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ABSTRACT
Background: Software Vulnerability (SV) prediction in emerging
languages is increasingly important to ensure software security
in modern systems. However, these languages usually have lim-
ited SV data for developing high-performing prediction models.
Aims: We conduct an empirical study to evaluate the impact of
SV data scarcity in emerging languages on the state-of-the-art SV
prediction model and investigate potential solutions to enhance the
performance.Method: We train and test the state-of-the-art model
based on CodeBERT with and without data sampling techniques for
function-level and line-level SV prediction in three low-resource
languages – Kotlin, Swift, and Rust. We also assess the effectiveness
of ChatGPT for low-resource SV prediction given its recent success
in other domains.Results: Compared to the original work in C/C++
with large data, CodeBERT’s performance of function-level and line-
level SV prediction significantly declines in low-resource languages,
signifying the negative impact of data scarcity. Regarding remedia-
tion, data sampling techniques fail to improve CodeBERT; whereas,
ChatGPT showcases promising results, substantially enhancing
predictive performance by up to 34.4% for the function level and
up to 53.5% for the line level. Conclusion: We have highlighted
the challenge and made the first promising step for low-resource
SV prediction, paving the way for future research in this direction.

CCS CONCEPTS
• Security and privacy→ Software security engineering.
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1 INTRODUCTION
Software Vulnerabilities (SVs) present tremendous threats to the
security and dependability of software systems. Given the grow-
ing scale and complexity of software applications [27], there is a
pressing requirement for the automatic detection of SVs [16]. There
has been a growing use of Deep Learning models for SV detection,
particularly for identifying potentially vulnerable functions and
lines [13, 20, 21, 29]. Among these models, CodeBERT has been
demonstrated to be the state-of-the-art for SV prediction [13, 32].
The successful development of these SV prediction models heavily
depends on the availability of SV datasets [8].

Datasets necessary for constructing models predicting SVs are of-
ten lacking for emerging (recent yet widely used) programming lan-
guages. We refer to this scenario as “low-resource SV prediction.” Our
investigation of three emerging languages, namely Kotlin, Swift,
and Rust, has revealed their SV data is merely 0.2% to 0.8% the size
of that for C/C++, the extensively studied language in the literature.
The state-of-the-art SV prediction model, utilizing CodeBERT [13],
excels at SV prediction for C/C++ with over 90% F1-Score. However,
its performance for emerging languages with the demonstrated
limited data is likely to be affected, yet the extent of the impact re-
mains unknown. To tackle the data scarcity, besides traditional data
sampling techniques, ChatGPT has shown exceptional performance
across tasks [10], including low-resource contexts. Nevertheless,
to the best of our knowledge, its applicability to SV prediction in
low-resource languages has not been explored.

To answer these questions, we conduct an empirical study on the
performance of predicting SVs in three emerging yet low-resource
languages, namely Kotlin, Swift, and Rust. We first evaluate the
performance of the state-of-the-art CodeBERT based model for the
tasks. We then investigate whether data sampling techniques such
as random over-sampling and random under-sampling, aiming at
tackling data scarcity, can improve the performance of CodeBERT.
We also explore the potential use of ChatGPT with few-shot learn-
ing and fine-tuning for low-resource SV prediction. Our findings
are expected to provide evidence-based knowledge about the extent
to which we can reuse the state-of-the-art SV model for emerging
languages with limited data and whether data sampling or ChatGPT
can improve the performance in this practical scenario.

Our key contributions can be summarized as follows:
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• We are the first to automate function-level and line-level SV
prediction in low-resource languages, i.e., Kotlin, Swift, and Rust.

• We empirically demonstrate the performance of function-level
and line-level SV prediction in low-resource languages. Com-
pared to C/C++ with abundant data on which the state-of-the-art
CodeBERT model was originally trained, the model obtains much
lower performance of SV prediction in low-resource languages
(e.g., 0.35 vs. 0.9 for the function level). We also show that data
sampling techniques cannot improve the performance. On the
other hand, ChatGPT enhances the performance by up to 34.4%
for the function level and 53.5% for the line level. Overall, the
performance gaps between low-resource and abundant-resource
languages are still large, motivating further research.

• We share our data and code for future research at [4].
Paper structure. Section 2 introduces the related work and mo-
tivation for the study. Section 3 presents the research questions.
Section 4 describes the methods used to answer the questions. Sec-
tion 5 reports the results to each of the questions. Section 6 discusses
the threats to validity. Section 7 concludes the study.

2 BACKGROUND AND MOTIVATION
2.1 Software Vulnerability (SV) Prediction
In recent years, data-driven approaches like Machine Learning and
Deep Learning models have been widely used to automate the
identification/prediction of SVs in source code (e.g., [16, 26, 29]).
The predictions have been performed on various levels of granu-
larity, ranging from package/file to function and line. The more
fine-grained function and statement levels can reduce inspection
effort for developers [13, 17]. Thus, the two aforementioned fine
granularities have become the standard for SV prediction, and thus
they are also adopted for our investigations.

Fig. 1 gives an example of an SV (CVE-2020-15230) in the vapor
project written in Swift. This SV originates from the lines “var path
= request.url.path” in the respond function. This line directly
assigns user’s input to the path variable without performing any
sanitization, and this variable is then checked for relative paths
on the line “guard !path.contains("../") else {”. However,
attackers can bypass this check by replacing the dot (“.”) with the
percent symbol (%2E) in the variable, potentially leading to a path
traversal SV. This SV was fixed in the commit cf1651f in which any
percent symbol would be removed from the path variable to ensure
that all the subsequent checks would be properly performed.

2.2 Challenges of SV Prediction in
Low-Resource Languages

The increasing demand of the software industry has given birth to
a wide range of new programming languages. Many of these newly
introduced languages have later become widely used for software
development because of their unique features and advantages, such
as Kotlin, Swift, and Rust. For example, Kotlin finds extensive ap-
plications in Android mobile development; Swift has become the
language of choice for iOS and macOS applications, emphasizing
safety and performance; Rust, known for its memory safety and
low-level control, is increasingly used for systems programming,
particularly in security-critical contexts.

public func respond(to request: Request, chainingTo next: Responder)
-> EventLoopFuture<Response> {

- var path = request.url.path

+   guard var path = request.url.path.removingPercentEncoding else {
+     return request.eventLoop.makeFailedFuture(Abort(.badRequest))
+   }

...
// protect against relative paths
guard !path.contains("../") else {
return request.eventLoop.makeFailedFuture(Abort(.forbidden))

}
...

}

Figure 1: Exemplary vulnerable function and lines corre-
sponding to CVE-2020-15230 extracted from the respective
vulnerability-fixing commit in the vapor project in Swift.

While emerging languages play pivotal roles in modern software
development, the amount of data, especially concerning SVs, is
much more limited compared to traditional languages like C/C++.
This argument has been strongly supported by our analysis of SV
data in these languages (see Table 1). Specifically, we found that the
numbers of SVs in Kotlin, Swift, and Rust were 1,598, 389, and 157
times smaller than that of more established languages like C/C++,
respectively. The demonstrated scarcity of SV data can significantly
hamper the performance of downstream data-driven SV prediction
models for these languages given the data hungriness of these
models [8]. Thus, our study is the first to evaluate the performance
of CodeBERT [13], the state-of-the-art SV prediction model, in
such low-resource languages. Additionally, we aim to explore the
feasibility of using ChatGPT to address the data scarcity challenge
in these emerging languages, given ChatGPT’s success in many
other low-resource Software Engineering tasks [10].

2.3 Large Language Models for SV Management
The literature witnesses increasing attention and use of large lan-
guagemodels, especially ChatGPT, for SV prediction [36]. Cheshkov
et al. [6] leveraged ChatGPT for identifying SVs of five different
types (CWE-IDs). Zhang et al. [35] improved the performance of
the task by leveraging prompt engineering with ChatGPT. Pearce
et al. [31] assessed the performance of various large language mod-
els including ChatGPT for SV fixing in the zero-shot scenario. In
an attempt to automate various tasks for SV management, Fu et
al. [15] investigated ChatGPT with prompt engineering for SV clas-
sification, severity assessment, and fixing. Overall, these studies
have shown promising results of ChatGPT for SV analysis tasks,
especially when using few-shot learning with prompt engineering.
Fundamentally, our work is different from the current literature as
we focus on empirically evaluating ChatGPT for SV detection in
low-resource languages, which is an important and practical problem
in modern software development. We are also the first to investigate
fine-tuning ChatGPT besides prompt engineering for function-level
and line-level SV prediction in low-resource languages.

3 RESEARCH QUESTIONS
We answer the following Research Questions (RQs) to investigate
the performance of SV prediction in low-resource languages.
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Table 1: Data statistics in Kotlin, Swift, and Rust languages.

Statistic Kotlin Swift Rust
Distinct Projects 4 7 19
Vulnerable functions 20 36 90
Non-vulnerable functions 98 449 1,109
Vulnerable lines 45 104 350
Non-vulnerable lines 1,208 8,091 26,479

• RQ1: How well does the state-of-the-art CodeBERT based
model detect SVs in low-resource languages?

• RQ2: CanChatGPT improve the performance for low-resource
SV prediction?

4 CASE STUDY SETUP
This section describes the datasets and the models, i.e., CodeBERT
and ChatGPT, used for low-resource SV prediction as well as the
evaluation procedure for these models.

4.1 Datasets
We leveraged the methods and tools provided by CVEfixes [5]
to curate SV data, including vulnerable functions and lines, for
low-resource languages. Essentially, the data collection starts with
SV-fixing commits. In these commits, the functions encompassing
lines changed are considered vulnerable; otherwise, they are non-
vulnerable. The deleted lines are labeled as vulnerable lines. This
data curation process follows the same practice of Big-Vul [11], the
largest SV dataset in C/C++ widely used in the literature.

Regarding low-resource SV prediction, we selected three lan-
guages, Kotlin, Swift, and Rust, for two reasons. Firstly, these three
languages have an extremely limited number (< 100) of vulnera-
ble functions, making them directly relevant to our focus on low-
resource SV prediction. Secondly, these languages, with the first
release recently from 2014 to 2016, are being extensively used in
practice, as evidenced by the Stack Overflow survey in 2023.1 The
statistics of the data collected for each language are given in Table 1.

4.2 SOTA for SV prediction with CodeBERT
The fine-tuned CodeBERT [12] model by Fu et al. [13] currently
stands as the State-Of-The-Art (SOTA) for function-level and line-
level SV prediction [32]; thus, it was employed for our investigations.
The model derives code representations capturing both syntactic
and semantic information. Function-level predictions are crafted
using a Transformer-based architecture; the most vulnerable lines
within these functions are then pinpointed using attention scores
from the trained Transformer model. Following Fu et al. [13], we
also fine-tuned CodeBERT for each of the three studied languages
to predict vulnerable functions and lines. The hyperparameters of
CodeBERT were adapted from previous studies (e.g., [7, 32]) as fol-
lows: epochs: 10, learning rate: 1e-5, and feature embedding size: 768.
Despite exploring alternative values, no significant performance
improvement was observed. To tackle data scarcity, we also applied
Random Over-Sampling (ROS) and Random Under-Sampling (RUS)
to only the training sets before fine-tuning CodeBERT.

1https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof

Figure 2: Prompt to use ChatGPT with few-shot learning for
function-level SV prediction.

4.3 ChatGPT for SV prediction
We utilized the APIs of ChatGPT based on GPT-3.5-Turbo [30]
to develop prediction models for identifying SVs in low-resource
languages. Our approach, called prompt chaining, decomposed the
task into two subtasks: first detecting vulnerable functions and then
predicting vulnerable lines based on the result of the first step.

4.3.1 Function-level prediction. We explored two techniques for
function-level SV prediction: few-shot learning and fine-tuning.
Few-shot learning. We crafted a specialized prompt that directed
the model to identify SVs within a specified function (see Fig. 2). We
incorporated examples showcasing vulnerable and non-vulnerable
functions to enhance the model’s generalizability across various in-
stances. This method leverages the inherent capability of ChatGPT
from vast knowledge to learn from a few SV examples and then
draw inferences about new SVs from the contextual clues provided
within the given samples.

The prompt of the few-shot learning approach includes:

(1) language: the programming language of examples and the
target function.

(2) examples: the list of example functions. Each function is
formatted as <input, output>.
• input: the code of the function.
• output: the vulnerability status of the function code.

(3) target_function: The function we need to predict SV for.
(4) output_format: The expected format of the model’s re-

sponse. It is set to “vulnerable” or “non-vulnerable”.

We carefully designed the few-shot learning prompt, balancing
performance with data efficiency and GPT-3.5-turbo model limita-
tion. Our experiments revealed that 10 examples, including nine
vulnerable and one non-vulnerable function, achieved this optimal
balance. This choice was driven by the limited availability of labeled
vulnerable code in training datasets and the maximum token limit
of the GPT-3.5-turbo model. Including longer prompts with more
examples would exceed this limit, hindering the evaluation stage.
Additionally, we found that including too many non-vulnerable
examples in the training set also hindered model performance.
Conversely, using nine vulnerable examples alongside a single non-
vulnerable example demonstrably improved the model’s ability to
generalize and achieve better performance.
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Figure 3: Prompt to use ChatGPT with fine-tuning for
function-level SV prediction.

Figure 4: Prompt to use the ChatGPT model trained at the
function level for line-level SV prediction.

Fine-tuning. Fine-tuning can address the limitations of the few-
shot learning approach, particularly the constraints on the number
of examples that can be incorporated within a single prompt illus-
trated in Fig. 3. Specifically, fine-tuning uses our labeled training
data to change the weights of GPT-3.5-Turbo to make the model
become more specialized in SV prediction.

Based on the OpenAI’s API, the fine-tuning prompt includes:
(1) User Message: This element serves as input data for fine-

tuning. It includes the target_function parameter that speci-
fies the code of each function in a training set and the out-
put_format parameter including the expected response, i.e.,
vulnerable or non-vulnerable.

(2) Assistant Message: This element includes the ground truth
of the prediction, explicitly indicating the training code snip-
pet’s vulnerability status (“vulnerable” or “non-vulnerable”).
This clear distinction guides the model in learning the de-
sired output for each training instance.

After fine-tuning, themodel can handle zero-shot learning, allow-
ing the model to predict SVs without requiring additional examples
within the prompt itself. This streamlines the process and signifi-
cantly improves response times. Similar to CodeBERT in RQ1, we
also investigated fine-tuning ChatGPT with random over-sampling
and random under-sampling. We found that over-sampling worked
best with ChatGPT, and thus, we would report the ChatGPT’s re-
sults based on this setting.

4.3.2 Line-level prediction. If a function was predicted as vulnera-
ble by ChatGPT with either few-shot learning or fine-tuning, we
would leverage a line-level prediction prompt, given in Fig. 4, to
incorporate both the initial prediction and its output as context. We

designed this prompt based on the intuition from CodeBERT [13]
that the model would know the vulnerable lines, a.k.a the reasons,
contributing to its function-level SV prediction. This assumption
would be likely valid if the model already correctly predicted the
vulnerable functions. This comprehensive view allows the model
to focus its attention on specific lines within the function that are
most likely vulnerable.

4.4 Model Evaluation
Evaluation technique.We used a 10-round evaluation for themod-
els. Each round split the vulnerable and non-vulnerable functions
into training, validation, and testing sets at ratios of 60:20:20, respec-
tively. This ensured sufficient samples for testing function-level and
line-level SV prediction. To prevent data leakage, we excluded all
duplicate training entries/functions from the validation and testing
sets in each round. For CodeBERT, we employed the early stopping
strategy [18], i.e., stopping training if the validation performance
did not enhance in the last five epochs within a round. We selected
the optimal configurations for CodeBERT and ChatGPT based on
the highest performance averaging all validation sets.
Evaluation measures. We used established evaluation measures
for function-level and line-level SV prediction in our investigations.
For function-level SV prediction, we utilized F1-Score, Precision, and
Recall, common measures widely applied in prior SV prediction
studies (e.g., [13, 23, 32, 37]). F1-Score, being the harmonic mean
of Precision and Recall, was chosen for optimal model selection.
Reported results reflected the average performance on all the testing
sets of these optimal models that were determined by the highest
validation F1-Score.

For line-level SV prediction, we calculated Top-3 Accuracy and
Initial False Alarm (IFA), standard measures for assessing model
interpretability [13, 28].2 These measures gauge the effectiveness
of localizing vulnerable lines, especially the first one, aiding devel-
opers in initiating inspection. We also used Effort@20%Recall and
Recall@1%LOC [13] to assess performance while considering the
effort developers would need to inspect vulnerable lines.

5 EXPERIMENTAL RESULTS
5.1 RQ1: SOTA Model (CodeBERT) for SV

Prediction in Low-Resource Languages
The performance of the fine-tuned CodeBERT for predicting vul-
nerable functions in low-resource languages was still limited for all
three studied languages (see Table 2). The base CodeBERT model
attained 0.25 to 0.43 F1-Score for Kotlin, Swift, and Rust, respec-
tively, compared to 0.91 F1-Score originally reported for C/C++ [13].
This finding supports our hypothesis earlier on that low-resource
languages with much smaller sizes of data than C/C++ (i.e., 188,636
C/C++ functions, 10,900 of which are vulnerable) are likely to suffer
from significant performance degradation. It is also worth noting
that CodeBERT’s F1-Score rose as the dataset size increased, from
Kotlin (the smallest size) to Rust (the largest size). We also observed
similar increasing trends for Precision and Recall.

2We did not use Top-10 Accuracy, as in CodeBERT, as the average LOC of Kotlin
functions was around 10, i.e., vulnerable lines almost always rank in the top list.
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Table 2: Function-level SV prediction performance of Code-
BERT in low-resource languages. Notes: RUS is Random
Under-Sampling; ROS is Random Over-Sampling. The base
model of CodeBERT did not use either ROS or RUS.

Lang. Model F1-Score Precision Recall

Kotlin
CodeBERT (Base) 0.25 0.30 0.22
CodeBERT (RUS) 0.32 0.24 0.47
CodeBERT (ROS) 0.32 0.29 0.37

Swift
CodeBERT (Base) 0.37 0.44 0.33
CodeBERT (RUS) 0.34 0.24 0.63
CodeBERT (ROS) 0.31 0.25 0.42

Rust
CodeBERT (Base) 0.43 0.44 0.43
CodeBERT (RUS) 0.27 0.17 0.66
CodeBERT (ROS) 0.42 0.46 0.40

Avg.
CodeBERT (Base) 0.35 0.39 0.33
CodeBERT (RUS) 0.31 0.22 0.59
CodeBERT (ROS) 0.35 0.33 0.40

Table 3: Line-level SV prediction performance of CodeBERT
in low-resource languages. Note: For the metric value, the
higher is the better, except for IFA and Effort@20%Recall.

Lang. Model Top-3
Accuracy IFA Effort@

20%Recall
Recall@
1%LOC

Kotlin
CodeBERT (Base) 100% 0.00 0.013 0.111
CodeBERT (RUS) 87.5% 1.38 0.023 0.134
CodeBERT (ROS) 100% 0.00 0.013 0.139

Swift
CodeBERT (Base) 23.3% 6.70 0.032 0.117
CodeBERT (RUS) 31.0% 9.25 0.024 0.250
CodeBERT (ROS) 21.7% 9.85 0.024 0.163

Rust
CodeBERT (Base) 58.7% 7.69 0.027 0.216
CodeBERT (RUS) 43.9% 10.5 0.036 0.306
CodeBERT (ROS) 40.2% 8.47 0.021 0.228

Avg.
CodeBERT (Base) 60.7% 4.80 0.024 0.148
CodeBERT (RUS) 54.1% 7.03 0.028 0.230
CodeBERT (ROS) 53.9% 6.11 0.020 0.176

The performance of the fine-tuned CodeBERTmodel at line-level
prediction varies more than the function level (see Table 3). Unlike
the relatively consistent performance of function-level prediction,
the line-level prediction exhibited a fluctuating pattern across the
Kotlin, Swift, and Rust languages. Generally, we found a significant
decrease in performance from Kotlin to Swift, followed by a slight
improvement in Rust, suggesting that CodeBERT’s performance
in pinpointing vulnerable lines may be influenced by other factors
beyond the dataset size. For example, a model might have learned
code patterns for predicting vulnerable functions that may not align
with the actual lines to be fixed by developers [32]. The values of
IFA, Effort@20%Recall, and Recall@1%LOC were also lower than
those reported for C/C++ [13].

The results in Table 2 show that the data sampling techniques,
i.e., ROS and RUS, did not consistently improve performance across
all datasets. For the function-level predictions, ROS tended to per-
form better than RUS and on par with the base model, while for
the line-level predictions, ROS and RUS outperformed the base
model by only one of four measures. This inconsistency highlights
the significant challenge of tackling the data scarcity issue when
performing SV prediction in low-resource languages. These results
also motivate a need to explore alternative models for the tasks.

Table 4: Comparisons between ChatGPT and CodeBERT for
function-level SV prediction in low-resource languages.

Lang. Model F1-Score Precision Recall

Kotlin
GPT Fine-tuning 0.34 0.37 0.32
GPT Few-shot 0.43 0.43 0.44

CodeBERT (Best) 0.32 0.24 0.47

Swift
GPT Fine-tuning 0.40 0.55 0.32
GPT Few-shot 0.34 0.36 0.32

CodeBERT (Best) 0.37 0.44 0.33

Rust
GPT Fine-tuning 0.44 0.49 0.40
GPT Few-shot 0.09 0.09 0.09

CodeBERT (Best) 0.43 0.44 0.43

Avg.
GPT Fine-tuning 0.40 0.47 0.35
GPT Few-shot 0.29 0.29 0.28

CodeBERT (Best) 0.37 0.38 0.40

RQ1 Summary. The performance of CodeBERT for low-
resource SV prediction is still limited, as compared to
C/C++ with large-sized data. Function-level prediction pos-
itively correlates with the data size. Line-level prediction
varies more across languages and is not directly affected
by the dataset size. Data sampling techniques do not signif-
icantly improve function-level and line-level predictions.

5.2 RQ2: ChatGPT for SV Prediction in
Low-Resource Languages

Our investigations into ChatGPT with few-shot learning and fine-
tuning as alternative models to CodeBERT for SV prediction in low-
resource datasets yielded promising results. Note that we reported
the results of fine-tuning ChatGPT with random over-sampling
because it proved to be the most effective approach for this model
type. For CodeBERT, we used the results of the best model obtained
from RQ1 for each language.
Function-level prediction. As shown in Table 4, ChatGPTmodels,
on average, produced 2.3% to 34.4% higher F1-Score than CodeBERT
across all three datasets (Kotlin, Swift, Rust). Notably, ChatGPT
with few-shot learning demonstrated the best performance in the
smaller Kotlin dataset. However, its effectiveness tended to diminish
with larger and potentially more complex datasets like Rust. In
contrast, ChatGPT with fine-tuning exhibited a higher F1-Score
than CodeBERT consistently across all languages. Such stability of
F1-Score suggests the robustness and scalability of ChatGPT with
fine-tuning in handling datasets of varying sizes and complexities.
The better overall performance (F1-Score) can be attributed to the
higher Precision of ChatGPT than that of CodeBERT, meaning
fewer false positives. It is important to note that on average, the
higher F1-Score and Precision values of ChatGPT over CodeBERT
were statistically significant, based on the Wilcoxon signed-rank
tests [34] with 𝑝-values < 0.01 and non-negligible effect sizes.3
Despite the improvements, the best F1 of ChatGPT is still much
lower than that (0.91) of C/C++ with abundant SV data.
Line-level SV prediction. For line-level prediction, ChatGPT with
few-shot learning and fine-tuning outperformed CodeBERT across

3Effect size (𝑟 ) = 𝑍/
√
𝑁 ; 𝑍 is the 𝑍 -score statistic of the test and 𝑁 is sample size.

When 𝑟 ≥ 0.1, the effect size is non-negligible [33].
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Table 5: Comparisons between ChatGPT and CodeBERT for
line-level SV prediction in low-resource languages.

Lang. Model Top-3
Accuracy IFA Effort@

20%Recall
Recall@
1%LOC

Kotlin
GPT Fine-tuning 87.5% 0.12 0.013 0.114
GPT Few-shot 100% 0.00 0.008 0.114

CodeBERT (Best) 100% 0.00 0.013 0.139

Swift
GPT Fine-tuning 33.3% 4.47 0.016 0.090
GPT Few-shot 43.3% 11.5 0.024 0.090

CodeBERT (Best) 31.0% 9.25 0.024 0.250

Rust
GPT Fine-tuning 21.2% 3.29 0.008 0.070
GPT Few-shot 64.3% 1.00 0.001 0.037

CodeBERT (Best) 58.7% 7.69 0.027 0.216

Avg.
GPT Fine-tuning 47.4% 2.63 0.013 0.091
GPT Few-shot 69.2% 4.18 0.011 0.081

CodeBERT (Best) 63.3% 5.65 0.022 0.202

all the measures, except Recall@1%LOC, as given in Table 5. On
average, the improvements of the ChatGPT variants over Code-
BERT were 9.3%, 53.5%, and 50%, for Top-3 Accuracy, IFA, and Ef-
fort@20%Recall, respectively. There was no clear winner between
the few-shot learning and fine-tuning variants of ChatGPT. The line-
level improvements of ChatGPT variants over the CodeBERT mod-
els were confirmed statistically significant, based on the Wilcoxon
signed-rank tests [34] with 𝑝-values < 0.01 and non-negligible ef-
fect sizes. Similar to the function level, the line-level performance
values of ChatGPT were lower than those of C/C++, except for
Top-3 Accuracy as it was not used for C/C++ [13].

RQ2 Summary. ChatGPT performed significantly better
than CodeBERT, 2.3% – 34.4%↑ at the function level and
9.3% – 53.5%↑ at the line level, for low-resource SV pre-
diction. ChatGPT with fine-tuning shows the best overall
performance for predicting vulnerable functions. There
is a performance tie between few-shot learning and fine-
tuning for line-level prediction. Despite ChatGPT’s im-
provements, SV predictive performance, especially at the
function level, in low-resource languages is still far behind
that in abundant-resource languages like C/C++.

6 THREATS TO VALIDITY
The completeness of our datasets is a potential threat. We mitigated
this by leveraging the best practice of collecting SV data from the
National Vulnerability Database, the largest source of SVs in the
wild, based on the methods and tools of CVEfixes [5].

There are possible concerns regarding the choice and optimality
of prediction models. Given resource constraints, comprehensively
evaluating all available features and models becomes nearly im-
practical. Thus, we focused on techniques and their associated hy-
perparameters that have been recommended in the literature. Our
pioneering work in low-resource SV prediction, despite imperfect
baselines, serves as a catalyst for the evolution of more sophisticated
and high-performing techniques in subsequent research.

Regarding the generalizability of our results, we only performed
our study in three languages, yet we focused on the languages that
are popular among developers with worldwide usage. We also used
data from real-world projects of diverse domains and scales.

7 CONCLUSION
Our study addresses the challenge of SV prediction in low-resource
languages. Our experiments on Kotlin, Swift, and Rust revealed that
the performance of the CodeBERT-based state-of-the-art model was
sub-par for function-level and line-level SV prediction in these lan-
guages. We explored potential remedies, including data sampling
techniques like random over-sampling and under-sampling, yet
these approaches failed to enhance CodeBERT’s performance. In-
triguingly, ChatGPT showed positive results, substantially improv-
ing function-level prediction by 2.3–34.4% and line-level prediction
by 9.3–53.5%. While our first attempt at low-resource SV prediction
for emerging yet low-resource languages is promising, there is still
a long way to achieve similar performance as in abundant-resource
languages like C/C++. Our findings also underscore the pressing
need for continued research in adapting and improving current SV
prediction models for low-resource settings.

There are several potential future directions for SV prediction
and analysis in low-resource languages. Firstly, ChatGPT can be
used in conjunction with latent SVs [22] or semi-supervised learn-
ing [25] to enhance the performance of SV prediction in low-
resource languages. Secondly, besides SV prediction, future research
can investigate other SV management tasks [9, 14, 19, 21, 24, 27] in
low-resource languages. Thirdly, the nature of SVs in low-resource
languages can change over time, so the predictions should be mon-
itored continuously to mitigate performance degradation [1–3].
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