature derived using GFT after constructing the graph signal
and finally applying discrete cosine transform (DCT) to the log
power spectrum to compute the cepstral coefficients, as given
by:

GFCC(z) = c(z)

N−1∑
i=0

log |ŷi|2 cos [
(i+ 0.5)π

N
z] (1)

where log |ŷi|2 is the log power spectrum of the speech signal,
N is the number of points of the speech signal, and c(z) can be

considered as a compensation coefficient, which is defined as:

c(z) =


√

1
N
, if z = 0√

2
N
, else

, z = 0 , 1, . . . , N-1 (2)

2.2. Proposed GFLC feature with logarithmic processing

Figure 1 and Figure 2 illustrates that both the original spec-
trogram and the single logarithmic processed spectrogram are
more effective in discriminating between genuine speech and
replay speech. Among these, Figure 1a and Figure 2a represent
the genuine and spoofed speech spectrograms of GFCC, while
Figure 1b and Figure 2b depict the genuine and spoofed speech
spectrograms of proposed GFLC, respectively. In comparison
to Figure 1a and Figure 2a and the other four subgraphs, Fig-
ure 1b and Figure 2b exhibit more pronounced distinctions and
also present clearer spectrograms. Hence, we apply logarithmic
processing to the features after GFT, followed by vertical splic-
ing with the original GFT features to obtain GFLC, defined as:

GFLC(z) = c(z)

N−1∑
ω=0

log |[ŷi; ln(|ŷi|)]|2 cos [
(i+ 0.5)π

N
z]

(3)

where the semicolon indicates that concatenate the original and
log-compressed magnitudes in order to extract the real-fake in-
formation from both amplitudes simultaneously. The rest of the
extraction steps of GFLC are consistent with those of GFCC.

Moreover, the dimension-reduced embedding visualization
is shown in Figure 3. The same t-distributed Stochastic Neigh-
bor Embedding (t-SNE) projections are applied to GFLC and



(a) GFLC (b) GFCC

Figure 3: t-SNE visualizations: (a) GFLC (b) GFCC.

GFCC on training set of ASVspoof 2017 Version 2.0 corpus.
It is found that the inter-class distance of GFLC, that is, the
distance between genuine speech and spoofed speech sample
points, is significantly greater than that of GFCC.

3. Device Information in GFDCC and
GFLDC

3.1. Device-related linear transformation

As we discussed in the introduction section, the replay speech
contains strong target speaker characteristics that include the
speaker’s speech, emotion, intonation and other common infor-
mation. In addition, the replay speech also contains the physi-
cal characteristics of the recording and playback devices as well
as the environmental noise during recording. However, differ-
ent genuine-replay pairs of speech may share similar compo-
nents, such as physical characteristics and environment of the
recording device used for genuine speech, despite differences in
speaker characteristics and device information during the play-
back process [11].

Under this premise, if we consider that ϕs,l,r and ϕg,l,r

represent the r-th frame vector of input feature sequences of the
l-th pair of replay speech utterance and corresponding genuine
speech utterance, respectively, then the parallel factor analysis
can be expressed as:

ϕs,l,r = µ+ Fhl + ϵs,l,r (4)
ϕg,l,r = µ+ Fhl + ϵg,l,r (5)

where µ represents the universal mean vector of all speech ut-
terances, F denotes the projection matrix of a linear transfor-
mation, and hl is the common factor vector, which contains the
same components of speaker, speech content, and speaker emo-
tion of the l-th parallel replay utterance and its corresponding
genuine utterance. The residual vectors ϵs,l,r and ϵg,l,r have a
Gaussian distribution with zero-mean and variance Σ for replay
speech and genuine speech, respectively, and they imply that
the uncommon variability in the utterances is more relevant to
the device factor and recording environment component.

Considering ks,l as the number of frames of the l-th re-
play speech utterance feature sequence, while the frame num-
ber of feature sequences of the corresponding genuine speech
utterance is represented by kg,l. The matrix of the l-th parallel
speech utterance with the same observation hl can be obtained

as follows:

ϕs,l,1

...
ϕs,l,ks,l

ϕg,l,1

...
ϕg,l,kg,l


=



µ
...
µ
µ
...
µ


+



F
...
F
F
...
F


hl +



ϵs,l,1
...

ϵs,l,ks,l

ϵg,l,1
...

ϵg,l,kg,l


(6)

The matrix ϕ̂l of the l-th parallel speech utterance with the
same observation hl can be obtained as follows:

ϕ̂l = µ̂+ Âhl + ϵ̂l (7)

where µ̂ and Â are the result of the superposition of µ and F

respectively, hl ∼ N (0, I), and the residual part ϵ̂l ∼ N (0, Σ̂).
Then the parameters θ = {µ,F,Σ} are updated using the

EM algorithm, which involves the E step and the M step, and
the device feature is extracted based on the linear transformation
model θ. The posterior mean of hl is deduced at step E

E[hl] = L̂−1ÂT Σ̂−1(ϕ̂l − µ̂) (8)

where L̂−1 is obtained by

L̂−1 = (I+ ÂT Σ̂−1Â)−1 (9)

The universal mean vector µ used here can be obtained by train-
ing over the entire training dataset. The factor analysis approach
used here is inspired from that used in case of i-vector model-
ing [18].

3.2. Dynamic time warping

Let G = [g1, g2, ...gm] be a genuine utterance series and
S = [s1, s2, ...sn] be its corresponding spoofed utterance se-
ries. Dynamic time warping (DTW) tries to find the best align-
ment between G and S such that the accumulated difference
between the mapping points is minimum. During mapping, it is
possible that multiple points in one series map to one point in
the other series. DTW finds such a mapping by building a cost
matrix C between each pair of points in G and S where each
element d(i, j) of the matrix is the cost of aligning gi with sj .
DTW then uses dynamic programming, shown as the following
recursive formula, to minimize the sum of the elements on a
path from the bottom left to the top right of the cost matrix. The
path is known as the warping path; at each element of the cost
matrix, the path goes right, up, or up right [19].

DTW (i, j) = d(i, j) +min


DTW (i− 1, j)

DTW (i, j − 1)

DTW (i− 1, j − 1)

(10)

3.3. Proposed GFDCC and GFLDC features with device in-
formation

Fig. 4 shows the overview of GFDCC and GFLDC feature ex-
traction by incorporating device information. First, it requires
some parallel training data (genuine and corresponding replay
speech) on which DTW is applied to obtain equal length fea-
ture matrices of GFCC or GFLC features. In this work, we
used ASVspoof 2017 V2 training set to form the parallel data.
Once equal length GFCC or GFLC features are extracted on the
parallel data, a factor analysis approach is applied to separate



Figure 4: An overview of incorporating device information in GFDCC and GFLDC features: (a) Training the linear transformation
parameters θ based on ASVspoof2017 training set after DTW (b) GFDCC and GFLDC extraction on original datasets when GFCC and
GFLC are used as the input to the trained linear transformation.

the common information and device characteristics as shown in
Fig. 4 (a). Then, the hyperparameters θ of device-related linear
transformation described in Section 3.1 are extracted from the
parallel data, by training with the EM algorithm. Finally, con-
sidering linear convolution effects become additive, the GFCC
or GFLC of target utterances from the original datasets are used
as input for the trained device-related linear transformation θ as
shown in Fig. 4 (b), and the resulting output are used to obtain
the proposed GFDCC and GFLDC features containing device
information, given by:

GFDCC(z) = GFCC(z)− µ− FE[h] (11)
GFLDC(z) = GFLC(z)− µ− FE[h] (12)

where E[h] represents the mean value of the common factor
vector hl obtained by EM algorithm.

4. Experiments
4.1. Datasets

The studies in this work are carried on ASVspoof2017 V2
, ASVspoof 2019 PA and ASVspoof 2021 PA datasets [15,
17, 20]. The genuine utterances for ASVspoof 2017 V2 cor-
pus were taken from the RedDots database, while the same
for ASVspoof 2019 PA and ASVspoof 2021 PA were taken
from the VCTK database. It is also noted that ASVspoof
2017 V2 and ASVspoof 2021 PA are realistic replay databases,
whereas ASVspoof 2019 PA considers replay attacks in simu-
lated settings. We used the ASVspoof 2017 V2 training set after
DTW for device-related linear transformation parameters ex-
traction, and the original evaluation sets of ASVspoof 2017 V2,
ASVspoof 2019 PA and ASVspoof 2021 PA to evaluate the sys-
tem performance. We would also like to note here that we used
ASVspoof 2017 V2 and ASVspoof 2019 PA datasets, respec-
tively, when evaluated on ASVspoof2021 PA. Since, ASVspoof
2017 V2 and ASVspoof 2021 PA are both realistic replay
speech database, while the training set under its evaluation pro-
tocol only considers the training set from ASVspoof 2019 PA,
which is a simulated database; hence, creating a mismatched
scenario that has other criticality for benchmarking.

The details of the three datasets are shown in Table 1. In ad-
dition to evaluation set, ASVspoof 2021 PA provides progress
set, where the data is utterance-disjoint, and two hidden attack
sets, where the non-speech intervals are removed, with the mo-

Table 1: A summary of ASVspoof2017 V2, ASVspoof2019
physical access and ASVspoof 2021 physical access datasets.

Database Set Genuine Replay Total

ASVspoof2017 V2
Train 1,507 1,507 3,014

Development 760 950 1,710
Evaluation 1,298 12,008 13,306

ASVspoof2019 PA
Train 5,400 48,600 54,000

Development 5,400 24,300 29,700
Evaluation 18,090 116,640 134,730

ASVspoof2021 PA

Evaluation 94,068 627,264 721,332
Progress 14,472 72,576 87,048

Hidden track 1 9,045 58,320 67,365
Hidden track 2 9,045 58,320 67,365

tivation of evaluating performance when the spoofed speech de-
tector is restricted to operating only on speech segments [21].

The study evaluates the proposed method using two per-
formance metrics, namely equal error rate (EER) and tandem
detection cost function (t-DCF) [22]. ASVspoof 2017 V2
evaluation protocol considers EER as the only metric, while
ASVspoof 2019 PA and ASVspoof 2021 PA consider it as a
secondary metric along with t-DCF as the primary measure.

4.2. Experimental setup

In our studies, the parameters in GFT are set according to our
previous work in [13] to extract the GFCC feature. The pro-
posed GFDCC and GFLDC features are then computed using
the linear transformation parameters learned by ASVspoof 2017
V2 train set data as discussed in the previous section. We also
applied cepstral mean and variance normalization (CMVN) on
the extracted features to remove nuisance channel effects [23].

We used two different classifiers for our studies. For
the studies on ASVspoof 2017 V2 corpus, we used 512 mix-
ture component based GMM models for genuine and spoofed
speech following the baselines of that edition. On the other
hand, we used one of the state-of-the-art systems LCNN as a
classifier for the studies on ASVspoof 2019 PA. The LCNN ar-
chitecture used in our studies follows that reported in [24]. It
considers Adam optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8

[25]. The initial learning rate of 3 × 10−4 is multiplied by 0.5
for every ten epochs, and the batch size is 8.



Table 2: Performance in EER (%) for CQCC baseline, GFCC
and the proposed GFLC, GFDCC and GFLDC with and with-
out CMVN on ASVspoof 2017 V2 evaluation set, while model
is either trained on train set (T) or train and development sets
(T+D). logE stands for log Energy.

Feature without CMVN CMVN
T T+D T T+D

CQCC [15] 30.79 23.97 19.74 15.33
CQCC plus logE [15] 34.95 29.31 13.74 12.24

GFCC 39.93 33.45 12.33 10.96
GFCC plus logE 40.70 32.37 12.70 11.04

GFLC without parallel FA 38.71 32.64 10.47 9.02
GFDCC with parallel FA 15.28 13.41 11.93 10.63
GFLDC with parallel FA 15.88 13.79 10.25 8.90

5. Results and Analysis
5.1. Studies on ASVspoof 2017 V2

We are first interested to explore the proposed three features on
ASVspoof 2017 V2 corpus, which is a realistic replay database.
We also consider enhanced CQCC baseline results reported
in [15] and our previous GFCC feature based representation for
comparison which are shown in Table 2. It is observed that
the proposed GFLC outperforms our previous GFCC represen-
tation under all conditions, which proves the efficiency of the
logarithm operation. In addition, our proposed device features
GFDCC and GFLDC achieve the best results with and without
CMVN, respectively. Again, CMVN is found to have a sig-
nificant impact to boost the performance for all the front-ends,
which is more evident when both train (T) and development (D)
sets are used to learn the model. The use logE helps for CQCC
feature when CMVN is applied as reported in [15], but it does
not show such a trend from our studies on GFCC. Hence, we
did not consider logE in case of proposed thress features.

We now compare the proposed GFLC, GFDCC and
GFLDC features based systems with some of the known sin-
gle systems without data augmentation on ASVspoof 2017 V2
evaluation set, when the models are trained using combining
the train and development set. Table 3 shows this compari-
son, where CQCC+GMM was the baseline for ASVspoof 2017
edition. Among all the systems compared in Table 3, the pro-
posed system GFLDC+GMM achieves the best performance.
The CDOC, LFDCC and MFDCC are some other front-ends
that considered device information during their extraction but
performs inferior to our proposed device information feature
GFDCC and GFLDC. Overall, the three features emerge as the
strong front-end representations for the detection of replay at-
tacks from the studies on ASVspoof 2017 V2 corpus.

5.2. Studies on ASVspoof 2019 PA

In this subsection, we evaluate the performance of the proposed
three features on ASVspoof 2019 PA database, which is a simu-
lated replay attack corpus, and also compare them to some of the
existing well-performing single systems including the two chal-
lenge baselines. Table 4 reports the results for this study, which
reveals that the proposed three features perform better than most
of the single systems, which is more evident for GFLC. Among
all the single systems compared, CQT-MMPS based represen-
tation performs the best, however, it is noted that it is a hybrid
feature representation that considers phase information along
with the magnitude spectrum component. We would also like

Table 3: Performance comparison in EER (%) with some
known single systems on ASVspoof 2017 V2 evaluation set.

System EER
CQCC + GMM (Baseline) [15] 15.33
CQCC plus logE + i-vector [15] 12.93
FFT + ResNeWt [26] 15.60
CQT + ResNeWt [26] 12.21
FFT + LCNN [27] 12.39
qDFTspec + GMM [28] 11.19
ResNet-RV + OC-Softmax [29] 10.38
CDOC + DNN [11] 11.63
LFDCC + ResNet [11] 14.89
MFDCC + ResNet [11] 18.20
GFLC + GMM 9.02
GFDCC + GMM 10.63
GFLDC + GMM 8.90

Table 4: Performance comparison in min t-DCF and EER (%)
with some known single systems without data augmentation
on ASVspoof 2019 PA evaluation set. It is noted that the
ASVspoof 2017 V2 dataset was not used in the the develop-
ment of compared systems.

System min t-DCF EER
CQCC + GMM (Baseline 1) [16] 0.2454 11.04
LFCC + GMM (Baseline 2) [16] 0.3017 13.54
LFCC + LCNN [30] 0.1053 4.60
CQT + LCNN [30] 0.0295 1.23
DCT + LCNN [30] 0.0560 2.06
(LC-GRNN) + Softmax [31] 0.0614 2.23
(CQT-MMPS) + LCNN [31] 0.0240 0.90
CQCC + ResNet [26] 0.0501 1.98
CQCC + ResNeWt [26] 0.0419 1.67
GFCC + LCNN [13] 0.0429 1.51
GFLC + LCNN 0.0335 1.18
GFDCC + LCNN 0.0409 1.42
GFLDC + LCNN 0.0445 1.55

to highlight that the device-related linear transformation param-
eters for this study were still learned using the ASVspoof 2017
V2 training set, which is a realistic replay dataset and thus its
characteristics are different from ASVspoof 2019 PA. However,
the proposed three features are still able to get benefit from this
device-related information as it performs better than the origi-
nal GFCC front-end on ASVspoof 2019 PA showing the signif-
icance of the proposed approach.

5.3. Studies on ASVspoof 2021 PA

In this subsection, we assess the efficacy of the proposed three
features on the ASVspoof 2021 PA database, a corpus involving
realistic replay attacks. We also conduct a comparative analysis
against several established single systems.

For the first set of studies, we used ASVspoof 2017 V2
training set to train the models and then subsequently evalu-
ated on the four subsets of ASVspoof 2021 PA. The results
are presented in Table 5. GMM is chosen as the back-end
classifier, and LFCC, linear frequency device cepstral coeffi-
cients (LFDCC), MFCC, mel frequency device cepstral coef-
ficient (MFDCC), and GFCC are selected as comparison fea-
tures in juxtaposition to the proposed GFLC, GFDCC and
GFLDC. It is noted that the LFDCC and MFDCC are refer-



Table 5: Performance comparison in min t-DCF and EER (%) without data augmentation, trained on ASVspoof 2017 V2 training set
and evaluated on ASVspoof 2021 PA evaluation, progress, hidden track 1 and hidden track 2 sets, respectively.

System Evaluation Progress Hidden track 1 Hidden track 2

min t-DCF EER min t-DCF EER min t-DCF EER min t-DCF EER
LFCC + GMM 0.9941 42.10 0.9539 40.56 0.9869 50.28 0.9823 43.43
LFDCC + GMM 0.9297 35.36 0.9115 34.78 0.9223 33.33 0.7267 25.43
MFCC + GMM 0.9446 38.23 0.9385 37.26 0.9420 38.87 0.8939 33.58
MFDCC + GMM 0.9748 38.85 0.9816 38.97 0.8161 28.66 0.7852 28.25
GFCC + GMM 0.9635 38.61 0.8981 35.56 0.9670 49.00 0.9079 36.72
GFLC + GMM 0.9506 37.18 0.8815 33.88 0.9643 49.83 0.8859 33.22
GFDCC + GMM 0.9154 35.13 0.8730 32.93 0.7147 23.28 0.7509 26.36
GFLDC + GMM 0.9196 35.12 0.8785 32.84 0.7216 23.48 0.7377 25.17

Table 6: Performance comparison in min t-DCF and EER (%)
with some known single systems without data augmentation on
ASVspoof 2021 PA evaluation set, trained on ASVspoof 2017
V2 training set or ASVspoof 2019 PA training set (T). It is noted
that the ASVspoof 2017 V2 dataset was not used in develop-
ment of the compared systems.

System T min t-DCF EER
CQCC + GMM (Baseline1) [32] 19 0.9434 38.07
LFCC + GMM (Baseline2) [32] 19 0.9724 39.54
LFCC + LCNN (Baseline3) [32] 19 0.9958 44.77
RawNet2 (Baseline4) [32] 19 0.9997 48.60
World + GMM [33] 19 0.6853 24.88
SCMC + TDNN [34] 19 0.9339 36.10
CDOC + DNN [11] 19 0.9999 43.61
LFDCC + DNN [11] 19 0.9729 39.37
MFDCC + DNN [11] 19 0.9503 35.61
(Energy+FM) + ResNet [35] 19 0.8836 35.26
GFCC + LCNN 19 0.9991 45.12
GFLC + LCNN 19 0.9627 40.63
GFDCC + LCNN 19 0.9988 44.80
GFLDC + LCNN 19 1.0000 45.86
CDOC + DNN [11] 17 0.9860 40.15
CDOC + ResNet [11] 17 0.9835 41.29
LFDCC + DNN [11] 17 0.9149 35.72
LFDCC + ResNet [11] 17 0.9443 37.97
MFDCC + DNN [11] 17 0.9999 38.84
MFDCC + ResNet [11] 17 0.9999 42.15
GFCC + GMM 17 0.9635 38.61
GFLC + GMM 17 0.9506 37.18
GFDCC + GMM 17 0.9154 35.13
GFLDC + GMM 17 0.9196 35.12

enced methods in [11]. Table 5 reveals that GFDCC+GMM and
GFLDC+GMM systems outperform the other six systems on
most subsets. Additionally, in comparison with GFCC+GMM
system, GFDCC+GMM system exhibits a decrease in EER by
9.01%, 7.40%, 52.4% and 28.21%, respectively, across the
four datasets. The minimum t-DCF also shows reductions of
5.00%, 2.79%, 26.09% and 13.51%, respectively. Compared
with GFLC+GMM system, the performance of GFLDC+GMM
on the four subsets has also been improved to varying degrees.
It is noteworthy that previous experiments often neglected hid-
den track sets, making it challenging to obtain sufficient exper-
imental results. Table 5 indicates that features utilizing device-
related linear transformation significantly outperform original
features, suggesting that this transformation better captures the
distinctions between genuine and spoofed speech, particularly

in retaining speech intervals where recording and replay devices
exert a more pronounced influence on speech segments.

We now evaluate the performance of the proposed three
features on ASVspoof 2021 PA using ASVspoof 2019 PA as
the training set following the ASVspoof 2021 challenge proto-
col, which is designed under a domain mismatch condition of
evaluating detection of realistic replay attacks when models are
trained using simulated training set. Table 6 presents a compari-
son of proposed systems with some well-performing single sys-
tems. Among the single systems utilizing ASVspoof 2019 PA
as the training set, world+GMM achieves the best results. It em-
ploys a world-vocoder-based replay channel estimation feature
with log-spectrogram input and applies one-class and utterance-
level GMM models. Systems incorporating constant-Q device
octave coefficient (CDOC), LFDCC, and MFDCC as front-end
features are based on device-related linear transformation re-
ported in [11]. We find that the GFCC+LCNN and proposed
three systems exhibit suboptimal performance when ASVspoof
2019 PA is used as the training set due to the simulated nature of
this replay attack corpus. In contrast, when ASVspoof 2017 V2
is used as the training set, GFDCC+GMM and GFLDC+GMM
surpass other known single systems, affirming the promising
nature of GFDCC and GFLDC as front-end feature representa-
tions in scenarios where training and evaluation sets do not have
a severe domain mismatch. In the future, we plan to explore
severe domain mismatch variability for our feature representa-
tions to make them even effective for various conditions.

6. Conclusions
This work proposes three novel graph domain feature, namely
GFLC that introduces logarithmic magnitude processing on
GFT, as well as the GFDCC and GFLDC, which are derived
using a device-related linear transformation on GFCC or GFLC
feature, respectively. The device-related linear transforma-
tion parameters are computed from parallel train data from
ASVspoof 2017 V2 aligned by DTW. We studied the pro-
posed feature on ASVspoof 2017 V2, ASVspoof 2019 PA and
ASVspoof 2021 PA datasets using GMM and LCNN as back-
end classifiers. The studies on these databases demonstrated
that the proposed three features outperform not only the base-
line or GFCC feature, but also many state-of-the-art front-ends
showing its robustness against replay attack detection due to the
introduction of logarithmic processing as well as the incorpora-
tion of device information during their extraction. Lastly, the
proposed method is highly dependent on availability of parallel
training data and the future work will focus on finding ways to
capture the device information without involvement of parallel
training data.
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[22] Tomi Kinnunen, Héctor Delgado, Nicholas Evans,
Kong Aik Lee, Ville Vestman, Andreas Nautsch, Massi-
miliano Todisco, Xin Wang, Md Sahidullah, Junichi Ya-
magishi, and Douglas A. Reynolds, “Tandem assessment
of spoofing countermeasures and automatic speaker veri-
fication: Fundamentals,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 28, pp. 2195–
2210, 2020.

[23] S. Furui, “Cepstral analysis technique for automatic
speaker verification,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 29, no. 2, pp. 254–
272, Apr 1981.

[24] Shigeki Karita, Yotaro Kubo, Michiel Adriaan Unico Bac-
chiani, and Llion Jones, “A comparative study on neu-
ral architectures and training methods for Japanese speech
recognition,” in Proc. Interspeech 2021, 2021, pp. 2092–
2096.

[25] Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” 2014.

[26] Xingliang Cheng, Mingxing Xu, and Thomas Fang
Zheng, “Replay detection using CQT-based modified
group delay feature and ResNeWt network in ASVspoof
2019,” in Asia-Pacific Signal and Information Process-
ing Association Annual Summit and Conference (APSIPA
ASC), 2019, pp. 540–545.

[27] Hongji Wang, Heinrich Dinkel, Shuai Wang, Yanmin
Qian, and Kai Yu, “Cross-Domain replay spoofing attack
detection using domain adversarial training,” in Proc. In-
terspeech 2019, 2019, pp. 2938–2942.

[28] Najim Dehak, Patrick J. Kenny, Réda Dehak, Pierre Du-
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