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ABSTRACT

Artificial Intelligence Generated Content (AIGC) techniques,
represented by text-to-image generation, have led to a ma-
licious use of deep forgeries, raising concerns about the
trustworthiness of multimedia content. Adapting traditional
forgery detection methods to diffusion models proves chal-
lenging. Thus, this paper proposes a forgery detection method
explicitly designed for diffusion models called Trinity Detec-
tor. Trinity Detector incorporates coarse-grained text features
through a CLIP encoder, coherently integrating them with
fine-grained artifacts in the pixel domain for comprehensive
multimodal detection. To heighten sensitivity to diffusion-
generated image features, a Multi-spectral Channel Atten-
tion Fusion Unit (MCAF) is designed, extracting spectral in-
consistencies through adaptive fusion of diverse frequency
bands and further integrating spatial co-occurrence of the
two modalities. Extensive experimentation validates that our
Trinity Detector method outperforms several state-of-the-art
methods, our performance is competitive across all datasets
and up to 17.6% improvement in transferability in the diffu-
sion datasets.

Index Terms— Diffusion, forgery detection, deepfake

1. INTRODUCTION

Recently, diffusion models have rapidly advanced the field of
image generation. AI generation technologies, exemplified by
text-image generation, have significantly reduced the barriers
to synthetic image creation. Unfortunately, this capability has
the potential to be abused for malicious purposes. For in-
stance, text-image generation can be utilized in zero-shot sce-
narios to craft deepfake attacks targeting prominent political
figures worldwide [1]. This misuse can potentially engender
severe trust issues within our societal fabric. The diffusion
generation mechanism differs from previous approaches, and
existing detection methods exhibit poorly in its transferability.
Thus, it is of high significance to develop a forgery detection
method for diffusion models.

There have been some recent research on image detection
for diffusion model generation, some research [2] [3] employs
convolutional neural networks trained on different datasets for
extracting features and performing classification. Zhong et
al. [4] proposed a detection model that extracts the difference

Fig. 1. Diffusion generation process and comparison of
spectrogram of real and fake images after DCT transfor-
mation.

features by analyzing the pixel correlation between rich tex-
ture and weak texture regions in the image, but only consid-
ering the single feature of texture leads to poor data general-
ization, etc. Huang et al. [5] proposed to incorporate image-
text bimodality into the detection of false content by stacking
cross-aligned bimodal features, but this did not achieve align-
ment in semantic space.

To address this challenge, our work analyzes the differ-
ential representation of diffusion models and real images. It
has been found that the prompt input has a significant impact
on whether the generated image is more realistic or not [6],
the semantic coarseness of textual prompts and the structural
integrity of its semantic space have a direct impact on the
quality of diffusion model generation, and it can be expected
that the relevant characteristics of the text also have a feature-
level mapping impact on the detection of images generated
by the diffusion model. Given that U-Net has been widely
adopted in various diffusion models, the up-sampling layer
included in U-Net has also become a vital component of the
diffusion model, and the frequency-domain content changes
brought about by the up-sampling layer also have a great po-
tential to be used as a generalized diffusion forgery detection.
As shown in Fig 1, through the frequency domain transforma-
tion, we find that the frequency domain of the real image is
more balanced in all directions, while the diffusion-generated
image is concentrated in specific directions.

We propose a new method called Trinity Detector. Trin-
ity Detector provides a reliable way to distinguish between
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Fig. 2. An illustration of diffusion—generated images detection. The Text-Image Alignment and Extraction Module pro-
cesses textual and visual information pairs, extracting aligned content information. Within the SpectraFuse Unit, DCT vectors
extracted through the DCT Selection Criterion are applied to perform DCT transformation on individual channels of the image.
Subsequently, a channel attention mechanism is employed to fuse frequency domain information.

real images and diffusion-generated images. Precisely, the
Trinity Detector method consists of two parts: (1) We spe-
cially design a multispectral channel attention fusion unit to
extract the spectral inconsistencies between real images and
diffusion model-generated images through adaptive fusion of
different frequency bands to further incorporate the spatial
co-occurrence of these two modalities. (2) Semantic spatial
alignment fusion by introducing coarse-grained features of
textual information with fine-grained artifacts in the pixel do-
main through the CLIP encoder.

Additionally, to train and evaluate the diffusion-generated
image detector, we created a comprehensive diffusion-
generated dataset, which includes images generated by train-
ing on Stable Diffusion and GLIDE.

In summary, our major contributions of this work are
three-fold as follows:

• We propose a new forgery detection method called
Trinity Detectorthat, it uses an attention mechanism to
fuse the frequency domain and text-assisted visual con-
tent for diffusion image forgery detection.

• We propose a Multi-spectral Channel Attention Fusion
Unit (MCAF), that extracts the spectral inconsistencies
between real images and images generated by the dif-
fusion model through adaptive fusion across different
frequency bands.

• We produced a diffusion model-based image-text pair
dataset for benchmarking the diffusion-generated im-
age detectors.

• Extensive experiments show that our method has excel-
lent performance on diffusion-generated images, strong
generalization ability, and excellent robustness.

2. RELATED WORK

2.1. Diffusion Model Image Generation

Inspired by nonequilibrium thermodynamics, Ho et al. [7]
proposed a new generation of paradigms, namely Denoised
Diffusion Probabilistic Models (DDPMs), which achieved
competitive performance compared with PGGAN [8] right
out of the gate. Since then, more and more researchers have
turned their attention to diffusion models. Song et al. [9]
generalized DDPM to Denoising Diffusion Implicit Models
(DDIMs) through a class of non-Markovian diffusion pro-
cesses, which resulted in more high-quality samples with
fewer sampling steps. Later work ADM [10] found a more
efficient architecture that further achieves state-of-the-art per-
formance compared to other generative models with classifier
bootstrapping.LDM [11] modulates the input diffusion model
through a cross-attention mechanism and proposes introduc-
ing latent diffusion models with latent space. The recently
popular Stable Diffusion v1 and v2 are based on the LDM and
have been further improved to achieve surprising performance
in text-to-image generation. DALLE and DALLE2, released
in the same period, utilize a priori models to generate image
embedding of the input text based on CLIP [12] and then gen-
erate images from this embedding by using a diffusion-based
decoder.

2.2. Fake Image Detection Techniques

Generative image detection has been extensively studied in
the last few years. Early researchers focused on the subtle
changes in the tampering boundaries of the forged image to
determine the authenticity of the image based on boundary



artifacts and changes in statistical features [13] [14], wang
et al. [15] used monitoring neurons to forensically examine
GAN generated images. However, they neglected the ability
to generalize for invisible generative models, and there are
frequency-based methods in addition to spatial artifact detec-
tion. Subsequently, Frank et al. [16] proposed that in the fre-
quency domain, GAN has a special texture due to the pres-
ence of up-sampling operations in the generator when gener-
ating images. However, with the rapid development of dif-
fusion modeling, a general and robust detector for detecting
diffusion model-generated images has yet to be developed.
We note that the problem of diffusion-generated image de-
tection has also been noted in several recent works, e.g., as
it was pointed out that the lack of explicit 3D modeling of
objects and surfaces leads to asymmetry in shadows and re-
flection images [17]. There are also some works based on
pre-trained models of text images for detection, but they do
not propose a new paradigm for the development of forged
image detection techniques, and they are simply a simple ex-
ploitation of several existing works [6]. There are also papers
that perform detection by measuring the error between the in-
put image and the image reconstructed by a pre-trained Dif-
fusion model [18], but this performance may be affected by
the Diffusion model because different Diffusion models may
produce different reconstruction error sizes, and it is neces-
sary to propose some more generalized methods considering
the current proliferation of Diffusion models. Unlike them,
our work focuses on exploring a generalizable detector that
can be applied to large-scale diffusion models.

3. METHOD

In this paper, we present a novel method named Trinity De-
tector for diffusion-generated image detection. The rest of
this section is organized as follows. First, we briefly review
DDPM and DCT. Then, we present details of Trinity Detec-
tor for diffusion-generated image detection. Finally, we intro-
duce a new dataset, i.e., the diffusion-generated graphic pair
dataset, for training and evaluating diffusion-generated image
detectors.

3.1. Preliminaries

3.1.1. Denoising Diffusion Probabilistic Models (DDPMs)

DDPMs generate images by simulating a random diffusion
process involving two Markov chains: a forward chain that
perturbs data into noise and a reverse chain that transforms
noise back into data. The forward chain is typically man-
ually designed to convert any data distribution into a simple
prior distribution, while the Markov chain of the reverse chain
is learned by parameterizing the transition kernel with deep
neural networks to invert the former. By initially sampling a
random vector from a prior distribution and subsequently per-

forming ancestral sampling through a reverse Markov chain,
new samples are generated.

In the forward chain process, the data distribution x0 ∼
q(x0) is transformed using the transition kernel q(xt | xt−1)
through a Markov process that defined as:

q(x1, . . . , xT | x0) =

T∏
t=1

q(xt | xt−1), (1)

In DDPMs, this transformation kernel is classically de-
signed by adding a Gaussian perturbation by sampling the
Gaussian vector ϵ ∼ N (0, I) and applying the transforma-
tion. Finally, xt is approximated as a Gaussian distribution,
i.e., xt ∼ q(xT ) :

∫
q(xT | x0)q(x0) dx0 ≈ N (xT ; 0, I)

The reverse process is also characterized as a Markov
chain:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

Diffusion models leverage a network, Φ(·), to model
the true distribution pθ(xt−1 | xt), where θ represents
model parameters. The corresponding approximate distribu-
tion q(xt−1 | xt) is typically parameterized by a neural net-
work. The overarching simplified optimization objective en-
tails a sampling and denoising process, articulated as follows:

Lsim(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, t)∥2

]
, (3)

3.1.2. Discrete Cosine Transform (DCT)

Typically, the basis functions for two-dimensional (2D) Dis-
crete Cosine Transform (DCT) is:

Bh,w
i,j = cos

(
πh

H

(
i+

1

2

))
cos

(
πw

W

(
j +

1

2

))
, (4)

Thus, the two-dimensional DCT can be expressed as:

f2d
h,w =

H−1∑
i=0

W−1∑
j=0

x2d
i,jB

h,w
i,j , (5)

s.t.h ∈ {0, 1, . . . ,H − 1}, w ∈ {0, 1, . . . ,W − 1}
Here, f2d ∈ RH×W represents the 2D DCT spectrum,

x2d ∈ RH×W is the input, H is the height of x2d, and W
is the width of x2d. Correspondingly, the inverse of the 2D
DCT can be expressed as:

x2d
i,j =

1

H

H−1∑
h=0

W−1∑
w=0

f2d
h,wB

h,w
i,j , (6)

s.t.i ∈ {0, 1, . . . ,H − 1}, j ∈ {0, 1, . . . ,W − 1}.



3.2. Trinity Detector

We find that the images generated by the diffusion model are
significantly different from the real images in terms of fre-
quency domain information distribution compared to the real
images. To address this, Trinity Detector leverages a Multi-
spectral Channel Attention Fusion Unit (MCAF) that utilizes
channel attention to model and process channels in the fre-
quency domain. This enhances the representational capacity
for frequency domain features, which are then fused with the
image-text features extracted by a pre-trained encoder. Build-
ing upon these enhancements, Trinity Detector imparts dis-
criminative properties for distinguishing diffusion-generated
images from real images. Overall, our detection process is
shown in Eq 7, where ϕ̃Text and ϕ̃Image denote text image ex-
traction and alignment in semantic space, and ϕFrequency is
adaptive fusion based on the channel attention mechanism to
extract multi-band frequency domain information

Feature =ϕ̃Text(Text)⊕ ϕ̃Image(Image)
⊕ AttentionChannel(ϕFrequency(Image)),

(7)

MCAF To enhance channel compression and introduce
more information, we propose the Multi-spectral Channel
Attention Fusion Unit (MCAF), which extends frequency
extraction to more frequency components of the 2D DCT,
compressing additional information from multiple frequency
components of the 2D DCT.

Initially, the input image is divided into multiple parts
along the channel dimension through convolution, denoted as
[X0, X1, . . . , Xn−1], Xi ∈ RC′×H×W , i ∈ {0, 1, . . . , n −
1} For each part, a 2D DCT transformation is applied to the
selected frequency components determined by the DCT Se-
lection Criterion. This serves as the frequency domain chan-
nel attention, represented as follows:

Freqi =

H−1∑
h=0

W−1∑
w=0

Xi
:,h,wB

ui,vi
h,w

s.t. i ∈ {0, 1, . . . , n− 1}

, (8)

The overall SpectraFuse process can be expressed as:

Freq = FreqAttention{cat([Freq0, . . . , F reqn])}
= sigmoid(fc(cat([Freq0, . . . , F reqn])))

, (9)

Where the entire process can be seen as the extraction and
compression of multi-channel frequency domain features, our
approach extends the original methods focused on specific
frequency domains to a framework that encompasses multi-
ple frequency components.

DCT Selection Criterion To implement multi-spectrum
channel attention, we adopted the criteria proposed by Qin et

al. [19], which include FcaNet-LF (Low-Frequency), FcaNet-
TS (Two-Step Selection), and FcaNet-NAS (Neural Architec-
ture Search). The optimal frequency components for chan-
nel attention are searched through neural network exploration.
The frequency components for this part can be expressed as:

Freqinas =
∑

(u,v)∈O

exp(α(u, v))∑
(u′,v′)∈O exp(α(u′, v′))

DCTu,v
2D (Xi),

(10)
Image-Text Content Extraction Module Combining the

formidable text-image feature extraction and alignment ca-
pabilities demonstrated by CLIP, our approach strategically
employs its pretrained text-image encoder. Leveraging this
pretrained encoder facilitates the deep extraction and fusion
of image features and semantic information. Specifically, we
use Vit-32 as the image encoder and a transformer encoder
for text, creating a cohesive multimodal representation.

This combined strategy not only enhances feature extrac-
tion but also promotes a deeper integration of semantic infor-
mation, contributing to the improved effectiveness and versa-
tility of our proposed method.

3.3. TxtDiffusionForensics: Dataset for Evaluating
Diffusion-Generated Image Detectors

Due to the lack of public datasets for generating fake images
from diffusion models, this paper produces the TxtDiffusion-
Forensics dataset, which consists of a diffusion model and
the corresponding text pairs. We select text cues from the
Flickr30K and MSCOCO public datasets and use the stable
diffusion model and the GLIDE model to generate synthetic
images.

4. EXPERIMENT

In this section, we first describe the experimental setup and
then provide extensive experimental results to demonstrate
the superiority of our approach.

4.1. Experimental Setup

Data Pre-processing All experiments were conducted on
our TxtDiffusionForensics dataset. We randomly selected
5000 real images and 5000 synthesized images, each paired
with corresponding textual prompts, for the training dataset.
The evaluation test set for assessing the performance of the
hybrid detection model consists of three parts. One dataset
is generated by StyleGAN, while the other two are generated
by stable diffusion and GLIDE models, respectively. In as-
sessing model performance, we employ classification accu-
racy (ACC).

Baselines To validate the exceptional performance of our
proposed method, we have chosen several state-of-the-art



Table 1. Comparison with other detectors. We performed white-box testing on the StableDiffusion dataset and transferability
black-box experiments on the other two datasets and investigate the robustness tests with different JPEG compression rates
(80%, 50%), different Gaussian blurring rates (α = 1, 2), * denotes re-training on the Stable Diffusion dataset of TxtDiffusion-
Foresnsic, Ori denotes the original image.

StableDiffusion GLIDE StyleGAN
Ori JEPG Gaussian Ori JEPG Gaussian Ori JEPG Gaussian

Method 80% 50% 1 2 80% 50% 1 2 80% 50% 1 2
CNN[2] 0.493 0.534 0.387 0.456 0.389 0.645 0.674 0.612 0.681 0.616 0.827 0.707 0.611 0.714 0.598

ProGAN[20] 0.486 0.412 0.382 0.543 0.473 0.503 0.436 0.427 0.459 0.429 0.968 0.768 0.746 0.783 0.719
StyleGAN[20] 0.501 0.489 0.413 0.528 0.474 0.510 0.542 0.436 0.536 0.438 1.000 0.820 0.715 0.881 0.746

CNN*[2] 0.931 0.781 0.616 0.733 0.625 0.891 0.629 0.574 0.635 0.543 0.764 0.636 0.539 0.693 0.510
GAN*[20] 0.943 0.757 0.599 0.749 0.578 0.837 0.644 0.519 0.609 0.529 0.913 0.811 0.730 0.837 0.694

DE-FAKE[6] 0.853 0.748 0.682 0.767 0.739 0.703 0.651 0.617 0.737 0.675 0.657 0.607 0.544 0.611 0.537
Dire[18] 0.977 0.809 0.718 0.902 0.856 0.929 0.855 0.702 0.862 0.821 0.835 0.720 0.689 0.785 0.697
OURS 0.993 0.931 0.894 0.957 0.895 0.945 0.868 0.790 0.889 0.845 0.841 0.815 0.779 0.806 0.755

methods that have achieved outstanding results on diverse
datasets for comparison:

1. CNNDetection [2]: This method introduces an image
detection model generated by a convolutional neural network
(CNN). The model undergoes training on a specific CNN
dataset and demonstrates the ability to generalize to other im-
ages generated by CNNs.

2. GANDetection [20]: By training on ProGAN and
StyleGAN, this method has achieved notable success in terms
of generalization.

3. DiffusionDetection: DIRE [18] employs a pre-trained
diffusion model to measure the error between input images
and reconstructed images. DE-FAKE [6] combines graphic
and text content through the CLIP pre-trained model, and then
classifies it on the classifier.

4.2. Comparison to Existing Detectors

In this study, we employed pre-trained weights obtained from
official repositories to assess the performance of CNNDetec-
tion, GANDetection, and DiffusionDetection on our curated
dataset. Since the DE-FAKE method is not yet open source,
we follow the method in the original article to reproduce it on
our dataset.

Quantitative results are detailed in Table 1. Notably, ex-
isting detectors exhibited a significant decline in performance
when tasked with handling diffusion-generated images, with
an accuracy (ACC) falling below 60%. To address this lim-
itation, we utilized diffusion-generated images as additional
training data and conducted a retraining of CNNDetection and
GANDetection. The resulting models demonstrated substan-
tial improvements in detecting images generated by the same
diffusion model used during training. However, their perfor-
mance remained suboptimal when confronted with diffusion
models not encountered during training.In contrast, our pro-
posed method, Trinity Detector, showcases outstanding gen-
eralization capabilities.

Table 2. The ablation experiment data for each module.
Stable Diffusion GLIDE StyleGAN

Trinity Detector 0.973 0.945 0.841

Freab 0.676 0.559 0.513

Captionab 0.783 0.751 0.647

CaptionBLIP 0.968 0.937 0.903

4.3. Robustness Assessment

In addition to generalization to unknown generative models,
robustness to unknown perturbations is also a general concern
since, in practice, images are usually perturbed by various
kinds of degradations. Here, we evaluate the robustness of
the detector in two types of perturbations (i.e., Gaussian blur
and JPEG compression). Perturbations are added in Gaussian
blur (σ = 1, 2) and JPEG compression (quality = 80%, 50%).
We explored the robustness of the Baseline and our Trinity
Detector. The results are shown in Table 1. We observe that
our DIRE achieves better performance at each level of Gaus-
sian blurring and JPEG compression.

4.4. Ablation Study

Based on the description in Section 3.2, we introduce the
Multi-spectral Channel Attention Fusion Unit (MCAF). In
this section, we first perform a detailed ablation analysis of
the module, evaluating and comparing its performance by
training detectors that consider only text and image content.
Considering that not all forged images contain textual de-
scriptions, we performed ablation experiments with the text
extraction unit and the corresponding experiments in the case
of text generation using BLIP. The specific results are shown
in Table 2, and the Trinity Detector performs more superi-
orly compared to all the ablation detectors. Meanwhile, re-
gardless of whether the text is a natural language text or a
BLIP-generated text, it presents better results than the detec-
tor without text.

This indicates that combining frequency domain informa-



tion with coarse-grained text and fine-grained visual content
can effectively amplify the difference between the forged im-
age and the real image, thus improving the detection of the
forged image generated by the diffusion model.

5. CONCLUSION

In this paper, our goal is to develop a generalized detector to
distinguish images generated by diffusion models. To address
this challenge, we introduce the Trinity detector method. This
approach is based on the observation that images generated
by the diffusion model exhibit significant defects in the fre-
quency domain. Therefore, we introduce a multispectral
channel attention fusion unit, which adaptively fuses differ-
ent frequency bands of real and diffusion model-generated
images through an adaptive channel attention mechanism to
extract their spectral inconsistencies in order to distinguish
between real and faked images. Extensive experiments have
verified that the proposed Trinity Detector method has better
detection performance and robustness as well as generaliza-
tion compared to other methods in detecting images generated
from diffusion models..
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