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Abstract
In this paper, we introduce PASGAL (Parallel And Scalable Graph

Algorithm Library), a parallel graph library that scales to a vari-
ety of graph types, many processors, and large graph sizes. One
special focus of PASGAL is the efficiency on large-diameter graphs,
which is a common challenge for many existing parallel graph
processing systems: many existing graph processing systems can
be even slower than the standard sequential algorithm on large-
diameter graphs due to the lack of parallelism. Such performance
degeneration is caused by the high overhead in scheduling and syn-
chronizing threads when traversing the graph in the breadth-first
order.

The core technique in PASGAL to achieve high parallelism is
a technique called vertical granularity control (VGC) to hide syn-
chronization overhead, as well as careful redesign of parallel graph
algorithms and data structures. In our experiments, we compare
PASGAL with state-of-the-art parallel implementations on BFS,
SCC, BCC, and SSSP. PASGAL achieves competitive performance
on small-diameter graphs compared to the parallel baselines, and
is significantly faster on large-diameter graphs.

CCS Concepts
• Theory of computation→ Graph algorithms analysis; Par-
allel algorithms; Shared memory algorithms.

Keywords
Parallel Algorithms, Graph Algorithms, Graph Processing

1 Introduction
Graphs are effective representations of real-world objects and

their relationships. Processing and analyzing graphs efficiently
have become increasingly important. Given the large size of today’s
real-world graphs, it is imperative to consider parallelism in graph
processing. The increasing number of cores andmemory size allows
a single machine to easily process graphs with billions of vertices
in a few seconds, even for reasonably complicated tasks. As a result,
a huge number of in-memory graph processing algorithms and
systems have been developed (e.g. [5, 9]).

Despite the hardware advances, the increasing number of cores
does not provide “free” performance improvement. We observed
that many existing parallel systems suffer from scalability issues,
both to more cores and to larger/more diverse graphs, even in
fundamental tasks such as breadth-first search (BFS), strongly con-
nected components (SCC), biconnected components (BCC), and
single source shortest paths (SSSP). We show an example of SCC
algorithms in Fig. 1. Tested on a 96-core machine, existing sys-
tems [9, 20] scale well with fewer than 16 threads and/or on the
well-studied power-law graphs with small diameters. Indeed, many
of them focus on optimizing the performance of low-diameter
graphs such as social networks. However, their performance can
stop increasing (or even drop) with more threads, especially on
large-diameter graphs. On many graphs, they can perform worse
than the sequential Tarjan’s algorithm [21]. Similar issues on other
graph problems can be observed in Fig. 2.
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Figure 1: Speedup on #processors for strongly connected component (SCC)
algorithms over Tarjan’s algorithm [21] (sequential, always 1). The tested
algorithms include PASGAL (this paper), GBBS [9], and Multistep [20].
We present four graphs of different types. The top two graphs have small
diameters and the bottom two have larger diameters.

One major reason for such performance degeneration is the high
overhead of managing and synchronizing threads. While enabling
the potential of better parallelism, more available cores also bring
up great challenges and overhead. Namely, parallelism comes at a
cost. This is more pronounced when using BFS-like primitives on
large-diameter graphs: when traversing the graph in BFS order, the
number of rounds (and thus the cost of scheduling and synchroniz-
ing threads between them) is proportional to the diameter of the
graph. As a result, when the diameter is large, the synchronization
overhead can be more expensive than the computation.

We propose a new open-source library PASGAL: the Parallel
And Scalable Graph Algorithm Library, that implements a list
of graph algorithms that are scalable to diverse graph types, many
processors, and large graphs. PASGAL focuses on several problems
where existing parallel solutions suffer severely from high synchro-
nization costs, such as BFS, SCC, BCC, and SSSP. We plan to include
more algorithms in the future.

To overcome the scalability issues, the key technique in PASGAL
is called vertical granularity control (VGC) proposed in our recent
paper [24] to hide scheduling overhead. Accordingly, we need to
redesign algorithms and data structures to facilitate VGC, as well
as to synergistically optimize work, span and/or space usage. In
Sec. 2, we introduce our techniques in more details.

With VGC and other techniques in Sec. 2, PASGAL achieves
high performance on a variety of graphs, especially large-diameter
graphs. For the aforementioned SCC problem, PASGAL exhibits
good scalability (see Fig. 1), and is faster than all previous parallel
algorithms on all tested graphs (see Fig. 2). Overall, compared to
the baselines, PASGAL is always competitive on small-diameter
graphs, and is almost always the fastest on large diameter graphs.
We discuss experimental results in Sec. 3. Our code is publicly
available [10]. Full experimental results and more references are
given in the Appendix.
Preliminaries. Given a graph 𝐺 = (𝑉 , 𝐸), we denote 𝑛 = |𝑉 | and
𝑚 = |𝐸 |. We use 𝐷 to denote the diameter of 𝐺 .
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Algorithm 1: Parallel Frontier-based Graph Algorithms
Input: A directed graph𝐺 = (𝑉 , 𝐸 ) and an initial frontier F0

1 𝑖 ← 0
2 while F𝑖 ≠ ∅ do
3 parallel_for_each 𝑣 ∈ F𝑖 do
4 Visit all neighbors of 𝑣, put a subset of them to F𝑖+1.
5 𝑖 ← 𝑖 + 1

Most algorithms in PASGAL are frontier-based (see Alg. 1). At
a high level, the algorithm maintains a frontier, which is a subset of
vertices to be explored in each round. In round 𝑖 , the algorithm pro-
cesses (visits their neighbors) the current frontier F𝑖 in parallel, and
puts a subset of their neighbors to the next frontier F𝑖+1, determined
by a certain condition. For example, in BFS, a vertex 𝑢 will add its
neighbor 𝑣 to the next frontier iff. 𝑣 has not been added to frontiers
before, and𝑢 is the first to add 𝑣 (based on some linearization order)
in round 𝑖 . The algorithm requires Ω(𝐷) rounds.

As mentioned, one key challenge of using parallel BFS or similar
approaches is the large cost to create and synchronize threads be-
tween rounds, which is especially costly for large-diameter graphs
(more rounds needed). In this paper, we will show how PASGAL
reduces the scheduling overhead to achieve better parallelism.

2 Algorithms
We now introduce the algorithms in PASGAL. For page limit,

we only elaborate on SCC and briefly overview the others.

2.1 Parallel SCC
Most existing parallel SCC algorithms are based on reacha-

bility search, which finds all vertices 𝑢 that are reachable from
a given vertex 𝑣 . In most existing implementations, reachability
searches are performed by BFS from 𝑣 , which requires𝑂 (𝐷) rounds
to finish. This directly implies several (interrelated) challenges on
large-diameter graphs. First, this incurs many rounds of distribut-
ing and synchronizing threads with high overhead. Second, many
real-world large-diameter graphs (e.g., road networks) are sparse
with small average degrees. As a result, every parallel task (process-
ing one vertex in the frontier) is small, and the cost of scheduling
the thread may dominate the actual computation. Finally, because
of sparsity, each frontier size is also likely small, which makes the
algorithm unable to utilize all threads in the hardware.
Algorithm Redesign. To resolve this challenge, PASGAL uses a
recent SCC algorithm [24]. The idea is to observe that a reachability
search does not require a strong BFS order. Therefore, one can relax
the BFS order and visit vertices in an arbitrary order. In this way,
the algorithm employs a technique called vertical granularity
control to hide scheduling overhead, as introduced below.
Vertical Granularity Control. Granularity control (a.k.a. coars-
ening) is widely used in parallel programming, which also aims
to avoid the overhead caused by generating unnecessary parallel
tasks. For computations with sufficient parallelism, e.g., a parallel
for-loop or divide-and-conquer algorithm of size 𝑛 ≫ 𝑃 where 𝑃 is
the number of processors, a common practice is to stop recursively
creating parallel tasks at a certain subproblem size and switch to a
sequential execution to hide the scheduling overhead.

Inspired by this, the idea of VGC is also to increase each task
size to hide the scheduling overhead. For reachability searches, we
simply perform a local search to visit at least 𝜏 vertices, possibly in
multiple hops. While globally the vertices are not visited in the BFS
order, this does not affect the correctness of reachability. Note that
here 𝜏 is equivalent to the base-case task size of granularity control,

Road Social
AF NA AS EU LJ FB OK TW FS

𝑛 33.5M 87.0M 95.7M 131M 4.85M 59.2M 3.07M 41.7M 65.6M
𝑚′ 44.8M 113M 123M 169M 69.0M N/A N/A 1.47B 3.61B
𝑚 88.9M 220M 244M 333M 85.7M 185M 234M 2.41B 3.61B
𝐷 ′ 8276 9337 16660 11814 22 N/A N/A 18 N/A
𝐷 3948 4835 8794 4410 19 22 9 22 37

𝑘-NN Web
CH5 GL5 GL10 COS5 WK SD CW HL14 HL12

𝑛 4.21M 24.9M 24.9M 321M 6.63M 89.2M 978M 1.72B 3.56B
𝑚′ 21.0M 124M 249M 1.61B 165M 2.04B 42.4B 64.4B 129B
𝑚 29.7M 157M 310M 1.96B 300M 3.88B 74.7B 124B 226B
𝐷 ′ 5683 17268 13982 1390 62 145 506 800 5279
𝐷 14479 21601 9053 1180 9 35 254 366 650

Synthetic Underline: undirected graphs
REC SREC TRCE BBL 𝑚′: #edges in directed graphs

𝑛 100M 100M 16.0M 21.2M 𝑚: #edges in undirected or
𝑚′ 297M 204M N/A N/A symmetrized graph
𝑚 400M 336M 48.0M 63.6M 𝐷 ′: diameter of the directed graph
𝐷 ′ 59075 102151 N/A N/A 𝐷 : diameter of the undirected or
𝐷 50500 54843 5527 7849 symmetrized graph
Table 1: Tested graphs. Since it is hard to obtain the exact value of 𝐷 and
𝐷 ′ , the number shown is a lower bound obtained by at least 1000 sampled
searches on each graph.

and is a tunable parameter. In this way, VGC 1) greatly reduces
the number of rounds, since each round may advance multiple
hops from the current frontier, and 2) quickly accumulates a large
frontier size since the next frontier contains multiple-hop neighbors
from the current frontier, and thus yields sufficient parallel tasks
throughout the algorithm. Both outcomes effectively reduce (or
hide) synchronization costs and allow for much better parallelism.
Data Structure Design. Another useful technique for the SCC
algorithm is a data structure called hash bag [24]. It maintains a
dynamic set of vertices as the frontiers for parallel graph algorithms.
For page limit, we refer the readers to [24] for more details.

2.2 Other Algorithms
Parallel SSSP. The SSSP algorithm in PASGAL is based on the
stepping algorithm framework [11], and uses VGC and hash bags
introduced in Sec. 2.1 to accelerate the frontier traversing.
Parallel BFS. Using VGC, we implemented a new BFS algorithm
in PASGAL. We also use hash bags to maintain the frontiers. Our
BFS algorithm is similar to SSSP where the output distance is the
hop distance from the source. For any vertex encountered in a local
search from vertex 𝑣 , we add it to the corresponding frontier if its
hop distance can be updated by 𝑣 . Note that due to local search, a
vertex can be visited multiple times instead of exactly once as in
standard BFS. This is because the distance of a vertex 𝑣 updated by
a local search is not necessarily the shortest distance of 𝑣 , leading to
extra work. To reduce this overhead, one special technique for BFS
is that we maintain multiple frontiers, where frontier 𝑖 maintains
vertices with distance 2𝑖 from the current frontier. In this way, we
obtain the benefit of BFS by exploring multiple hops in one round,
and also avoid visiting too many “unready” vertices in the frontier.
We also use the direction optimization [4] to improve performance.
Parallel Biconnectivity. Different from other problems, the ma-
jor performance gain of the BCC algorithm in PASGAL is due to
algorithm redesign to achieve stronger theoretical bounds. The per-
formance bottleneck of previous BCC algorithms either comes from
the use of BFS that requires 𝑂 (𝐷) rounds of global synchroniza-
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Figure 2: Speedup of parallel algorithms over the standard sequential algorithm. 𝑦-axis is in log-scale. Bars below 1.0 mean the parallel algorithm is slower
than a sequential one. Some bars are invisible because they are close to 1. “N/A”: not applicable. “OOM”: out-of-memory.

tions (e.g., GBBS [9]), or requires 𝑂 (𝑚) auxiliary space and does
not scale to large graphs (e.g., Tarjan-Vishkin [22]). PASGAL uses
the FAST-BCC algorithm in [12]. By redesigning the algorithm,
FAST-BCC avoids the use of BFS, and achieves 𝑂 (𝑛 +𝑚) work,
polylogarithmic span, and 𝑂 (𝑛) auxiliary space. We also use VGC
and hash bags to further improve the performance.

3 Experimental Results
Library Design. We release the code of PASGAL [10]. PASGAL is
implemented in C++ using ParlayLib [6] for fork-join parallelism
and some parallel primitives (e.g., sorting). The four algorithms
(BFS, BCC, SCC and SSSP) are provided in the subdirectories. A
readme file about compiling and running the library is provided
in the repository. PASGAL supports two different graph formats:
the binary format (.bin) from GBBS [9], and the adjacency graph
format (.adj) from the Problem-Based Benchmark Suite (PBBS) [2].
Setup. We run our experiments on a 96-core (192 hyperthreads)
machine with four Intel Xeon Gold 6252 CPUs and 1.5 TB of main
memory. We use numactl -i all in parallel experiments.

We tested on 22 graphs, including social networks, web graphs,
road graphs, 𝑘-NN graphs, and synthetic graphs. All the graphs
are from existing research papers and public datasets. The graph
information is given in Alg. 1. For page limit, we provide the full
graph information and corresponding citations in the Appendix.
We call the social and web graphs low-diameter graphs as they have
diameters mostly within a few hundred. We call the road, 𝑘-NN,
and synthetic graphs large-diameter graphs as their diameters are
mostly more than a thousand. We symmetrize directed graphs for
testing BCC. SCC does not apply to undirected graphs.

We present the performance comparison in Fig. 2. For page limit,
we only show results for SCC, BCC, and BFS. For each problem, we
also implement the standard sequential algorithm as the baseline,
which is a queue-based solution for BFS, Tarjan’s algorithm for
SCC [21], and the Hopcroft-Tarjan algorithm for BCC [14]. We
compute the relative speedup for each parallel implementation over
the sequential algorithm, and present them in Fig. 2. The 𝑦-axis is
in log-scale. Bars below 1 mean that the parallel algorithm is slower
than the sequential implementation. The baselines include state-of-
the-art graph libraries and implementations, including GBBS [9],
GAPBS [5], Tarjan-Vishkin from [12], and Multistep [20].

For all tested problems and all graphs, PASGAL is always compet-

itive on small-diameter graphs: across all graphs, PASGAL is within
1.3× of the running time compared to the fastest baseline on BCC,
2× on BFS, and always faster than all baselines on SCC. Parallel BFS
on social networks is one of the most well-studied parallel graph
algorithms, and all parallel algorithms achieve superlinear speedup
on some social networks due to various optimizations (e.g., the
direction optimization [4]). PASGAL achieves good scalability and
is 49-570× faster than the standard sequential algorithm using 192
threads. An interesting future direction is to further make the BFS
performance of PASGAL match the best parallel implementation.

On large-diameter graphs, PASGAL achieves much better per-
formance than all baselines. On BCC, due to theoretical efficiency,
PASGAL consistently outperforms the sequential Hopcroft-Tarjan
algorithm on all graphs. It is up to 3.45× faster than the best baseline
on each graph. On SCC and BFS, PASGAL is always faster than the
sequential baseline except for one graph CH5, which has very large
diameter compared to its small size. Different from BCC, our SCC
and BFS algorithms do not have strong span bound. Using VGC can
only alleviate the scalability issue on large-diameter graphs, but
may still be unable to eliminate the issue on adversarial graphs (e.g.,
a chain). Still, on most real-world large-diameter graphs, PASGAL
is almost always the fastest among all parallel implementations,
and is up to 5× faster than the best baseline on BFS, and up to 46×
on SCC.

4 Conclusion and Future Work
In this paper, we present PASGAL, a scalable graph library spe-

cially designed to improve performance on large-diameter graphs.
As mentioned, some interesting future directions include further
seeking new ideas to improve the performance of BFS on small-
diameter graphs that also work well with VGC, as well as further
improving the performance for BFS and SCC on very large-diameter
graphs. In addition, we believe the techniques in current PASGAL
can be extended to more problems, including 𝑘-core and other peel-
ing algorithms, 𝑘-connectivity, point-to-point shortest paths, etc.
We plan to add them to PASGAL in the future.
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A More Experimental Results
We present the original running time in our experiments and more

detailed graph information here.
Tab. 2 presents the information of all graphs tested in the paper. Tab. 3 to 5

presents the running time of all tested algorithms on biconnected compo-
nents (BCC), breadth-first search (BFS), and strongly connected components
(SCC), respectively.

For each table, the last column is always the standard sequential algo-
rithm (noted with “*”). In the figure in the main paper, the relative speedup
are based on this sequential algorithm. For all running times, lower is better.
“o.o.m” means out-of-memory. “n.s.” means no-support.
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𝒏 𝒎′ 𝒎 𝑫′ 𝑫 Notes

So
ci
al

LJ 4,847,571 68,993,773 85,702,474 22 19 soc-LiveJournal1 [3]
FB 59,216,214 N/A 185,044,024 N/A 22 socfb-konect [18, 19, 23]
OK 3,072,627 N/A 234,370,166 N/A 9 com-orkut [26]
TW 41,652,231 1,468,365,182 2,405,026,092 18 22 Twitter [15]
FS 65,608,366 N/A 3,612,134,270 N/A 37 Friendster [26]

W
eb

WK 6,625,370 165,206,104 300,331,770 62 9 enwiki-2023 [7, 8]
SD 89,247,739 2,043,203,933 3,880,015,728 145 35 sd-arc [17]
CW 978,408,098 42,574,107,469 74,744,358,622 506 254 ClueWeb [17]
HL14 1,724,573,718 64,422,807,961 124,141,874,032 800 366 Hyperlink14 [17]
HL12 3,563,602,789 128,736,914,167 225,840,663,232 5279 650 Hyperlink12 [17]

R
oa

d

AF 33,493,259 44,773,338 88,929,770 8276 3948 Open Street Map (OSM) Africa [1]
NA 86,951,513 112,869,708 220,285,922 9337 4835 Open Street Map (OSM) North America [1]
AS 95,735,401 122,836,037 243,624,688 16660 8794 Open Street Map (OSM) Asia [1]
EU 130,655,972 168,541,220 332,587,928 11814 4410 Open Street Map (OSM) Europe [1]

𝒌
N
N

CH5 4,208,261 21,041,305 29,650,038 5683 14479 Chem [13, 25], 𝑘 = 5
GL5 24,876,978 124,384,890 157,442,032 17268 21601 GeoLife [25, 27], 𝑘 = 5
GL10 24,876,978 248,769,780 309,743,322 13982 9053 GeoLife [25, 27], 𝑘 = 10
COS5 321,065,547 1,605,327,735 1,957,750,718 1390 1180 Cosmo50 [16, 25], 𝑘 = 5

Sy
nt
he

ti
c REC 100,000,000 297,418,030 400,000,000 59075 50500 103 × 105 Grid [24]

SREC 100,000,000 203,785,880 335,787,820 102151 54843 Sampled REC [24]
TRCE 16,002,413 N/A 47,997,626 N/A 5527 Huge traces [19]
BBL 21,198,119 N/A 63,580,358 N/A 7849 Huge bubbles [19]

Table 2: Information of all tested graphs. 𝑛: #vertices.𝑚: #edges in the undirected or symmetrized graph.𝑚′: # directed edges. 𝐷 : diameter of the
undirected or symmetrized graph. 𝐷 ′: diameter of the directed graph. Undirected graphs are underlined.
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Graph PASGAL GBBS Tarjan-Vishkin Hopcroft-Tarjan*

So
ci
al

LJ 0.112 0.165 0.857 2.38
FB 0.835 0.825 1.95 8.68
OK 0.106 0.15 2.46 3.3
TW 1.44 2.72 24.6 65.6
FT 3.17 6.26 40.7 177.6

W
eb

WK 0.175 0.248 3.1 5.58
SD 3.16 5.47 41.7 127.9
CW 23.8 39.4 o.o.m. 704.5

HL14 33.7 49.3 o.o.m. 818.3
HL12 129.8 102.4 o.o.m. 2216.6

R
oa

d

AF 0.859 5.77 1.42 17.1
NA 2.19 8.19 3.62 44.2

ASIA 2.46 10.4 4.33 49.1
EU 3.32 11.4 5.84 69

𝒌
N
N

CH5 0.141 1.31 0.418 0.465
GL5 0.501 2.65 1.73 4.97

GL10 0.558 1.66 3.37 7.36
COS5 8.28 18.4 26.5 175.8

Sy
nt
he

ti
c REC 1.47 28.7 4.81 5.95

SREC 1.44 26.3 4.32 12.5
TRCE 0.302 4.52 0.674 3.36
BBL 0.406 5.62 0.958 5.1

Geometric Mean:

Social 0.63 0.913 5.50 9.53
Web 4.97 7.06 - 112
Road 1.98 8.64 3.38 20.7
𝒌NN 0.756 3.21 2.84 4.55

Synthetic 0.714 11.8 1.91 3.68
Table 3: Running time of all tested algorithms on biconnected components (BCC). The parallel implementations include PASGAL (this paper), GBBS [9], and
Tarjan-Vishkin [22] (implementation from [12]). The sequential baseline is the Hopcroft-Tarjan algorithm [14].
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Graph PASGAL GBBS Multistep Tarjan*
So

ci
al

LJ 0.033 0.122 0.117 1.31
FB Undirected Graph
OK Undirected Graph
TW 0.192 0.332 1.31 30.2
FT Undirected Graph

W
eb

WK 0.054 0.120 0.185 2.71
SD 1.06 4.93 1.84 44.5
CW 12.6 38.8 n.s. 267
HL14 18.8 63.6 n.s. 326
HL12 96.8 364.0 n.s. 1620

R
oa

d

AF 1.40 50.3 19.9 7.32
NA 1.64 24.6 12.4 19.2
ASIA 3.34 129 34.1 20.8
EU 2.34 76.2 31.8 29.2

𝒌
N
N

CH5 0.528 8.45 18.0 0.224
GL5 0.903 11.9 23.7 2.34
GL10 1.62 17.5 17.7 3.41
COS5 3.27 14.9 58.0 87.1

Sy
nt
he

ti
c REC 0.892 41.3 67.3 7.91

SREC 2.02 30.2 82.2 6.70
TRCE Undirected Graph
BBL Undirected Graph

Geometric Mean

Social 0.080 0.201 0.391 6.30
Web 4.20 14.0 - 112
Road 2.06 59.0 22.8 17.1
𝒌NN 1.26 12.7 25.7 3.53
Synthetic 1.34 35.3 74.4 7.28

Table 4: Running time of all tested algorithms on strongly connected com-
ponents (SCC). The parallel implementations include PASGAL (this paper),
GBBS [9], and Multistep [20]. Multistep does not support the three largest
graph because the number of vertices in CW, HL14, and HL12 are larger
than 32-bit integers. The sequential baseline is the Tarjan’s algorithm [21].

Graph PASGAL GBBS GAPBS Queue-based*

So
ci
al

LJ 0.018 0.010 0.030 1.19
FB 0.104 0.052 0.104 5.14
OK 0.012 0.007 0.011 2.19
TW 0.136 0.077 0.116 30.2
FT 0.214 0.163 0.173 122

W
eb

WK 0.026 0.014 0.041 2.67
SD 0.471 0.366 0.421 43.1
CW 5.69 4.10 3.44 283.3
HL14 4.19 3.12 2.83 158
HL12 22.5 12.2 o.o.m. 759

R
oa

d

AF 0.05 0.7 0.2 0.45
NA 0.31 5.4 1.4 11.0
ASIA 0.18 5 0.9 3.0
EU 0.49 8.8 2.3 16.3

𝒌
N
N

CH5 0.095 0.10 0.3 0.047
GL5 0.095 0.1 0.1 0.10
GL10 0.08 0.3 0.5 0.32
COS5 3.12 1.8 5.0 90.1

Sy
nt
he

ti
c REC 1.100 14.7 4.1 5.86

SREC 1.14 11.2 5.7 4.96
TRCE 0.134 1.81 0.458 1.84
BBL 0.185 2.92 0.618 2.77

Geometric Mean

Social 0.058 0.034 0.059 8.68
Web 1.46 0.956 - 112
Road 0.191 3.67 0.886 3.95
𝒌NN 0.215 0.287 0.517 0.603
Synthetic 0.420 5.43 1.60 3.49

Table 5: Running time of all tested algorithms on breadth-first search (BFS).
The parallel implementations include PASGAL (this paper), GBBS [9], and
GAPBS [5]. The sequential baseline is the standard algorithm based on
maintaining the visited vertices in a queue.
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