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Abstract—Generative Adversarial Network (GAN) based
vocoders are superior in both inference speed and synthesis qual-
ity when reconstructing an audible waveform from an acoustic
representation. This study focuses on improving the discrimi-
nator for GAN-based vocoders. Most existing Time-Frequency
Representation (TFR)-based discriminators are rooted in Short-
Time Fourier Transform (STFT), which owns a constant Time-
Frequency (TF) resolution, linearly scaled center frequencies, and
a fixed decomposition basis, making it incompatible with signals
like singing voices that require dynamic attention for different
frequency bands and different time intervals. Motivated by
that, we propose a Multi-Scale Sub-Band Constant-Q Transform
CQT (MS-SB-CQT) discriminator and a Multi-Scale Temporal-
Compressed Continuous Wavelet Transform CWT (MS-TC-
CWT) discriminator. Both CQT and CWT have a dynamic TF
resolution for different frequency bands. In contrast, CQT has
a better modeling ability in pitch information, and CWT has
a better modeling ability in short-time transients. Experiments
conducted on both speech and singing voices confirm the effec-
tiveness of our proposed discriminators. Moreover, the STFT,
CQT, and CWT-based discriminators can be used jointly for
better performance. The proposed discriminators can boost the
synthesis quality of various state-of-the-art GAN-based vocoders,
including HiFi-GAN, BigVGAN, and APNet.

Index Terms—Neural vocoder, generative adversarial networks
(GAN), discriminator, constant-Q transform, wavelet transform,

I. INTRODUCTION

A vocoder has always been important for various audio
generation tasks (e.g., Singing Voice Synthesis (SVS) [1, 2],
Text-To-Speech (TTS) [3, 4]). It reconstructs an audible wave-
form from an acoustic feature [3, 5, 6] outputted by the
acoustic model, directly affecting the resulting audio quality
and generation speed. Among different types of vocoders, the
neural network-based ones are essential due to their superior
synthesis quality compared to the DSP-based ones [7, 8].

The synthesis quality and the inference speed are two pri-
mary considerations when designing a neural vocoder. Initially,
autoregressive-based vocoders, represented by WaveNet [9]
and WaveRNN [10], first successfully model the speech signal
via deep neural networks. Although the autoregressive-based
vocoders achieved breakthroughs regarding synthesis quality,
their inference speed cannot meet the need for real-world
applications due to the degradation brought by the sample-
by-sample generation scheme. Subsequently, distilling-based
models (e.g., ParallelWaveNet [11], ClariNet [12]), flow-based
models (e.g., WaveFlow [13], WaveGlow [14]), glottis-based
models (e.g., GlotNet [15], LPCNet [16]t), diffusion-based
models (e.g., DiffWave [17], FreGrad [18]), and differen-
tialble digital signal processing (DDSP)-based models (e.g.,

NSF [19], GOLF [20]) were proposed. Although the inference
efficiency for these models is significantly boosted, the synthe-
sis quality was relatively degraded, making them incompatible
with applications that require a high synthesis quality. Regard-
ing this matter, GAN-based vocoders [21–28] are proposed and
currently widely used. Specifically, the parallelized generation
scheme via noncausal convolution layers ensures the inference
speed, and the adversarial training, which makes it possible to
utilize audio-level losses in different perspectives, ensures the
synthesis quality. However, to synthesize expressive speech or
singing voice, current GAN-based vocoders still hold problems
like spectral artifacts such as hissing noise [25], glitches [29],
and the loss of details in mid and low-frequency regions [26].

To pursue high-quality GAN-based vocoders, the existing
studies aim to improve both the generator and the discrim-
inator. For the generator, SingGAN [26] adopts a neural
source filter (NSF) [19] module to utilize the phase-continuous
sine excitation to alleviate the glitches [29]. BigVGAN [27]
introduces a new activation function [30] with anti-aliasing
modules to improve the generalization ability and the recon-
struction quality in high-frequency bands. SnakeGAN [31]
utilizes a fast DDSP vocoder [29] to generate raw audio
for providing prior knowledge. For the discriminator, Mel-
GAN [22] employs a time-domain-based discriminator that
successfully models waveform structures at different scales for
the first time. HiFi-GAN [24] extends it with a Multi-Scale
Discriminator (MSD) and Multi-Period Discriminator (MPD),
which operates on the reshaped audio signal obtained from
average pooling and periodical sampling individually. Fre-
GAN [25] further improves them by replacing the pooling and
the sampling process with Discrete Wavelet Transform (DWT)
to avoid aliasing effects. UniversalMelGAN [23] introduces a
Multi-Resolution Discriminator that operates on the amplitude
spectrogram of an STFT matrix, followed by [32] emphasizing
its significance in boosting the synthesis quality. Furthermore,
Encodec [5] extends it to the Multi-Scale STFT (MS-STFT)
Discriminator by utilizing the phase information together.

Among the existing works, most Time-Frequency Repre-
sentation (TFR)-based discriminators [5, 23, 32] are rooted
in the Short-Time Fourier Transform (STFT) [33], which
could fast extract easy-to-handle STFT spectrograms for neural
networks. However, an STFT spectrogram has a constant
Time-Frequency (TF) resolution, linearly scaled center fre-
quencies, and a fixed decomposition basis. When encountering
signals like singing voices, which require dynamic attention
for different frequency bands and different time intervals [26],
only an STFT spectrogram will be insufficient.
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TABLE I: A comparison of the Short-Time Fourier Trans-
form (STFT), Constant-Q Transform (CQT), and Continuous
Wavelet Transform (CWT) in terms of decomposition basis,
frequency distribution, and TF resolution.

Transform TF Resolution Basis Frequency Distribution

STFT [33] Constant Fourier Arithmetic Series

CQT [35] Dynamic Fourier Geometric Series

CWT [36] Dynamic Wavelet Harmonic Series

This study focuses on improving the discriminator part to
improve the synthesis quality. In particular, we utilize the
Constant-Q Transform (CQT) [34, 35] and the Continuous
Wavelet Transform (CWT) [36] to design discriminators.
Both CQT and CWT have a flexible resolution for different
frequency bands, which brings a better modeling ability in
F0 accuracy and harmonic tracking. Moreover, CQT has a
better modeling ability in pitch-level information, and CWT
has a better modeling ability in short-time transients. To
make CQT and CWT spectrograms feasible with the GAN-
based framework, we propose the Sub-Band Processor module
and the Temporal Compressor module. Based on them, we
design a Multi-Scale Sub-Band CQT (MS-SB-CQT) Discrim-
inator [37] and a Multi-Scale Temporal-Compressed CWT
(MS-TC-CWT) Discriminator that operate on CQT and CWT
spectrograms in different scales individually. The main contri-
butions of this paper are summarized as follows:

• To make the CQT feasible with the discriminator, we
propose a Sub-Band Processor for CQT to tackle the tem-
poral desynchronization issue in the CQT spectrogram.

• To make the CWT feasible with the GAN-based frame-
work, we propose a Temporal Compressor for CWT to
compress the high-dimensional CWT spectrogram into
the low-dimensional latent representation.

• To increase the diversity of the discriminated features,
we modify the Multi-Resolution Processing for CQT and
CWT and propose a Multi-Basis Processing technique
to integrate CWT into the same Multi-Scale Processing
framework based on multiple sub-discriminators.

• To utilize the complementary role between different
TFRs, we present a joint training strategy to use multiple
discriminators based on STFT, CQT, and CWT.

To the best of our knowledge, this is the first study
that employs multiple TF analysis techniques in a single
GAN-based vocoder framework. Our proposed framework can
improve the synthesis quality in the spectrogram and pitch
stability without impacting the inference stage of the generator.

II. BACKGROUND: TIME-FREQUENCY ANALYSIS

Time-Frequency (TF) analysis aims to convert a time-
domain signal into a TFR over both time and frequency
domains. In this section, we will briefly introduce three clas-
sical TF analysis techniques: the Short-Time Fourier Trans-
form (STFT), Constant-Q Transform (CQT), and Continuous
Wavelet Transform (CWT). A comparison of the three trans-
forms is presented in Table I,

(a) STFT (b) CQT and CWT

Fig. 1: Illustration of the TF resolution of the STFT, CQT,
and CWT. A thinner chunk in the time/frequency axis means
a better time/frequency resolution. It can be observed that
the CQT and CWT spectrogram have a higher frequency
resolution in low-frequency bands and a higher time resolution
in high-frequency bands, while the STFT spectrogram has a
fixed TF resolution across all frequency bands.

A. Short-Time Fourier Transform (STFT)

Short-Time Fourier Transform (STFT) [33] converts a time-
domain signal x into its TFR, as:

XSTFT(k, n) =

Nk∑
j=0

x(j + n− ⌊Nk/2⌋)w (j) e
−i2πj

Qk
Nk , (1)

where k is the index of frequency bin, Nk is the window
length, x(t) denotes the t-th sample point, w(t) is the window
function, and Qk is the Q-factor, which is defined as,

Qk
ref.
=

fk
∆fk

, (2)

where fk is the center frequency, ∆fk is the bandwidth. The
center frequency fk can be obtained as:

fk =
kfs
Nfft

, (3)

where Nfft is the number of FFT bins. The bandwidth ∆fk,
which determines the TF resolution trade-off, is defined as:

∆fk =
fs
Nk

, (4)

where fs is the sampling rate.
Although STFT can be easily implemented to model a

speech signal, it also has drawbacks when encountering ex-
pressive speech or singing voice due to its characteristics
(Table I), which are listed as follows:

• Fixed TF resolution: In STFT, the window length Nk is
fixed, bringing the ∆fk a constant (Eq. 4). This means the
TF resolution is fixed for all frequency bins. Thus, STFT
is not a good candidate to model signals that require a
dynamic resolution for different frequency bands.

• Limitation in harmonics modeling: The center fre-
quency fks are linearly distributed in STFT (Eq. 3), which
is incompatible with signals made up of harmonic fre-
quency components that require geometrically distributed
center frequencies for accurate modeling.
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• Inaccurate modeling of short-time transients: Accord-
ing to the Gibbs phenomenon [38], when converging
a square wave using the decomposition basis e−i2πnk

in STFT, no matter how many harmonics are used, a
non-neglectable approximation error will always exist,
meaning a poor modeling ability in short-time transients.

B. Constant-Q Transform (CQT)

Constant-Q Transform (CQT) [34] converts a time-domain
signal x into its TFR with a constant Q-factor, as:

XCQT (k, n) =

n+⌊Nk/2⌋∑
j=n−⌊Nk/2⌋

x(j)a∗k(j − n+Nk/2), (5)

where ak(n) is a complex-valued convolutional kernel, and
a∗k(n) is the complex conjugate of ak(n). ⌊·⌋ denotes rounding
down. The kernels ak(n) can be obtained as:

ak(n) =
1

Nk
w

(
n

Nk

)
e
−i2πn

Qk
Nk , (6)

where the quality factor Qks are defined constantly to conform
with the human auditory system [39, 40]:

Qk
ref.
=

fk
∆fk

= (2
1
B − 1)−1, (7)

where B is the number of bins per octave. The center
frequencies fk in CQT are defined as:

fk = f1 · 2
k−1
B , (8)

where f1 is the lowest center frequency.
Compared with STFT, CQT overcomes the fixed TF reso-

lution and the linearly-distributed center frequencies (Table I),
resulting in the following advantages:

• Dynamic TF resolution: CQT utilizes a constant Q-
factor (Eq. 7) to obtain a dynamic TF resolution across
different frequency bins. Thus, as illustrated in Fig. 1, the
low-frequency bands will have a smaller ∆fk, bringing
a higher frequency resolution, which could model the
F0 more accurately; The high-frequency bands will have
a bigger ∆fk, bringing a higher time resolution, which
could track fast-changing harmonics variations better.

• Enhanced capability in harmonic modeling: For a
better modeling ability with the sound that is made
up of harmonic components, CQT utilizes a series of
geometrically distributed center frequencies (Eq. 8). In
our study, we set f1 to 32.7 Hz (C1) to ensure the center
frequencies conform with the notes in Western Music.

C. Continuous Wavelet Transform (CWT)

Continuous Wavelet Transform (CWT) [36] converts a time-
domain signal x into its TFR with shifting and scaling, as:

XCWT (k, n) =
1

|ak|
1
2

N∑
j=1

x(j)ψ∗(
j − n

ak
), (9)

where ak is the scaling factor, ψ(n) is the mother wavelet,
and 1

|ak|
1
2
ψ( j−n

ak
) is the scaled child wavelet.

(a) Fourier Reconstruction (b) Fourier Error Function

(c) Wavelet Reconstruction (d) Wavelet Error Function

Fig. 2: The visualization of the reconstructed square wave
and the associated error function with different decomposition
basis. It can be observed that the wavelet basis can reconstruct
the signal with a smaller error regarding the step transient.

By taking the FT between the mother wavelet and the child
wavelet, the bandwidth ∆fk can be obtained as:

∆fk =
∆f

ak
, (10)

where ∆f is the bandwidth of the mother wavelet. The
relationship between the scaling factor ak and the center
frequency fk is defined as:

fk =
fs
ak
, (11)

thus also obtaining a constant Q-factor:

Qk
ref.
=

fk
∆fk

=
fs
∆f

(12)

Compared with STFT, CWT tackles the issue brought by
the constant TF resolution and the fixed decomposition basis
(Table I), bringing the following benefits:

• Dynamic TF resolution: CWT owns a constant Q-factor
(Eq. 12), which brings a dynamic TF resolution (Fig. 1).

• More diverse TFRs: In CWT, the decomposition basis
ψ(n) is a variable. Hence, it is possible to decompose
a signal with different ψ(n)s for more diverse TFRs.
Specifically, to model phase information, this study em-
ploys the Complex Morlet Wavelet (CMOR) [41] and the
Complex Gaussian Wavelet Family (CGAU) [42].

• Enhanced capability in modeling of short-time tran-
sients: The energy-centralized characteristic of wavelet
basis also guarantees CWT a better modeling ability in
short-time transients. Fig. 2 compares the decomposition
basis in STFT and CWT when modeling a square wave.
Wavelet basis can achieve a reconstructed signal with the
same number of components but a significantly smaller
error in the places where the ”step transients” occur due
to its ”harsher shape,” hence showing a better modeling
ability in short-time transients.
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Fig. 3: Architecture of the Sub-Discriminator in MS-SB-CQT Discriminator. Operator “C” denotes for concatenation. SBP
means our proposed Sub-Band Processor module. It can be observed that the desynchronized CQT Spectrogram (bottom-right)
has been synchronized (upper-right) after SBP.

III. METHODOLOGY

As discussed in Section II, compared with STFT, CQT and
CWT hold better modeling ability in expressive speech and
singing voice. To utilize them, we propose the MS-SB-CQT
Discriminator and MS-TC-CWT Discriminator and introduce
a joint training strategy to use discriminators based on STFT,
CQT, and CWT in the same framework. Specifically, we
modify Multi-Resolution Processing for CQT and CWT and
introduce Multi-Basis Processing for CWT in Section III-A,
propose a Sub-Band Processor for CQT in Section III-B,
propose a Temporal Compressor for CWT in Section III-C, and
elaborate the integration with the generator in Section III-D.

A. Multi-Scale Processing for CQT and CWT Discriminators
Multi-Scale Processing applies Sub-Discriminators operat-

ing on diverse TFRs to reduce the bias brought by the fixed
pattern of a specific TF analysis technique, which has been
widely used [5, 23–26]. Motivated by the concept of Multi-
Scale Processing, we apply Multi-Resolution Processing to
both CQT- and CWT-based discriminators and propose Multi-
Basis Processing for CWT-based discriminators only.

1) Multi-Resolution Processing: Multi-Resolution Process-
ing utilizes TFRs with different TF resolution distributions for
discriminating to alleviate the TF resolution trade-off bias due
to the Uncertainty Principle [43].

For the CQT-based discriminator, Given Eq. (7) and (8):

∆fk =
f1 · 2

k−1
B

(2
1
B − 1)−1

(13)

Thus, the bandwidth ∆fk, which determines the TF res-
olution trade-off of the k-th frequency bin, depends on the
number of bins per octave B. We use different Bs to obtain
spectrograms with different TF resolution distributions.

For the CWT-based discriminator, as illustrated in Eq. 10,
the bandwidth ∆fk is dependent on the scaling factor ak.
Thus, we utilize different scaling factor series to obtain spec-
trograms with different TF resolution distributions.

2) Multi-Basis Processing: We propose the Multi-Basis
Processing as an extra boost for Multi-Scale Processing on
the CWT-base discriminator since CWT has a flexible de-
composition basis ψ(n). Specifically, the wavelet basis does
not conform to the physical property that the sound com-
prises a series of sinusoidal components; thus, decomposing
signals into such a domain will typically bring biases. To
alleviate that, we utilize different wavelet bases to obtain
CWT spectrograms in different decomposition domains. Since
preliminary experiments verify an independent role between
scaling factor a and decomposition basis ψ(n), we implement
Multi-Basis Processing in parallel with Multi-Scale Processing
for saving up memory, employing the CMOR, the 1-st and 8-st
derivatives of CGAU as three distinct complex wavelet bases.

B. Sub-Band Processor for CQT Discriminator

As two sides of a coin, although the dynamic ∆fk brings
flexible TF resolution, it also brings the unfixed Nk, which
can be obtained from Eq. (2), (4), and (7):

Nk =
fs
fk

· (2 1
B − 1)−1 (14)

Thus, in a fixed time step t, the kernels ak(t) in different
frequency bins will convolute different amounts of sample
points of the original signal as shown in Eq. 5. This means
the convolutional kernels are not temporally synchronized [35]
and will cause artifacts in the resulting spectrogram visualized
in the bottom right of Fig. 3.

To alleviate this problem, [35] designs a series of temporally
synchronized kernels within each octave. This algorithm has
also been widely used in toolkits like librosa [44] and nnAu-
dio [45]. However, such an algorithm only makes the ak(t) of
intra-octave temporally synchronized but leaves those of inter-
octave unsolved. Training our neural vocoder using features
with such a bias will cause a burden to the adversarial training
process and harm the resulting synthesis quality.
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Fig. 4: Architecture of the Sub-Discriminator in MS-TC-CWT Discriminator. Operator “C” denotes for concatenation. TC
means our proposed Temporal Compressor module. Comp is a series of temporal-overlapped convolution layers. K is the total
number of frequency bins. It can be observed that the CWT Spectrogram (bottom-right) can be compressed while maintaining
the overall energy distribution over different frequency bins (upper-right).

Based on that, we utilize the philosophy of representation
learning and design the Sub-Band Processor (SBP) module to
address this problem further (Fig. 3). In particular, the real
or imaginary part of a CQT spectrogram will first be split
into sub-bands according to different octaves. Then, each band
will be sent to a layer to get its representation. Finally, we
concatenate the representations from all bands to obtain the
latent representation of the CQT spectrogram. In the upper
right of Fig. 3, it can be observed that the SBP module
successfully learns the desired representation that is temporally
synchronized among all the frequency bins.

C. Temporal Compressor for CWT Discriminator

Although the variable wavelet basis ψ(n) brings better
TFR diversity and modeling ability in short-time transients, it
also has drawbacks. Specifically, the characteristics of wavelet
basis bring the requirement of ”unit hop length” [46] for
alleviating information loss and maintaining good invertibility.
Thus, the resulting CWT spectrogram from an audio signal
of shape (1, T) will have a shape of (Scales, T). Such a
large spectrogram will be incompatible with deep learning
applications with limited GPU memory.

To reduce the memory complexity, instead of directly uti-
lizing the raw CWT spectrogram, we use the learnable com-
pressed latent representation obtained via our designed Tem-
poral Compressor (TC) module (Fig. 4). Specifically, the real
or imaginary part of the CWT spectrogram will first be sent
scale-wise to a series of Conv2D layers, which use temporal-
overlapped convolutional windows to maintain a good conti-
nuity between frames, to get its temporal-compressed repre-
sentation. Then, we concatenate the representations from all
scales to obtain the resulting latent representation of the CWT
spectrogram. In the upper right of Fig. 4, it can be observed
that our proposed TC module successfully compressed the
spectrogram while maintaining the overall energy distribution.

D. Joint Training and Integration with Generators

Our proposed discriminators can be easily integrated with
any GAN-based vocoders without interfering with the infer-
ence stage. We take HiFi-GAN [24] as an example. HiFi-
GAN has a generator G and multiple discriminators Dm. The
generation loss LG, and discrimination loss LD are as follows:

LG =

M∑
m=1

[Ladv(G;Dm) + 2Lfm(G;Dm)] + 45Lmel, (15)

LD =

M∑
m=1

[Ladv(Dm;G), (16)

where M is the number of discriminators, Dm denotes the m-
th discriminator, Ladv is the adversarial GAN loss, Lfm is
the feature matching loss, and Lmel is the mel spectrogram
reconstruction loss.

Among these losses, only Lfm and Ladv are related to our
discriminator. Suppose we want to integrate a new discrimina-
tor Dnew in the training process, just adding Ladv(G;Dnew)+
2Lfm(G;Dnew) to LG and Ladv(Dnew;G) to LD can finish
the integration process.

IV. EXPERIMENTS

We conduct experiments to explore the following questions:
• EQ1: Effectiveness of the proposed MS-SB-CQT and

MS-TC-CWT Discriminators.
• EQ2: Effectiveness of using MS-SB-CQT, MS-TC-CWT

and MS-STFT Discriminators jointly.
• EQ3: Generalization of the proposed discriminators to

various GAN-based vocoders.
• EQ4: Effectiveness of the proposed Sub-Band Processor

module and the Multi-Basis Processing technique.
• EQ5: What do the latent representations in MS-SB-CQT

and MS-TC-CWT Discriminators exactly learn?
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TABLE II: Statistics of the datasets used for training and eval-
uating the vocoders. LibriTTS, LJSpeech, and VCTK are three
speech datasets, while the others are singing voice datasets.
EN, CN, KR, and JP means English, Chinese, Korean, and
Japanese individually.

Dataset Language #Hours #Utterances #Speakers

LJSpeech [53] EN 23.9 13,100 1
LibriTTS [52] EN 585.8 375,086 2,456
VCTK [54] EN 82.9 33,971 109

Internal Dataset CN 5.1 3,561 1
M4Singer [47] CN 29.7 20,896 19
PJS [48] JP 0.4 291 1
CSD [51] EN, KR 4.1 2,864 1
OpenSinger [50] CN 51.9 43,075 74
PopCS [1] CN 5.9 1,651 1
Opencpop [49] CN 5.2 3,756 1

A. Experiment Setup

1) Datasets: The experimental datasets for Section IV-C
and Section IV-D contain both speech and singing voices.
For the singing voice, we adopt M4Singer [47], PJS [48],
and one internal dataset. We randomly sample 352 utterances
from the three datasets to evaluate seen singers and leave
the remaining for training (39 hours). 445 samples from
Opencpop [49], PopCS [1], OpenSinger [50], and CSD [51]
are chosen to evaluate unseen singers. For the speech, we use
the train-clean-100 from LibriTTS [52] and LJSpeech [53].
We randomly sample 2,316 utterances from the two datasets
to evaluate seen speakers and leave the remaining for training
(about 75 hours). 3,054 utterances from VCTK [54] are chosen
to evaluate unseen speakers. As for Section IV-E, we adopt
Opencpop [49]. We randomly selected 221 utterances for
evaluation and the remaining for training (about 5 hours). The
detail of each dataset is listed in Table II.

2) Preprocessing: We resampled all the training data to
24kHz, excluding the LibriTTS [52] and OpenSinger [50]
datasets, which have a sampling rate of 24kHz originally. Each
utterance will first be converted to an STFT matrix with an fft
size of 1024, hop length of 256, window length of 1024, fmin
of 0, and fmax of 12000, which will then be transformed into
a mel-spectrogram with 100 mel-filters. The mel-spectrogram
is normalized in log-scale with values ≤ 0.00001 clipped.

3) Training: All the models are trained using the
AdamW [55] optimizer with β1 = 0.8, β2 = 0.99, and a initial
learning rate of 0.0002. Exponential decay Scheduler is used
with a factor γ = 0.999. All the experiments are conducted
on four NVIDIA RTX4090, V100, or A100 GPUs with the
batch size of 16 for around 1,500k steps.

4) Configurations of Generators and Discriminators: We
use HiFi-GAN [24], NSF-HiFiGAN [1], BigVGAN [27] and
APNet [56] as the experimental generators and Multi-Period
Discriminator [24], Multi-Scale Discriminator [24], Multi-
Scale STFT Discriminator [5], Multi-Scale Sub-Band CQT
Discriminator and Multi-Scale Temporal-Compressed CWT
Discriminator as the experimental discriminators. The imple-
mentation codes are available in Amphion [57].

The implementation details for the generators are:

• HiFi-GAN - The v1 version of the HiFi-GAN [24]. We
reimplemented it using 1 with the same hyperparameters.

• NSF-HiFiGAN - The integration of NSF and HiFi-GAN.
It is one of the SOTA vocoders for singing voice [58]. We
reimplemented it using 2 with the same hyperparameters.

• BigVGAN - The base version of the BigVGAN [27]. It
is one of the SOTA vocoders for speech synthesis. We
reimplemented it using 3 with the same hyperparameters.

• APNet - The original version of the APNet [56]. It has
a fast inference speed with high synthesis quality. We
reimplemented it using 4 with the same hyperparameters.

The implementation details for the discriminators are:
• MSD - Multi-Scale Discriminator: The discriminator pro-

posed by HiFi-GAN [24]. We re-implemented it using 1

with the same hyperparameters.
• MPD - Multi-Period Discriminator: The discriminator

proposed by HiFi-GAN [24]. We re-implemented it us-
ing 3. We made modifications to the number of periods
([2, 3, 5, 7, 11, 17, 23, 37]) to make it more effecitve.

• MS-STFTD - Multi-Scale STFT Discriminator: The dis-
criminator proposed by Encodec [5]. We re-implemented
it using 5 with the same hyperparameters.

• MS-SB-CQTD - Multi-Scale Sub-Band CQT Discrimi-
nator: One of the proposed discriminators. The CNN in
SBP uses a Conv2D with a kernel size of (3, 9) and
a channel of 2 covering both the real and imaginary
parts. The CNNs in each Sub-Discriminator consist of
a Conv2D with kernel size (3, 8) and 32 output channels,
three Conv2Ds with dilation rates of [1, 2, 4] in the time
dimension, a stride of 2 over the frequency dimension,
and a fixed channel of 32, and a Conv2D with kernel
size (3, 3), stride (1, 1) and an output channel of
1. LeakyReLU is used as the activation function after
each CNN block in the Sub-Discriminator, and Weight
Norm [59] is applied to all the CNN blocks. For CQT
computation, the global hop length is 256, and the Bs set
for three sub-discriminators are [24, 36, 48]. To cover all
the frequency bands given the f1 = 32.7, 9 octaves are
computed. The waveform will be upsampled from fs to
2fs before the computation to avoid the fmax of the top
octave hitting the Nyquist Frequency.

• MS-TC-CWTD - Multi-Scale Temporal-Compressed
CWT Discriminator: One of the proposed discriminators.
The CNNs in the TC module have the kernel sizes of
[(16, 1), (16, 1), (8, 1)], strides of [(8, 1), (8, 1), (4, 1)],
paddings of [(8, 0), (8, 0), (4, 0)] and a channel of 2
covering both the real and the imaginary parts, which is
equivalent to a window length of 2048 and a hop length
of 256. The CNNs in each Sub-Discriminator are the
same as the ones in the MS-SB-CQT Discriminator with
the same activation function and weight normalization.
Regarding CWT computation, the scale factor a equals
linearly interpolated numbers of 1 to [512, 256, 128].

1https://github.com/jik876/hifi-gan
2https://github.com/MoonInTheRiver/DiffSinger
3https://github.com/NVIDIA/BigVGAN
4https://github.com/yangai520/APNet
5https://github.com/facebookresearch/encodec

https://github.com/jik876/hifi-gan
https://github.com/MoonInTheRiver/DiffSinger
https://github.com/NVIDIA/BigVGAN
https://github.com/yangai520/APNet
https://github.com/facebookresearch/encodec
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TABLE III: Analysis-synthesis results of different discriminators when being integrated into HiFi-GAN [24]. The best and the
second best results of every column (except those from Ground Truth) in each domain (speech and singing voice) are bold and
italic. “S”, “C” and “W” represent MS-STFT, MS-SB-CQT and MS-TC-CWT Discriminators respectively. The MOS scores
are within 95% Confidence Interval (CI).

Domain System PESQ (↑) FPC (↑) F0RMSE (↓) Periodicity (↓) MOS (↑)

Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen

Singing
voice

Ground Truth 4.500 4.500 1.000 1.000 0.000 0.000 0.0000 0.0000 4.84 ± 0.07 4.86 ± 0.07

HiFi-GAN 2.938 2.863 0.954 0.962 56.502 60.773 0.0675 0.0804 3.30 ± 0.17 3.61 ± 0.15

HiFi-GAN (+S) 2.954 2.867 0.966 0.968 39.408 47.793 0.0636 0.0734 3.44 ± 0.16 3.72 ± 0.16
HiFi-GAN (+C) 3.031 2.947 0.968 0.971 36.098 43.172 0.0620 0.0735 3.65 ± 0.15 3.83 ± 0.16
HiFi-GAN (+W) 3.006 2.967 0.965 0.975 42.096 47.161 0.0644 0.0757 3.77 ± 0.14 3.93 ± 0.15

HiFi-GAN (+S+C+W) 3.040 2.947 0.972 0.977 36.137 42.022 0.0580 0.0717 3.80 ± 0.16 3.91 ± 0.17

Speech

Ground Truth 4.500 4.500 1.000 1.000 0.000 0.000 0.0000 0.0000 4.83 ± 0.08 4.83 ± 0.09

HiFi-GAN 3.014 3.141 0.881 0.773 184.590 295.428 0.0062 0.0103 4.00 ± 0.18 4.07 ± 0.22

HiFi-GAN (+S) 2.927 3.090 0.866 0.765 195.881 300.368 0.0067 0.0088 4.01 ± 0.18 4.10 ± 0.21
HiFi-GAN (+C) 3.041 3.159 0.881 0.765 180.673 305.598 0.0062 0.0099 4.07 ± 0.18 3.98 ± 0.20
HiFi-GAN (+W) 2.950 3.099 0.880 0.784 187.033 289.233 0.0064 0.0102 4.08 ± 0.19 4.10 ± 0.19

HiFi-GAN (+S+C+W) 3.102 3.257 0.882 0.799 178.665 264.935 0.0068 0.0095 4.03 ± 0.20 4.19 ± 0.17

B. Evaluation Metrics

1) Objective Evaluation: We investigate objective metrics
focusing on spectrogram reconstruction, F0 accuracy, and
phase distortion. The details are listed below:

• PESQ (Perceptual Evaluation of Speech Quality) [60]:
A full-reference algorithm that predicts synthesis quality.
We employ the Wide-band raw PESQ score from 6.

• F0RMSE (F0 Root Mean Square Error): The Root Mean
Square Error (RMSE) of the log-scale F0 (in cent).

• FPC (F0 Pearson Correlation Coefficient): The Pearson
Correlation Coefficient of F0 trajectories.

• Periodicity distortion [61]: The RMSE of the periodicity,
which reflects the glitch artifacts that are caused by phase
distortion according to previous works [27, 31, 61].

2) Subjective Evaluation: We use the Mean Opinion Score
(MOS) and ABX Preference Test for subjective evaluation.
In each MOS test, a total of 20 utterances (10 in-distribution
utterances and 10 out-of-distribution utterances) will be evalu-
ated. Listeners were asked to give a naturalness score between
1 and 5 with an interval of 0.5 for each utterance synthesized
by generators trained with different setups as well as the
ground truth audio. In each ABX test, a total of 30 utterances
(6 comparative pairs from Section IV-D and 2 comparative
pairs from Section IV-E), while each comparative pairs have
6 utterances for evaluating) will be evaluated. Listeners were
asked to judge which utterance in each pair had better synthe-
sis quality with the help of the ground truth audio. We invited
20 volunteers who are experienced in the audio generation area
to attend the subjective evaluation. Thus, each system in the
bellowing MOS test has been graded 200 times, and each pair
in the preference test has been graded 120 times. The audio
samples are available on our demo page7.

6https://github.com/vBaiCai/python-pesq
7https://vocodexelysium.github.io/TFR-Discriminators/

C. Effectiveness of the Proposed Discriminators and Using
Them Jointly (EQ1 & EQ2)

To verify the effectiveness of the proposed discriminators,
we take HiFi-GAN with MPD and MSD as the baseline model
and enhance it with different discriminators. The results of the
analysis-synthesis are illustrated in Table III.

Regarding singing voice, we can observe that: (1) HiFi-
GAN (+S), HiFi-GAN (+C), and HiFi-GAN (+W) all out-
perform HiFi-GAN both subjectively and objectively, con-
firming the importance of the extra adversarial losses in the
frequency domain [32]; (2) Both HiFi-GAN (+C) and HiFi-
GAN (+W) outperform the HiFi-GAN (+S) objectively and
subjectively, illustrating the effectiveness of utilizing TFRs
with dynamic TF resolution; (3) HiFi-GAN (+C) outperforms
HiFi-GAN (+W) objectively especially on F0-related metrics,
showing the effectiveness of the pitch-aware center frequency
distribution. HiFi-GAN (+W) outperforms HiFi-GAN (+C)
subjectively, showing the effectiveness of the diverse energy-
centered wavelet basis; (4) HiFi-GAN (+S+C+W) outperforms
both objectively and subjectively on seen singers while holding
better objective results with a similar subjective score on
unseen singers, confirming the effectiveness of joint training.

Regarding speech, we can observe that: (1) For seen speak-
ers, HiFi-GAN (+S+C+W) performs best objectively with a
similar MOS score with HiFi-GAN (+W) (best) and HiFi-
GAN (+C) (second best), illustrating the effectiveness of
our proposed methods. (2) For unseen speakers, HiFi-GAN
(+S+C+W) performs both objectively and subjectively best,
indicating the enhanced generalization ability via utilizing
different TFR-based discriminators. (3) Specifically, HiFi-
GAN (+C) holds a comparatively higher MOS score in seen
speakers but a lower MOS score in unseen speakers. We
speculate that although CQT has a dynamic TF resolution
which brings a better modeling ability, its generalization ability
is degraded due to the incompatibility between the pitch-aware
center frequency and speech (non-musical) signal.

https://github.com/vBaiCai/python-pesq
https://vocodexelysium.github.io/TFR-Discriminators/
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TABLE IV: Analysis-synthesis results of our proposed Discriminators when applying on NSF-HiFiGAN [1], BigVGAN [27],
and APNet [56] in singing voice datasets. The improvements are shown in bold. “S”, “C” and “W” represent MS-STFT,
MS-SB-CQT and MS-TC-CWT Discriminators respectively.

System PESQ (↑) FPC (↑) F0RMSE (↓) Periodicity (↓) Preference (↑)

Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen

Ground Truth 4.500 4.500 1.000 1.000 0.000 0.000 0.0000 0.0000 / /

NSF-HiFiGAN 3.945 3.876 0.985 0.981 27.197 34.012 0.0377 0.0451 36.84% 39.29%
NSF-HiFiGAN (+S+C+W) 3.980 3.907 0.981 0.980 25.816 32.100 0.0314 0.0380 63.16% 60.71%

BigVGAN 3.526 3.464 0.982 0.986 22.894 26.338 0.0772 0.0820 15.79% 4.26%
BigVGAN (+S+C+W) 3.696 3.626 0.982 0.977 28.505 37.075 0.0387 0.0449 84.21% 95.74%

APNet 3.254 3.117 0.816 0.832 193.642 191.684 0.0925 0.1086 15.79% 16.07%
APNet (+S+C+W) 3.210 3.119 0.956 0.973 47.365 43.624 0.0985 0.1056 84.21% 83.93%

(a) HiFi-GAN (+S) (b) HiFi-GAN (+C)

(c) HiFi-GAN (+W) (d) HiFi-GAN (+S+C+W)

Fig. 5: The comparison of mel spectrograms from HiFi-
GANs enhanced by different discriminators. “S”, “C” and
“W” represent MS-STFT, MS-SB-CQT and MS-TC-CWT
Discriminators respectively. Integrated with three discrimi-
nators, HiFi-GAN could achieve a higher synthesis quality
with more accurate harmonic tracking, fundamental frequency
reconstruction, and fewer glitches.

To further explore the specific benefits of using the STFT-
based, CQT-based, and CWT-based discriminators jointly, we
conducted a case study as illustrated in Fig. 5. Notably, in
the displayed low-frequency parts, STFT has a better time
resolution, while CQT and CWT have a better frequency
resolution. It can be observed that: (1) Regarding TF resolution
(upper rectangles), HiFi-GAN with MS-SB-CQT Discrimina-
tor or with MS-TC-CWT Discriminator (Fig. 5b, Fig. 5c) can
reconstruct its frequency accurately but ”flattened” harmonic
component due to the insufficient time resolution, while HiFi-
GAN with MS-STFT Discriminator (Fig. 5a) can model the
transients in the harmonic component but at the expanse of
inaccurate pitch information due to the insufficient frequency

resolution; (2) Additionally (bottom rectangles), HiFi-GAN
with MS-TC-CWT Discriminator (Fig. 5c) can achieve a
glitch-free spectrogram, showing its effectiveness in modeling
short-time transients. (3) Integrating those three discrimina-
tors combines their strengths and thus achieves a better-
reconstructed spectrogram (Fig. 5d), showing the effectiveness
of joint training.

D. Effectiveness of Proposed Training Strategy (EQ3)
To verify the generalization ability of the complementary

role between the STFT-, CQT-, and CWT-based discriminators,
we also conduct experiments under NSF-HiFiGAN, BigV-
GAN, and APNet, as presented in Table IV.

It is illustrated that: (1) In general, the performance of
NSF-HiFiGAN, BigVGAN, and APNet can be improved
significantly by jointly training with MS-SB-CQT, MS-TC-
CWT, and MS-STFT Discriminators, with both improved
objective evaluation scores and subjective preference tests
confirming the effectiveness; (2) Regarding NSF-HiFiGAN,
although it can synthesis high-fidelity singing voices, it still
lacks the modeling abilities of high-frequency band details.
Adding adversarial losses based on diverse TFRs alleviates
that problem, making synthesized samples closer to the ground
truth. Subjective results with a higher preference percentage
demonstrate the effectiveness; (3) For BigVGAN, although us-
ing the Snake activation function enhanced the generalization
ability, it also brings artifacts in phase modeling. Since all MS-
STFT, MS-SB-CQT, and MS-TC-CWT Discriminators utilize
the phase information, the extra adversarial losses alleviate this
problem. Improved subjective scores with significantly higher
preference percentages illustrated the effectiveness; (4) As for
APNet, although maintaining all the operations in the frame
level significantly reduces the memory and computational
costs, the difficulty in modeling phase information also brings
quality degradation with metallic sound, especially regarding
those Aperiodic Parts. Adding MS-STFT, MS-SB-CQT, and
MS-TC-CWT Discriminators alleviates that problem, bringing
in significantly better FPC and F0-RMSE. We believe this
is because the reduction of the metallic sound greatly boosts
the performance of the F0-detection algorithm. The subjective
evaluation with a higher preference score also confirms its
effectiveness. Representative cases regarding these findings
can be found on our demo page7.
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TABLE V: Analysis-synthesis results of HiFi-GAN enhanced by discriminators with varied modules and processing techniques.
The improvements are shown in bold. “C” and “W” represent MS-SB-CQT and MS-TC-CWT Discriminators respectively.

System PESQ (↑) FPC (↑) F0RMSE (↓) Periodicity (↓) Preference (↑)

Ground Truth 4.500 1.000 0.000 0.0000 /

HiFi-GAN 2.960 0.972 43.139 0.0611 /

HiFi-GAN (+W) 2.880 0.978 40.338 0.0705 54.67%
w/o Multi-Basis Processing technique 2.898 0.969 42.306 0.0647 45.33%

HiFiGAN (+C) 2.985 0.985 29.374 0.0634 59.46%
w/o Sub-Band Processor module 2.932 0.963 51.162 0.0612 40.54%

E. Ablation Studies (EQ4)

We propose the Sub-Band Processor module to obtain the
temporally synchronized CQT latent representations, and the
Multi-Basis Processing technique reduces the bias and thus
improves the effectiveness further. We conduct an ablation
study of those two methods to verify their necessity. The
results of the analysis-synthesis are illustrated in Table V.

Regarding the CQT-based discriminators, we can see that
our proposed MS-SB-CQT Discriminator significantly outper-
forms the one without the Sub-Band Processor. We speculate
this is because the convolutional kernel in the Conv2D layer
cannot handle properly the temporal desynchronization in the
inter-octaves parts of the CQT spectrogram in the initial stage,
which would cause a burden and eventually harm the over-
all audio quality. Regarding the CWT-based discriminators,
we can see that our proposed MS-TC-CWT Discriminator
performs better than the one that utilizes only one wavelet
(we use the CMOR wavelet in the experiment), showing the
effectiveness of utilizing different wavelet bases.

F. Analysis on Learned Representation (EQ5)

We also conducted a case study on the learned represen-
tation in the MS-SB-CQT and MS-TC-CWT Discriminators.
Regarding the representation in MS-TC-CWT Discriminator,
only compression is learned. Regarding the representation in
MS-SB-CQT Discriminator, however, apart from the ability to
obtain a temporally synchronized spectrogram, it also learns to
apply dynamic attention to different frequency bands (Fig. 6).

Notably, among these three vocoders, HiFi-GAN performs
averagely across all frequency bands; NSF-HiFiGAN performs
better in the low-frequency bands due to its glitch-free ability
and accurate pitch modeling but worse in the high-frequency
bands due to the aliasing effects; BigVGAN performs better
in the high-frequency bands due to its aliasing-free ability but
worse in the low-frequency bands due to glitches. It can be
observed that: (1) All the SBP modules trained with different
generators learned to obtain the temporally synchronized rep-
resentation (blue rectangle) compared with the ground truth
CQT spectrogram; (2) The SBP module trained with NSF-
HiFiGAN and BigVGAN learn to mask the low-frequency
band and high-frequency band individually(red rectangle).
We speculate it is to ignore the frequency band where the
generator already has a good synthesis quality and to focus
on the frequency bands with a poor reconstruction quality
to discriminate whether the audio is generated or not, which

(a) Ground Truth (b) HiFi-GAN

(c) NSF-HiFiGAN (d) BigVGAN

Fig. 6: The comparison of the latent representations from
the SBP module trained with different generators. All the
SBP modules learn to obtain the temporally synchronized
representation, while the ones trained with NSF-HiFiGAN and
BigVGAN additionally apply dynamic attention to different
frequency bands, masking the frequency band where the
generator already holds a high reconstruction quality.

indicates the SBP module learns applying dynamic attention
to different frequency bands.

V. CONCLUSION

This study proposed a Multi-Scale Sub-Band Constant-Q
Transform (MS-SB-CQT) Discriminator and a Multi-Scale
Temporal-Compressed Continuous Wavelet Transform (MS-
TC-CWT) Discriminator for GAN-based Vocoders. Experi-
ments conducted on both speech and singing voices confirm
the effectiveness of our proposed methods, with strengths
conforming to their design ideas. Moreover, with joint training,
the proposed two discriminators can also be complementary
with the existing MS-STFT Discriminator to improve the
neural vocoder further.
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[5] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi,
“High Fidelity Neural Audio Compression,” arXiv, vol.
abs/2210.13438, 2022.

[6] Z. Du, S. Zhang, K. Hu, and S. Zheng, “FunCodec:
A Fundamental, Reproducible and Integrable Open-
source Toolkit for Neural Speech Codec,” CoRR, vol.
abs/2309.07405, 2023.

[7] H. Kawahara, “STRAIGHT, exploitation of the other
aspect of VOCODER: Perceptually isomorphic decom-
position of speech sounds,” AST, pp. 349–353, 2006.

[8] M. Morise, F. Yokomori, and K. Ozawa, “WORLD: a
vocoder-based high-quality speech synthesis system for
real-time applications,” IEICE Trans Inf Syst, vol. 99,
no. 7, pp. 1877–1884, 2016.

[9] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior,
and K. Kavukcuoglu, “WaveNet: A Generative Model for
Raw Audio,” in SSW. ISCA, 2016, p. 125.

[10] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. van den
Oord, S. Dieleman, and K. Kavukcuoglu, “Efficient Neu-
ral Audio Synthesis,” in ICML, 2018, pp. 2415–2424.

[11] A. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,
K. Kavukcuoglu, G. Driessche, E. Lockhart, L. Cobo,
F. Stimberg et al., “Parallel wavenet: Fast high-fidelity
speech synthesis,” in ICML, 2018, pp. 3918–3926.

[12] W. Ping, K. Peng, and J. Chen, “ClariNet: Parallel Wave
Generation in End-to-End Text-to-Speech,” in ICLR,
2019.

[13] W. Ping, K. Peng, K. Zhao, and Z. Song, “WaveFlow: A
Compact Flow-based Model for Raw Audio,” in ICML,
vol. 119, 2020, pp. 7706–7716.

[14] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A
Flow-based Generative Network for Speech Synthesis,”
in ICASSP, 2019, pp. 3617–3621.

[15] L. Juvela, B. Bollepalli, V. Tsiaras, and P. Alku, “Glot-
net—a raw waveform model for the glottal excitation in
statistical parametric speech synthesis,” TASLP, vol. 27,
no. 6, pp. 1019–1030, 2019.

[16] J.-M. Valin and J. Skoglund, “LPCNet: Improving neural
speech synthesis through linear prediction,” in ICASSP,
2019, pp. 5891–5895.

[17] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catan-
zaro, “DiffWave: A Versatile Diffusion Model for Audio
Synthesis,” in ICLR, 2021.

[18] T. D. Nguyen, J.-H. Kim, Y. Jang, J. Kim, and J. S.
Chung, “FreGrad: Lightweight and Fast Frequency-aware
Diffusion Vocoder,” arXiv:2401.10032, 2024.

[19] X. Wang, S. Takaki, and J. Yamagishi, “Neural Source-
filter-based Waveform Model for Statistical Parametric
Speech Synthesis,” in ICASSP, 2019, pp. 5916–5920.

[20] C. Yu and G. Fazekas, “Singing Voice Synthesis Using
Differentiable LPC and Glottal-Flow-Inspired Waveta-
bles,” in ISMIR, 2023, pp. 667–675.

[21] R. Yamamoto, E. Song, and J. Kim, “Parallel Wavegan:
A Fast Waveform Generation Model Based on Generative
Adversarial Networks with Multi-Resolution Spectro-
gram,” in ICASSP, 2020, pp. 6199–6203.

[22] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z.
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