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Abstract

Electricity generated from renewable energy sources has been established as an
efficient remedy for both energy shortages and the environmental pollution stem-
ming from conventional energy production methods. Solar and wind power are
two of the most dominant renewable energy sources. The accurate forecasting of
the energy generation of those sources facilitates their integration into electric
grids, by minimizing the negative impact of uncertainty regarding their manage-
ment and operation. This paper proposes a novel methodology for deterministic
wind and solar energy generation forecasting for multiple generation sites, utiliz-
ing multi-location weather forecasts. The method employs a U-shaped Temporal
Convolutional Auto-Encoder (UTCAE) architecture for temporal processing of
weather-related and energy-related time-series across each site. The Multi-sized
Kernels convolutional Spatio-Temporal Attention (MKST-Attention), inspired by
the multi-head scaled-dot product attention mechanism, is also proposed aiming
to efficiently transfer temporal patterns from weather data to energy data, with-
out a priori knowledge of the locations of the power stations and the locations of
provided weather data. The conducted experimental evaluation on a day-ahead
solar and wind energy forecasting scenario on five datasets demonstrated that the
proposed method achieves top results, outperforming all competitive time-series
forecasting state-of-the-art methods.
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1 Introduction

Fossil fuels, including coal, oil and natural gas, have long been the world’s domi-
nant sources of energy. Their fast depletion [1] as well as their overall impact in
global warming [2], due to the emission of greenhouse gases, has led to the rapid
increase in the exploitation of renewable energy sources, such as solar and wind energy,
hydropower, geothermal energy and bioenergy. In recent years, solar radiation and
wind have emerged as two major Renewable Energy Sources (RES), each accounting
for a quarter of the total RES energy output [3]. Two major drawbacks, encountered
on both RES types, are that the corresponding power generation is variable and non-
dispatchable [4], i.e., the power generation output cannot (or have limited ability to)
be adjusted to match the electricity demand. The integration of those RES types
into existing power systems is mainly determined by: (i) the temporal variability of
the output power from renewable energy generation stations and (ii) the accuracy
of forecasts for the variable generation. Fluctuations in total non-dispatchable power
generation along with fluctuations in the total power demand, require the in-parallel
use of conventional dispatchable power generation methods on different time scales.
Accurate forecasting of RES power generation [5] and the electric load demand [6],
can effectively mitigate the related uncertainties, contributing positively to the plan-
ning, management and operation of energy systems and thus achieving a lower level
of use for conventional power generation methods.

Accurate renewable energy generation forecasting is a challenging task due to the
intermittent and random nature of renewable energy data. Methods addressing the
RES forecasting problem, can be mostly categorized as physical, statistical, machine
learning and hybrid. Physical forecasting methods [7][8] focus on energy forecasting
based on Numerical Weather Predictions (NWPs) and physical principles regarding
the installed photovoltaic (PV) cells or wind turbines as well as the corresponding
geographic formation. Physical methods do not require historical (past) information
regarding energy generation. Statistical forecasting methods, such as Autoregressive
(AR) models [9][10] and Markov chain models [11][12], aim to establish a mapping
relationship between past-time and future-time energy generation time-series. Machine
learning forecasting models, also referred as intelligent forecasting models in the liter-
ature, such as neural networks [13][14] and Support Vector Machines (SVMs) [15][16],
attempt to establish a mathematical relationship between input and output through
curve fitting and parameter optimization techniques [17]. Hybrid methods [18][19]
incorporate a combination of different types of methods.

Based on the manifestation of the forecasting results, RES forecasting methods can
also be categorized as deterministic [20] [21] or probabilistic [22] [23]. Deterministic
methods output single-valued energy generation predictions for each time-step of the
forecasting window. Probabilistic methods provide a wider view of possible energy
generation outputs expressed as quantiles, prediction intervals (PIs), and distributions.

Finally, RES forecasting methods can also be categorized based on the time hori-
zon of the forecasting window. According to the relevant literature, the methods
can be split into four categories [24]; ultra-short-term, short-term, medium-term,
and long-term forecasting. However, these categories often remain ambiguous since
no universally agreed classification criterion exists. Thus, the terms intra-hour,
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intra-day, day-ahead and week-ahead forecasting / prediction are more commonly
encountered [25] in order to describe the forecast horizon in a more precise way.

Fig. 1: Abstract example of the Multi-sized Kernels convolutional Spatio-Temporal
Attention (MKST-Attention) mechanism in the inference stage of a wind energy fore-
casting scenario, for a single wind power station (site #3) and two weather data
locations (sites #1 and #2). The size of the future-time temporal window Tf is 1 and
the size of past-time temporal window Th is 4.

Our work, focuses mainly on deterministic machine learning-based wind and solar
energy forecasting approaches at power station level, that utilize weather data along
with past-time energy measurements, as input. Specifically, we introduce a deter-
ministic forecasting method for a such scenario, capable to simultaneously generate
multi-step (i.e., for multiple time instances) energy production forecasts for a given
set of power stations. In particular, we employ a U-shaped Temporal Convolutional
Auto-Encoder (UTCAE) for temporal processing of weather and energy data across
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each site. The motivation behind this choice is to enrich the representations of a given
time-series, by exploring patterns across various temporal resolutions, thus captur-
ing both global and local contextual information. In addition, we propose the use
of a Multi-sized Kernels convolutional Spatio-Temporal Attention (MKST-Attention)
mechanism that is responsible for transferring temporal patterns from weather data
to energy data, without a priori knowledge of the locations of the power stations and
the locations where weather data were measured (or forecasted). For each energy gen-
eration site, the mechanism is able to discover the weather data locations which are
significant for the site (i.e., they affect the site) and transfer temporal patterns from
the corresponding weather data subset to the energy generation data. Figure 1 illus-
trates an instance of MKST-Attention during the inference stage. Overall, the main
contributions of this work can be summarized as follows:

• We propose a deterministic multi-step wind and solar energy forecasting methodol-
ogy for multiple energy generation sites, capable to efficiently utilize weather data
from multiple sites, without a priori knowledge of the location of either the energy
generation or the weather data sites.

• Inspired by the Multi-head Scaled-dot Product Attention mechanism, we propose
the Multi-sized Kernels convolutional Spatio-Temporal Attention mechanism, which
can explore spatio-temporal patterns between two sets of time-series data.

• We evaluate the proposed methodology on three wind energy forecasting datasets
and two solar energy forecasting datasets, showcasing its effectiveness.

The proposed method is an extension of the method in [26], which was designed
specifically for deterministic wind energy forecasting. Both methods utilize a similar
convolutional attention mechanism for exploring spatio-temporal relations between
energy generation data and weather data. A major difference of the proposed method
with the method in [26], lies on the computation of the spatial relations between the
energy generation sites and the sites of weather data. In [26], the spatial relations are
time-varying and are computed based on the respective energy and weather data fed as
input, whereas in the method proposed in this paper the spatial relations explored by
the attention mechanism (named Multi-sized Kernels convolutional Spatio-Temporal
Attention) remain fixed after the corresponding training process. Apart from the differ-
ences associated to the implemented attention mechanism, the method in [26] doesn’t
incorporate a mechanism to temporally process weather data, adopting a rather shal-
low architecture. In contrast, the current approach employs the U-shaped Temporal
Convolutional Auto-Encoder (UTCAE) and incorporates a scheme of repeated Joint
Processing Blocks (JPBs) with the objective of generating contextually informative
representations for both the energy-related and weather-related time-series data.

2 Previous Work

In this Section, we discuss previous work on deterministic wind and solar energy
forecasting at power station level, focusing on deep learning methods. A brief summary
of the discussed methods is provided in Table 1.
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2.1 Deterministic Wind Energy Forecasting Methods for
Single/Multiple Power Station(s)

In [27], the authors suggested the use of a Temporal Convolutional Neural Network
(TCNN), aiming to achieve accurate single station short-term wind energy forecasts.
The method’s performance was evaluated on a simulated dataset, provided by the
National Renewable Energy Laboratory (NREL), achieving top results against the
rest of the baseline methods. In addition, the evaluation highlighted the stable learn-
ing process and the strong generalization ability of the proposed method. In [13], a
Spatio-Temporal Convolutional Neural Network (STCNN) was employed in a multiple-
stations short-term wind energy forecasting scenario. According to the authors, the
method’s performance gains were due to its architecture, which combined the struc-
ture of directed Graph Convolutional Network (GCNs) with that of TCNNs, allowing
the effective capture of asymmetric spatial correlations at different temporal scales.
Similarly, the authors in [28] applied the Transformer model in a short-term multiple-
stations wind energy forecasting scenario. The employed model was able to extract
different levels of correlation between wind farms and provide accurate wind power
forecasting results. In [29], the authors proposed a short-term wind energy forecasting
method based on Discrete Wavelet Transform (DWT) and Long Short-Term Mem-
ory (LSTM) networks. The method adopts a divide and conquer strategy, in which
DWT is used to decompose original wind energy data into sub-signals, while several
independent LSTMs are employed to approximate the temporal dynamic behaviors of
these sub-signals. The proposed method achieved top prediction accuracy rates against
other state-of-the-art methods in a single-farm short-term wind energy forecasting
scenario. In [20], the authors designed a sequence-to-sequence model for a multi-step-
ahead single-station wind energy forecasting scenario. The model architecture consists
of two groups of Attention-based Gated Recurrent Unit (AGRU) blocks, employed
in an encoder-decoder architecture. In the proposed model, the correlation between
different forecasting tasks was considered in the GRU and an attention mechanism
helped select important features. An experimental evaluation, regarding the accuracy,
the computational efficiency and the feature selection capabilities of the proposed
model demonstrated its superiority against other state-of-the-art methods.

2.2 Deterministic Solar Energy Forecasting Methods for
Single/Multiple Power Station(s)

In [30], the authors studied the use of a TCNN in a day-ahead forecasting scenario with
half-hour temporal resolution. According to the authors, the model was able to main-
tain a much longer effective history, compared to competing methods, by extracting
informative features from long sequences using dilated causal convolutional filters. The
authors in [31] proposed a monthly PV power generation forecasting method based
on the LSTM model, using meteorological and energy data collected from existing
power stations, aiming to predict the energy generation of a potential power station
at a new location.Through experiments using historical training data from 134 solar
power stations, the proposed approach was able to perform well in a testing set con-
taining time-series of 30 solar power stations not used in the training process. In [21],
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the authors developed a single-station solar energy forecasting method based on the
fusion of a sequence-to-sequence auto-encoder and a gated recurrent unit. While the
GRU makes use of the data’s time dependencies, the auto-encoder extracts the corre-
lation of significant parameters like solar irradiance. The proposed method was able to
perform better than LSTM and CNN-LSTM-based models utilizing a variety of perfor-
mance metrics, including Mean Square Error (MSE) and Mean Absolute Error (MAE).
The authors in [32], proposed a spatio-temporal CNN for solar energy forecasting,
which exploits the spatial information of multiple power stations. First, the proposed
Greedy Adjoining Algorithm (GAA) constructs a space-time matrix that rearranges
the solar energy generation sites based on their geographical proximity. Then, a CNN
is applied to learn spatio-temporal relations. The conducted experimental evaluation
showed that the proposed STCNN achieves the highest error reduction when data from
multiple power stations are aggregated. In [33], the authors introduced a novel spatio-
temporal Graph Attention network (GAT) for solar energy forecasting in multiple
power stations. The proposed method can capture different dynamical spatio-temporal
correlations for different parts of the forecasting horizon. Thus, it is possible to inter-
pret which power stations have the most influence when performing short-, medium-
and long-term intra-day forecasts. The proposed method outperformed state-of-the-
art methods in 4 to 6 hours ahead solar energy forecasting scenarios in all employed
evaluation metric, on real and synthetic datasets.

Method
Energy

Architecture
Single/Multiple

Type
Station(s)
Forecasting

[29] wind RNN, DWT single
[27] wind TCNN single
[20] wind AGRU single
[13] wind STCNN, GCN multiple
[28] wind Transformer multiple
[26] wind STAN multiple
[30] solar TCNN single
[21] solar Auto-Encoder,GRU single
[31] solar LSTM multiple
[32] solar STCNN multiple
[33] solar GAT multiple

Table 1: Brief summary of the discussed deterministic
wind and solar energy forecasting methods.

3 Proposed Method

Our wind/solar energy forecasting approach is inspired by attention-based and tem-
poral convolutional architectures, both commonly encountered in the task of generic
time-series forecasting. The core mechanism of the proposed method, named Multi-
sized Kernels convolutional Spatio-Temporal Attention (MKST-Attention), is able to
spatially transfer temporal patterns from weather data time-series to energy genera-
tion time-series. In addition, aiming to temporally process both weather and energy

6



generation data across sites, we employ a U-shaped Temporal Convolutional Auto-
Encoder (UTCAE), capable to capture multi-scale contextual information along the
temporal dimension. To present the proposed method in an organized and clear way,
the rest of the section is structured as follows. Section 3.1 states the correspond-
ing problem and explains the adopted notations. Subsequently, Section 3.2 presents
the Multi-sized Kernels convolutional Attention (MK-Attention), a novel variant of
multi-head attention. In Sections 3.3 and 3.4 the MKST-Attention mechanism and
the architecture of the UTCAE are presented, respectively. Both are employed by the
Joint Processing Block (JPB), presented in Section 3.5, aiming to process and refine
the latent representations of energy generation and weather data. Finally, the overall
architecture of the proposed method is presented in detail in Section 3.6.

3.1 Problem Statement and Notations

The problem of wind and solar energy forecasting, addressed in this paper, can be
formulated as:

Ê
f
= g(Eh,Wh,Wf ) (1)

In this equation Eh ∈ RLE×Th×1 corresponds to the past/history (h: history) energy
generation measurements from LE locations (e.g., locations of wind farms, PV power
stations, etc.,), where Th is the size of the past-time temporal window. Moreover,
Wh ∈ RLW×Th×DW corresponds to past-time weather data from LW distinct loca-
tions, where DW is the number of of weather data measurements/variables. Also, Wf

∈ RLW×Tf×DW corresponds to future-time (f :future) weather data, i.e. weather fore-

casts, where Tf is the size of the future-time temporal window. Finally, Ê
f
∈ RLE×Tf×1

corresponds to the wind or solar energy predictions that are generated by the method
simultaneously for each of the LE locations.

In order to ensure clarity and consistency in representing matrix or tensor indexing
throughout this work, we adopt the following notation scheme: matrix or tensor ele-
ments will be denoted using indices enclosed within angle brackets (⟨.⟩). For instance,
elements of a third-order tensor X ∈ RN1×N2×N3 , will be referenced as x⟨i, j, k⟩ where
i, j, and k represent indices along the first, second, and third dimension, respectively.
In addition, the dot symbol (·) will represent the selection of all indices within the
specified dimension. For instance, the notation X⟨i, ·, ·⟩ denotes the selection of X ele-
ments with index i along the first dimension and all index values across the second
and third dimensions. These notations will be consistently employed in all subsequent
discussions and equations involving matrices or tensors.

In addition, let B ∈ RN1×N2×N3 and D ∈ RN1×N3×N4 be two batches of N1

matrices, where B = [B1, ...,BN1 ], and D = [D1, ...,DN1 ]. We can then define Batch
Matrix-Multiplication (BMM) as B ⊗ D = G, where G ∈ RN1×N2×N4 is a batch of
N1 matrices, G = [G1, ...,GN1 ].

Adopting the typical attention mechanism [34], the energy generation predic-

tion êf ⟨s, t⟩ at location s and time-step t, namely one of the elements of Ê
f

=
[[êf ⟨1, 1⟩, ..., êf ⟨1, Tf ⟩], ..., [êf ⟨LE , 1⟩, ..., êf ⟨LE , Tf ⟩]] can be formulated as:
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êf ⟨s, t⟩ = (

Th∑
j=1

α⟨s, t, j⟩Eh,r⟨s, j, ·⟩)C (2)

where

Th∑
j=1

α⟨s, t, j⟩ = 1

∀s ∈ [1, .., LE ],∀t ∈ [1, .., Tf ],∀j ∈ [1, ...Th]

In the above formulas, A ∈ RLE×Tf×Th corresponds to a non-negative attention
weights tensor that expresses future-time energy generation latent representations of
each site, as linear combinations of past-time energy generation latent representations
of the same site. In addition, Eh,r⟨s, j, ·⟩ ∈ RDr corresponds to the latent representa-
tion (r: representations) of the past energy generation measurement at location s and
past time-step j and Dr denotes the size of each energy generation latent represen-
tation. Moreover, C ∈ RDr×1 are learnable parameters of a linear operator. In this
formulation, wind or solar energy generation at s-th location and t-th time-step is pre-
dicted based on the temporal patterns, imposed by attention weights A⟨s, t, ·⟩, and
past energy generation measurements (more specifically their latent representations)
within the respective temporal window. Our objective is to explore, the previously
described, pseudo-spatial and temporal relations between Eh, Wh and Wf in order
to efficiently approximate A.

(a) Scaled Dot-Product Attention
(b) Multi-sized kernels convolutional scaled

dot-product attention.

Fig. 2: (a): Scaled Dot-Product Attention, (b): the novel Multi-sized kernels con-
volutional scaled dot-product attention. ci denotes the size of the i-th convolutional
kernel, employed in the temporal domain whereas Υ denotes the number of convolu-
tional kernels.
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3.2 Multi-Sized Kernels Convolutional Scaled Dot-Product
Attention

The Scaled Dot-Product Attention was presented in [35] and is formulated as follows:

Attention(Q,K,V) = MV, (3)

where M = softmax(
QKT

√
DK

) (4)

Q ∈ RNQ×DK , K ∈ RNK×DK and V ∈ RNK×DV are the queries, keys and values
respectively. Queries and keys have a dimension of DK , while values have a dimension
of DV . NQ is the number of queries while NK is the number of keys and values. An
illustration of the mechanism is depicted in Figure 2a. Multi-head attention was also
proposed in [35], allowing various attention mechanisms, including scaled dot-product
attention, to run in parallel. To this end, instead of performing a single attention
computation on queries, keys, and values with a universal dimension ofDr, the authors
proposed their transformation with Υ independently learned linear projections. The
attention computation is then performed, in parallel, on those Υ projected queries,
keys, and values. More specifically, the multi-head attention module can be formulated
as:

MultiHead(Q,K,V) = [p1, ...,pΥ]S
O, (5)

where pi = Attention(QSQ
i ,KSK

i ,VSV
i ) (6)

In this formulation, SQ
i ∈ RDr×DK , SK

i ∈ RDr×DK , SV
i ∈ RDr×DV , SO ∈ RΥDV ×Dr

are projection parameter matrices, Υ is the number of heads, DK = DV = Dr

Υ , and
the operator [...] implies concatenation.

On the original formulation, the scaled dot-product attention was designed to
explore point-wise similarities between queries and keys. However, in most time-series
analysis tasks, information regarding the context surrounding the observed points is
vital for exploring patterns among the series. The authors in [36] were able to employ
convolutions of kernel size c to transform inputs into queries and keys. Thus, local
context was exploited in the query-key matching, improving the way temporal patterns
among the corresponding time-series are explored. The authors experimented with
various values of c in order to find the optimal one. Instead of selecting one kernel
size, we propose the Multi-sized Kernels convolutional scaled dot-product Attention,
which can be formulated by modifying Equations 5 and 6 as follows:

MultiKernel(Q,K,V) = [p1, ...,pΥ]S
O, (7)

pi = Attention(gQ(Q, ci), gK(K, ci),VSV
i ) (8)

where gQ(Q, c) and gK(K, c) correspond to 1-D convolutional layers of DV kernels, c
being the size of 1-D convolutional kernels. In this formulation, convolutions with Υ
different kernel sizes are applied on Q, K resulting in Υ heads. In addition, a separate
linear projection is applied on V for each head. In this way, the scaled dot-product
attention is computed separately for each head. It should be noted that this process
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cannot be executed simultaneously but iterativelly for all heads. Then, the outputs
are concatenated and projected as depicted in Figure 2b.

3.3 Multi-Sized Kernels Convolutional Spatio-Temporal
Attention

Aiming to formulate the spatio-temporal attention (ST-Attention) we model queries,
keys and values in space-time as Q ∈ RLK×TQ×DK , K ∈ RLK×TK×DK , V ∈
RLV ×TK×DK , respectively, where the first dimension of these tensors is the spatial
one, the second dimension is the temporal one and the last corresponds to the size
of each vector representation. In addition, we define Y ∈ RLV ×LK , which is a matrix
that holds the spatial relations between the LV sites of the values and the LK sites
of queries and keys. Based on Equation 3, we formulate spatio-temporal attention
(ST-Attention) as follows:

ST -Attention(Q,K,V,Y) = B⊗V (9)

where

B = [

LK∑
i=1

y⟨1, i⟩M⟨i, ·, ·⟩, ...,
LK∑
i=1

y⟨LV , i⟩M⟨i, ·, ·⟩], (10)

M⟨i, ·, ·⟩ = softmax(
Q⟨i, ·, ·⟩K⟨i, ·, ·⟩T√

DK

), (11)

LK∑
i=1

y⟨j, i⟩ = 1, (12)

∀i ∈ [1, LK ],∀j ∈ [1, LV ]

In this formulation M ∈ RLK×TQ×TK holds temporal relations for each of the LK sites
of keys/values separately. More specifically, M⟨i, ·, ·⟩ holds temporal relations formed
between Q⟨i, ·, ·⟩ and K⟨i, ·, ·⟩ for the i-th site of queries and keys. The temporal
relations in M can be spatially applied to the sites of the values through Y, forming
tensor B ∈ RLV ×TQ×TK , as shown in Equation 10. Finally, the output of ST-Attention
is computed as the batch matrix-multiplication of tensors B and V.

Combining the MK-Attention, expressed in Equations 7, 8 with ST-Attention, we
formulate the Multi-sized Kernels convolutional Spatio-Temporal Attention (MKST-
Attention):

MKST -Attention(Q,K,V,Y) = [p1, ...,pΥ]⊗ SA (13)

pi = ST -Attention(gQ(Q, ci), gK(K, ci),VSV
i ,Y) (14)

where SA ∈ RLV ×ΥDV ×Dr is a tensor formed as a batch of LV repetitions of the
SO ∈ RΥDV ×Dr projection parameter matrix.
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3.4 U-Shaped Temporal Convolutional Auto-Encoder

High temporal resolution weather and energy generation data (e.g. per minute or hour
measurements/estimations) might contain fluctuations or noise resulting from sensor
inaccuracies or due to their processing procedure. As a result, high-frequency changes
in weather data might not coincide with equivalent changes in energy generation data
and vice versa. This has a very negative impact on identifying temporal patterns
between those two modalities. Aiming to diminish such data inaccuracies as well as
to extract essential contextual information from multiple temporal scales we employ a
U-shaped Temporal Convolutional Auto-Encoder (UTCAE). The corresponding archi-
tecture, depicted in Figure 3, shares similarities with the architecture of U-Net [37], a
neural network originally proposed for the task of biomedical image segmentation. It
should be noted that UNet-inspired architectures [38] [39] have also been applied in
time-series related tasks. The architecture of UTCAE, has a pyramid structure of P
levels, and consists of two parts. The encoding part comprises mostly of convolutional
layers followed by max pooling operations, aiming to progressively reduce the tempo-
ral dimension of the time-series data while extracting latent representations with more
contextual information. The decoding part, at its core, consists of upsampling opera-
tions, thus increasing gradually the temporal dimension back to the original size. Skip
connections, enable information from the layers of the encoder to be delivered directly
to the decoder, facilitating the gradients to propagate smoother during training by
providing shortcuts through the network.

Fig. 3: Illustration of the architecture of the U-shaped Temporal Convolutional Auto-
Encoder, where the number of pyramid levels is 3.

3.5 Joint Processing Block

The Joint Processing Block (JPB) can be formulated as:

Eout,Wout = JPB(Ein,Win,Y) (15)

where
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Eout = MKST -Attention(Wout,Wout,Eu,Y) +Eu, (16)

Wout = UW (Win), (17)

Eu = UE(E
in). (18)

As input, the block receives spatio-temporal energy generation data represen-
tations Ein ∈ RLE×(Th+Tf )×Dr and spatio-temporal weather data representations
Win ∈ RLW×(Th+Tf )×Dr . Matrix Y ∈ RLE×LW , which holds the spatial relations
between the LE energy generation sites and the LW weather data sites, is also provided
to the JPB. At first stage, the energy generation data and weather data are sepa-
rately processed by the U-shaped Temporal Convolutional Auto-Encoders, denoted as
UE(∗) and UW (∗), resulting in refined energy- and weather-data latent representations
Eu ∈ RLE×(Th+Tf )×Dr and Wout ∈ RLW×(Th+Tf )×Dr . Then, those latent representa-
tions, along with Y ∈ RLE×LW are fed to MKST-Attention, which outputs the final
energy generation representation Eout ∈ RLE×(Th+Tf )×Dr . A residual connection is
also applied between Eout and Eu. The architecture of JPB is depicted in Figure 4.

Fig. 4: Architecture of the Joint Processing Block.

3.6 Overall Architecture

The overall architecture of the proposed method is depicted on Figure 5. The method
receives as input Eh, Wh and Wf and feeds them into respective linear projection lay-
ers, forming Eh,rin ∈ RLE×Th×Dr , Wh,rin ∈ RLW×Th×Dr and Wf,rin ∈ RLW×Tf×Dr ,
respectively. In this formulation, LE is the number of energy generation sites, LW is
the number of the weather data sites, Th is the number of past time-steps. In addition,
the method receives spatial encodings S ∈ R(LE+LW )×DS , where DS is the size of the
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encodings. Although these encodings can be generated based on the geolocation coor-
dinates of the respective sites, if these are not known, which is the case studied in this
paper, one can use the one-hot encoding scheme for generating discrete pseudo-spatial
encodings for all sites. The encodings are fed to a linear layer, in order to linearly
project them into a Dr-dimensional space. Since the method processes energy gener-
ation data from all sites using the same neural layers, the projected pseudo-spatial
encodings of the energy generation sites are added to Eh,rin , so as to inject the spa-
tial information into the neural network. Similarly, the pseudo-spatial encodings of
weather data are added to Wh,rin and Wf,rin . In addition, those spatial encodings are
utilized for the generation of matrix Y ∈ RLE×LW , which holds the spatial relations
between the LE energy generation locations and the LW weather data locations. The
spatial attention weights matrix can be defined as:

Y = softmax(
ΛEΛW T

√
DΛ

) (19)

where ΛE = SE,rCE and ΛW = SW,rCW (20)

In this formulation, the attention weights in Y are computed similar to Equation 4,
through ΛE ∈ RLE×DΛ and ΛW ∈ RLW×DΛ matching. SE,r ∈ RLE×Dr and SW,r ∈
RLW×Dr are the projected spatial encodings of energy generation sites and weather
data sites, respectively. In addition, CE ∈ RDr×DΛ and CW ∈ RDr×DΛ are learnable
parameters of the linear projection layers.

Aiming to generate future-time energy generation latent representations Ef,rin ∈
RLE×Tf×Dr we employ the MKST-Attention mechanism described in Section 3.3 as
follows:

Ef,rin = MKST -Attention(Wf,rin ,Wh,rin ,Eh,rin ,Y) (21)

Then, Erin ∈ RLE×(Th+Tf )×Dr , which results from the concatenation of Eh,rin and
Ef,rin in the temporal dimension andWrin ∈ RLW×(Th+Tf )×Dr , which results from the
concatenation of Wh,rin and Wf,rin also in the temporal dimension, are sequentially
processed by ϕ stacked Joint Processing Blocks, resulting in refined latent energy
generation and weather data representations, namely ErJPB ∈ RLE×(Th+Tf )×Dr and
WrJPB ∈ RLW×(Th+Tf )×Dr (rJPB : representations derived through Joint Processing
Blocks). Thereafter, the final representation of energy generation predictions Ef,rout ∈
RLE×Tf×Dr are computed as follows:

Ef,rout = MKST -Attention(Wf,rJPB ,Wh,rJPB ,Eh,rJPB ,Y) +Ef,rJPB (22)

where Eh,rJPB ∈ RLE×Th×Dr and Ef,rJPB ∈ RLE×Tf×Dr are past- and future-
time energy generation representations and Wh,rJPB ∈ RLW×Th×Dr , Wf,rJPB ∈
RLW×Tf×Dr are past- and future-time weather data representations, all generated
through the ϕ stacked Joint Processing Blocks. Finally, Ef,rout is fed into a linear

layer, thus obtaining the energy generation predictions Ê
f
.
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Fig. 5: Architecture of the proposed wind/solar energy forecasting method.
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4 Experimental Evaluation

The experimental evaluation of the proposed method was conducted in a day-ahead
(forecasting horizon of 24 hours) solar/wind energy generation forecasting scenario,
utilizing weather data (predictions) for the corresponding forecasting window, as well
as past energy generation data and weather data for the last 14 days (past-time mea-
surements of 336 hours). Specifically for the solar energy forecasting task, time-related
features, such as the hour of the day, the month of the year and the season, were
treated as cyclical features and were encoded in polar coordinates. Then, they were
concatenated along with weather data before being fed to the proposed method. It
shall be noted that the time-related features were not employed in the wind energy
forecasting task due to the lack of a noticeable correlation between them and the wind
energy generation.

The rest of the section is structured as follows. First, details of the utilized datasets
are provided, followed by the description of the proposed method implementation
details. Next, the selected baseline methods are described and, finally, the experimental
results are provided and discussed.

4.1 Dataset Description

Five datasets were used in the experiments, as detailed below.
GEFCom2014 wind/solar: The complete dataset, named GEFCom2014 dataset
[40], contains four parts, each for a specific energy-related forecasting task. These
tasks are: (i) electric load forecasting, (ii) electricity price forecasting, (iii) wind energy
forecasting and (iv) solar energy forecasting. In our experimental evaluation, only
the latter two were employed. According to the authors in [40], GEFCom2014-wind
contains wind energy data and wind-related weather data obtained from ten power
stations in Australia, featuring an hourly temporal resolution. The locations of the
stations are not disclosed. Both the energy data and the wind-related weather data
span the period from 2012 to 2013. The weather data contain the zonal component
u and meridional component v of the wind velocity vector estimated at 10m and
100m above ground level. In a similar manner, GEFCom2014-solar contains solar
energy generation data as well as weather data consisting of 12 variables, such as
Total Cloud Cover (TCC), Surface Solar Rad Down (SSRD), Surface Thermal Rad
Down (STRD), Total Column Liquid Water (TCLW) and Surface Pressure (SP), from
three solar power stations in Australia, whose exact locations are not provided. Both
the energy data and the wind-related weather data span the period from 2012 to
2014. The weather data of both sub-datasets were obtained from the European Centre
for Medium-range Weather Forecasts (ECMWF) and were to be issued each day at
midnight. The solar energy data, along with its associated weather data, maintains
a temporal resolution of one hour. Both GEFCom2014-wind and GEFCom2014-solar
were proposed for day-ahead probabilistic energy prediction, with an hourly resolution.
However, in our experiments we employed them for deterministic day-ahead wind
and solar energy generation forecasting at an hour-level temporal resolution. Details
regarding the dataset’s split are provided in Table 2.
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Set
Forecasting Period

GEFCom2014-wind GEFCom2014-solar
Training set 15/01/2012 - 31/10/2013 16/04/2012 - 30/04/2014
Validation set 01/11/2013 - 30/11/2013 01/05/2014 - 31/05/2014
Testing set 01/12/2013 - 30/12/2013 01/06/2014 - 30/06/2014

Table 2: Training/Validation/Testing split of GEFCom2014-wind/solar

AEMO-H: The dataset was originally proposed in [23] for very short-term prob-
abilistic wind energy forecasting. It contains 5-minute resolution wind energy data
from 22 wind farms in south-east Australia from the period 2012-2013 and it was
made publicly available by the Australian Electricity Market Operator (AEMO). In
our experimental evaluation, two modifications / enhancements were applied. First,
5-minute resolution weather data, corresponding to the locations of the wind farms,
were retrieved from the Solcast1 online service. Details regarding the retrieved weather
data are presented in Table 3a. Second, the dataset’s temporal resolution was modi-
fied from 5 minutes to 1 hour, aiming to employ the dataset in an 1-hour resolution,
day-ahead wind energy generation forecasting scenario. The temporal resolution was
modified by averaging the wind energy generation values as well as the average of
weather data variables within each hour interval. Details about the dataset’s split are
presented in Table 3b.

Weather Data Variables
Air temperature (℃) Dew point temperature (℃)

Precipitable water (kg/m2) Precipitable rate (mm/h)
Wind speed 10m/100m (m/s) Wind direction 10m/100m (°)

Surface pressure (hPa)

(a) Weather data variables

Set Forecasting Period
Training set 15/01/2012 - 30/11/2012
Validation set 01/12/2012 - 31/12/2012
Testing set 01/01/2013 - 30/12/2013

(b) Training/Validation/Testing split

Table 3: Details regarding AEMO-H.

ENTSO-E wind/solar: The datasets consist of (i) hourly wind/solar energy gen-
eration data for Greece (the entire country), collected by the European Network of
Transmission System Operators for Electricity2 (ENTSO-E), and (ii) hourly weather
data for 29 locations in Greece, retrieved by the OpenWeather3 online service. The
coordinates of these locations are depicted in Table 4a. These locations coincide with
locations of large solar and wind power stations in Greece. The weather data vari-
ables that were employed in the experiments are listed in Table 4b. The dataset spans

1https://solcast.com/
2https://transparency.entsoe.eu
3https://openweathermap.org/
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the period 2017-2023. Details about the dataset’s split are depicted in Table 4c. Pre-
liminary or modified versions of the datasets were originally employed in [26] and
[41].

ID Lat. Lon. ID Lat. Lon. ID Lat. Lon.
1 37.5411 22.5951 11 41.1655 25.9326 21 38.2119 23.4278
2 37.7662 22.8489 12 41.1528 25.8356 22 41.2958 25.8879
3 41.0472 25.9823 13 38.1886 23.2295 23 40.4103 22.0868
4 37.4915 23.1672 14 38.4691 23.2353 24 41.1553 25.9094
5 37.4313 22.3016 15 38.4066 21.8195 25 41.2986 23.3747
6 37.5007 23.3038 16 36.8331 22.9094 26 38.2305 23.5026
7 38.1395 22.1279 17 38.2889 20.4995 27 38.3603 23.2384
8 40.8091 21.2575 18 41.2038 24.2845 28 38.4308 22.2748
9 37.4779 23.2937 19 40.9651 25.9702 29 36.8554 22.9517
10 37.5286 23.2460 20 38.2226 31.8676 - - -

(a) Coordinates of the 29 weather locations.

Weather Data Variables
Min/max/feels like/actual temperature (℃)

Atmospheric Pressure (hPa) Humidity (%)
Cloudiness (%) Wind direction (%) Wind speed (m/s)

(b) Types of NWPs

Set Forecasting Period
Training set 15/01/2017 - 31/12/2020
Validation set 01/01/2021 - 31/12/2021
Testing set 01/01/2022 - 30/01/2023

(c) Training/Validation/Testing split

Table 4: Details regarding ENTSO-E wind/solar.

4.2 Implementation details

The majority of parameters related to the proposed method architecture were set
universally for all datasets. More specifically, the size of latent representations Dr, for
both energy generation data and weather data, was set to 48. In MKST-Attention,
DK and DV were set to 16. The selected kernel sizes were set to [3, 5, 7]. Thus, Υ,
namely the number of the kernel sizes, was set to 3. Regarding UTCAE, the number
of pyramid levels P was set to 4. Finally, the number ϕ of JPB blocks was set to 3. To
prevent over-fitting, dropout regularization was implemented with a rate between 0.1
and 0.2. In addition, Reversible Instance Normalization [42] (RevIN) was implemented
for addressing the distribution shift problem.

The method was trained by utilizing the Mean Squared Error (MSE) as loss
function:

L =
1

LE

1

Tf

LE∑
s=1

Tf∑
t=1

(ê⟨s, t⟩ − e⟨s, t⟩)2 (23)
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The training parameters were also set universally for all datasets. Adam optimizer
was used during training, with the initial learning rate set to 5× 10−4. The ReduceL-
ROnPlateau4 scheduler, was employed for reducing the learning accordingly. The early
stopping technique was employed for finding the optimal number of training epochs,
based on the performance of the method on the validation set of each dataset. The
implemented model, which supports batch-training, was trained using batches of 8
samples.

4.3 Baseline Methods

Nine neural and two non-neural SoA time-series forecasting methods were selected
as baselines for comparison against the proposed method in the wind/solar energy
forecasting tasks. All methods, except [26], are time-series forecasting methods that
haven’t been explicitly proposed for wind/solar energy forecasting. The rationale for
this selection stemmed from the fact that none of the wind/solar energy forecasting
methods outlined in Section 2 is provided in open source. It shall be noted however
that the majority of these papers follow a similar experimental evaluation methodol-
ogy wherein the respective proposed method is compared against generic time-series
forecasting methods.

Table 5 lists all baseline methods, and indicates the type (past-time, future-time,
or both) of covariates supported by each method. In all methods, past energy genera-
tion measurements were employed as lagged input variables, while weather data were
employed as covariates. Specifically for the solar energy forecasting task, we utilized
as covariates the concatenation of weather data and time-related features.

Implementations of all baseline methods, except [26], were retrieved by the
Darts[43] library. Thus, details about any referred implementation modifications
against the originally proposed version of each baseline method, can be found in Darts
official GitHub repository5. The Asynchronous Successive Halving Algorithm [44]
(ASHA) scheduler, was utilized for hyperparameter tuning and for selecting the initial
learning rate. Similar to our method, the ReduceLROnPlateau scheduler was employed
for reducing the learning accordingly and the early stopping technique was employed
for finding the optimal number of training epochs, based on the performance of each
method on the validation set of each dataset. In all methods, MSE was used as the
corresponding loss function. Finally, all baseline methods, except [26], were employed
in a single-site manner. In other words, a separate model was trained and evaluated
for each energy generation site, and only weather data for the corresponding site were
used. In ENTSO-E wind and solar datasets, the weather data were spatially aggre-
gated before being fed as covariates, instead of being fed separately for each of the 29
locations. This choice was made based on preliminary experiments, where the baseline
methods, using weather data from all 29 locations, achieved better results in training
set but performed poorly in validation and testing sets, demonstrating the inability of
the methods to select weather data from relevant locations, leading thus to over-fitting.

The two selected non-neural time-series forecasting methods, both utilizing future-
time covariates as input, are Random Forest regression [45] and Kalman Filtering [46].

4https://pytorch.org/docs/stable/generated/torch.optim.lr scheduler.ReduceLROnPlateau.html
5https://github.com/unit8co/darts
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Among the selected neural time-series forecasting methods, N-HiTS [47] combines
two complementary techniques, multi-rate input sampling and hierarchical interpo-
lation, to produce drastically improved, interpretable, and computationally efficient
long-horizon time-series predictions. N-HiTS is a univariate method, accepting as
input only the predicted time-series history. In the conducted evaluation, a modified
version of N-HiTS, presented in [43], was employed, supporting the use of past-time
weather data as past-time covariates. In addition, an implementation of a dilated
Temporal Convolutional Neural Network (TCNN), suitable for time-series forecasting
inspired from [48], was employed. The utilized implementation also supports the use
of past-time covariates. An implementation of the Transformer [35] model, supporting
past-time weather-data as covariates, was also included in the conducted evaluation.
Furthermore, a deterministic autoregressive recurrent neural network, inspired by
DeepAR[49], was employed for solar/wind energy generation forecasting. The network
is capable of efficiently receiving and processing future-time covariates as input. DLin-
ear and NLinear are two simple one-layer linear models, proposed in [50] for long-term
time-series forecasting tasks. Both utilize past- and future-time covariates as input.
Moreover, Time-series Dense Encoder (TiDE) [51] is a Multi-layer Perceptron (MLP)-
based encoder-decoder model, suitable for long-term time-series forecasting tasks, that
enjoys the simplicity and speed of linear models while also being able to handle past-
and future-time covariates and non linear dependencies. Additionally, the Temporal
Fusion Transformer (TFT) [52] method adopts an attention-based architecture that
is able to learn temporal relationships at different scales, using recurrent layers for
local processing and interpretable self-attention layers for long-term dependencies.
TFT allows the use of both past- and future-time covariates, while utilizing special-
ized components to select relevant features and a series of gating layers to suppress
unnecessary components. Finally, the method in [26], designed specifically for wind
energy forecasting based on weather data from multiple locations, is also employed in
the experimental evaluation process on both wind and solar energy forecasting tasks.
As already mentioned in Section 1, this method is a preliminary version of the one
proposed in this paper. The key differences between the two methods are highlighted
in the same Section.

4.4 Results

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were utilized to
measure the performance of the methods in each energy generation site. To achieve
a fair comparison, each method was trained four times from scratch with the same
setup, and the mean MAE and RMSE are reported. For each dataset, both metrics
are reported separately for each energy generation site. The average MAE and RMSE
values, computed across all sites, are also provided.

GEFCom2014-wind: Tables 6 and 7 report MAE and RMSE values achieved by
the employed methods, respectively. Our proposed method attained the best average
results, computed across the ten wind energy generation sites, in both evaluation
metrics. More specifically it achieved MAE and RMSE values of 0.108 and 0.160
respectively. Among the rest of the methods, TFT, the DeepAR-based RNN and the
method proposed in [26], which, as already mentioned, is a preliminary version of the
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Method
Covariates

Past-time Future-time

N-HiTS [47] ✓
TCNN [48] ✓
Transformer [35] ✓
Kalman Filtering [46] ✓
Random Forest [45] ✓
DeepAR-based RNN [49] ✓
DLinear [50] ✓ ✓
NLinear [50] ✓ ✓
TiDE [51] ✓ ✓
TFT [52] ✓ ✓
[26] ✓ ✓
Ours ✓ ✓

Table 5: Comparison of the employed time-series forecasting methods in
deterministic RES forecasting.

one proposed in this paper, achieved favourable performance results. In particular,
TFT achieved top MAE, being on par with our proposed method, in sites III and IV.
In addition, TFT attained top RMSE in sites IV, V. The method proposed in [26]
achieved top RMSE in site III.

Method
Energy Stations

I II III IV V VI VII VIII IX X All
TCNN 0.206 0.180 0.231 0.252 0.263 0.263 0.203 0.201 0.190 0.265 0.225
N-HiTS 0.188 0.185 0.205 0.227 0.225 0.225 0.182 0.183 0.185 0.243 0.205

Transformer 0.181 0.166 0.203 0.211 0.216 0.229 0.168 0.176 0.182 0.223 0.195
Kalman

0.167 0.144 0.193 0.172 0.195 0.202 0.162 0.170 0.154 0.207 0.177
Filtering
Random

0.152 0.151 0.187 0.178 0.181 0.194 0.138 0.155 0.136 0.215 0.169
Forest

DeepAR-based
0.125 0.134 0.121 0.126 0.141 0.151 0.082 0.105 0.110 0.164 0.126

RNN
DLinear 0.177 0.181 0.208 0.216 0.227 0.224 0.177 0.176 0.170 0.250 0.201
NLinar 0.201 0.188 0.211 0.209 0.222 0.226 0.204 0.205 0.194 0.259 0.212
TiDE 0.135 0.122 0.130 0.138 0.152 0.156 0.084 0.107 0.107 0.185 0.132
TFT 0.111 0.110 0.121 0.118 0.134 0.141 0.074 0.092 0.093 0.159 0.115
[26] 0.099 0.115 0.123 0.140 0.152 0.150 0.084 0.099 0.100 0.164 0.122

Ours 0.077 0.099 0.121 0.118 0.132 0.133 0.070 0.090 0.090 0.150 0.108

Table 6: Mean Absolute Error (MAE) of the compared methods in GEFCom2014-
wind dataset.

GEFCom2014-solar: Table 8 reports the achieved MAE and RMSE for the pro-
posed and the baseline methods in GEFCom2014-solar dataset. Our method attained
the best-average results, across the three solar energy generation sites, in both eval-
uation metrics. More specifically it achieved MAE and RMSE values of 0.0362 and
0.0792 respectively. Similar to GEFCom2014-wind dataset, TFT, the DeepAR-based
RNN and the method in [26] achieved good results in terms of MAE and RMSE. In
particular, the DeepAR-based RNN managed to achieve the lowest MAE of 0.0386 in
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Method
Energy Stations

I II III IV V VI VII VIII IX X All
TCNN 0.267 0.222 0.277 0.303 0.305 0.310 0.250 0.257 0.238 0.317 0.275
N-HiTS 0.254 0.233 0.251 0.275 0.268 0.269 0.232 0.230 0.228 0.296 0.254

Transformer 0.245 0.212 0.249 0.261 0.278 0.292 0.213 0.225 0.225 0.284 0.248
Kalman

0.223 0.189 0.237 0.215 0.250 0.256 0.204 0.214 0.198 0.254 0.224
Filtering
Random

0.206 0.195 0.238 0.226 0.228 0.239 0.176 0.201 0.180 0.266 0.215
Forest

DeepAR-based
0.176 0.187 0.162 0.183 0.197 0.221 0.115 0.157 0.151 0.234 0.178

RNN
DLinear 0.245 0.230 0.256 0.263 0.271 0.272 0.227 0.228 0.217 0.302 0.251
NLinar 0.254 0.239 0.252 0.258 0.266 0.270 0.237 0.237 0.230 0.311 0.255
TiDE 0.183 0.166 0.173 0.182 0.201 0.212 0.115 0.160 0.149 0.254 0.180
TFT 0.158 0.159 0.166 0.179 0.191 0.208 0.105 0.147 0.134 0.230 0.168
[26] 0.132 0.161 0.161 0.193 0.202 0.202 0.111 0.148 0.137 0.225 0.167

Ours 0.110 0.148 0.163 0.180 0.198 0.201 0.097 0.144 0.133 0.224 0.160

Table 7: Root Mean Square Error (RMSE) of the compared methods in
GEFCom2014-wind dataset.

station II. In the same station, the method proposed in [26] achieved top RMSE of
0.830, being on par with our proposed method.

Table 8: Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of the
compared methods in GEFCom2014-solar dataset.

Method
Energy Stations

I II III All
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

TCNN 0.0506 0.1036 0.0514 0.0990 0.0532 0.1004 0.0517 0.1010
N-HiTS 0.0534 0.1038 0.0517 0.0956 0.0555 0.1013 0.0535 0.1002

Transformer 0.0571 0.1091 0.0557 0.1036 0.0566 0.01027 0.0564 0.1051
Kalman

0.0635 0.0994 0.0737 0.1092 0.0617 0.0998 0.0663 0.1028
Filtering
Random

0.0571 0.1091 0.0557 0.1036 0.0566 0.1027 0.0564 0.1051
Forest

DeepAR-based
0.0348 0.0825 0.0386 0.0871 0.0368 0.0842 0.0367 0.0846

RNN
DLinear 0.0543 0.0990 0.0551 0.0941 0.0573 0.0965 0.0556 0.0966
NLinear 0.0547 0.0991 0.0554 0.0940 0.0574 0.0961 0.0558 0.0964
TiDE 0.0448 0.0885 0.0479 0.0908 0.0430 0.0912 0.0452 0.0902
TFT 0.0375 0.0823 0.0434 0.0894 0.0395 0.0823 0.0401 0.0847
[26] 0.0367 0.0810 0.0395 0.0830 0.0397 0.0819 0.0386 0.0820

Ours 0.0331 0.0755 0.0388 0.0830 0.0366 0.0791 0.0362 0.0792

AEMO-H: Tables 9 and 10 report the achieved MAE and RMSE for all employed
methods in AEMO-H dataset. Our method attained the best results, for each of the
twenty-two wind energy generation sites, on both evaluation metrics. More specifically,
it achieved MAE and RMSE of 0.098 and 0.138 respectively. TFT and the DeepAR-
based RNN also achieved good results in terms of MAE and RMSE. In particular, the
DeepAR-based RNN attained MAE of 0.089 in energy station VII, thereby aligning
its performance with that of our proposed method. Figure 6 depicts concatenated
day-ahead energy predictions for seven days and station VI. The predictions were
generated by the best performing methods, namely DeepAR-based RNN, TFT, TiDE,
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and the proposed method. These predictions are compared against the actual energy
generation measurements (ground truth). It is obvious that the predictions time-series
generated by the proposed method follow in general, more faithfully, the ground truth.
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Method
Energy Stations

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI XXII All
TCNN 0.217 0.201 0.243 0.207 0.204 0.231 0.227 0.232 0.234 0.226 0.233 0.236 0.235 0.245 0.249 0.195 0.203 0.245 0.206 0.264 0.217 0.237 0.227
N-HiTS 0.168 0.171 0.184 0.155 0.171 0.188 0.170 0.180 0.189 0.183 0.199 0.190 0.182 0.199 0.204 0.149 0.162 0.192 0.171 0.210 0.184 0.193 0.182

Transformer 0.162 0.146 0.172 0.141 0.147 0.176 0.154 0.157 0.164 0.161 0.169 0.174 0.168 0.177 0.182 0.138 0.151 0.171 0.152 0.180 0.164 0.174 0.163
Kalman

0.114 0.120 0.124 0.102 0.117 0.156 0.107 0.120 0.123 0.123 0.127 0.140 0.118 0.128 0.135 0.102 0.117 0.122 0.111 0.143 0.126 0.125 0.123
Filtering
Random

0.139 0.139 0.156 0.128 0.140 0.169 0.145 0.142 0.154 0.154 0.157 0.171 0.153 0.160 0.161 0.122 0.139 0.159 0.137 0.177 0.147 0.154 0.150
Forest

DeepAR-based
0.090 0.095 0.101 0.080 0.104 0.129 0.089 0.097 0.108 0.106 0.117 0.124 0.100 0.111 0.113 0.085 0.105 0.107 0.104 0.118 0.105 0.099 0.104

RNN
DLinear 0.155 0.159 0.180 0.136 0.157 0.179 0.156 0.157 0.168 0.164 0.178 0.189 0.171 0.185 0.193 0.134 0.148 0.178 0.155 0.197 0.169 0.177 0.168
NLinear 0.165 0.174 0.186 0.145 0.160 0.179 0.162 0.168 0.174 0.182 0.196 0.191 0.177 0.203 0.211 0.144 0.155 0.197 0.161 0.204 0.186 0.195 0.178
TiDE 0.111 0.123 0.127 0.096 0.116 0.146 0.110 0.112 0.126 0.133 0.130 0.149 0.123 0.136 0.139 0.100 0.125 0.133 0.128 0.148 0.126 0.123 0.125
TFT 0.100 0.101 0.105 0.082 0.106 0.141 0.092 0.099 0.119 0.114 0.115 0.129 0.102 0.114 0.112 0.089 0.110 0.114 0.105 0.123 0.107 0.104 0.108
[26] 0.125 0.128 0.136 0.112 0.125 0.141 0.127 0.125 0.139 0.130 0.144 0.152 0.136 0.141 0.144 0.105 0.120 0.142 0.128 0.157 0.134 0.133 0.133

Ours 0.082 0.093 0.096 0.079 0.096 0.105 0.089 0.092 0.105 0.102 0.110 0.116 0.095 0.108 0.107 0.077 0.093 0.105 0.099 0.115 0.098 0.093 0.098

Table 9: Mean Absolute Error (MAE) of the compared methods in AEMO-H dataset.

Method
Energy Stations

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI XXII All
TCNN 0.273 0.241 0.294 0.264 0.247 0.272 0.275 0.285 0.280 0.277 0.290 0.279 0.284 0.295 0.300 0.243 0.255 0.294 0.256 0.307 0.270 0.293 0.276
N-HiTS 0.230 0.217 0.238 0.209 0.221 0.240 0.219 0.231 0.240 0.237 0.255 0.241 0.231 0.255 0.264 0.198 0.215 0.246 0.224 0.265 0.239 0.253 0.235

Transformer 0.218 0.189 0.220 0.192 0.195 0.226 0.203 0.209 0.212 0.211 0.224 0.219 0.215 0.227 0.236 0.182 0.198 0.221 0.206 0.233 0.215 0.226 0.213
Kalman

0.163 0.160 0.162 0.138 0.160 0.205 0.137 0.161 0.161 0.161 0.170 0.179 0.152 0.166 0.178 0.136 0.163 0.160 0.157 0.185 0.172 0.171 0.164
Filtering
Random

0.188 0.179 0.201 0.174 0.187 0.220 0.186 0.185 0.201 0.200 0.207 0.212 0.196 0.203 0.207 0.163 0.186 0.201 0.185 0.223 0.195 0.206 0.196
Forest

DeepAR-based
0.136 0.137 0.142 0.116 0.149 0.177 0.120 0.136 0.148 0.148 0.163 0.168 0.134 0.153 0.161 0.120 0.156 0.151 0.153 0.166 0.156 0.143 0.147

RNN
DLinear 0.212 0.205 0.235 0.188 0.209 0.233 0.205 0.207 0.220 0.217 0.236 0.242 0.222 0.240 0.252 0.181 0.202 0.233 0.208 0.256 0.226 0.235 0.221
NLinear 0.221 0.219 0.238 0.196 0.210 0.230 0.208 0.217 0.225 0.233 0.251 0.241 0.226 0.256 0.266 0.191 0.208 0.248 0.214 0.260 0.241 0.253 0.230
TiDE 0.160 0.165 0.171 0.134 0.159 0.191 0.142 0.152 0.169 0.177 0.180 0.196 0.163 0.181 0.189 0.136 0.175 0.177 0.177 0.198 0.178 0.172 0.170
TFT 0.148 0.140 0.146 0.117 0.152 0.186 0.122 0.138 0.166 0.153 0.163 0.171 0.137 0.156 0.160 0.123 0.157 0.155 0.155 0.171 0.159 0.146 0.151
[26] 0.179 0.172 0.185 0.155 0.173 0.189 0.165 0.168 0.185 0.176 0.194 0.199 0.182 0.188 0.194 0.145 0.170 0.188 0.175 0.208 0.180 0.188 0.180

Ours 0.124 0.130 0.133 0.113 0.137 0.146 0.119 0.129 0.145 0.142 0.155 0.159 0.129 0.148 0.152 0.110 0.141 0.145 0.146 0.160 0.141 0.134 0.138

Table 10: Root Mean Square Error (RMSE) of the compared methods in AEMO-H dataset.
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Fig. 6: Day-ahead wind energy generation measurements (ground truth) and predic-
tions for station VI of the AEMO-H dataset. Time period: 01-07/07/13.

ENTSO-E wind/solar: The MAE and RMSE values achieved by the proposed
and the baseline methods in ENTSO-E wind and solar datasets are reported in
Table 11. The proposed method attained the best results, for both evaluation met-
rics. In ENTSO-E wind, it achieved top MAE and RMSE values in normalized data,
namely 0.065 and 0.087 respectively. TiDE and the method in [26] achieved also good
results in both metrics. Similarly in ENTSO-E solar, our proposed method achieved
the best performance (0.035 MAE and 0.072 RMSE) in normalized data. Again, TiDE
and the method proposed in [26] attained favourable results.

4.5 Discussion

Overall, the proposed wind and solar energy forecasting method achieved the best
performance in terms of average - across the energy generation stations- MAE and
RMSE. This superiority with respect to the competing methods was manifested in all
five datasets. In addition, when measuring the performance on each energy generation
site separately, the proposed method achieved top results on most of the cases. The
obtained results highlight the ability of the method to generate enriched latent repre-
sentations for energy generation data and weather data by exploring spatio-temporal
patterns among them. It shall be also noted that the temporal processing of weather
data in the proposed method, facilitated by the UTCAE, consistently demonstrates
enhanced performance with respects to our preliminary approach presented in [26].

Aiming to demonstrate the efficacy of the proposed methodology in establishing
meaningful spatial relationships between the locations of energy generation stations
and the locations of weather data, we compared for the AEMO-H dataset the spatial
attention weights matrix illustrated in Figure 7 with the corresponding geographical
locations depicted in Figure 8. Indeed, the method forms significant spatial relations
between neighboring stations such as stations a) I, III, XIII, XXII b) VI, IX, c) XI,
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Method
Wind Solar

MAE RMSE MAE RMSE
(nrm. / MW) (nrm. / MW) (nrm. / MW) (nrm. / MW)

TCNN 0.203 / 532.60 0.251 / 660.21 0.063 / 134.15 0.123 / 260.94
N-HiTS 0.141 / 370.53 0.190 / 498.62 0.060 / 126.67 0.112 / 237.44

Transformer 0.135 / 354.47 0.180 / 474.12 0.058 / 123.36 0.111 / 235.31
Kalman

0.108 / 284.37 0.155 / 408.19 0.143 / 301.87 0.237 / 502.24
Filtering
Random

0.116 / 305.34 0.157 / 413.61 0.114 / 240.74 0.209 / 442.07
Forest

DeepAR-based
0.093 / 245.81 0.132 / 346.13 0.095 / 201.10 0.175 / 370.48

RNN
DLinear 0.107 / 281.29 0.145 / 381.33 0.062 / 130.47 0.105 / 222.74
NLinear 0.110 / 289.70 0.147 / 387.54 0.061 / 128.10 0.104 / 219.45
TiDE 0.078 / 206.14 0.105 / 275.28 0.040 / 83.83 0.078 / 164.49
TFT 0.084 / 221.25 0.116 / 304.29 0.063 / 134.15 0.123 / 260.94
[26] 0.076 / 200.71 0.102 / 267.83 0.040 / 84.64 0.080 / 168.53

Ours 0.065 / 170.37 0.087 / 229.04 0.035 / 73.70 0.072 / 151.47

Table 11: Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of
the compared methods in ENTSO-E wind/solar dataset, for both normalized and raw
data.

XIV, XV, XVIII, XXI and d) IV, XVI, XVII. To aid the reader, the attention weights
corresponding to these stations are marked in the figure with outlines of different
colors.

Moreover, in order to thoroughly evaluate the importance of spatial relations, we
conducted a comprehensive examination of the proposed methodology across three
distinct scenarios, using data from the AEMO-H dataset. In all these scenarios, the
proposed method is applied for day-ahead energy generation forecasting at eleven sta-
tions, namely stations IV, XIII-XXII, of this datasets. The first scenario aimed at
analysing the method’s performance in the case where weather data for the locations
of the energy stations are available. Thus, in this scenario, weather data for the loca-
tions of stations IV, XII-XXII are provided. The competing methods, namely Kalman
Filtering, DeepAR-based RNN, TiDE and TFT, were also applied under this scenario.
The second scenario was designed so as to assess the proposed method’s ability to dis-
cover spatial relations when the locations of the weather data don’t align with these of
the energy stations. Thus, in this scenario, weather data for locations corresponding
to the positions of stations I-III and V-XII (namely stations that are not included in
the experiment) are provided. In the third scenario, the examination involves weather
data for the locations of the energy stations, as well as supplementary weather data, for
additional locations. Thus, weather data for locations corresponding to the positions
of all AEMO-H stations, namely stations I-XXII are provided.
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Fig. 7: Spatial attention weights matrix, computed by the proposed method for the
AEMO-H dataset. The locations of the energy stations, represented as rows, coincide
with the weather data locations, represented as columns.

Fig. 8: Locations of the 22 energy generation stations in AEMO-H (south-east Aus-
tralia). The weather data locations coincide with the locations of the stations.
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As illustrated in Table 12, the proposed method attains top MAE (0.099) and
RMSE (0.142) when weather data are available for the positions of the energy stations.
A similar performance was also achieved when utilizing weather data corresponding to
the positions of the aforementioned stations, as well as from locations corresponding
to stations not involved in the associated evaluation (scenario 3). In the case where
weather data were provided for locations which do not coincide with the positions
of the energy stations (scenario 2), the proposed method yielded MAE and RMSE
of 0.109 and 0.152, respectively. Thus, in this challenging case, the method managed
to attain a decent performance, being third behind the DeepAR-based RNN and
TFT, which, as mentioned above, utilized weather data from the locations of the
stations. These findings highlight the significance of weather data, especially when
their locations coincide with the positions of the energy stations. Results also show
that the proposed method can perform well when provided with weather data for
locations in close proximity to the energy stations.

Method Weather Data for Specified Stations MAE RMSE
Kalman Filtering IV, XII-XXII (scenario 1) 0.121 0.162

DeepAR-based RNN IV, XII-XXII (scenario 1) 0.102 0.146
TiDE IV, XII-XXII (scenario 1) 0.125 0.171
TFT IV, XII-XXII (scenario 1) 0.106 0.149

Ours
IV, XII-XXII (scenario 1) 0.099 0.142

I-III, V-XII (scenario 2) 0.109 0.152

I-XXII (scenario 3) 0.099 0.141

Table 12: Average Mean Absolute Error (MAE) and average Root Mean
Square Error (RMSE) for the top-five compared methods, in day-ahead
energy forecasting for stations IV and XII-XXII of the AEMO-H dataset.
The proposed methodology undergoes evaluation in three distinct scenaria,
considering the spatial availability of the provided weather data (second col-
umn).

5 Conclusions

The efficient integration of Renewable Energy Sources (RES) into existing power sys-
tems highly depends on the accuracy of energy generation forecasting. This paper
proposes a novel, deterministic multi-site and multi-step (i.e., for multiple time
instances) wind and solar energy generation forecasting methodology, which utilizes
past-time energy generation measurements as well as past- and future-time weather
data from multiple locations. The weather data locations and the locations of the
energy generation stations may not coincide with each other and no information, such
as geolocation coordinates, needs to be provided. The proposed method utilizes a
U-shaped Temporal Convolutional Auto-Encoder architecture to process time-series
data related to weather and energy generation across each site. Furthermore, inspired
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by the multi-head scaled-dot product attention mechanism, we introduce the Multi-
sized Kernels convolutional Spatio-Temporal Attention, in order to effectively transfer
temporal patterns from weather data to energy data. The results of the conducted
experimental evaluation, in a day-ahead forecasting scenario, on three wind and two
solar energy generation forecasting datasets, highlight the potential of the proposed
method and its superiority against eleven state-of-the-art time-series forecasting meth-
ods. Future extensions will focus on validating the effectiveness of the method on
various forecasting horizons, temporal resolutions, and datasets where the locations
of the weather data don’t correspond with the locations of the energy stations.
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[43] Herzen, J., Lässig, F., Piazzetta, S.G., Neuer, T., Tafti, L., Raille, G., Van Pot-
telbergh, T., Pasieka, M., Skrodzki, A., Huguenin, N., Dumonal, M., Kościsz, J.,
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