2404.17195v1 [cs.DS] 26 Apr 2024

arxXiv

Distributed computation of temporal twins in
periodic undirected time-varying graphs

Lina Azerouk!, Binh-Minh Bui-Xuan', Camille Palisoc', Maria
Potop-Butucaru', and Massinissa Tighilt!

LIP6 (CNRS — Sorbonne Université),

[lina.azerouk,buixuan,camille.palisoc,maria.potop-butucaru,massinissa.tighilt]@lip6.fr

Abstract. Twin nodes in a static network capture the idea of being
substitutes for each other for maintaining paths of the same length any-
where in the network. In dynamic networks, we model twin nodes over
a time-bounded interval, noted (A, d)-twins, as follows. A periodic undi-
rected time-varying graph G = (G¢)ten of period p is an infinite sequence
of static graphs where Gt = Gy, for every t € N. For A and d two in-
tegers, two distinct nodes u and v in G are (A, d)-twins if, starting at
some instant, the outside neighbourhoods of u and v has non-empty in-
tersection and differ by at most d elements for A consecutive instants. In
particular when d = 0, u and v can act during the A instants as substi-
tutes for each other in order to maintain journeys of the same length in
time-varying graph G. We propose a distributed deterministic algorithm
enabling each node to enumerate its (A, d)-twins in 2p rounds, using
messages of size O(dg logn), where n is the total number of nodes and
dg is the maximum degree of the graphs G;’s. Moreover, using random-
ized techniques borrowed from distributed hash function sampling, we
reduce the message size down to O(logn) w.h.p.

Keywords: time-varying graph, twin, twin distributed computing.

1 Introduction

Maintaining connectivity is an important topic for dynamic networks. For
instance, in the l-interval-connected network model [97/8], if moreover
the graph is periodic and each node’s local view can be updated entirely
every round on contact of its neighbours, then it is proven that a tem-
porally optimal broadcast tree can be maintained in real time [3]. This
is important for connectivity because of the real time updates, namely
nodes do not need to process a posteriori the pieces of information they
received about their neighbourhood. Here, the 1-interval-connected model
allows for a fixed set of nodes to communicate through a temporal edge
set changing at discrete time units called rounds. The structure as a whole
is called a time-varying graph [4], where at every round the graph is also
usually assumed to be connected.



2 L. Azerouk et al.

c

LR

£
-, éf
\ !

.<y;\./

Fig. 1. Network modelled as an undirected graph. Arrows are in double direction to
stress that communications are allowed both ways around. The two pairs of twins in
the graph are {c,c’'} and {j,j'}. A packet traveling between node a and e can choose
(a,b,c,d,e) as shortest path. If node ¢ switches off or if it is faulty, the path of same
length (a, b, c’,d, e) can still be used. Between a and h, the two paths (a,l, k, ,i, h) and
(a,l,k,5",i,h) are shortest, however, (a,l,k, j, 5,4, h) is not a shortest path.

In our study, we consider all the above assumptions, except for that
we do not require the time-varying graph to be connected at every round.
This is convenient to model adhoc networks with both dense and sparse
areas with predictable periodicity such as satellite networks. We would like
to capture by the notion of twin nodes the possibility of backup routes
or of a resource saving strategy during the times when some satellites are
called twins. This is why we aim at a formalism where the connectivity in
the rest of the network are maintained by journeys of the same length even
though one of the twin satellites switches off for sleeping or maintenance
during some time window of a given desired length, cf. Fig.

In a static graph, such a concept can be formalised following the model
of eemodules [5] and d-contractions [I]: given an integer d, two nodes u # v
are d-twins if their outside neighbourhoods have non-empty intersection
while the symmetric difference has size smaller than d, that is, the sum
of [IN(u) \ N(v) \ {u,v}| and |[N(v) \ N(u)\ {u,v}| is at most d. We need
the former assumption of non-empty intersection for obtaining efficient
computational results. At the same time, isolated nodes or nodes without
common neighbours are bad models of backup routes as in the above ex-
ample of network of satellites. Hence, we discard them from our definition
of d-twins which requires nodes to have at least one common neighbour.
From this point, our extension to the dynamic case will follow that of
A-twins [2]: given two integers A and d, two nodes u # v are (A, d)-twins
in a time-varying graph G = (G¢)en if there exists tgp € N such that u
and v are d-twins in every graph Gy, for tg <t < tg + A.



Distributed computation of temporal twins in periodic undirected TVGs 3

Our contribution:

We give a distributed deterministic algorithm for every node in a peri-
odic undirected time-varying graph of period p to compute its (A, d)-twins
after 2p rounds, using messages of size O(dg logn), where dg is the maxi-
mum degree of the graphs G¢’s. When randomized by sampling techniques
from [6], our messages can be reduced to O(logn) w.h.p.

The main idea in our algorithm can be divided into two steps. In the
first step, we show how to solve the problem of finding d-twins in a static
graph G after 2 rounds. Roughly, while in 2 rounds every node can receive
messages sent by its 2-neighbourhood, the receiver node need to detect
those sent by its d-twins. In particular, note that while a path over 3 ver-
tices admits two 0-twins, a path over n > 4 vertices has none (because for
every node, one vertex from its 3-neighbourhood breaks down the 0-twin
definition). In order to avoid examining messages from k-neighbourhoods
with k > 3, we exhibit a set property involving the number of paths of
length 2 which allows to detect d-twins. The main idea is to use inclusion-
exclusion properties on the neighbourhoods of nodes in order to restrict
the message size to O(dglogn). Furthermore, by exploiting very simple
twist inspired from distributed hash function sampling [6], we reduce the
message size down to O(logn) w.h.p.

In a second step, we address the dynamic case. The main idea here
is for the receiver nodes to store information while waiting for the time-
varying graph to repeat its edges, using periodicity. At the same time,
a sender node must be detected A consecutive times as a d-twin in or-
der to be detected as (A,d)-twin. A special attention is needed for all
computations to end after 2p rounds (and not 2p + A).

Eventually, we remark that our algorithm requires the time-varying
graph to be undirected, meaning communication on an edge uv must be
allowed both way around between w and v. This is because of the step
in the static setting where every node attempts to count the number of
paths of length 2 linking itself to every of its d-twins.

The paper is organised as follows. The formal framework of periodic
time-varying graphs and (A, d)-twins is defined in Section [2| In Section
we briefly present a property of twins in static graphs, before using it to
show a distributed algorithm for every node to compute its (A, d)-twins
and prove its correctness. Section [f] is devoted to reducing the message
size used by our algorithm to O(logn) w.h.p. We conclude the paper in
Section [p| along with some open remarks for future works.



4 L. Azerouk et al.
2 Model and Problem definition

We consider distributed systems which are fault-free, message-passing,
synchronous, with a unique ID for each process. This will be formalised
as a time-varying graph [4] defined by G = (V, E, T, p), where V is a finite
set of nodes representing processes, E C (‘2/) is the underlying set of all
possible edges and p : E x T — {0,1} is the presence function defining
whether an edge exists in a given round. Temporal edges are those bound
to a specific time instant: Ey = {e € E : p(e, t) = 1}. Alternatively, a time-
varying graph can also be seen as a sequence of static graphs G = (G¢)ier,
where Gt = (Vv, Et)

Inspired by the models of dynamic networks in [4[7)89], we suppose
furthermore that the time-varying graph is characterized by a periodicity,
non-anonymity, synchronicity, and local knowledge. However, we do not
require it to be connected at every time instant.

— The periodicity means the existence of a specific value p such that,
every edge present in the graph at a particular time ¢ has its presence
in the graph repeated periodically at ¢t 4+ p. Because of periodicity, we
restrict our domain of study down to the cyclic group of p elements
and abusively refer to it as T'=2Z/pZ ={0,1,...,p—1} =[0,p — 1],
and subsequently restrict the input time-varying graph to the first p
instants, G = (Gy)o<t<p-

— The non-anonymity of the graph means that each node v has a
unique ID € N, we assume that each I D is represented using at most
O(logn) bits, where n = |V|.

— The synchronicity within the graph implies the presence of a global
clock that ticks regularly for each t € T', beginning with ¢ = 0. During
each tick of this clock, every node v in the graph performs three sequen-
tial actions: sending a message to each neighbouring node, receiving
the message from each neighbour, and executing computational tasks.
Each occurrence of the clock ticking is called round.

— By local knowledge, we assume that each node v in the graph has
the knowledge of the number of its neighbours at any given time ¢t € T,
but not their IDs. The set of neighbours of node v at time ¢ is denoted
as N (v).

Remark 1. If the system does not allow for local knowledge, nodes can
still pass their ID to all neighbours at every round ¢. Then, at round t+1,
the system satisfies the retro-property of local knowledge of every past
round. In other words, it is possible to equip any periodic time-varying



Distributed computation of temporal twins in periodic undirected TVGs 5

Round 0 Round 1
c [
e e
7 ed yd e
[y S — b@— _— \
A —@" — @ \
/ bt (T // d q\ e
/ \ / \
2@ | a@® a | .
n of 1 [ ) ®
% e e 7 L on e e
\ / \ /
\ ) / \ . /
v
e * . IR &
e \\ / \\.,////// \ \\\ /
KO / P s K& \ /\;.‘h
e ..o
i i ] i
Round 2
c
O
7 e
b@ _—
— e
/ ot (8
/ \
a '., - .‘f
e " L -
| o e T
\ /
\ /
R ) /
4 g
N //f\ Vat
k (\ [ N\ %
e

Fig. 2. A periodic time-varying graph with a period of 4, where nodes c and ¢’ are
(4,0)-twins.

graph of period p with the local knowledge property after a preprocessing
using p rounds and messages of size O(logn).

For u # v two nodes of G, we say that u and v are (A, d)-twins if,
starting from a specific time instant tg € T, their outside neighbourhoods
have a non-empty intersection while the difference between these two sets
is less than or equal to a fixed value d for A consecutive rounds, that is,
|Ne(w) \ Ne(v) \ {uw, v} +|Ne(v) \ Ne(u) \ {u, v}| < d, for every t € [to,t0+
A—1] if to + A < p and for every t ¢]to + A — 1 mod p,ty[ otherwise.
Fig. 2| exemplifies (A, d)-twins. We address the following problem.

PERIODIC(A, d)-TWINS

INPUT: G = (Gy)er with T' = [0, p— 1] representing a time-varying graph
of period p; integers A < p and d.

OuTPUT: for every node u in G, a list of all its (A, d)-twins, that is, a list
of (v,t)’s with v being a node ID and ¢ the starting time instant where u
and v become d-twins for A instants.

Note that it is required that the period p be given among the input
of every node, but not the graph G. During each round ¢, every node has
a local knowledge of G, which is the size of its current neighbourhood, in



6 L. Azerouk et al.

Gy. In the next Section |3 we prove that PERIODIC(A, d)-TWINS can be
solved after 2p rounds, using messages of size O(dg logn), where n is the
total number of nodes and dg < n is the maximum degree of the graphs

Gt’S.

3 Distributed computation of (A, d)-twins

The main idea of our solution is based on the following property of static
graphs, which hints that every node can compare its 1-neighbourhood
with the 1-neighbourhood of any other node in its 2-neighbourhood in
order to determine whether that node is one of its d-twins. For u # v two
nodes of a static graph G = (V, E), we say that u and v are d-twins if
they have at least one common neighbour and that the difference between
the sets of their outside neighbours is at most d, namely |N(u) \ N(v) \
{u,v} + |[N(v) \ N(u) \ {u,v}| <d. A path of length 2 between u and v
is a path having 2 edges and 3 nodes, of the form (u,w,v) with vw € E
and vw € F, for some w # u and w # v.

Property 1 Let G = (V, E) be an undirected static graph, let uw # v be
two distinct nodes in V. with a common neighbour. Then, u and v are
d-twins if and only if d > k or there are at least k — d paths of length 2
between v and v, where k = |N(u) U N (v) \ {u,v}|.

Proof. The case when d > k is clear. Otherwise let A = N(u)\ {u,v} and
B = N(v)\{u,v}. Then, k = |AUB]|. The paths of length 2 between u and
v are only paths passing through their common neighbours. Therefore, the
number of such paths is n, = |[AN B|. We need to prove that v and v are
d-twins if and only if n, > k — d. From the definition of d-twins, we have
|A\ B|+|B\ A| <d. Since |[AUB|—|ANB| =|A\ B|+ |B\ 4|, this is
equivalent to |AU B| — |AN B| < d, in other words, k —n, < d. 0

Remark 2. Note that u and v could have very different neighbourhoods.
For instance when they have no common neighbours, k£ could be large,
while © and v are not d-twins until d > k.

Let G = (Gy)ter be a p-periodic time-varying graph with 7" = [0, p—1].
For every node to compute its list of d-twins, we would need 2 rounds
per static graph Gy, so that the node collects information about its 2-
neighbourhood. Since the time-varying graph is periodic, we can proceed
a first phase of p rounds for passing every node’s 1-neighbourhood infor-
mation to its neighbours. Then, in a second phase consisting of p extra
rounds, every node can forward all the pieces of information it has already



Distributed computation of temporal twins in periodic undirected TVGs 7

collected from its neighbours during the first phase. The information re-
ceived in this second phase informs every node about its 2-neighbourhood.
There are however two drawbacks of the above idea.

Firstly, we need to control the size of the messages sent from each
node, especially in the second phase. In Lemma[2| below, we prove that the
information related to the entire neighbourhood is not necessary, but only
the size of it. Roughly, we plan to only send the size of the neighbourhood
each time we need to forward this information. More specifically, following
Lemma [2] each node v in G can determine whether a node v in G is
such that v and v are d-twins at round ¢, by adding the number of u’s
neighbours, obtained at round ¢, to the number of v’s neighbours, obtained
at round ¢’ = ¢ 4+ p and subtracting the number of common neighbours
between them. Then, if the result is less than d, they are d-twins, according
to the inequality given in Lemma [2]

Secondly, we aim at computing (A, d)-twins in G, with A representing
a continuous window of A consecutive time instants starting at tg € T
For most ¢y this can be done using in the receiver node’s internal storage
a counter per sender node, which increments every time the receiver node
detects a sender node as its d-twin at some G;. The counter is reset to zero
whenever that sender node is detected as a non-d-twin at some (other)
Gt. However, cases involving extremities of interval 1" such as when tg +
A > p will have their time window divided into two disjoint intervals:
[0,to+A—1 mod p] and [tg,p— 1]. If we proceed as with all other cases,
the information will be ready at some round after the 2p-th round for this
case. We can accelerate this to be as early as in the 2p-th round using
internal storage of a table in each receiver node, instead of the previously
mentioned incremental counters. Another positive consequence of using a
table instead of using incremental counters is that, starting from round
p+ A, every node has access in real time to its (A, d)-twins of previous
A rounds. Then, at the 2p-th round, every node has access to the full list
of its (A, d)-twins, where the computation terminates.

Algorithm [I] implements the above ideas, calling as subroutines both
Algorithms [2] and [3] at every round. All tables in Algorithm [1] are dictio-
nary data structures. The result for every node u will be stored in table
Delta_d_Twins. For its computation, node v maintains furthermore two
tables, called Twins and Count. For a node v # u with identifier id, a
strictly positive value of Twins[id] means that v and u have been twin
vertices for the last Twins [¢d] number of rounds. Hence, when Twins [id]
is at least A, we append id to the resulting list Delta_d_Twins along



8

L. Azerouk et al.

Algorithm 1 Finding the (A,d)-twins, all tables are dictionary data

structures
1: procedure PERIODIC(A, d)-TWINS(p, A, d)
> Initialisation
2: Table Tab with p associating to each round the set of neighbours and the number
of their neighbours
3: Table Count associating to a given ID, the number of times it has been received
in the current round
4: nbMsg < 0 > The number of messages received.
o: Table Neighbors associating to a given ID its number of neighbours in the
current round
6: Table Twins storing the consecutive d-twins of the node, updated at each round,
initially empty
T Table dTwinsRound associating to each round the found d-twins of the node
8: Set Delta_d_Twins initially empty
9: for each round do
10: Call Algorithm > Sending a message
11: Call Algorithm > For received messages
12: if round = 2p — 1 then
13: 1< 0
14: while i < p and Twins # () do
15: for id in Twins do
16: if id in dTwinsRound[i] then
17: Twins [id] < Twins[id] + 1
18: if Twins[id| = A then
19: Append {id,p+i — A+ 1} to Delta_d_Twins
20: Remove id from Twins
21: else
22: Remove id from Twins
23: 1+ i+1
24: return Delta_d_Twins

Algorithm 2 Send messages

1:
2:

procedure SENDMESSAGE(p, 4, d, round)
if round < p then
msg << myld, nbNeighbors >
Send msg to all neighbours.
else if p < round < 2 *p then
msg < 0
index < round — p
for elem € Tab[index] do
Append elem to msg

Send msg to all neighbours

with the number of rounds where they start to be (A, d)-twins. This is
implemented in Algorithm [3] lines 21-22.



Distributed computation of temporal twins in periodic undirected TVGs 9

Algorithm 3 Upon Receiving a Message msg

1: procedure RECEIVEMESSAGE(p, 4, d, round)
2: if round < p then

3: Append msg to Tab[round]
4: else if p < round < 2 % p then
5: nbMsg < nbMsg + 1
6: for < id,nb > in msg do
T Count [id] < Count [id] + 1
8: Neighbors [id] < nb
9: if nbM sg = nbNeighbors then
10: for each id in Twins do
11: if id not in Count then
12: Remove id from Twins
13: for each id in Count do
14: dTwin < nbNeighbors + Neighbors [id] — 2 * Count [id]
15: if dTwin < d then
16: Append id to dTwinsRound [round — p]
17: if id in Twins then
18: Twins [¢d] < Twins[id] + 1
19: else
20: Twins [id] < 1
21: if Twins[id] > A then
22: Append {id,round — A + 1} to Delta_d_Twins
23: else
24: Remove id from Twins

In case we conclude that id is not a twin with u, such as with Al-
gorithm [3]s lines 12 and 24, a quick way to save this information is to
remove key id from the (dictionary) table Twins. Table Count is to be
used in Algorithm [3] and related to the current round. We use an alter-
native computation for what is stored in table Count: rather than using
Property [[] which would force us to count the number of paths of length 2,
we use the equivalent quantities showed in Lemma [2| below instead. These
quantities from Lemma [2 are encoded precisely at line 14 of Algorithm [3]
The size of the message in the second phase is composed by two addi-
tive terms. The first term is the number of neighbours, multiplied by the
size of the nodes ID’s. The second term is the size of the neighbourhood
of every neighbour, which is upper bounded by the first term. Thus, the
maximum size of messages are bounded by O(dglogn), where n is the
total number of nodes and dg < n is the maximum degree of the graphs
Gy’s, cf. Lemma[I] below. Fig. [3] exemplifies the messages received in the
second phase of every node in the example given in Fig.



10 L. Azerouk et al.

Round 4 Round 5
Sender node Message Sender node Message
a {<a, 2>, <b, 3>, <I, 25} a {<a, 2>, <b, 3>, <I, 25}
b {<b, 3>, <a, 2>, <c, 2>, <c', 25} b {<b, 3>, <a, 2>, <c, 2>, <c', 25}
c {<c, 2>, <b, 3>, <d, 3>} c {<c, 2>, <b, 3>, <d, 3>}
¢ {<c', 2>, <b, 3>, <d, 3>} I {<¢', 2>, <b, 3>, <d, 3>}
i {<i, 3>, <i, 3>, <]\, 3>, <k, 35} i {<j, 2>, <i, 3>, <k, 35}
i (<, 3>, <i, 3>, <], 3>, <k, 35} i {<f, 3>, <i, 3>, <k, 3>, <h, 3>}
Round 6 Round 7
Sender node Message Sender node Message
a {<a, 3>, <b, 3>, <I, 2>, <m, 25} a {<a, 3>, <b, 3>, <I, 2>, <m, 4>}
b {<b, 3>, <a, 3>, <c, 2>, <c', 2>} b {<b, 3>, <a, 3>, <c, 4>, <c', 4>}
. (<0, 25, <b, 3, <d, 35) . {<c, 4>, <b, 3>, <d, 3>, <m, 4>,
<o, 4>}
¢ (<, 25, <b, 3>, <d, 35) ¢ {<c', 4>, <b, 3>, <d, 3>, <m, 4>,
<0, 45}
j {<j, 3>, <i, 3>, <], 3>, <k, 3>} i {<}, 2>, <i, 3>, <k, 3>}
i {<f', 3>, <i, 3>, <j, 3>, <k, 3>} i {<f', 3>, <i, 3>, <k, 3>, <n, 3>}

Fig. 3. Tables describing the messages sent to the direct neighbourhood of nodes in the
example presented in Fig. 2] The messages described here-above are sent through the
second period of the time-varying graph, corresponding to the information collected
during the first period.

We now prove the correctness of the algorithm, as well as the maximum
size of the messages used in the algorithm.

Lemma 1. Given a p-periodic time-varying graph G = (Gi)er, with n
nodes, if each node sends the list of IDs of its neighbours associated with
the number of their neighbours collected at a round t in Algorithm [3 in
line 8, then the maximum size of a message sent at round t + p as stated
in Algorithm[g lines 6-11 is O(dg log(ndg)).

Proof. A node u can have at most g = n — 1 neighbours. For every
neighbour w of u, u needs to store the ID of w, which requires a size of
O(logn), and the number of neighbours of w, which can be at most dg,
requiring a size log dg. So for a neighbour w of u, u stores information of
size O(logn) + log dg = O(logndg), and for all neighbours of u, it stores
information of size O(dg log ndg), and this information represents the size
of the message that u will send in the second phase. ad

Lemma 2. Given a p-periodic time-varying graph G = (G)ier, and two
distinct nodes u # v, u and v are (A, d)-twins if |Ny(u) \ {u, v} +|Ne(v) \
{u, v} =2 x [((Ne(u) \ {u,v}) N (Ne(v) \ {u,v}))| < d fortg <t <tg+ A

that is, for A consecutive rounds.



Distributed computation of temporal twins in periodic undirected TVGs 11

Proof. The proof is very similar to that of Property [I] Let A = Ny(u) \
{u,v} and B = N¢(v) \ {u,v}. From the definition of d-twins, we have
|A\ B|+ |B\ A| <d. Since |A|+|B| -2 x |[ANB|=|A\ B|+ |B\ 4],
this is equivalent to |A| 4+ |B| —2 x |AN B| < d. 0

The latter lemma allows us to store the d-twins in Algorithm [3] and
check the number of consecutive round two nodes are d-twins in Algo-
rithm [3] line 26 and Algorithm [I] line 20. We have proved the following
theorem.

Theorem 1. In a p-periodic time-varying graph G = (Gy)ier where in-
tegers p, A, d are given as input to every node, problem PERIODIC(A,d)-
TWINS can be solved after 2p rounds, using messages of size O(dglogn),
where n is the total number of nodes and dg < n is the maximum degree
of the graphs Gy ’s.

4 Twin sampling with O(logn) message size

In a static graph, we can reduce the message size as follows. According
to Lemma 2 in [6], every node v can receive its neighbourhood in a first
round, then apply a well selected hash function sampled from a universe
U of hash functions and forward this to every neighbour w in a second
round. When receiving the second round message, node u can compute
the value of |[N(u) N N(v)| within e max(n,,n,) with probability 1 — v,
where n, = |N(u)| and n, = |N(v)|. The process uses O(1) messages
of size O(e*log(1/v) + loglog [U| + log max(n,, n,)) bits. Whence, w.h.p.
after 2 rounds the inequality in our Lemma [2| can be decided using mes-
sages of O(logn) bits. For the dynamic case, the extension is similar to
construction proposed in Section

5 Conclusion and perspectives

We introduce the problem of finding (A, d)-twins and propose a dis-
tributed algorithm to compute them in any p-periodic time-varying graph
G = (GY)ten under a distributed model similar to the 1-interval-connected
network. After 2p rounds, every node can compute the nodes that are its
(A, d)-twins using messages of size O(dg logn), where n is the total num-
ber of nodes and dg is the maximum degree of the graphs G¢’s. Using tech-
niques borrowed from [6], we reduce the message size down to O(logn)
w.h.p. Finding (A, d)-twins can be useful in several ways. For instance, it
could be used for alternately scheduling sleeping times of the twin nodes



12 L. Azerouk et al.

to save resources, while maintaining connectivity for the rest of the net-
work. Furthermore, it can be used in order to compute disjoint paths or
disjoint broadcast trees. As for the next steps of research, it would be
useful to extend our algorithm to compute e-modules as defined in [5].

References

1. Bonnet, E., Kim, E., Thomassé, S., Watrigant, R.: Twin-width I: tractable FO model
checking. In: 61st IEEE Annual Symposium on Foundations of Computer Science.
pp. 601-612. IEEE (2020)

2. Bui-Xuan, B., Hourcade, H., Miachon, C.: Computing temporal twins in time log-
arithmic in history length. In: 9th International Conference on Complex Networks
and their Applications. SCI, vol. 944, pp. 651-663 (2020)

3. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in
delay-tolerant networks. IEEE Trans. Computers 63(2), 397-410 (2014)

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems 27(5), 387-408 (2012)

5. Habib, M., Mouatadid, L., Zou, M.: Approximating modular decomposition is hard.
In: 6th International Conference on Algorithms and Discrete Applied Mathematics.
LNTCS/LNCS, vol. 12016, pp. 53—-66 (2020)

6. Halldorsson, M., Nolin, A., Tonoyan, T.: Overcoming congestion in distributed col-
oring. In: 2022 ACM Symposium on Principles of Distributed Computing. pp. 26-36.
ACM (2022)

7. Kuhn, F.; Lynch, N.; Oshman, R.: Distributed computation in dynamic networks.
In: 42nd ACM Symposium on Theory of Computing. pp. 513-522. ACM (2010)

8. Luna, G.D., Viglietta, G.: Computing in anonymous dynamic networks is linear.
In: 63rd Annual Symposium on Foundations of Computer Science. pp. 1122-1133.
IEEE (2022)

9. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: DTALM-POMC Joint Workshop on Foundations of Mobile Computing. pp. 104—
110. ACM (2005)



	Distributed computation of temporal twins in periodic undirected time-varying graphs

