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Motivated by recent work connecting Higgs phases to symmetry protected topological (SPT) phases, we
investigate the interplay of gauge redundancy and global symmetry in lattice gauge theories with Higgs fields
in the presence of a boundary. The core conceptual point is that a global symmetry associated to a Higgs
field, which is pure-gauge in a closed system, acts physically at the boundary under boundary conditions
which allow electric flux to escape the system. We demonstrate in both Abelian and non-Abelian models that
this symmetry is spontaneously broken in the Higgs regime, implying the presence of gapless edge modes.
Starting with the U(1) Abelian Higgs model in 4D, we demonstrate a boundary phase transition in the 3D
XY universality class separating the bulk Higgs and confining regimes. Varying the boundary coupling while
preserving the symmetries shifts the location of the boundary phase transition. We then consider non-Abelian
gauge theories with fundamental and group-valued Higgs matter, and identify the analogous non-Abelian global
symmetry acting on the boundary generated by the total color charge. For SU(𝑁) gauge theory with fundamental
Higgs matter we argue for a boundary phase transition in the O(2𝑁) universality class, verified numerically
for 𝑁 = 2, 3. For group-valued Higgs matter, the boundary theory is a principal chiral model exhibiting chiral
symmetry breaking. We further demonstrate this mechanism in theories with higher-form Higgs fields. We show
how the higher-form matter symmetry acts at the boundary and can spontaneously break, exhibiting a boundary
confinement-deconfinement transition. We also study the electric-magnetic dual theory, demonstrating a dual
magnetic defect condensation transition at the boundary. We discuss some implications and extensions of these
findings and what they may imply for the relation between Higgs and SPT phases.
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I. INTRODUCTION

Gauge fields and gauge invariance have a long and com-
plex history in theoretical physics, deeply interwoven with
the advent of quantum field theory, the formulation of the
Standard Model of particle physics, and firmly embedded in
the modern theory of quantum many body systems. In fun-
damental physics, gauge theories arise naturally in Lorentz
covariant theories of massless particles where they resolve a
mismatch between the physical degrees of freedom admitted
by the Wigner little group—such as photon polarizations—and
the vector potential used to describe the particle states. This
is accomplished by rendering the surplus degrees of freedom
redundant. As such they arise naturally in field theories of
gravity, nuclear forces and electromagnetism. In condensed
matter physics, gauge fields play a key role in describing a
plethora of physical phenomena including highly-entangled
emergent states of matter such as spin liquids and fractional
quantum Hall fluids.

The redundancy inherent to gauge theories leads to impor-
tant subtleties. In particular, while the theories are local, the
physical gauge-invariant objects are non-local Wegner-Wilson
string loops [1, 2]. This implies a tension in describing the
spontaneous breaking of symmetries in the presence of dy-
namical gauge fields. Whereas many condensed matter sys-
tems demonstrate symmetry lowering phase transitions gov-
erned by spontaneous breaking of a global symmetry, gauge
redundancy, being unphysical, cannot be broken. This fact,
enshrined in Elitzur’s theorem, belies a rich landscape of dif-
ferent phases separated by phase transitions whose study began
systematically in the 1970s. While Landau theory successfully
accounts for a broad range of phase transitions in correlated
many-body systems, the order parameters for theories with
dynamical gauge fields are generically non-local, raising the
question of how to understand the nature of the phase transi-
tions in such theories. Recent advances generalizing notions
of symmetries to higher-dimensional charged objects [3] have
allowed for the extension of the Landau paradigm to describe
such phase transitions [4, 5], for a review see [6].

Condensation of charged matter in gauge theories, governed
by the Anderson-Higgs mechanism [7–10], is one of corner-
stones in physics. It plays a key role in our understanding
of superconductivity phenomenon and clarifies the nature of
electroweak interactions within the Standard Model of parti-
cle physics. One question which has stood the test of time is

the relationship between the Higgs and confined phases of a
gauge theory. Let us illustrate this with the 4D compact U(1)
gauge theory, described in terms of a U(1) vector potential 𝐴𝜇,
i.e. Maxwell theory with magnetic monopoles. In the pure
gauge theory at weak coupling there is a deconfined phase in
which static electric charges interact via a 1/𝑟 Coulomb po-
tential mediated by a gapless photon, while at strong coupling
the theory enters a confined phase, via the proliferation of
magnetic monopoles, where static electric charges interact via
a linearly rising potential. If we couple the gauge field to a
charged scalar Higgs field, then the Higgs field may condense,
leading to a Higgs regime where the photon becomes mas-
sive. Can the Higgs regime be sharply distinguished from the
confined regime? For a Higgs field in the fundamental rep-
resentation of the gauge group, i.e. one carrying elementary
charge, it is generally understood that the Higgs and confined
regimes are actually the same phase, i.e. they are not sepa-
rated by any thermodynamic bulk phase transition, as shown
in [11, 12]. This Higgs-confinement continuity is believed to
be true in generic models with a gauge group G coupled to a
scalar Higgs field in the fundamental representation, including
both discrete and continuous Abelian and non-Abelian gauge
groups [12].

Nonetheless, the question of whether there is a qualitative
difference between these two regimes has been revisited time
after time from many different perspectives [13]. To sur-
vey briefly the history of the endeavor to delineate these two
regimes, one approach has been to perform a partial gauge fix-
ing and observe symmetry breaking in an unfixed global sub-
group, which shows a phase transition separating them, though
the location of the transition line is gauge-dependent and thus
lacks a clear physical meaning [14]. Other proposals seek to
delineate them in the presence of global symmetries (whose
realization is unaltered between the two regimes), see e.g.
[15–17]. Yet another approach, advanced partially by one of
the authors, emphasizes that (in a certain limit) Abelian Higgs
phases with fundamental matter exhibit symmetry-protected
topological (SPT) order [18–20]. This observation motivates
the investigation of the Higgs mechanism in open geometries,
and zooms in on low-energy excitations localized near bound-
aries. In contrast to the confined regime, where the ground
state is unique, in the Higgs regime previous studies uncovered
energy spectrum degeneracies, see for example [18–20]. The
robustness of these degeneracies originating from boundary-
localized modes originates from the interplay of the protecting
(generalized) symmetries that depends on the gauge group and
dimensionality of the problem. In summary, the presence of
a boundary introduces a criterion by which one can delineate
the Higgs and confined regimes of Abelian gauge theories with
fundamental matter—they are separated by a boundary phase
transition.

In this paper we explore in detail boundary symmetry break-
ing in Wilson lattice gauge theories. We find that the Higgs-
confinement boundary criticality mechanism is in fact ubiq-
uitous. We begin in Section II by showing the presence of a
boundary phase transition in the 𝑈 (1) Abelian Higgs model
in four dimensions, where the magnetic one-form symmetry is
broken explicitly. We discuss how, in the presence of bound-
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aries which allow flux but not charge to exit the system, there
is a bulk U(1) global matter symmetry which, by the Gauss
law, is equivalent to an electric flux symmetry acting on the
boundary. We show that in a particular limit of the theory, in
which the action reduces to a 3D XY model on the boundary,
this boundary U(1) symmetry can be broken spontaneously.
We provide numerical evidence that there is a corresponding
boundary phase transition in the presence of bulk fluctuations,
and we trace the phase boundary in the bulk phase diagram.
Next we turn to non-Abelian Higgs theories in Section III.
We consider two types of Higgs models, those with group-
valued Higgs fields and those with fundamental representation
(vector-valued) Higgs fields, which coincide for gauge group
SU(2) but differ for other gauge groups. We demonstrate
that these models also have a global charge symmetry which
is realized at the boundary. Using large-scale lattice simula-
tion, we first show that 4D SU(2) Higgs theory has a boundary
phase transition in the 3D O(4) universality class, verifying our
theoretical prediction. We show that this boundary symme-
try breaking is expected to be generic in group-valued Higgs
models, and provide a general argument that fundamental-
Higgs models with gauge group SU(𝑁) and SO(𝑁) exhibit
O(2𝑁) and O(𝑁) boundary criticalities, respectively. We ver-
ify this prediction numerically for the case of the 4D SU(3)
fundamental-Higgs. Lastly, in Section IV, we consider gener-
alizing to higher-form Abelian-Higgs models, with a 𝑘-form
gauge field coupled to a (𝑘 − 1)-form Higgs field. We discuss
how the higher-form matter symmetry is realized at the bound-
ary through the Gauss law, and show that the action reduces in
a limiting case to a boundary (𝑘 −1)-form gauge theory which
may exhibit a confinement-deconfinement phase transition in
which the matter symmetry is spontaneously broken. In the
same section, we perform a duality transformation and discuss
how this symmetry breaking can be viewed from the perspec-
tive of magnetic defects which live at the boundary. Finally,
we provide an overview of our findings and discuss how our
work may connect to symmetry protected topology.

II. BOUNDARY SYMMETRY BREAKING IN THE
ABELIAN HIGGS MODEL

The prototypical theory for the interaction of charges with
a gauge field is the U(1) Abelian-Higgs model—i.e. scalar
QED, electrodynamics in (3+1)D Lorentzian or 4D Euclidean
dimensions coupled to scalar matter. The continuum action
for this theory is

𝑆 = − 1
4𝑔2

∫
d4𝑥 𝐹𝜇𝜈𝐹

𝜇𝜈︸                      ︷︷                      ︸
Dynamical U(1) Gauge Field

+ 1
2

∫
d4𝑥

(
|𝐷𝜇𝜙 |2 −𝑉 ( |𝜙|2)

)
︸                                ︷︷                                ︸

Minimally Coupled Complex Scalar

,

(1)
where 𝐹 = d𝐴 is the field strength tensor, 𝐴 is the vector
potential, 𝜙 is a complex scalar Higgs field, 𝐷 = d − 𝑖𝐴 is
the covariant derivative, and 𝑉 (𝜙) is a potential for the Higgs
field. This theory is known to exhibit two phases: a decon-
fined or Coulomb phase, where charged particles interact via
a 1/𝑟 Coulomb potential mediated by massless photons and

a gapped confinement-Higgs phase. The latter phase has two
distinct regimes, a confined regime at strong coupling and a
Higgs regime at weak coupling, which are continuously con-
nected without any thermodynamic phase transition between
them [12].

This theory is invariant under local𝑈 (1) gauge transforma-
tions of the form

𝜙(𝑥) → 𝜙(𝑥)𝑒𝑖𝜆(𝑥 ) , 𝐴 → 𝐴 + d𝜆, (2)

where 𝜆 is an arbitrary 0-form. By construction, gauge-non-
invariant operators cannot exhibit a non-zero vacuum expecta-
tion which is formalized by Elitzur’s theorem. Thus, while it is
commonly stated that this theory exhibits spontaneous break-
ing of the U(1) gauge symmetry leading to the Higgs phase,
⟨𝜙(𝑥)⟩ = 0 and thus cannot serve as a local order parameter
for such a phase transition. Rather the gauge-invariant observ-
ables are non-local string operators such as Wilson lines, for
example

𝑊𝐶 = 𝜙(𝑥)† exp
(
𝑖

∫
𝐶

𝐴

)
𝜙(𝑦), (3)

where 𝐶 is a curve from 𝑦 to 𝑥. When properly normalized,
such observables allow one to distinguish quantiatively the
deconfined phase from the Higgs-confined phase as discussed
in some detail by Fredenhagen and Marcu [21] and [22].

We demonstrate that, in the presence of open boundaries of
certain type, there is a second-order boundary phase transition
distinguishing the Higgs and confined phases. We derive an
explicit boundary theory in a limit where the bulk is completely
frozen, which we show is a 3D XY model, and demonstrate
with Monte Carlo that the critical exponents of the boundary
transition do not change when we restore bulk fluctuations.
Surprisingly, the line of boundary transitions appears to merge
with the bulk critical endpoint, see Fig. 1. We then dis-
cuss deformations of the model which tune the location of the
boundary transition.

A. Preliminaries: Lattice Formulation

We begin our discussion with a quick summary of the for-
mulation of the discretized lattice theory, the importance of the
Gauss law, the role of magnetic monopoles, before introduc-
ing the open boundary problem and presenting our numerical
results.

1. Action Formulation

To study this theory in more depth we consider regulating it
by imposing a UV lattice cutoff. We undertake our exploration
of Higgs phases in gauge theories within the Wilson-Fradkin-
Shenker lattice formulation. We work on a 4D hypercubic
lattice with linear dimension 𝐿 and periodic boundaries, a dis-
cretization of four-dimensional Euclidean spacetime. We con-
sider a a complex 0-form Higgs field taking values 𝜙𝑖 at each
vertex 𝑖. Expanding the Higgs field at site 𝑖 as 𝜙𝑖 = 𝜌𝑖 exp(𝑖𝜃𝑖),
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FIG. 1. A sketch of the phase diagram of the 4D U(1) lattice Abelian-
Higgs phase diagram discussed in Section II. The confined and Higgs
regimes belong to the same thermodynamic phase, though we demon-
strate that in presence of symmetry-preserving boundary they are
sharply separated by a second order boundary phase transition in the
3D XY universality class. Along the line 𝜅 = 0 the model has an
exact electric 1-form symmetry, while along the line with 𝛽 = ∞ the
model has an exact magnetic 1-form symmetry. The confined regime
is smoothly connected to the 𝛽 = 0 limit where the gauge field is
maximally disordered. Along the 𝜅 = ∞ line, the bulk is completely
frozen, and the boundary reduces to a 3D XY model. The boundary
𝑈 (1) symmetry is spontaneously broken on the Higgs side of the
transition line. A review of the structure of this phase diagram is
provided in Appendix B.

we freeze the radial mode by fixing the radius 𝜌𝑖 , which does
not affect the qualitative physics.1 Thus we work with the
compact R/2𝜋Z-valued 0-form 𝜃, i.e. the phase of the Higgs
field, which is minimally coupled to the dynamical U(1) gauge
field. We consider a compact 1-form gauge potential 𝐴 tak-
ing values on each oriented link ℓ, 𝐴ℓ ∈ R/2𝜋Z. Denoting
the reversed orientation by −ℓ, the gauge potential satisfies
𝐴−ℓ = −𝐴ℓ . We will often denote link variables by their end-
points, i.e. 𝐴𝑖 𝑗 = −𝐴 𝑗𝑖 . See Appendix A for a more detailed
explanation of lattice differential forms and the notation used
here.

We demand the theory to be invariant under gauge transfor-
mations of the form of Eq. (2), which on the lattice become

𝜃 → 𝜃 + 𝜆, 𝐴 → 𝐴 + d𝜆, (4)

1 This freezing corresponds to the limit of infinite bare Higgs self-
coupling [12, 23], and the radial mode will be restored upon coarse-graining.
Equivalently it may be regarded as a Stückelberg field, and the model can
be viewed as a lattice discretization of a gauged nonlinear sigma model
with target space U(1). We use these two perspectives to give two different
generalizations to non-Abelian gauge groups in Section III.

where 𝜆 is an arbitrary R/2𝜋Z-valued 0-form, and d is the
discrete exterior derivative, (d𝜆)𝑖 𝑗 ≡ 𝜆 𝑗 − 𝜆𝑖 . The minimal
gauge-invariant building blocks are the Wilson links Λℓ , de-
fined on oriented links ℓ,

Λℓ = exp[𝑖(d𝜃 − 𝐴)ℓ], (5)

and the minimal Wilson loops 𝑊𝑝 , defined on oriented pla-
quettes 𝑝,

𝑊𝑝 = exp
[
𝑖 (d𝐴)𝑝

]
, (6)

where (d𝐴)𝑝 =
∑

ℓ∈𝜕𝑝 𝐴ℓ . The minimal gauge-invariant Eu-
clidean lattice theory is the governed by what we will refer to
as the Fradkin-Shenker action,

𝑆FS = −𝛽
∑︁
𝑝

Re𝑊𝑝 − 𝜅
∑︁
ℓ

ReΛℓ , (7)

which reduces upon substituting in Eqs. (5) and (6) to the
Abelian-Higgs model, the lattice equivalent of Eq. (1) in the
limit where the radial mode of the Higgs field is frozen,

𝑆AH = −𝛽
∑︁
𝑝

cos(d𝐴) 𝑝 − 𝜅
∑︁
ℓ

cos(d𝜃 − 𝐴)ℓ . (8)

Note that 𝜅 may be interpreted as the squared length of the
Higgs field. The generating function of the model is

𝑍AH =
∫ ∏

𝑖

d𝜃𝑖
∏
ℓ

d𝐴ℓ exp[−𝑆] . (9)

2. Hamiltonian Formulation and Gauss Law

It will also serve us to consider the Hamiltonian formula-
tion of the model on a 3D cubic lattice with continuous time.
This may be obtained from the action by fixing to temporal
gauge (𝐴ℓ = 0 on all timelike links) and taking the contin-
uum limit in the time direction, expressing the partition sum
in terms of transfer matrices [24]. The Higgs field phase and
gauge connection become operators, denoted 𝜃𝑖 and �̂�ℓ re-
spectively, acting on a local Hilbert space on each vertex or
link. They each have a canonically conjugate operator, de-
noted �̂�𝑖 and �̂�ℓ respectively, both with integer eigenvalues,
satisfying [𝜃𝑖 , �̂�𝑖] = 𝑖 and [ �̂�ℓ , �̂�ℓ] = 𝑖. Thus exp(±𝑖𝜃𝑖) is
the raising/lowering operator for �̂�𝑖 , while exp(±𝑖 �̂�ℓ) is the
raising/lowering operator for �̂�ℓ . The Hamiltonian may then
be expressed as2

𝐻AH =
∑︁
ℓ

�̂�2
ℓ −𝛽

∑︁
𝑝

cos
(
d�̂�

)
𝑝
+
∑︁
𝑖

�̂�2
𝑖 −𝜅

∑︁
ℓ

cos
(
d𝜃 − �̂�

)
ℓ
.

(10)

2 Note that the 𝛽 and 𝜅 couplings in the Hamiltonian formulation cannot
be quantitatively compared to their values in the Lagrangian formulation,
as they are renormalized when taking the continuum limit in the timelike
direction [25].
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The operator �̂�𝑖 counts the amount of charge on site 𝑖, while
�̂�ℓ counts the number of electric field lines on oriented link ℓ.

Gauge transformations, Eq. (4), are implemented by the
operators

�̂� [𝜆] = exp

(
𝑖
∑︁
𝑖

𝜆𝑖 �̂�𝑖 + 𝑖
∑︁
ℓ

(d𝜆)ℓ �̂�ℓ

)
≡ exp

(
𝑖
∑︁
𝑖

𝜆𝑖 �̂�𝑖 + 𝑖
∑︁
𝑖

𝜆𝑖 (d†�̂�)𝑖
)
. (11)

Here we have used the coexterior derivative (see Appendix A)

(d†�̂�)𝑖 =
∑︁
ℓ∈𝜕†𝑖

�̂�ℓ (12)

where 𝜕† indicates the coboundary, the set of oriented links
ending at site 𝑖. Demanding that �̂� [𝜆] acts as the identity
on physical states for arbitrary 𝜆𝑖 implies that physical states
satisfy the Gauss law constraint

−(d†�̂�)𝑖 = (∇ · �̂�)𝑖 = �̂�𝑖 , (13)

at each site 𝑖, where we used �̂�−ℓ = −�̂�ℓ to rewrite the con-
straint in terms of the lattice divergence. Gauge invariant
states satisfying the Gauss law are then created by Wilson line
operators,

�̂� [𝛾] = exp ©«𝑖
∑︁
ℓ∈𝛾

(d𝜃 − �̂�)ℓª®¬ , (14)

where 𝛾 is a 1-dimensional contour in the lattice. Acting on
the trivial vacuum state with 𝑛𝑖 = 𝐸ℓ = 0 everywhere, this
operator creates a unit electric charge/anti-charge pair at the
ends of the contour connected by a string of unit electric flux.
If 𝛾 is a closed contour, this inserts a closed string of electric
flux.

3. Magnetic Monopoles

In addition to the electric sector, there is also the magnetic
sector, though it is not readily seen in this formulation, in-
stead being exposed by duality transformations [26–30] (see
Section IV B. In the Hamiltonian formulation, the magnetic
excitations are sources of divergence of the magnetic field,
�̂� = d�̂�, i.e. magnetic monopoles. In the action formulation,
they may be viewed as U(1) vortex defects of the gauge field,
characterized by d2𝐴 ≠ 0, which are allowed because the iden-
tity d2 = 0 is only enforced modulo 2𝜋. In 4D, these homotopy
defects form 1-dimensional closed strings in the dual lattice,
which we refer to as ’t Hooft loops, the worldlines of magnetic
monopoles. They are necessarily included in the Euclidean
lattice gauge theory partition sum due to the compactness of
the U(1) link variables. In the limit 𝛽 → ∞ of Eq. (8), fluc-
tuations of the gauge field are completely suppressed and no
monopoles are present. Correspondingly, we may associate
this absence of monopoles to a 1-form symmetry, called mag-
netic symmetry, indicated in Fig. 1.

bulk 𝑋

vacuum

FIG. 2. A demonstration of the boundary conditions considered in
this work. The gauge field takes values on the bulk links (black) as
well as a set of links extending out of the bulk (green). The holonomy
of the gauge field is defined on all bulk plaquettes (gray), as well as
on the set of plaquettes extending out of the bulk (green). The matter
field takes values only in the bulk of the system (white spheres), with
the Gauss law satisfied at all bulk vertices. The outside vacuum (blue
sites, links, plaquettes) has no dynamical fields. With these boundary
conditions electric flux is capable of passing through the boundary,
allowing for non-trivial charge sectors in the bulk. We denote the bulk
cells (white, black, gray) by 𝑋 and the boundary layer cells (green)
by 𝜕𝑋 .

B. Open Boundaries and Global Symmetry

We address now a well-known, but subtle point: by taking 𝜆
in (4) to be a constant function, it appears at first sight that this
theory has a global 0-form U(1) symmetry, shifting 𝜃𝑖 → 𝜃𝑖+𝜆,
leaving 𝐴 unchanged since d𝜆 = 0. In the Hamiltonian picture,
this transformation is generated by the total charge,

�̂�bulk =
∑︁
𝑖

�̂�𝑖 , (15)

thus such a symmetry corresponds to global conservation of
electric charge. Note, however, that in the absence of bound-
aries this “global symmetry” is pure gauge, because all phys-
ical quantum states belong to the zero-charge sector and thus
carry the same quantum number. By the Gauss law, Eq. (13),
�̂�bulk is exactly zero for a system with periodic boundary con-
ditions. In other words, since all electric flux lines must end
somewhere inside the system, the system must be globally
charge neutral. By construction, such a “symmetry” is there-
fore trivial and cannot be explicitly or spontaneously broken.
However, in presence of specific boundary conditions, these
global U(1) transformations actually generate a physical global
symmetry that acts on the boundaries which can be sponta-
neously broken [19, 20].

We consider a lattice with open boundaries in the form il-
lustrated in Fig. 2. The bulk of the system is a (hyper)cubic
lattice with sites indicated by white spheres, links by black
lines, and plaquettes by gray faces. At the boundary, we in-
clude a layer of cubic cells (green) which separate the bulk
from the vacuum (blue sites, edges, and plaquettes). In par-
ticular, there is a set of links bridging between the bulk and
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the vacuum which carry dynamical gauge degrees of freedom
and can therefore support electric flux lines which effectively
exit the system. The vacuum side (blue) does not contain any
dynamical degrees of freedom.

Key to our choice of boundary conditions is that we demand
that the Gauss law, Eq. (13), is respected at every bulk site
(white sphere), including those at the ends of the boundary
links. No Gauss law constraints are imposed at vacuum sites.
Let 𝐴𝑖 denote the gauge potential on the boundary link touch-
ing site 𝑖, oriented “in” from the vacuum to the bulk. For
the Gauss law to be respected at 𝑖, we must have that under
the gauge transformation Eq. (4), 𝐴𝑖 → 𝐴𝑖 + 𝜆𝑖 , i.e. it is
“uncompensated” at the vacuum end of the link.

With this choice of boundary conditions, the global part of
the gauge symmetry becomes physical—charge can pass in and
out of the system, meaning there are different gauge-invariant
charge sectors. More precisely, there are gauge-invariant half-
open Wilson string operators with one end in the bulk and the
other passing through the boundary,

�̂� [𝛾open] = exp ©«𝑖
𝜃𝑖 −

∑︁
ℓ∈𝛾open

�̂�ℓ

ª®¬ , (16)

where 𝛾open is a contour starting in the vacuum and ending at
bulk site 𝑖. These operators create an isolated charge in the
bulk, attached to an electric flux line that exits through the
boundary, which is not possible in a closed system. These
half-open string operators are charged under the global trans-
formations generated by �̂�bulk, Eq. (15). By the Gauss law,
�̂�bulk is equivalent to the net electric flux through the boundary,

�̂�bulk =
∑︁

ℓ ∈ 𝜕𝑋

�̂�ℓ ≡ �̂�bdry, (17)

where the sum is over all boundary links (green in Fig. 2)
oriented out. If the Hamiltonian contains no half-open string
operators, then the bulk charge is conserved, and there is a
global U(1) symmetry. Eq. (17) defines a “bulk-boundary
correspondence” between charge and flux, and generates a
global symmetry which may either be seen as acting on the
bulk matter degrees of freedom or on the boundary gauge
degrees of freedom.

C. Boundary Symmetry Breaking in the Abelian Higgs Model

The theory can now be chosen such that the Hamiltonian
commutes with the charge �̂�bulk. This now-physical global
𝑈 (1) symmetry corresponds to global charge conservation or,
equivalently, conservation of flux through the boundary. Since
the open system has a global symmetry on the boundary, it may
be spontaneously broken, a scenario we now study. With the
boundary conditions shown in Fig. 2, the Euclidean action that
we will study is given by

𝑆 = 𝑆bulk
AH + 𝑆bdry, (18)

with the boundary portion given by the Wilson plaquette loops
on the boundary plaquettes (light green in Fig. 2),

𝑆bdry = −𝛽
∑︁
𝑝∈𝜕𝑋

cos(d𝐴) 𝑝 . (19)

The absent links on the vacuum side are excluded, so that

(d𝐴)𝑝∈𝜕𝑋 = 𝐴𝑖 + 𝐴𝑖 𝑗 − 𝐴 𝑗 , (20)

where 𝐴𝑖 indicates the value of 𝐴 on the boundary link touch-
ing site 𝑖, oriented inwards from the vacuum to the bulk.3

1. Boundary XY Model at Infinite 𝜅

To begin, we consider the behavior of this theory in the
𝜅 → ∞ limit, i.e. deep in the Higgs regime. From the bulk
action, Eq. (8), in this limit the bulk satisfies the constraint
𝐴 = d𝜃, i.e. the bulk gauge field is exact and thus pure gauge.
Indeed there are no physical degrees of freedom left in the
bulk—rotating to unitary gauge, 𝜃 = const., we end up with
𝐴 = 0 on all bulk links and a vanishing matter field. However,
no such constraint is enforced on the boundary links bridging
between the bulk and vacuum, and the gauge field on these links
is free to fluctuate. Thus we obtain a dynamical 3D theory on
the boundary of the system governed by the boundary action
in Eq. (19).

In this limit, referring to Fig. 2, each boundary plaquette
(green) has one edge in the bulk (black) with 𝐴𝑖 𝑗 = 𝜃 𝑗 − 𝜃𝑖 ,
and two edges straddling between the bulk and vacuum (green)
which remain dynamical degrees of freedom. Substituting this
into Eq. (20), we can recombine terms into the gauge-invariant
variables

𝜗𝑖 = 𝐴𝑖 − 𝜃𝑖 , (21)

corresponding to a half-open Wilson line coming from the
vacuum and ending at site 𝑖. The boundary action can then be
written in the gauge-invariant form

𝑆
bdry
𝜅→∞ (𝛽) = −𝛽

∑︁
⟨𝑖 𝑗 ⟩∈𝜕𝑋

cos
(
𝜗 𝑗 − 𝜗𝑖

)
, (22)

which is a 3D XY model at inverse temperature 𝛽. This must
exhibit a continuous phase transition from a paramagnet at
small 𝛽 to a spontaneously broken phase at large 𝛽. Thus we
infer that along the 𝜅 = ∞ line in the phase diagram there is
a boundary phase transition in the 3D XY universality class
indicated at the top of Fig. 1. We note that in the case of
the Z2 Abelian-Higgs model, the same mechanism generates
a boundary Ising model at 𝜅 = ∞ [19].

3 We may equivalently consider the exterior vacuum (blue in Fig. 2) to have
trivial gauge field 𝐴ℓ = 0 on all vacuum links and zero Higgs field 𝜙𝑖 = 0
on all vacuum sites.
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FIG. 3. Boundary criticality for the 4D 𝑈 (1) Higgs phase: (a) Average boundary plaquette for 𝜅 =0.55, 0.64, 0.85, 0.94, 1.0 for 𝐿 = 16. The
transition shifts towards smaller 𝛽 for larger values of 𝜅. (b) The Binder ratio 𝑈4 for the magnetization at the boundary as a function of 𝛽 for
𝜅 = 2 and 𝐿 = 16, 20, 24, 28, 32. (c) Rescaled Binder ratio showing collapse for 𝜈 = 0.67 corresponding to the 3D XY universality class.

2. Boundary Phase Transition at Finite 𝜅

Next we consider 𝜅 to be large, 𝜅 ≫ 1, but finite. The
constraint 𝐴 = d𝜃 is no longer enforced exactly, so we expand
in small fluctuations as 𝐴 = d𝜃 + 𝛿𝐴. Assuming that the
bulk action can be expanded in terms of 𝛿𝐴 ≪ 1 (i.e. that
topological defects are negligible), the bulk action becomes a
Proca-type action,

𝑆bulk
𝜅≫1 ≈ 𝛽

2

∑︁
𝑝

𝐹2
𝑝 + 𝜅

2

∑︁
ℓ

(𝛿𝐴)2
ℓ (𝜅 ≫ 1), (23)

where 𝐹𝑝 = d(𝛿𝐴), which describes a massive 1-form field.
The boundary action is then

𝑆
bdry
𝜅≫1 ∼ −𝛽

∑︁
⟨𝑖 𝑗 ⟩∈𝜕𝑋

cos
(
𝜗 𝑗 − 𝜗𝑖 + 𝛿𝐴𝑖 𝑗

)
. (24)

While at infinite 𝜅 the theory reduces to an XY model on the
boundary, at finite 𝜅 the XY model is minimally coupled to the
weakly fluctuating massive bulk gauge field. While the bulk
field lives in a higher dimension, the boundary remains quasi-
3D, exponentially localized with a length scale determined by
the mass of the bulk photon, 𝑚2 ∼ 𝜅. We therefore expect the
symmetry breaking phase transition at the boundary to persist
at large but finite 𝜅.

We may ask where the boundary transition line may run from
𝜅 → ∞, finite 𝛽. As it is a spontaneously broken symmetry
it must end either on a boundary of the phase diagram or on a
bulk transition line. The former case is ruled out as follows:
It cannot end on the 𝛽 = 0 line because this is trivial from
the point of view of both bulk and boundary variables. It also

cannot end on the 𝜅 = 0 line because matter decouples on this
line. The only remaining possibility is that the line ends at
𝛽 → ∞ but there we understand the bulk theory as being pure
gauge and an XY model so the physical degrees of freedom
on the boundary drop out. We conclude that the boundary
transition line must end on a bulk transition line.

These arguments are suggestive of the picture illustrated in
Fig. 1, with a boundary phase transition between the Higgs
and confinement regimes of the bulk phase diagram. To test
this assertion, we have carried out Monte Carlo simulations of
the full 4D lattice gauge theory with boundary. We compute
the local XY order parameter ⟨𝜗𝑖⟩ on the boundary as well as
gauge invariant bulk observables ⟨Λℓ⟩ and ⟨𝑊𝑝⟩. The results
are summarized in Fig. 3. We find clear signs of a boundary
phase transition, with Fig. 3(a) showing the boundary order
parameter behavior as a function of 𝛽 while holding 𝜅 fixed
showing behavior consistent with a continuous boundary phase
transition. Fig. 3(b) shows the Binder cumulant for the order
parameter taken along a cut at 𝜅 = 2 for different system sizes
ranging from 𝐿 = 16 to 𝐿 = 32, showing crossing behavior
consistent with a second-order transition. Lastly, Fig. 3(c)
shows the Binder parameter with 𝛽 scaled by 𝐿1/𝜈 using the
3D XY critical exponent 𝜈 ≈ 0.67 [31], showing excellent
scaling collapse, confirming a second-order phase transition
on the boundary even for only moderately large 𝜅.

Monte Carlo simulations of the 3D XY model in the liter-
ature put the critical point at 𝛽𝑐 = 0.45420(2) [31]. We find
that 𝛽𝑐 tends towards this value in the large 𝜅 limit. On general
grounds we should expect that bulk fluctuations will serve to
disorder the boundary. Therefore, by lowering 𝜅 we expect
the transition shifts to larger 𝛽 (lower effective temperature in
the statistical model). This is indeed what we observe numer-
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FIG. 4. Boundary phase transition lines for the U(1) Abelian Higgs
model, for different 𝛼 = 𝛽bdry/𝛽bulk, overlaid on the bulk plaquette
susceptibility. From right to left, 𝛼= 0.4, 0.5, 0.6, 1.0, 2.0, 3.0, 10.0
for system size 𝐿 = 16.

ically. For even smaller 𝜅 we find that the boundary transition
line appears to intercept the bulk critical endpoint, as illus-
trated in Fig. 1. Below, by changing the boundary theory, we
demonstrate that this result is not universal.

3. Tuning the Boundary Coupling

We now consider tuning the boundary coupling in Eq. (19)
relative to the bulk, parameterized by the dimensionless ratio

𝛼 = 𝛽bdry/𝛽bulk. (25)

Such a change is allowed by gauge symmetry and does not
affect either the electric or magnetic 1-form symmetries.
The reason for this modification is that by tuning 𝛼 we can
shift the location of the critical 𝛽 in the 𝜅 = ∞ limit, as
𝛽𝜅→∞

bdry,𝑐 (𝛼) = 𝛽𝜅→∞
bdry,𝑐 (𝛼 = 1)/𝛼. This implies that the location

of the boundary transition line must shift in the phase diagram
in order to meet the location of the transition in the 𝜅 → ∞
limit.

Indeed, this is precisely what we find numerically with the
resulting transition lines shown in Fig. 4. We find, for all 𝛼,
that the transition is present and that it drifts to larger 𝛽 as
𝜅 is reduced, consistent with having to lower the temperature
more to suppress the enhanced matter field fluctuations. For
𝛼 < 1 the line shifts to larger values of 𝛽, and appears to sep-
arate from the tricritical point, instead terminating on the first
order transition line separating the Higgs phase from the de-
confined phase. For 𝛼 > 1, the boundary transition line shifts
to smaller values of 𝛽, and appears to continue to terminate on
the tricritical point.

D. Summary and Discussion: Abelian Case

In this section we have explored the case of the U(1) Abelian-
Higgs model in 𝐷 spacetime dimensions with open boundary
conditions of the form shown in Fig. 2, governed by the action
defined by Eqs. (8), (18) and (19). In the case of open bound-
aries there is a global bulk charge symmetry for this model,
because charge is not allowed to enter or leave the system.
By the Gauss law, this is physically equivalent to a symmetry
acting on the boundary of the system, yielding conservation of
total electric flux through the boundary. We investigated the
possibility of spontaneously breaking this symmetry.

In the 𝜅 → ∞ limit, the bulk degrees of freedom are fully
frozen while the boundary degrees of freedom remain fluctu-
ating. The boundary theory in this limit can be written in the
gauge-invariant form of a (𝐷 − 1)-dimensional 0-form U(1)
model, i.e. an XY model, Eq. (22), which therefore exhibits
a boundary phase transition at a critical value of 𝛽 in the
appropriate XY universality class. By performing explicit nu-
merical simulation in 𝐷 = 4 Euclidean spacetime dimensions
and measuring the gauge-invariant order parameter, Fig. 3, we
found that this boundary phase transition persists away from
the 𝜅 → ∞ limit, and appears to stay in the 3D XY universal-
ity class. The transition line appears to terminate at a critical
point in the bulk phase diagram and can be tuned by adjusting
the boundary coupling relative to the bulk coupling, as shown
in Fig. 4.

This boundary transition line appears to delineate between
the Higgs and confining regimes of the phase diagram. The
idea that the Higgs phase can be characterized by boundary
symmetry breaking was first raised in [19, 20]. This gives
physical meaning to the non-gauge-invariant adage that the
Higgs regime is a charge condensate by imposing open bound-
aries that make the symmetry physical. We note, however,
that by tuning the boundary coupling relative to the bulk cou-
pling, the location of the transition line in the phase diagram
can be moved. This raises questions as to what the boundary
phase transition implies as a probe of bulk physics, which we
defer to the discussion at the end of the paper (Section V B).
First we broaden our perspective by studying more complex
non-Abelian models exhibiting similar physics in Section III.

A few comments on extensions and exceptional cases are in
order before we proceed. These results naturally carry over to
the discrete Abelian gauge groups Z𝑁 by restricting the Higgs
field 𝜃𝑖 and gauge field 𝐴𝑖 𝑗 to take discrete values in multiples
of 2𝜋/𝑁 . The boundary theory Eq. (22) then becomes an 𝑁-
state clock model. TheZ2 case was discussed in [19] where the
boundary theory was shown to be an Ising model. They also
can be generalized to higher-form extensions of the Abelian-
Higgs model, which we discuss further in Section IV.

The 𝐷 = 3 U(1) Abelian-Higgs model is interesting because
it reduces in the 𝜅 → ∞ limit to the 𝐷 = 2 XY model on the
boundary, which exhibits a BKT transition. It would be in-
teresting to know if this BKT transition persists to finite 𝜅.
We complete our discussion of special cases by highlight-
ing here 𝑈 (1) gauge theory in four dimensions coupled to a
charge 𝑞 = 2 Higgs field. For this case, a sharp distinction
can be made in the bulk between confining and Higgs phases
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with a transition between them. The distinguishing feature of
this theory is the partial Higgsing of the 𝑈 (1) gauge group
down to Z2 [32]. For sufficiently large 𝜅 the bulk transition is
the confinement-deconfinement transition of the residual Z2
gauge theory. On the boundary, however, one still expects
the emergence of the XY model we identified for the 𝑞 = 1
case. It would be quite interesting to investigate the interplay
of boundary U(1) 0-form symmetry breaking with the bulkZ2
1-form symmetry breaking and the resulting topological order
present at large 𝛽 and 𝜅.

III. BOUNDARY SYMMETRY BREAKING IN
NON-ABELIAN HIGGS MODELS

We now turn to extend the results of the previous section
regarding Abelian Higgs models and boundary criticality to
non-Abelian Higgs models. We will show that the general
picture of boundary symmetry breaking persists, albeit with
a richer structure owing to a set of non-commuting gauge
transformations. We discuss two types of non-Abelian Higgs
models: those with group-valued Higgs fields and those with
fundamental representation vector-valued Higgs fields with
fixed length. The two classes of models are equivalent for
gauge group SU(2), and are distinct for other gauge groups.
The group-valued case is a relatively straightforward extension
of the Abelian case, because the fixed-length XY-rotor Higgs
field considered previously is naturally a U(1) group element.
The vector-valued case is more subtle because the 𝜅 → ∞ limit
does not trivialize all bulk degrees of freedom. We present
numerical results for both SU(2) and vector-valued SU(3)
cases and extract corresponding boundary criticalities.

A. Preliminaries: Lattice Formulation

Let G be a compact connected Lie group, e.g. SU(𝑁) or
SO(𝑁). The lattice action is formulated in terms of group-
valued link variables 𝑈ℓ ∈ G satisfying 𝑈−ℓ = 𝑈−1

ℓ
, which

may be viewed as the exponentiated Lie-algebra-valued gauge
field, 𝑈ℓ = 𝑃 exp(𝑖

∫
ℓ
𝐴), where 𝑃 indicates path-ordering.

Under a gauge transformation, these transform as

𝑈𝑖 𝑗 → 𝑔𝑖𝑈𝑖 𝑗𝑔
−1
𝑗 (26)

where 𝑔𝑖 ∈ G are arbitrary group elements associated to each
site 𝑖. The minimal gauge-invariant quantity is the Wilson
plaquette-loop (compare to Eq. (6)),

𝑊𝑝 =
1

dim(𝑟) Tr 𝑟
∏
ℓ∈𝜕𝑝

𝑃
𝑈ℓ (27)

where the superscript 𝑃 on the product indicates path-ordering,
and the trace may be taken in a representation 𝑟 . Normalizing
by the dimension of the representation ensures that the trivial
Wilson loop has unit magnitude. We focus primarily on the
cases SU(𝑁) and SO(𝑁), taking the trace in the fundamental
representation as 𝑁 × 𝑁 matrices.

1. Higgs Fields

For the Higgs field, many different models can be consid-
ered by putting the Higgs field in different representations of
the gauge group. We consider two different types here for con-
creteness: vector-valued (fundamental representation) Higgs,
and group-valued Higgs. These are both possible extensions
of the Abelian U(1) rotor model considered in Section II, since
a rotor may be viewed either as a fixed-length vector, or as a
U(1) group element. In either case, the action is given by
the Fradkin-Shenker form, Eq. (7), the only difference being
the definition of the Wilson link Λℓ . The generating function
for the quantum theory is given by the Euclidean path inte-
gral, where the integration over the group-valued variables is
performed with respect to the Haar measure.

The familiar model is the fundamental-Higgs, where the
Higgs field is an 𝑁-component vector, as in the Standard Model
and analogous to Eq. (1). Denoting the Higgs vector at site 𝑖 by
𝜙𝑖 ∈ 𝑉𝑖 , we freeze the radial mode as in the Abelian Fradkin-
Shenker model. Gauge transformations rotate the Higgs field
as 𝜙𝑖 → 𝑔f

𝑖
𝜙𝑖 where 𝑔f

𝑖
is a group element in the fundamental

matrix representation. The group-valued link variables define
parallel-transport maps for the Higgs field, 𝑈𝑖 𝑗 : 𝑉 𝑗 → 𝑉𝑖 ,
i.e. they related the color frames at neighboring sites, and the
generalization of the gauge-invariant Wilson link observable,
Eq. (5), is

Λℓ = ⟨𝜙𝑖 ,𝑈f
𝑖 𝑗𝜙 𝑗⟩𝑖 ≡

𝑁∑︁
𝛼, 𝛽=1

𝜙𝛼∗
𝑖 (𝑈f

𝑖 𝑗 )𝛼𝛽𝜙𝛽

𝑗
, (28)

where ⟨−,−⟩𝑖 is the canonical inner product on 𝑉𝑖 , ∗ indi-
cates complex conjugation, and we enforce the fixed-length
constraint ⟨𝜙𝑖 , 𝜙𝑖⟩ = 1.

The second type of model we consider takes the Higgs field
to be group-valued, like the link variables, denoted 𝜑𝑖 ∈ G. In
this case, the Higgs field transforms as 𝜑𝑖 → 𝑔𝑖𝜑𝑖 under gauge
transformations, and we can define a gauge-invariant Wilson
link by

Λℓ =
1
𝑁

Tr f [𝜑−1
𝑖 𝑈𝑖 𝑗𝜑 𝑗 ], (29)

where we take the trace in the fundamental representation.
This is a lattice regularization of a gauged principal chiral
model [33], a non-linear sigma model whose target space is
the group manifold.

2. Hamiltonian Formulation and Gauss Law

The Hamiltonian formulation of the non-Abelian lattice
gauge theory has a similar form to the Abelian case, but
the electric field of the non-Abelian theory carries color in-
dices and the different components do not commute. Fix-
ing to temporal gauge and reformulating the partition func-
tion using transfer matrices, taking the continuum limit in the
time direction one obtains a Hamiltonian for the time evolu-
tion [25, 34]. The basic ingredients are the group-valued link
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operators �̂�ℓ with eigenstates |𝑈⟩, such that �̂�ℓ |𝑈⟩ = 𝑈 |𝑈⟩ and
�̂�−ℓ |𝑈⟩ = 𝑈−1 |𝑈⟩, along with a set of translation operators

𝑇ℓ (𝑔) |𝑈⟩ = |𝑔𝑈⟩, 𝑇−ℓ (𝑔) |𝑈⟩ = |𝑈𝑔−1⟩, (30)

where left and right translations correspond to the two orien-
tations of the link. Each group element may be expressed as
𝑈 = exp(𝑖𝜃𝑎𝑡𝑎), where 𝜃𝑎 are real numbers and 𝑡𝑎 a basis for
the Lie algebra of gauge group G. The 𝜃𝑎 serve as coordinates
on the group manifold, and may be thought of as generalized
Euler angles. The link operators can then be expressed as

�̂�ℓ = exp(𝑖𝜃𝑎
ℓ
𝑡𝑎), 𝑇ℓ (𝑒𝑖𝜆𝑎𝑡𝑎 ) = exp(𝑖𝜆𝑎 �̂�𝑎

ℓ
). (31)

The operators 𝜃𝑎
ℓ

are position operators on the group man-
ifold, while �̂�𝑎

ℓ
are the color-electric fields, which serve as

the conjugate momenta and can be expressed as derivatives
with respect to the 𝜃𝑎. The electric fields satisfy the same
commutation relations as the group generators,

[�̂�𝑎
ℓ , �̂�

𝑏
ℓ ] = 𝑖 𝑓 𝑎𝑏𝑐 �̂�𝑐

ℓ , (32)

where 𝑓 𝑎𝑏𝑐 are the structure constants of G.
For the Higgs field in the group-valued representation, we

define the group-valued operators �̂�𝑖 (analogous to �̂�) and left-
and right-translation generators 𝑡𝑎

𝑖,𝐿
and 𝑡𝑎

𝑖,𝑅
(analogous to �̂�).

For the Higgs field in the fundamental vector representation
with frozen radial mode, the classical configuration space is
that of a rigid rotor, and we define corresponding angular
momentum operators 𝐽

𝜇

𝑖
. The Hamiltonian is then given by

the Kogut-Susskind form [34, 35]

𝐻 =
∑︁
ℓ

|�̂�ℓ |2 − 𝛽
∑︁
𝑝

(�̂�𝑝 +�̂�†
𝑝) +

∑︁
𝑖

|�̂�m
𝑖 |2 − 𝜅

∑︁
ℓ

(Λ̂ℓ + Λ̂†
ℓ
),

(33)
where all sites, links, and plaquettes are purely spatial. Here,
�̂�m

𝑖
are the matter charge operators,

�̂�m
𝑖 =

{
𝑡𝑖,𝐿 group-valued Higgs,
𝐽𝑖 fundamental Higgs,

(34)

and |�̂�ℓ |2 and |�̂�m
𝑖
|2 are the corresponding quadratic Casimir

operators, which do not depend on whether we use left- or
right-generators. The operator �̂�𝑝 is the operator analog of
Eq. (27), the trace of the oriented product of �̂�ℓ on the links
of spatial plaquette 𝑝. Similarly, Λ̂ℓ is the operator analog of
Eq. (29).

The eigenstates of |�̂�ℓ |2 correspond to the irreducible rep-
resentations of the gauge group, with the �̂�ℓ acting as raising
and lowering operators [34, 35]. The same is true for the
group-valued Higgs, with �̂�𝑖 acting as the raising and lower-
ing operators, while for the fundamental vector-valued Higgs,
the charge eigenstates are angular momentum eigenstates of a
rigid rotor.

Gauge transformations are performed by the operators

�̂� [𝜆] = exp©«𝑖
∑︁
𝑖

𝜆𝑎𝑖 �̂�
m,𝑎
𝑖

+ 𝑖
∑︁
⟨𝑖 𝑗 ⟩

(𝜆𝑎𝑖 �̂�𝑎
𝑖 𝑗 + 𝜆𝑎𝑗 �̂�

𝑎
𝑗𝑖)ª®¬

= exp

(
𝑖
∑︁
𝑖

𝜆𝑎𝑖 �̂�
m,𝑎
𝑖

+ 𝑖
∑︁
𝑖

𝜆𝑎𝑖 (∇ · �̂�𝑎)𝑖
)
, (35)

where the lattice divergence is defined as

(∇ · �̂�𝑎)𝑖 =
∑︁

−ℓ∈𝜕†𝑖

�̂�𝑎
ℓ , (36)

with the sum taken over the links emanating from site 𝑖 oriented
out. �̂� [𝜆] acts as the identity on physical, gauge-invariant
states, which therefore satisfy the color-electric Gauss laws,

(∇ · �̂�)𝑎𝑖 = −�̂�m,𝑎
𝑖

, (37)

one for each color index.
Note that this is similar but subtly distinct from the Abelian

case, Eqs. (11) to (13), where we used �̂�Abelian
ℓ

= −�̂�Abelian
−ℓ .

This relationship is not true in non-Abelian gauge theory. In-
stead, left- and right-translations of the gauge field are related
by

𝑇−ℓ (𝑔) |𝑈ℓ⟩ = |𝑈ℓ𝑔
−1⟩ = 𝑇ℓ (𝑈ℓ𝑔

−1𝑈−1
ℓ ) |𝑈ℓ⟩, (38)

which implies that the electric field in the two directions along
a link are related by

�̂�𝑎
−ℓ |𝑈⟩ = −𝑈a,𝑎𝑏

ℓ
�̂�𝑏
ℓ |𝑈⟩, (39)

where 𝑈a
ℓ

is the adjoint representation of 𝑈ℓ . As such the
gauge field itself is charged in the adjoint representation with
respect to color rotations, generated by the charge operators

�̂�
g,𝑎
ℓ

= �̂�𝑎
ℓ + �̂�𝑎

−ℓ , (40)

which are manifestly orientation-independent. The classic
(though heuristic) way to think of this is that the gauge bosons
(gluons) carry a distinct charge and anti-charge in the two
directions along the link. In the Abelian case, 𝑈a

ℓ
= 1 in

Eq. (39), and the link charge Eq. (40) is exactly zero.

3. Open Boundaries and Global Symmetry

We introduce electric open boundary conditions as in Fig. 2,
with dynamical links extending from the bulk to the vacuum
which allow electric flux to pass through the boundary. We
denote the link variables on the boundary link touching site 𝑖
by 𝑈𝑖 , with the convention that the link is oriented “in” from
the vacuum to site 𝑖. We have minimal open Wilson strings
going around the boundary plaquettes, which we can write as

𝑊𝑝∈𝜕𝑋 =
1
𝑁

Tr f [𝑈𝑖𝑈𝑖 𝑗𝑈
−1
𝑗 ] (41)

Using these, we define the boundary action for our theory
directly analogous to the Abelian case as

𝑆bdry = −𝛽
∑︁
𝑝∈𝜕𝑋

Re𝑊𝑝 (42)

Electric flux can thus enter and leave the system, but mat-
ter charges cannot. Under gauge transformations the fields
transform as

Ggauge :


𝜙𝑖 → 𝑔f

𝑖
𝜙𝑖 or 𝜑𝑖 → 𝑔𝑖𝜑𝑖 ,

𝑈𝑖 𝑗 → 𝑔𝑖𝑈𝑖 𝑗𝑔
−1
𝑗

,

𝑈𝑖 → 𝑈𝑖𝑔
−1
𝑖
.

(43)
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FIG. 5. Bulk phase diagram of the SU(2) Higgs model, showing (a) the link expectation value ⟨Λℓ ⟩, (b) the link variance 𝜎2 (ReΛℓ ), (c)
the Wilson plaquette average ⟨Re𝑊𝑝⟩, and the plaquette variance 𝜎2 (Re𝑊𝑝). The small cyan-colored point is the location of the critical
endpoint identified in Ref. [36], (𝛽𝑐 , 𝜅𝑐) ≈ (2.73, 0.70). From the critical endpoint there is a first-order transition line extending to larger 𝛽
with nearly-constant 𝜅, which is clearly seen in (b). A rapid-crossover region extends from the critical point to smaller 𝛽 and larger 𝜅, signaled
in both (b) and (d) by strong bulk fluctuations, indicating the “supercritical” region which roughly delineates the Higgs and confined regimes.

Notice that each boundary link only receives a transformation
from the inside end, where it terminates on a matter field. In
addition to this gauge symmetry, the boundary action Eq. (42)
has a physical global G symmetry acting on the boundary,

Gbdry : 𝑈𝑖 → 𝑔𝑈𝑖 (44)

where every boundary link is translated from the outside end.
This boundary symmetry is similar to the Abelian case, but

with a subtle distinction. The total color charge of the system,
including boundary links, is

�̂�𝑎
total =

∑︁
𝑖

�̂�m,𝑎
𝑖

+
∑︁
ℓ

�̂�
g,𝑎
ℓ

, (45)

which rotates all matter fields in the fundamental represen-
tation and all gauge fields, including boundary links, in the
adjoint representation. But this is not the generator of global
gauge transformations, Eq. (43), under which the boundary
links only rotate from the inside. The generator of global
gauge transformations is the “bulk charge”

�̂�𝑎
bulk =

∑︁
𝑖

�̂�m,𝑎
𝑖

+
∑︁
ℓ∈𝑋

�̂�
g,𝑎
ℓ

+
∑︁
ℓ∈𝜕𝑋

�̂�𝑎
−ℓ , (46)

where the second sum contains only the bulk links, and in the
last sum the boundary links are oriented inwards. By the Gauss
law, this operator must be zero on the physical gauge-invariant
Hilbert space. On the other hand, the generator of the global
symmetry is the “boundary charge”

�̂�𝑎
bdry =

∑︁
ℓ∈𝜕𝑋

�̂�𝑎
ℓ , (47)

again with inward orientation. Together these make up the
total charge of the system,

�̂�𝑎
total = �̂�𝑎

bulk + �̂�𝑎
bdry = �̂�𝑎

bdry, (48)

where we have assumed global gauge invariance to identify
�̂�𝑎

bulk = 0. Thus the boundary symmetry Eq. (44) may be
viewed, by the Gauss law constraint, as being generated by
the total color charge of the system. This is analogous to the
Abelian case, where the total charge of the system is just the
matter charge, Eq. (15), since the links do not carry any charge.
Note, however, that in the non-Abelian case the charge of the
boundary links is “fractionalized” into a piece that contributes
to the bulk charge and a piece that contributes to the boundary
charge.

B. Boundary Symmetry Breaking in the SU(2) Higgs Model

We focus first on the case where the gauge group is SU(2).
In this case the fundamental and group-valued representations
are equivalent. In the fundamental representation, each 𝜙𝑖 is
a C2 vector with unit length, and the configuration space is a
3-sphere. Notice that SU(2) is also topologically the 3-sphere,
meaning that every configuration of the Higgs vector 𝜙𝑖 can be
written as a unique fundamental-representation SU(2) matrix
times a fixed vector, for example as

𝜙𝑖 =

(
𝜙1
𝜙2

)
=

(
𝜙1 −𝜙∗2
𝜙2 𝜙∗1

) (
1
0

)
≡ 𝜑f

𝑖 𝜙0, (49)

where 𝜙1 and 𝜙2 are complex numbers. Denoting the matrix
Eq. (49) as 𝜑f

𝑖
, note that the determinant of this matrix is the

length of the rotor. The Wilson link for the vector Higgs model,
Eq. (28), can then be written as

Λ𝑖 𝑗 = ⟨𝜙0, (𝜑f
𝑖)−1𝑈f

𝑖 𝑗𝜑
f
𝑗𝜙0⟩

=
1
2

Tr f [𝜑−1
𝑖 𝑈𝑖 𝑗𝜑 𝑗 ] (50)
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which is exactly equivalent to the group-valued Higgs defini-
tion, Eq. (29). This makes the SU(2) Higgs rotors special,
since they may be viewed as either vector-valued or group-
valued (which is also the case for U(1) rotor).

1. Bulk Phase Diagram

To map the phase diagram, we perform classical Monte
Carlo simulations for the 4D SU(2) model defined by the
Fradkin-Shenker action, Eq. (7), with periodic boundary con-
ditions on an 𝐿4 hypercubic lattice. The phase diagram can
be mapped out by measuring the Wilson plaquette and link
observables along with their variances (i.e. susceptibilities),
which are shown in Fig. 5. There is a roughly horizontal
first-order transition line extending from a critical endpoint at
(𝛽𝑐, 𝜅𝑐) ≈ (2.73, 0.70) [36] (cyan box) towards 𝛽 → ∞. This
line is clearly visible in the link susceptibility, Fig. 5(b).

The phase diagram exhibits only one clearly distinct bulk
phase—the confined-Higgs phase—a deconfined phase be-
ing absent in non-Abelian theories. The phase diagram is,
however, roughly separated into two regions indicated by
the behavior of the Wilson link expectation value, shown in
Fig. 5(a), with ⟨ReΛℓ⟩ ∼ 0 indicating the confining regime
and ⟨ReΛℓ⟩ ∼ 1 indicating the Higgs regime. To the left
of this critical endpoint is a supercritical region (a Widom
line [38]) extending to smaller 𝛽 and larger 𝜅, a rapid crossover
from the Higgs to the confined regimes. The location of this
supercritical region is most evident in the Wilson plaquette
susceptibility, Fig. 5(d), which shows a pronounced intensity
emanating from the critical endpoint. We expect this phase
diagram to be qualitatively consistent with those for general
non-Abelian Higgs models with either fundamental vector- or
group-valued Higgs fields. In the group-valued case the conti-
nuity of the Higgs and confined regimes was proven by Fradkin
and Shenker [12].

2. Boundary Symmetry Breaking

We now consider open boundaries, with boundary action
Eq. (42) in a slab geometry. As in Section II C, we start
by considering the limiting behavior when 𝜅 → ∞. In this
limit every bulk link satisfies the constraint ReΛℓ = 1. In
this section we will resolve this constraint by fixing a gauge.
Gauge-invariant formulations for the group-valued represen-
tation are presented in Section III C, and for the fundamental
representation in Section III D.

From Eq. (50), if we fix to unitary gauge where all the
Higgs rotors are aligned globally, 𝜙𝑖 = 𝜙0 or 𝜑𝑖 = 1, the bulk
constraint becomes (𝑈ℓ

f)11 = 1, or Trf [𝑈ℓ]/2 = 1, which can
only be satisfied if 𝑈ℓ = 1 on every bulk link. Thus in the
𝜅 → ∞ limit of the SU(2) Higgs model, the bulk is completely
frozen and has no remaining degrees of freedom, as in the
Abelian case. The boundary links, however, have no constraint
and remain fluctuating. In unitary gauge where the bulk links

are set to the identity, the boundary action becomes

𝑆
bdry
𝜅→∞ (𝛽) = −𝛽

∑︁
⟨𝑖 𝑗 ⟩∈𝜕𝑋

1
2

Tr f [𝑈𝑖𝑈 𝑗
†] (unitary gauge).

(51)
This boundary action may be viewed as a lattice discretization
of a nonlinear 𝜎-model with target space the SU(2) group
manifold, i.e. a principal chiral model [33].

The boundary model, Eq. (51), has an SU(2)×SU(2)≃O(4)
symmetry. To see this, we can re-express it as an O(4) Heisen-
berg model by representing the SU(2) group-valued link vari-
ables as unit quaternions,

𝑈𝑖 ≡
4∑︁

𝜇=1
𝑆
𝜇

𝑖
𝜎𝜇 with

4∑︁
𝜇=1

𝑆
𝜇

𝑖
𝑆
𝜇

𝑖
= 1 (unitary gauge), (52)

where the 𝑆𝜇
𝑖

are real numbers, 𝜎0 = 1 and 𝜎1, 𝜎2, and 𝜎3 are
Pauli matrices. The boundary action then becomes an O(4)
Heisenberg model,

𝑆
bdry
𝜅→∞ (𝛽) = −𝛽

∑︁
⟨𝑖 𝑗 ⟩∈𝜕𝑋

𝑆
𝜇

𝑖
𝑆
𝜇

𝑗
(unitary gauge). (53)

Therefore, in the limit 𝜅 → ∞, the system exhibits a boundary
phase transition in the 3D O(4) universality class, at a critical
coupling 𝛽bdry,𝑐 ≈ 0.9360 [37], with order parameter,

OSU(2) =
〈 ��� 1

𝐿3

∑︁
𝑖∈𝜕𝑋

𝑺𝑖

��� 〉 (unitary gauge). (54)

The gauge-invariant object which reduces to 𝑈𝑖 in the unitary
gauge is

𝑈𝑖𝜑𝑖 or 𝑈𝑖𝜙𝑖 , (55)

where the former is an SU(2) matrix which decomposes ac-
cording to Eq. (52), and the latter is explicitly a 4-component
unit-length vector. For large but finite 𝜅, the bulk fluctua-
tions are strongly gapped and the boundary should behave as
quasi-(𝐷−1)-dimensional, and we expect the boundary phase
transition to persist as in the Abelian case.

To test this prediction, we perform Monte Carlo simula-
tions with open boundaries and measure the order parame-
ter, Eq. (54) (defined in terms of gauge invariant observables
Eq. (55)), at finite values of 𝜅. In Fig. 6 we show the evolution
of the boundary order parameter as a function of 𝛽, for 𝜅 = 2.0
in (a) and 𝜅 = 1.0 in (b), for different system sizes. These
reveal a transition from a disordered, symmetric boundary on
the confined side (small 𝛽) to an ordered, symmetry-broken
boundary on the Higgs side (large 𝛽). This value of 𝜅 is quite
close to the bulk critical point (𝜅𝑐 ∼ 0.7), demonstrating that
the boundary phase transition persists far into the phase dia-
gram where the bulk is quite strongly fluctuating. In Fig. 6(c)
and (d), we show the Binder cumulant for the same cuts, show-
ing crossing behavior at a 𝜅-dependent critical coupling. In
(e) and (f) we have rescaled 𝛽 − 𝛽𝑐 (𝜅) using the 3D O(4) crit-
ical exponent 𝜈 ≈ 0.748 [37], demonstrating a clean scaling
collapse, thus verifying that the transition remains second or-
der and in the same universality class even for relatively small
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FIG. 6. Boundary criticality in the SU(2) Higgs model. (a,b) Boundary order parameter, (c,d) Binder cumulant, and (e,f) scaled Binder
cumulant for the SU(2) Higgs model at (a,c,e) 𝜅 = 2.0 and (b,d,f) 𝜅 = 1.0, each shown for system sizes ranging from 𝐿 = 12 to 𝐿 = 32. Each
data point is averaged over 105 samples. The Binder cumulants for different system sizes collapse when scaled with the 3D O(4) universality
critical exponent 𝜈 ≈ 0.748 [37], indicating that the boundary phase transition remains second order all the way to the bulk critical endpoint
(with 𝜅𝑐 ≈ 0.7 [36]).

values of 𝜅. The transition line appears to terminate at the
bulk critical point, which can be seen in the red line in Fig. 7,
though verifying this numerically is difficult as the bulk cor-
relation length grows larger than the finite width of the open
boundaries as the system approaches bulk criticality.

3. Tuning the Boundary Coupling

We now consider varying the parameter 𝛼 = 𝛽bdry/𝛽bulk,
which shifts the location of the 𝜅 → ∞ transition. Figure 7
shows the behavior of the boundary order parameter and its
susceptibility for different values of𝛼, along different constant-
𝜅 cuts at fixed system size. The corresponding behavior of the
bulk link susceptibility is shown in black in the background
for reference. The bulk transition line moves as 𝛼 is varied,
but appears to remain second-order throughout. Figure 8 sum-
marizes the results by showing the approximate location of
the boundary transition line for different values of 𝛼, with re-
sults very similar to the Abelian case (Fig. 4). For 𝛼 > 1 the
transition moves to smaller values of 𝛽bulk and appears to ter-
minate at the bulk critical endpoint (cyan box). No boundary
transition is detected for small values of 𝜅 below the bulk first-
order line. For 𝛼 < 1 the location of the boundary transition
line moves to larger values of 𝛽, and appears to terminates on
the line of bulk first-order transitions, at least for sufficiently
small 𝛼.

C. Boundary Symmetry Breaking in Non-Abelian
Group-Valued Higgs Models

Having verified the existence of a boundary phase transition
in the SU(2) Higgs model, which is both a fixed-length-rotor
Higgs model and a group-valued Higgs model, we now con-
sider how these results generalize to these two types of models
separately for a general gauge group G. From the point of
view of the boundary action, the group-valued Higgs is the
simpler case, so we consider it first. The action (up to an
overall normalization convention for the trace) is

𝑆bulk = −𝛽
∑︁
𝑝∈𝑋

Tr
∏
ℓ∈𝜕𝑝

𝑈ℓ − 𝜅
∑︁

⟨𝑖 𝑗 ⟩∈𝑋
Tr

[
𝜑−1
𝑖 𝑈𝑖 𝑗𝜑 𝑗

]
. (56)

The boundary action is given by Eq. (42). In addition to the
global color charge symmetry acting on the boundary, Eq. (44),
it also has a global G symmetry given by right multiplication
of the Higgs field

Gbulk : 𝜑𝑖 → 𝜑𝑖𝑔. (57)

The global symmetry group is therefore Gbdry × Gbulk. We
expect the bulk phase diagram to be qualitatively similar to the
SU(2) case, Fig. 5, with a single thermodynamic phase, a first-
order line terminating at a critical endpoint. These models
were considered by Fradkin and Shenker [12], who showed
that the Higgs and confining regimes are contiguous, as in the
Abelian models.

We now consider taking the 𝜅 → ∞ limit. Maximizing the
trace in Eq. (56) yields the constraint 𝜑−1

𝑖
𝑈𝑖 𝑗𝜑 𝑗 = 1, which

implies that the bulk links can be expressed in terms of the
matter field as

𝑈𝑖 𝑗

𝜅→∞−−−−→ 𝜑𝑖𝜑
−1
𝑗 . (58)
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FIG. 7. Results for varying 𝛼 in the SU(2) Higgs model. Behavior of (a) the boundary order parameter and (b) the boundary order parameter
variance, cut along 𝛽 with 𝜅 fixed, for different values of 𝛼. The variance of Λℓ in the bulk is shown behind (black curves, scaled for visibility),
as an indication of the magnitude of bulk fluctuations and how they influence the boundary transition in a finite-size system. Data taken at
𝐿 = 24 with 104 samples averaged for each data point.

The bulk of the system is completely frozen in this limit,
which can be most easily seen in unitary gauge where 𝜑𝑖 = 1.
Substituting Eq. (58) into Eq. (41), the boundary action can
then be expressed in terms of the gauge-invariant observables

Θ𝑖 = 𝑈𝑖𝜑𝑖 , (59)

where 𝑈𝑖 was defined with the boundary link oriented “in”,
which are short half-open Wilson strings coming from the
vacuum and ending at site 𝑖. The boundary action becomes

𝑆
bdry
𝜅→∞ (𝛽) = −𝛽

∑︁
⟨𝑖 𝑗 ⟩∈𝜕𝑋

Re Tr
[
Θ𝑖Θ

−1
𝑗

]
, (60)

which is a lattice chiral model. Compare this to the equivalent
results for the Abelian case, Eq. (22) and Eq. (51), to which
it reduces when G = U(1). The Gbdry × Gbulk symmetry acts
on this chiral model by left and right multiplication of the
Θ𝑖 , respectively. Such a model is known to exhibit symmetry
breaking to the diagonal G subgroup [39]. We discuss bound-
ary phase transitions in these models further in Section III E

Note that if G is Abelian there is no distinction between
left and right group multiplication, therefore Gbulk and Gbdry
are not independent symmetries of the system. Gbulk corre-
sponds to global rotation of the Higgs field generated by the
total matter charge, Eq. (15), while Gbdry is generated by the
net electric flux through the boundary links, Eq. (17). These
two generators are the same operator on the physical gauge-
invariant Hilbert space by the Gauss law. In contrast, in the
group-valued non-Abelian Higgs models these are really dis-
tinct symmetries generated by different physical operators.

D. Boundary Symmetry Breaking in Non-Abelian
Fundamental-Higgs Models

We now consider non-Abelian gauge groups SU(𝑁) (and by
trivial generalization SO(𝑁)) with fundamental Higgs fields.
As a convenient shorthand, in this section we will represent the
Higgs vectors as kets, 𝜙𝑖 ≡ |𝜙𝑖⟩, which should not be confused
with quantum states. Furthermore, we suppress the subscript
“f” on the fundamental representation matrices𝑈ℓ . The action
we write as

𝑆bulk = −𝛽
∑︁
𝑝∈𝑋

1
𝑁

Tr
∏
ℓ∈𝜕𝑝

𝑈ℓ − 𝜅
∑︁

⟨𝑖 𝑗 ⟩∈𝑋
Re ⟨𝜙𝑖 |𝑈𝑖 𝑗 |𝜙 𝑗⟩. (61)

The boundary action is given by Eq. (42). For 𝑁 > 2 the Higgs
rotors can no longer be identified as group elements. Because
of this, the 𝜅 → ∞ constraint,

Re ⟨𝜙𝑖 |𝑈𝑖 𝑗 |𝜙 𝑗⟩ = 1, (62)

does not completely trivialize the bulk. To see this, note that
the constraint enforces that nearest-neighbor Higgs rotors are
parallel relative to the gauge field. However, since there is
still freedom to perform rotations about the colinear axis of
the remaining 𝑁 − 1 components of the Higgs field, the gauge
field can continue to fluctuate so long as it does not rotate the
Higgs field away from the parallel axis. This is explicitly seen
by rotation to unitary gauge where the Higgs field is parallel in
a global frame, which then fixes one diagonal element of the



15

gauge field to unity, i.e.

𝜙𝑖 =
©«
1
0
...

ª®®¬
𝜅→∞
=====⇒ (𝑈𝑖 𝑗 )11 = 1 (unitary gauge). (63)

This constraint forces the link matrices to take the form

𝑈SU(𝑁 )
𝑖 𝑗

𝜅→∞−−−−→
(1 0
0 𝑈SU(𝑁−1)

𝑖 𝑗

)
(unitary gauge). (64)

Thus in this limit the bulk theory becomes (gauge-equivalent
to) an SU(𝑁 − 1) gauge theory. Note that SU(1) is trivial,
making the SU(2) case special, as discussed in Section III B.

1. Gauge-Invariant Resolution of the Infinite Kappa Limit

To resolve the constraint in a fully gauge-invariant fashion
analogous to Eqs. (22) and (60), we first note that the constraint
Eq. (62) actually implies that

⟨𝜙𝑖 |𝑈𝑖 𝑗 |𝜙 𝑗⟩ = 1, (65)

which follows from the fact that real part of a Hermitian inner
product onC𝑁 is the Euclidean product when the vector space
is viewed as R2𝑁 . In other words, |𝜙𝑖⟩ and 𝑈𝑖 𝑗 |𝜙 𝑗⟩ have the
same real and imaginary components, and so are the same
complex vector. We can think of |𝜙𝑖⟩ and |𝜙 𝑗⟩ as unit vectors
spanning a two-dimensional complex vector space, in which
case 𝑈𝑖 𝑗 must act within this subspace as the unique SU(2)
rotation �̃�𝑖 𝑗 rotating |𝜙 𝑗⟩ to |𝜙𝑖⟩.4 Therefore we can resolve
the constraint as

𝑈𝑖 𝑗 = 𝑢𝑖 �̃�𝑖 𝑗 𝑢 𝑗 , (66)

where 𝑢𝑖 is an SU(𝑁) matrix which preserves |𝜙𝑖⟩, i.e. an
SU(𝑁 − 1) rotation in the subspace orthogonal to |𝜙𝑖⟩. Note
that the 𝑢𝑖’s are independent for every link, i.e. they are
associated to the ends of the links and are independent on
different links touching the same site. Furthermore, there is
only one independent SU(𝑁 − 1) degree of freedom on each
link, because �̃�ℓ𝑢 is equivalent to (�̃�ℓ𝑢�̃�−ℓ)�̃�ℓ . Thus the
constraint reduces each link variable to an SU(𝑁 − 1) degree
of freedom, and the whole theory reduces to an SU(𝑁 − 1)
gauge theory.

While Eq. (66) demonstrates the reduction of the gauge
group, it is not that useful for formulating the boundary theory.
A more useful way is to decompose each 𝑈𝑖 𝑗 by sandwiching
it between two resolutions of the identity decomposed into the

4 Within the two-dimensional subspace this rotation is given by 𝜑f
𝑖
(𝜑f

𝑗
)−1,

using the notation of Eq. (49). That this rotation is unique follows from the
fact that the two vectors have unit norm within thisC2 subspace, thus they
live on a 3-sphere, and SU(2) is isomorphic to the 3-sphere, so each point
on the 3-sphere corresponds to a unique SU(2) rotation.

parallel and perpendicular subspace of |𝜙𝑖⟩ and |𝜙 𝑗⟩. Namely,
for site 𝑖

1 = 𝑃𝑖 + |𝜙𝑖⟩⟨𝜙𝑖 |, (67)

where 𝑃𝑖 is the projector to the orthogonal complement of |𝜙𝑖⟩.
Note that under a gauge transformation 𝑃𝑖 → 𝑔𝑖𝑃𝑖𝑔

−1
𝑖

. Insert-
ing this identity on either side of a link variable decomposes
it into four pieces,

(𝑃𝑖 + |𝜙𝑖⟩⟨𝜙𝑖 |)𝑈𝑖 𝑗 (𝑃 𝑗 + |𝜙 𝑗⟩⟨𝜙 𝑗 |) =
𝑃𝑖𝑈𝑖 𝑗𝑃 𝑗 + |𝜙𝑖⟩ ⟨𝜙𝑖 |𝑈𝑖 𝑗 |𝜙 𝑗⟩ ⟨𝜙 𝑗 |

+ |𝜙𝑖⟩⟨𝜙𝑖 |𝑈𝑖 𝑗𝑃 𝑗 + 𝑃𝑖𝑈𝑖 𝑗 |𝜙 𝑗⟩⟨𝜙 𝑗 |. (68)

In the limit 𝜅 → ∞, this simplifies significantly. Firstly, the
two cross terms (the last line) are exactly zero by Eq. (66),
i.e. because 𝑃𝑖𝑈𝑖 𝑗 |𝜙 𝑗⟩ = 𝑃𝑖 |𝜙𝑖⟩ = 0. Second, in the second
term, Eq. (65) reduces it to |𝜙𝑖⟩⟨𝜙 𝑗 |. In summary, in the limit
𝜅 → ∞ every link variable in the bulk can be expressed as

𝑈𝑖 𝑗 → 𝑃𝑖𝑈𝑖 𝑗𝑃 𝑗 + |𝜙𝑖⟩⟨𝜙 𝑗 |. (69)

It follows that a product of two consecutive link variables is

𝑈𝑖 𝑗𝑈 𝑗𝑘 → 𝑃𝑖𝑈𝑖 𝑗𝑃 𝑗𝑈 𝑗𝑘𝑃𝑘 + |𝜙𝑖⟩⟨𝜙𝑘 | (70)

where we used that 𝑃2
𝑖
= 𝑃𝑖 and ⟨𝜙 𝑗 |𝜙 𝑗⟩ = 1. Therefore

gauge-invariant closed Wilson loops have a projector to the
orthogonal subspace inserted between each consecutive link,

Tr
[
𝑈𝑖 𝑗𝑈 𝑗𝑘𝑈𝑘𝑙𝑈𝑙𝑖

] → 1+Tr
[
𝑃𝑖𝑈𝑖 𝑗𝑃 𝑗𝑈 𝑗𝑘𝑃𝑘𝑈𝑘𝑙𝑃𝑙𝑈𝑙𝑖

]
, (71)

which is another manifestation of the Higgsing down to an
SU(𝑁 − 1) gauge theory.

Now consider the three-legged plaquettes appearing in the
boundary action, Eq. (42). Inserting the identities at the two
bulk sites, we obtain

Tr
[
𝑈𝑖𝑈𝑖 𝑗𝑈

−1
𝑗

]
𝜅→∞−−−−→Tr

[
𝑈𝑖

(
𝑃𝑖𝑈𝑖 𝑗𝑃 𝑗 + |𝜙𝑖⟩⟨𝜙 𝑗 |

)
𝑈−1

𝑗

]
= Tr

[
𝑈𝑖𝑃𝑖𝑈𝑖 𝑗𝑃 𝑗𝑈

−1
𝑗

]
+ ⟨Φ𝑖 |Φ 𝑗⟩

where we have defined the gauge-invariant variables

|Φ𝑖⟩ ≡ 𝑈𝑖 |𝜙𝑖⟩, (72)

which are C𝑁 vectors corresponding to the short half-open
Wilson strings at the boundary. This highlights an important
distinction for fundamental Higgs compared to group-valued
Higgs models—here the half-open Wilson string is a vector
degree of freedom, not group-valued. The 𝜅 → ∞ theory then
can be expressed in the gauge-invariant form

𝑆bulk → − 𝛽

𝑁

∑︁
𝑝∈𝑋

(
1 + Re Tr

[
𝑈𝑖 𝑗𝑃 𝑗𝑈 𝑗𝑘𝑃𝑘𝑈𝑘𝑙𝑃𝑙𝑈𝑙𝑖𝑃𝑖

] )
,

𝑆bdry → − 𝛽

𝑁

∑︁
⟨𝑖 𝑗 ⟩∈𝜕𝑋

(
Re Tr

[
𝑈𝑖𝑃𝑖𝑈𝑖 𝑗𝑃 𝑗𝑈

−1
𝑗

]
+ Re ⟨Φ𝑖 |Φ 𝑗⟩

)
.

(73)
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FIG. 8. Location of the boundary phase transition for the SU(2)
Higgs model for different values of 𝛼 = 𝛽bdry/𝛽bulk, determined by
the location of the peak in the boundary order parameter susceptibility
(c.f. Fig. 7) . Large values of 𝛼 push the transition line to smaller
𝛽bulk, while small values of 𝛼 push the phase boundary to larger
𝛽bulk. The cyan square indicates the location of the bulk critical
endpoint. For 𝛼 = 1 (red), the boundary transition line appears
to terminate at the bulk critical point, and closely follows the bulk
rapid-crossover (super critical) region that extends beyond the critical
endpoint. This remains true for 𝛼 > 1, while for sufficiently small
𝛼 < 1 the boundary transition line appears to terminate on the bulk
first-order transition line.

Thus the bulk Higgses down to an SU(𝑁 − 1) gauge theory
while the boundary decomposes into a pure SU(𝑁 − 1) part
plus a part which may be viewed as an SU(𝑁) ferromagnet.
The global SU(𝑁) boundary symmetry acts as 𝑈𝑖 → 𝑔𝑈𝑖 and
simultaneously |Φ𝑖⟩ → 𝑔 |Φ𝑖⟩. We generically expect this
SU(𝑁) symmetry to spontaneously break above a critical 𝛽
down to SU(𝑁 − 1), and the short Wilson string rotors |Φ𝑖⟩
on the boundary to exhibit long range order and Goldstone
modes. We discuss the nature of this phase transition further
in Section III E.

2. Formulation for General Gauge Groups

For a general gauge group G with fundamental Higgs, the
large-𝜅 limit Higgses it down to a subgroup H . We consider
here cases where the residual gauge group H is non-Abelian.
In the limit 𝜅 → ∞ the bulk fluctuates as a pure gauge theory
with gauge group H governed by the Wilson action, while the
boundary links continue to explore the full gauge group G.
The generic picture (which can be obtained in unitary gauge)

is that the action Higgses down to

𝑆𝜅→∞ = −𝛽
∑︁
𝑝∈𝑋

Re Tr 𝑊H
𝑝 − 𝛽

∑︁
⟨𝑖 𝑗 ⟩∈𝜕𝑋

Re Tr
[
𝑈G
𝑖
𝑈H
𝑖 𝑗 (𝑈G

𝑗
)−1

]
,

(74)
where𝑈H is the G link variable restricted to the H subgroup,
and 𝑊H is the corresponding Wilson plaquette for these H -
valued bulk links. Taking the traces in any faithful represen-
tation of the group should yield the same physics.

Assuming the bulk is gapped with a finite correlation length,
as it must be if H is non-Abelian, the boundary is quasi-
(𝐷 − 1)-dimensional with some finite correlation length ex-
tending into the bulk. The system retains a G global symmetry
rotating all of the boundary links, together with the bulk H
gauge symmetry. The appropriate boundary theory is there-
fore expected to be a gauged nonlinear 𝜎-model with target
space G with subgroup H gauged, or equivalently, a nonlin-
ear 𝜎-model with target space the quotient space G/H . For
example, SU(𝑁) Higgses down to SU(𝑁 − 1) and the quo-
tient space is SU(𝑁 − 1)/SU(𝑁) ≃ 𝑆2𝑁−1, which agrees with
the finding in Eq. (73) of a boundary theory of SU(𝑁) ro-
tors, whose configuration space is a sphere in 2𝑁 dimensions.
Similarly, SO(𝑁) Higgses to SO(𝑁 − 1), with quotient space
𝑆𝑁−1.

3. Hamiltonian Perspective

Similar considerations apply to the Hamiltonian formulation
of the non-Abelian Higgs theory described in Section III A 2.
The analog of the large 𝜅 limit in the Hamiltonian formulation
(Eq. (33)) is first of all to drop the conjugate variables �̂�𝑚

𝑖

leaving only the Λ̂ variables in the matter sector. This essen-
tially renders the Higgs fields classical and they may be gauge
fixed without loss of generality along some fixed direction
𝜙𝛼 = 𝛿𝛼1. There is now a Hamiltonian constraint

−𝜅
∑︁
ℓ

�̂�11
ℓ (75)

that breaks gauge fluctuations from 𝑆𝑈 (𝑁) down to 𝑆𝑈 (𝑁−1).
Now if we consider only the boundary plaquettes, this con-

straint acts only on the bulk links parallel to the boundary while
those extending out of the boundary have no such constraint.
Therefore the boundary theory of the four dimensional bulk in
the large 𝜅 limit is a three dimensional 𝑆𝑈 (𝑁) chiral model
that is partially gauged by an 𝑆𝑈 (𝑁 − 1) gauge group where
the 𝑆𝑈 (𝑁 − 1) gauge theory permeates the bulk.

E. Boundary Phase Transition Order and Universality Class

So far we have demonstrated that Higgs models with group-
valued or fundamental Higgs fields have large-𝜅 limits with
well-defined boundary degrees of freedom that may exhibit
symmetry breaking. Having discussed the 𝜅 → ∞ boundary
actions for the family of fundamental Higgs SU(𝑁) models we
are in a position to say something about the phase transitions
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at the boundary. As the bulk is gapped for finite 𝜅 we should
expect that the boundary theory has a finite correlation length
into the bulk making it a quasi-(𝐷 − 1)-dimensional boundary
theory so that statements at 𝜅 → ∞ hold also for finite 𝜅.

In the light of Refs. [19, 20] and our analysis above, the
quasi-(𝐷 − 1)-dimensional boundary theory typically should
have a symmetry breaking phase transition as the boundary
coupling is tuned. But what is the nature of the phase transi-
tion? When there are only global symmetries, the symmetry
group and the spacetime dimension determine the type of the
transition. When some symmetries are gauged, the full set of
global symmetries (including higher-form symmetries origi-
nating from the gauging [3]) are expected to determine the
nature of the phase transition, while the gauge redundancy
only serves to reduce to the quotient space. For the coupled
bulk-boundary models considered here, the bulk gap ensures
the integrity of the boundary model across the phase diagram
well away from bulk critical points. Having identified the
physical gauge-invariant boundary variables on the lattice that
can go critical, in this part we write down the corresponding
Landau boundary theories.

1. Group-Valued Higgs

The boundary degrees of freedom, Eq. (59), are gauge-
invariant composites transforming under the global G𝐿 × G𝑅

symmetry. Considering the case G = SU(𝑁), the coarse-
grained (generally complex) matrix-valued fields are denoted
𝑋𝑎𝑏
𝑖

[40], where 𝑎, 𝑏 are color indices, which transform as
X → g𝐿Xg†

𝑅
under the symmetry. The Landau theory is

L = Re Tr
[
𝜕𝜇X𝜕𝜇X†] + 𝑎Re Tr

[
X†X

] + 𝑏Re Det [X] + · · ·
(76)

The SU(𝑁) × SU(𝑁) symmetry is susceptible to breaking
down to the diagonal subgroup. This set of models has been
studied in Ref. [40] to which we refer for more details. One
finds, in the case 𝑁 = 2, that the determinant contributes to the
quadratic term. Numerically one finds a continuous transition
consistent with a quartic term stabilizing the free energy. In
the case 𝑁 = 3, the determinant is cubic implying that the
transition is first order. In the case 𝑁 = 4, the determinant
contributes a quartic term but with a negative sign that is
expected to drive the transition first order. We therefore expect
a continuous transition for 𝑁 = 2 and first order for 𝑁 = 3 and
for 𝑁 = 4.

Chiral models on a lattice, such as the one in Eq. (60),
have been studied for many years especially in two dimen-
sions at large 𝑁 , where they are integrable [41]. If one is
interested in boundaries of four dimensional gauge theories,
the three dimensional analogs of such models are of interest.
One early work on G = 𝑆𝑈 (𝑁) in three dimensions, Ref. [40],
contains Monte Carlo results for 𝑁 = 2, 3, 4. For 𝑁 = 2 (Sec-
tion III B) the symmetry group is SU(2) × SU(2) ≃ O(4) and
the transition is continuous, consistent with O(4) criticality.
For 𝑁 = 3, 4 the numerical results reveal the transition to be
first order in agreement with the mean field theory predictions.

2. Fundamental Higgs and SU(3) Numerical Results

The boundary model in the case of a fundamental Higgs has
gauge-invariant degrees of freedom of the form Φ𝑎

𝑖
≡ 𝑈𝑎𝑏

𝑖
𝜙𝑏
𝑖

where 𝑎, 𝑏 are the color indices. There is a single global
G symmetry that acts from the left Φ → 𝑔Φ. This will be
broken spontaneously for sufficiently large 𝛽 (modulo Mermin-
Wagner restrictions). The coarse-grained version of Φ𝑎 is
denoted Ψ𝑎 and the Landau theory for SU(𝑁) is

L = 𝜕𝜇Ψ†𝜕𝜇Ψ + 𝑎Ψ†Ψ + 𝑏(Ψ†Ψ)2 + . . . (77)

which is invariant under U(𝑁) transformations. This may
instead be viewed as a theory of 2𝑁 real variables invariant
under the enlarged O(2𝑁) symmetry group. This Landau
theory gives the impression that, for the three dimensional
boundary of a four dimensional SU(𝑁) gauge theory, there is
a phase transition in the O(2𝑁) universality class. In the case
of SU(2) this is O(4) criticality as shown above at the level
of the microscopic model both analytically and numerically.
Note that the coupling of the Φ𝑖 rotors in Eq. (73) is invariant
under O(2𝑁) rotations, even though the microscopic action
manifestly only has a global SU(𝑁) symmetry.

It may seem surprising that the SU(𝑁) invariant model ex-
hibits O(2𝑁) criticality. One simple check is that SU(𝑁) has
𝑁2 − 1 generators and that SU(𝑁)→ SU(𝑁 − 1) symmetry
breaking therefore has 2𝑁 − 1 broken generators (correspond-
ing to the number of Goldstone modes) which matches the
count for O(2𝑁)→ O(2𝑁−1) symmetry breaking where O(𝑁)
has 𝑁 (𝑁 − 1)/2 generators. But what about the terms that are
SU(𝑁) invariant but not O(2𝑁) invariant? These terms are
certainly present. An example is given by taking an opera-
tor Ξ𝑎𝑏 ≡ Ψ𝑎Ψ

†
𝑏

which transforms as 𝑔Ξ𝑔† and considering
its determinant. This is only U(𝑁) invariant, but it is also
an irrelevant operator for 𝑁 > 2 in 𝐷 = 4. More precisely,
the couplings in the action originating from the determinant
have mass dimension [𝑔det] = 𝐷 + 𝑁 (2 − 𝐷) which, in di-
mensions higher than two, is negative for all but 𝑁 = 2, 3 in
three dimensions and 𝑁 = 2 in four dimensions. As we have
seen, the case of SU(2) is special because it is identical to a
problem with a group valued Higgs. So we have treated it
separately. Therefore the remaining puzzle relates to SU(3)
in three dimensions where the determinant coupling goes like
|Ψ†Ψ|3 and is marginal by power counting. As with the prob-
lem of scalar field theory in three dimensions [43], among
other cases, we expect this sixth order term to be marginally
irrelevant. Taking this together with our results for SU(2) we
surmise that the SU(𝑁) boundary theory phase transition is
in the O(2𝑁) universality class since terms breaking O(2𝑁)
down to SU(𝑁) are irrelevant or marginally irrelevant.

The discussion above shows that we should set aside the
three dimensional boundary theory of the SU(3) Higgs model
in four dimensions for further examination. We anticipate a
boundary phase transition in the O(6) universality class for this
case. This model is also interesting because, unlike the SU(2)
Higgs model, it has a dynamical bulk as the Higgs mechanism
in this case leaves residual bulk degrees of freedom. We have
therefore performed simulations of SU(3) gauge theory with a
fundamental Higgs field. The Higgs field 𝜙𝑖 is a 3-component
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FIG. 9. Monte Carlo results for the boundary phase transition for the SU(3) fundamental-Higgs model. (a) Boundary order parameter as a
function of 𝛽 at 𝜅 = 3.0. (b) Boundary susceptibility for the same 𝜅 showing a critical 𝛽 of 𝛽𝑐 ≈ 4.19. (c) We use the previous 𝛽𝑐 together
with the 3D O(6) critical exponent 𝜈 = 0.789 from Ref. [42] to plot the Binder cumulant, showing a clear scaling collapse.

complex vector at each site, and we define the average of the
Higgs field measured from the vacuum end of the boundary
links,

O =
1
𝐿3

∑︁
𝑖∈𝜕𝑋

(𝑈𝑖𝜙𝑖) ∈ C3 (78)

The numerical results are presented in Fig. 9. Figure 9(a)
shows the behavior of this order parameter for various sys-
tem sizes, while Fig. 9(b) shows the behavior of its variance
(susceptibility). The behavior is qualitatively consistent with
an order parameter at a second order phase transition, ap-
proaching zero at small 𝛽 and continuously increasing from
𝛽 > 𝛽𝑐 ≈ 4.19, with a diverging susceptibility. Figure 9 shows
the Binder cumulant scaled by the 3D O(6) critical exponent
𝜈 ≈ 0.789 [42], which shows a clear collapse to a universal
scaling function. We therefore conclude that the SU(3) Higgs
model in 𝐷 = 4 indeed demonstrates a boundary phase tran-
sition in the 3D O(6) universality class, even though a single
fundamental Higgs field does not remove all bulk degrees of
freedom when 𝜅 → ∞, in agreement to the general picture of
boundary O(2𝑁) criticality on the boundary of SU(𝑁) funda-
mental Higgs models.

F. Summary and Discussion: Non-Abelian Case

In this section we have discussed global boundary sym-
metries in non-Abelian Higgs models and their spontaneous
symmetry breaking with both fundamental Higgs fields and
group-valued Higgs fields. For general non-Abelian gauge
group G there is a global G symmetry acting on the boundary
of the system, which is equivalent by the Gauss law to the to-
tal color charge of the system, Eq. (48). For the group-valued
case, there is an additional bulk matter symmetry given by right
multiplication of the matter field. If G is an Abelian group,
these two symmetries exactly coincide, since there is no dis-
tinction between left and right multiplication. For G = SU(2),
the two types of models are equivalent due to fact that SU(2) is
equivalent to the unit quaternions. For other gauge groups the

two types of models are inequivalent. In all cases, the location
of the boundary transition that we identify can be shifted by
tuning the boundary coupling.

In the group-valued case, the infinite 𝜅 limit freezes the
bulk of the system. The resulting boundary theory can be ex-
pressed in terms of gauge-invariant half-open Wilson strings
at the boundary, Eq. (60). This may be viewed as a lattice
discretization of a principal chiral model, with G × G sym-
metry coming from the boundary color flux and bulk matter
symmetries. This global symmetry is expected to be broken
to the diagonal subgroup at large 𝛽. Since the boundary is
frozen in the 𝜅 → ∞ limit and should remains strongly gapped
at large 𝜅, the boundary transition is expected to persist also
for finite 𝜅. Our SU(2) Monte Carlo simulations verify this,
and the boundary transition line appears to terminate at the
bulk critical endpoint.

For Higgs fields in the fundamental representation, there is
only a single global G symmetry, generated by the total color
charge of the system and acting on the boundary. The general
picture is that the bulk G gauge symmetry is Higgsed down
to a subgroup H . If H is trivial, then the bulk is completely
frozen in the 𝜅 → ∞ limit. If H is Abelian, there may be a
bulk phase transition even at infinite 𝜅 (though that does not
preclude a boundary symmetry breaking). IfH is non-Abelian
then the bulk reduces to a gapped H gauge theory as 𝜅 → ∞.
The boundary theory is expected to be a gauged nonlinear 𝜎-
model with target space G/H , Eq. (74). Note that by placing
the Higgs in other representations (e.g. adjoint) or adding
addition Higgs fields, one may target different subgroups H
[44] and thus obtain different boundary theories. For example,
by starting from an SO(𝑁) gauge theory with 𝑀 Higgs fields in
the fundamental representation, the general expectation is that
it reduces to an SO(𝑁 − 𝑀) gauge theory in the bulk, and the
boundary target space is the Stiefel manifold SO(𝑁)/SO(𝑁 −
𝑀), which have recently attracted significant interest [45]

We considered in particular the case SU(𝑁) (and by direct
extension SO(𝑁)). In the 𝜅 → ∞ limit, the bulk Higgses down
to a SU(𝑁 − 1) gauge theory, while the boundary decomposes
into a pure SU(𝑁−1) part and an SU(𝑁) rotor part. The global



19

symmetry, under most circumstances, will be broken sponta-
neously at large 𝛽. We argued that this SU(𝑁) fundamental
Higgs boundary phase transition lies in the O(2𝑁) universal-
ity class, since there are no relevant operators differentiating
SU(𝑁) from 𝑂 (2𝑁). We tested this prediction numerically
for the SU(3) lattice gauge theory with fundamental Higgs,
demonstrating a clean scaling collapse with O(6) critical ex-
ponents.

One interesting exceptional case is SO(3) gauge theory with
fundamental Higgs. This is equivalent to the Georgi-Glashow
electroweak theory, with gauge group SU(2) and the Higgs
field in the adjoint representation. In the 𝜅 → ∞ limit we
can fix to unitary gauge which Higgses the bulk gauge group
down to SO(2) ≃ U(1). In 𝐷 = 4 and 𝜅 → ∞, the bulk
has a confinement-deconfinement transition as a function of 𝛽,
while we predict an additional O(3) boundary critical point in
the Higgs regime. This may have implications for the physics
of domain walls or cosmic strings formed in the early universe.

IV. BOUNDARY SYMMETRY BREAKING IN
HIGHER-FORM ABELIAN HIGGS MODELS

Thus far we have discussed boundary symmetry breaking
in Higgs phases of both Abelian and non-Abelian gauge the-
ories with 1-form gauge fields, drawing a general picture of a
global charge symmetry realized on the boundary due to the
Gauss law constraint of a gauge-invariant system. Here we
consider a further extension, to higher-form gauge fields. A
𝑘-form gauge field describes the parallel transport of charged
(𝑘 − 1)-dimensional objects [46–49]. Two-form gauge fields
are often called Kalb-Ramond fields in string theory litera-
ture [50], they appear in the dual descriptions of superfluids
and superconductors [51, 52] and may be realized in certain
spin models on frustrated lattices [53]. The gauge group for
𝑘 > 1 is generically Abelian, because a unique path ordering
only exists on 1-dimensional contours [46, 47].

A. Higher-Form Abelian Higgs Models

Here we consider the case of 𝑘-form U(1) gauge theory,
though restriction toZ𝑁 subgroups follows. Let 𝐴 be a 𝑘-form
field and 𝜃 a (𝑘 − 1)-form field, each taking values inR/2𝜋Z
in 𝐷 Euclidean spacetime dimensions, with 1 ≤ 𝑘 ≤ 𝐷 − 2.5
By a 𝑘-form we mean a function 𝜔 on oriented 𝑘-dimensional
cells 𝑐 of the lattice, such that 𝜔(−𝑐) = −𝜔(𝑐), where −𝑐 de-
notes the cell 𝑐 with the opposite orientation. See Appendix A
for a more detailed discussion of the discrete differential forms
notation used throughout this section. Let 𝑋𝑘 denote the col-
lection of 𝑘-cells of the lattice, each with a fixed orientation.

5 If 𝑘 = 0 there is no gauge field. If 𝑘 = 𝐷 − 1 then the gauge field is
not dynamical and can be completely integrated out using the Gauss law,
yielding long-range interactions for the Higgs field. If 𝑘 = 𝐷 then d𝐴 = 0
identically.

The fields are governed by the generalized Fradkin-Shenker
action

𝑆bulk = −𝛽
∑︁

𝑐∈𝑋𝑘+1

cos(d𝐴)𝑐 − 𝜅
∑︁
𝑐′∈𝑋𝑘

cos(d𝜃 − 𝐴)𝑐′ . (79)

The exterior derivative of a 𝑘-form 𝜔 is a (𝑘 + 1)-form d𝜔
whose value is defined by the discrete Stoke’s theorem,

d𝜔𝑐 =
∑︁
𝑐′∈𝜕𝑐

𝜔𝑐′ , (80)

where the sum is over the 𝑘-cells forming the oriented bound-
ary of the (𝑘+1)-cell 𝑐. This is a straightforward generalization
of the Abelian Higgs model, Eq. (8), to a theory of extended
(𝑘−1)-dimensional charged objects attached to 𝑘-dimensional
electric flux branes [46].

The action is invariant under higher-form gauge transforma-
tions,

𝜃 → 𝜃 + 𝜆, 𝐴 → 𝐴 + d𝜆, (81)

for an arbitrary (𝑘 − 1)-form 𝜆. We will see that this enforces
the Gauss law attaching electric branes to the charged objects.
When 𝑘 > 1, this gauge invariance includes “gauge-of-gauge”
transformations

𝜃 → 𝜃 + d𝛼, (82)

for arbitrary (𝑘 − 2)-form 𝛼. This enforces an additional
Gauss law which states that the (𝑘−1)-dimensional electrically
charged objects are closed.

When 𝜅 = 0, Eq. (79) reduces to a pure 𝑘-form U(1) gauge
theory, which has a global electric 𝑘-form symmetry given by

𝐴 → 𝐴 + 𝜆 with d𝜆 = 0, (83)

corresponding to conservation of global electric flux. In 𝐷
spacetime dimensions, it also admits magnetic homotopy de-
fects, whose cores trace out 𝑘m-dimensional worldsheets in
spacetime [46, 47, 54], where

𝑘m = 𝐷 − (𝑘 + 2). (84)

In the limit 𝛽 → ∞ it has a 𝑘m-form magnetic symmetry,
discussed further in Section IV B.

The phase diagram of this model is expected to be similar
to that of the 1-form U(1) gauge theory, sketched in Fig. 1, as
long as 𝐷 > 𝑘 + 2 (𝑘m > 0). In the marginal case 𝐷 = 𝑘 + 2
(𝑘m = 0), the magnetic defect is an instanton (zero dimensional
in spacetime) and is expected to destabilize the deconfined
phase [55–57]—a generalization of the Polyakov mechanism
for 1-form U(1) gauge theory in𝐷 = 3 [58], which itself may be
viewed as a higher-form generalization of the Mermin-Wagner
theorem for 0-form symmetries [3, 4]. In those marginal cases,
the bulk phase diagram will generically be similar to that of
the non-Abelian models, as in Fig. 5 [55, 59, 60].
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1. Gauss Law and Higher-Form Matter Symmetry

Before we introduce the Hamiltonian formulation and dis-
cuss matter symmetry, we point out that the Higgs charges for
𝑘 > 1 behave slightly differently than for 𝑘 = 1. When 𝑘 = 1,
the zero-dimensional point charges must come in pairs at the
two ends of oriented electric strings, and are either positive or
negative depending on which end of the string they sit. When
𝑘 > 1 the charges are extended oriented objects (e.g. strings
when 𝑘 = 2) living on the edges of electric 𝑘-branes. Such
a brane for 𝑘 > 1 can have a single edge, meaning that it is
perfectly valid to have a single charged object in the system.
As such the extended charged objects are net-charge-neutral if
they are contractible [46, 47]. It is only if they wrap around
periodic boundaries that they have non-trivial global charge.

The Hamiltonian formulation follows the exact arguments
laid out in Section II A, with conjugate operators [𝜃, �̂�] = 𝑖
on all (𝑘 − 1)-cells and [ �̂�, �̂�] = 𝑖 on all 𝑘-cells. Invariance
of physical states under the gauge transformations, Eq. (81),
enforces the Gauss law

−(d†�̂�)𝑐 ≡ −
∑︁

𝑐′∈𝜕†𝑐

�̂�𝑐′ = �̂�𝑐 (𝑐 ∈ 𝑋𝑘−1), (85)

where 𝑐 is a (𝑘 − 1)-cell and the sum is over its coboundary,
the set of 𝑘-cells 𝑐′ containing 𝑐 in their positively-oriented
boundary. This simply says that the number of electric 𝑘-
branes emanating from 𝑐 is equal to the amount of electric
charge on 𝑐. For 𝑘 > 1, the charges carry a sense of orienta-
tion. For example, when 𝑘 = 2 the charges are nothing but the
electric strings of a 1-form gauge field. The “gauge-of-gauge”
symmetry, Eq. (82), enforces the constraint

d†�̂� = 0, (86)

which says that the charged objects are closed.6
In the 𝑘 = 1 theory discussed in Section II with 0-form Higgs

field, the net charge of the Higgs field generates a global 0-form
symmetry, which is pure gauge with periodic boundaries but
becomes physical with the choice of electric boundary condi-
tions. The natural extension of this global matter symmetry
for general 𝑘 is a (𝑘 − 1)-form symmetry,

𝜃 → 𝜃 + 𝜆 with d𝜆 = 0. (87)

Letting 𝑑 = 𝐷 − 1 be the dimension of space, the generators
of these transformations are Gukov-Witten operators [3] sup-
ported on (𝑑 − (𝑘 − 1))-dimensional closed surfaces Σ̃ in the
dual lattice

�̂�(Σ̃) =
∑︁
�̃�∈Σ̃

�̂�𝑐 ≡ ⟨�̂�, 𝛿Σ̃⟩, (88)

where 𝑐 is the (𝑘 − 1)-cell in the direct lattice corresponding
to 𝑐 in the dual lattice, and 𝛿Σ̃ is a (𝑘 − 1)-form Poincaré dual

6 This constraint obviously follows from the Gauss law Eq. (85) (following
from d2 = 0), just as Eq. (82) is already implied by Eq. (81), but it is worth
spelling out for those unfamiliar with this point.

to Σ̃.7 These operators generate the symmetry, Eq. (87),

𝑒−𝑖𝛼�̂� (Σ̃) |𝜃⟩ = |𝜃 + 𝛼𝛿Σ̃⟩, (89)

where 𝜆 ≡ 𝛼𝛿Σ̃ with 𝛼 a constant. Because Σ̃ is a closed
surface its Poincaré dual is a closed form, d𝛿Σ̃ = 𝛿𝜕Σ̃ = 0.

These operators are topological, i.e. they only depend on
the homology class of Σ̃, owing to the matter Gauss law
Eq. (86). Consider replacing it with another surface such
that Σ̃′ − Σ̃ = 𝜕�̃� for some (𝑑 − (𝑘 − 2))-volume �̃� . Then
𝛿Σ̃′ = 𝛿Σ̃ + d𝛿�̃� . Plugged into Eq. (88), we have

�̂�(Σ̃′) = ⟨�̂�, 𝛿Σ̃⟩ + ⟨d†�̂�, 𝛿�̃� ⟩ = �̂�(Σ̃), (90)

where we used the matter Gauss law, Eq. (86). Therefore there
is one (𝑘 − 1)-form charge generator for each homology class
in 𝐻𝑑−(𝑘−1) . Deforming Σ̃ without changing its homology
class corresponds to shifting 𝜃 by an exact form, which are just
the gauge transformations of Eq. (82).

The operators charged under �̂�(Σ̃) are the charge cre-
ation/annihilation operators, i.e. Wilson branes supported on
open 𝑘-dimensional surfaces 𝑀 which insert an electric mem-
brane with charge on its boundary,

𝑒𝑖𝛼�̂� (Σ̃)𝑒𝑖 (d𝜃−𝐴) (𝑀 )𝑒−𝑖𝛼�̂� (Σ̃)

= 𝑒−𝑖 �̂�(𝑀 )𝑒𝑖𝛼�̂� (Σ̃)𝑒𝑖 𝜃 (𝜕𝑀 )𝑒−𝑖𝛼�̂� (Σ̃)

= 𝑒−𝑖 �̂�(𝑀 )𝑒𝑖 (𝜃+𝛼𝛿Σ̃ ) (𝜕𝑀 )

= 𝑒𝑖𝛼 #(𝜕𝑀,Σ̃)𝑒𝑖 (d𝜃− �̂�) (𝑀 ) , (91)

where we have defined the intersection number between
the (𝑘 − 1)-dimensional 𝜕𝑀 in the direct lattice and the
(𝑑 − (𝑘 − 1))-dimensional Σ̃ in the dual lattice,

#(𝜕𝑀, Σ̃) = 𝛿Σ̃ (𝜕𝑀). (92)

Thus the operator �̂�(Σ̃) simply counts the intersection number
of the closed charged objects with Σ̃.

In the Maxwell case, 𝑘 = 1, the matter charges are point
particles, Σ̃ is a closed 𝑑-dimensional volume in the dual lat-
tice, and the only non-trivial choice is to take it to be all of
space. The associated charge then simply counts the number
of positive minus the number of negative charges. For a less
trivial example, consider the case 𝑘 = 2 and 𝑑 = 3, so that the
matter charges are 1-dimensional strings and Σ̃ is a closed two-
dimensional surface in the dual lattice, intersecting a collection
of links in the direct lattice. A choice of its Poincaré dual is
a 1-form which is zero everywhere except on the intersected
links, on which it has unit value in the direction normal to
the surface. The charge operator, Eq. (88), then counts (with

7 For our purposes, the defining property of the Poincaré dual of a (𝑑 − 𝑘 )-
dimensional closed surface Σ̃ in the dual lattice is that it is a 𝑘-form in the
direct lattice acting as a generalized delta function, for example the unit 𝑘-
form supported on the direct lattice 𝑘-cells piercing Σ̃ with the appropriate
orientation. Note that 𝛿Σ̃ is only defined up to an exact form because Σ̃ is
closed, i.e. it is a cohomology class.
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signs, because �̂�−𝑐 = −�̂�𝑐) the number of strings piercing the
surface Σ̃, i.e. the intersection number between closed strings
and the surface. Because the charges are closed strings, this
intersection number must be zero unless Σ̃ winds around a
periodic boundary and intersects a charge which also winds
around the periodic boundaries in the transverse direction.

In a closed system, gauge invariance guarantees that the
matter charge operators are exactly zero because of the Gauss
law, Eq. (85), which when inserted into Eq. (88) yields
⟨�̂� , d𝛿Σ̃⟩ = 0. Equivalently, the intersection numbers, Eq. (92),
are exactly zero because 𝜕𝑀 has trivial homology class, i.e.
𝛿Σ̃ (𝜕𝑀) = d𝛿Σ̃ (𝑀) = 0 since Σ̃ is closed. Consider for exam-
ple the case 𝑘 = 2, where the charge operators count the num-
ber of charged strings wrapped around a periodic boundary.
We cannot, in a closed system, have a single non-contractible
charged string, because it is attached to an electric membrane
which must end somewhere inside the system. The only possi-
bility is that it ends on another non-contractible charged string
going the other direction, such that the two strings constitute
the boundary of the electric membrane. This is the sense in
which a closed system is charge-neutral when 𝑘 > 1.

2. Open Boundaries and Global Matter Symmetry

To make the charge operators non-trivial, we must impose
boundary conditions such that either Σ̃ can terminate on the
boundary, and 𝛿Σ̃ is not a closed form, or such that the con-
tour 𝜕𝑀 can terminate at the surface and thus not be closed.
The latter case, however, means that the charged objects can
pass through the boundary, meaning charge is not conserved.
Therefore, extending our results from Section II, we take the
former case. We consider open boundaries in the same form
as Fig. 2. To be precise, the boundary consists of a layer
of 𝐷-dimensional hypercubes, with all cells in the boundary
layer which do not touch a bulk cell removed (or, equivalently,
𝐴 = 0 and 𝜃 = 0 on those cells). In other words, we remove
the cells on the vacuum side, creating links missing one end,
plaquettes missing one edge, cubic cells missing one face, etc.
The boundary action is given by

𝑆bdry = −𝛽
∑︁

𝑐∈𝜕𝑋𝑘+1

cos(d𝐴)𝑐, (93)

where 𝜕𝑋𝑘+1 denotes the set of (𝑘 + 1)-cells in the boundary
layer. As in Section II, this boundary action does not allow the
matter field 𝜃 to tunnel through the boundary meaning that all
the charged objects are closed and contained inside the bulk.

In the presence of these boundary conditions, the matter
charge operators, Eq. (88), can generate a physical symmetry.
For 𝑘 > 1 we must take care to consider how the surfaces Σ̃,
which live in the dual lattice, can terminate at the boundary.
Because we chose a “rough” boundary, as in Fig. 2, with a
layer of cells sticking out from the edge of the system, the dual
lattice boundary is flat. This is illustrated in Fig. 10(a) which
shows the direct lattice bulk and boundary as in Fig. 2, along
with the dual lattice in red and purple. The bulk part of the
dual lattice is colored purple, while the boundary layer of the
dual lattice is colored red and can be seen to form a flat surface

without any protruding cells. The charge operators �̂�(Σ̃) can
terminate on this flat dual boundary layer.

For concreteness, consider the case 𝑘 = 2 in 𝑑 = 3, in which
case the matter charges are strings and Σ̃ is a two-dimensional
membrane in the dual lattice. Due to our boundary conditions
the charge strings cannot terminate at the boundary, but the
electric membranes can exit the system through the bound-
ary. Referring to Fig. 10(b), consider a state with a single
charged string wrapping around a periodic direction, as shown
in Fig. 10(b) by the red line, attached to an electric membrane
which exits through the boundary, illustrated by the yellow sur-
face. This charged string is detected by taking the membrane
Σ̃ to intersect it transversely, as illustrated by the cyan surface.
The charge associated to the surface, Eq. (88), is then related
to the electric flux through the boundary via the Gauss law,

�̂�(Σ̃) = ⟨−d†�̂� , 𝛿Σ̃⟩ = −⟨�̂� , d𝛿Σ̃⟩ = −⟨�̂� , 𝛿𝜕Σ̃⟩ ≡ �̂�bdry (𝜕Σ̃).
(94)

In the figure, 𝜕Σ̃ is shown as a dark green line which pierces
a collection of boundary plaquettes (green squares with black
borders). According to Eq. (94), the amount of charge mea-
sured by �̂�(Σ̃) is equal to the number of electric branes exiting
through the boundary measured by the set of plaquettes pierced
by 𝜕Σ̃. In summary, the physical matter symmetry is gener-
ated by charge operators supported on Σ̃ which terminate at
the boundary and, by the Gauss law, acts on the gauge field 𝐴
on the boundary elements pierced by 𝜕Σ̃.

3. Boundary Higher-Form Symmetry Breaking

Returning now to the higher-form gauge-Higgs action,
Eq. (79), let us now see how the physical charge symmetry
is spontaneously broken at the boundary. In the limit 𝜅 → ∞
we have the constraint 𝐴 = d𝜃 on every bulk 𝑘-cell. This
completely freezes the bulk degrees of freedom, as is seen by
rotating to unitary gauge, 𝜃 = 0, resulting in d𝐴 = 0. A covari-
ant way to see this is that the gauge field operators 𝐴(𝑀) for
𝑘-dimensional closed surfaces 𝑀 trivialize—if 𝑀 is contained
entirely within the bulk, then 𝐴(𝑀) = d𝜃 (𝑀) = 𝜃 (𝜕𝑀) = 0
since 𝑀 is closed. This constraint is not imposed on the field
variables on the cells touching the vacuum, however. As a re-
sult, if 𝑀 exist through the boundary, then we can decompose
it into two pieces, 𝑀 = 𝑀 |𝑋 + 𝑀 |𝜕𝑋, where 𝑀 |𝑋 is the part
of 𝑀 supported on bulk cells and 𝑀 |𝜕𝑋 is the part supported
on boundary cells. Since 𝜕𝑀 = 0, we have 𝜕𝑀 |𝜕𝑋 = −𝜕𝑀 |𝑋.
As a result, the gauge field operators decompose as

𝐴(𝑀) 𝜅→∞−−−−→ 𝐴(𝑀 |𝜕𝑋) + d𝜃 (𝑀 |𝑋)
= 𝐴(𝑀 |𝜕𝑋) + 𝜃 (𝜕𝑀 |𝑋)
= 𝐴(𝑀 |𝜕𝑋) − 𝜃 (𝜕𝑀 |𝜕𝑋) (95)
= (𝐴 − d𝜃) (𝑀 |𝜕𝑋). (96)

In other words, for closed surfaces 𝑀 exiting through the
boundary, the 𝜅 → ∞ constraint 𝐴 = d𝜃 reduces 𝐴(𝑀) to a
half-open Wilson operator terminating on Higgs operators as
soon as it touches the bulk. Similarly, longer half-open Wilson
surfaces ending on the Higgs field in the bulk, e.g. Eq. (16),
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𝑀
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FIG. 10. (a) An illustration of the relation between the direct lattice and dual lattice at the boundary of the system in 𝑑 = 3 spatial dimensions.
The direct lattice is colored the same as in Fig. 2. The dual lattice is indicated by black dual sites, white dual edges, and purple dual plaquettes.
Each 𝑘-cell of the direct lattice corresponds to a (𝑑 − 𝑘)-cell in the dual lattice. Because the boundary (𝜕𝑋) of the direct lattice (𝑋) is open
with cells “sticking out” (green), the dual boundary (𝜕�̃�) is closed and has no protruding cells. We also color the (𝐷 − 1)-dimensional edge
layer (𝑌 ) dark gray, which is where the 𝜅 = ∞ boundary action is defined, Eq. (100). (b) An illustration of a termination of Σ̃ on the boundary
for a 1-form Higgs field coupled to a 2-form gauge field in 𝑑 = 3 spatial dimensions. Σ̃ is a two-dimensional surface (cyan) which terminates
at the boundary along a 1-dimensional contour (green). The Gauss law makes �̂�(Σ̃) equal to the sum of the electric fluxes �̂�𝑝 on the boundary
plaquettes pierced by the edge of Σ̃ (green squares with solid edges), Eq. (94). The edge 𝜕Σ̃ then intersects the half-open Wilson membranes
attached to a charged string (red curve) attached to an electric membrane (yellow) exiting the system through the open boundary.

are reduced to short half-open Wilson surfaces ending on the
Higgs field at the boundary.

This is depicted in Fig. 11 for the cases 𝑘 = 1 and 𝑘 = 2,
where 𝑀 is taken to be the smallest Wilson surfaces which are
closed in the bulk, 𝑀 = 𝜕𝑐 for 𝑐 ∈ 𝜕𝑋𝑘+1. In the case 𝑘 = 1,
depicted in Fig. 11(a), 𝑐 is an oriented boundary plaquette
(green), and 𝜕𝑐 consists of three links (yellow), one of which
is in the bulk. We decompose 𝜕𝑐 into the two links in the
boundary, denoted 𝜕𝑐 |𝜕𝑋, and the one link in the bulk, denoted
𝜕𝑐 |𝑋. The gauge field on the link in the bulk trivializes by the
constraint 𝐴 = d𝜃 into 𝜃 evaluated at its two endpoints, i.e.
𝜃 (𝜕 (𝜕𝑐 |𝑋)), depicted as red spheres in Fig. 11(b). These are
the degrees of freedom appearing in the boundary action in
Eq. (22). In the case 𝑘 = 2, Fig. 11(c), 𝑐 is a three-dimensional
cube and 𝜕𝑐 is a set of five plaquettes (yellow). In Fig. 11(d),
it decomposes into four plaquettes in the boundary (yellow),
𝜕𝑐 |𝜕𝑋, and one plaquette in the bulk, 𝜕𝑐 |𝑋. The constraint
turns the gauge field on this bulk plaquette into a Higgs string
operator on its boundary (red). The extension to larger 𝑘 is
obvious, but can’t be illustrated.

Using this, we can see that the boundary action Eq. (93)
contains precisely these minimal operators. In the general
case, the action reduces in this limit to

𝑆
bdry
𝜅→∞ = −𝛽

∑︁
𝑐∈𝜕𝑋𝑘+1

cos(d𝐴)𝑐 (𝐴bulk = d𝜃)

= −𝛽
∑︁

𝑐∈𝜕𝑋𝑘+1

cos(𝐴 − d𝜃)𝜕𝑐 |𝜕𝑋 . (97)

We have already seen in Section II how in the case 𝑘 = 1
this can be recast as a 0-form XY model, Eq. (22), which we
can now extend to the case 𝑘 > 1. Note that every boundary
𝑘-cell is associated to a unique bulk (𝑘−1)-cell (the one which

trivializes under the 𝐴 = d𝜃 constraint). We define composite
degrees of freedom for each such pair,

𝜗(𝑐) = 𝐴𝜕𝑋 (𝑐) − 𝜃 (𝑐) (𝑐 ∈ 𝜕𝑋𝑘−1), (98)

where 𝐴𝜕𝑋 (𝑐) is 𝐴 evaluated on the unique boundary cell
corresponding to 𝑐, which we treat as a (𝑘 − 1)-form rather
than a 𝑘-form. Note that 𝜗 are not gauge invariant when
𝑘 > 1, because they would create open charged objects, but
we can combine them to construct the gauge-invariant degrees
of freedom appearing in Eq. (97). For example, in the case
𝑘 = 2, each 𝜗 consists of 𝐴 on a boundary plaquette and −𝜃
on the bulk link it touches, four of which combine to form
the gauge-invariant composite object in Fig. 11(d). Let us
denote the layer of bulk cells which touch the boundary layer,
consisting of cells up to dimension 𝑑 − 1, as 𝑌 , illustrated in
Fig. 10 by the dark layer between 𝑋 and 𝜕𝑋 . Each (𝑘 + 1)-cell
𝑐 ∈ 𝜕𝑋 is associated to a unique 𝑘-cell 𝑐𝑌 ∈ 𝑌 . We treat 𝜗 as
a (𝑘 − 1)-form gauge field in 𝑌 , so that its exterior derivative
is given by

d𝜗(𝑐𝑌 ∈ 𝑌𝑘) = (𝐴𝜕𝑋 − 𝜃) (𝜕𝑐𝑌 ) = (𝐴 − d𝜃) (𝜕𝑐 |𝜕𝑋), (99)

where we identified 𝜕𝑐𝑌 with 𝜕𝑐 |𝜕𝑋. We can then write the
boundary action Eq. (97) as

𝑆
bdry
𝜅→∞ = −𝛽

∑︁
𝑐∈𝑌𝑘−1

cos(d𝜗). (100)

Equation (100) is precisely the action of a (𝑘 − 1)-form U(1)
gauge theory defined at the boundary of the system in terms
of composite half-open Wilson operators. In the case 𝑘 = 1 it
reduces to the 0-form XY model identified in Section II.

We conclude that a 𝑘-form Abelian-Higgs model in 𝐷 di-
mensions Higgses in the 𝜅 → ∞ limit down to a (𝑘 − 1)-form
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𝑘 = 1, 0-Form Higgs Field

𝜅→∞−−−−−→

𝜅→∞−−−−−→

(a) (b)

(c) (d)

𝑘 = 2, 1-Form Higgs Field

FIG. 11. An illustration of how the 𝜅 → ∞ constraint 𝐴 = d𝜃 turns
closed membrane operators exiting through the boundary into open
membrane operators terminating on a Higgs operator at the boundary.
Each boundary (𝑘 + 1)-cell 𝑐 has one bulk 𝑘-cell 𝑐′ in its boundary.
The constraint turns 𝐴(𝑐′) on this 𝑘-cell into d𝜃 (𝑐′) = 𝜃 (𝜕𝑐′). The
end result is that all operators of the form 𝐴(𝑀) where 𝑀 exits the
system through the boundary and is closed in the bulk are turned
into open operators terminating on Higgs operators at the boundary,
Eq. (96). We show (a,b) the case 𝑘 = 1 with a 0-form Higgs field,
where (a) a string operator exiting the system at both ends (yellow),
(b) turns into a pair of half-open string operators terminating on Higgs
operators (red); and (c,d) the case 𝑘 = 2 with a 1-form Higgs field,
where (c) a closed membrane operator exiting the system (yellow),
(d) turns into a “half-open” membrane terminating on a Higgs string
(red).

gauge theory on the𝐷 − 1 dimensional boundary. If𝐷 > 𝑘 + 2
(𝑘m > 0), this implies there will be a boundary phase transi-
tion. For 𝑘 = 1 this will be in the (𝐷 − 1)-dimensional XY
universality class, with a symmetry-broken phase at large 𝛽.
For 𝑘 > 1 it will be a confinement-deconfinement transition
(expected to be first-order [61]), with a confined phase at small
𝛽 and a deconfined phase at large 𝛽. This reduces to the results
reported in Section II for 𝑘 = 1 and 𝐷 = 4. The symmetry
that is spontaneously broken at large 𝛽 is the (𝑘 − 1)-form
matter symmetry, corresponding to the electric symmetry of
the boundary gauge theory when 𝑘 > 1, under which d𝜗 (as
a half-open Wilson operator) is charged. A summary of this
result is given in the table Table I for 𝑘 ≤ 3 and 2 ≤ 𝐷 ≤ 6,
which may be extended straightforwardly to all 𝑘 and 𝐷. In
the cases where 𝐷 = 𝑘 + 2 (𝑘m = 0), a generalized Mermin-
Wagner theorem [4, 6] (equivalently, the Polyakov mechanism
or magnetic instanton proliferation [58]) will prevent the sym-
metry from breaking.

B. Electric-Magnetic Dual Picture

We can gain further insight into these Abelian models and
the boundary symmetry breaking by reformulating them in
terms of dual magnetic variables. We will do so for gauge
group U(1). The duality transformation is well-established in
a variety of forms [26–29]. We derive it here in the presence

1-Form U(1)
Abelian-Higgs

2-Form U(1)
Abelian-Higgs

3-form U(1)
Abelian-Higgs

𝐷 = 2+1
2D 0-Form U(1)
BKT transition

𝑘m = 0
𝑘m = −1 𝑘m = −2

𝐷 = 3+1
3D 0-Form U(1)

continuous transition
𝑘m = 1

3D 1-Form U(1)
permanently confined

𝑘m = 0
𝑘m = −1

𝐷 = 4+1
4D 0-Form U(1)

continuous transition
𝑘m = 2

4D 1-Form U(1)
(de)confinement

transition
𝑘m = 1

4D 2-Form U(1)
permanently confined

𝑘m = 0

𝐷 = 5+1
5D 0-Form U(1)

continuous transition
𝑘m = 3

5D 1-Form U(1)
(de)confinement

transition
𝑘m = 2

5D 2-Form U(1)
(de)confinement

transition
𝑘m = 1

TABLE I. The boundary theories of 𝑘-form U(1) Abelian-Higgs mod-
els in 𝐷 spacetime dimensions in the 𝜅 → ∞ limit and their phase
transitions. The pattern is that a 𝑘-form Abelian Higgs model Higgses
down to a (𝑘 −1)-form gauge theory on the boundary without matter.
The number 𝑘m = 𝐷 − (𝑘 + 2) indicates the dimension of the mag-
netic worldlines of the bulk theory, 𝑗m in Eq. (107). Note that in the
𝛽 → ∞ limit the bulk has a corresponding 𝑘m-form symmetry. Gray
boxes indicates cases where the gauge field has no dynamics. The
top non-trivial box of each column, which has 𝐷 = 𝑘 + 2 (𝑘m = 0),
are affected by magnetic instanton proliferation (the Polyakov mecha-
nism or a generalized Mermin-Wagner theorem forbidding boundary
symmetry breaking) and do not exhibit a boundary phase transition,
except in the case 𝑘 = 1 in 𝐷 = 3, which can exhibit a BKT transition.

of our open boundary conditions, which provides a concrete
picture of both the electric and magnetic sectors of the theory
near the boundary.

1. Open Boundary Duality Transformation

The partition function of the original action for the 𝑘-form
gauge theory is

𝑍 =
∫

D𝐴D𝜃𝑒−𝛽
∑

(𝑋+𝜕𝑋)𝑘+1 cos(d𝐴)−𝜅 ∑
𝑋𝑘

cos(d𝜃−𝐴) . (101)

This can be turned into a theory of electric strings and particles
by utilizing the identity

𝑒−𝑥 cos(𝑦) =
∑︁
𝑛∈Z

𝐼𝑛 (𝑥)𝑒𝑖𝑛𝑦 ,

where 𝐼𝑛 are Bessel functions. We introduce integer (𝑘 + 1)-
form 𝑒 coupled to d𝐴 and 𝑘-form 𝑗e coupled to d𝜃 − 𝐴, to
rewrite the partition function exactly as

𝑍 =
∫
D𝐴D𝜃

∑︁
𝑒

∑︁
𝑗e |𝜕𝑋=0

𝐼𝑒 (𝛽)𝐼 𝑗e (𝜅)𝑒𝑖⟨𝑒,d𝐴⟩+𝑖⟨ 𝑗e ,d𝜃−𝐴⟩ .

(102)
The restriction 𝑗e |𝜕𝑋 = 0 arises from the fact that we did
not include half-open Wilson strings coupling the bulk to the
vacuum. Utilizing the adjointness relation ⟨𝑥, d𝑦⟩ = ⟨d†𝑥, 𝑦⟩,
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this reduces to

𝑍 =
∑︁
𝑒

∑︁
𝑗e |𝜕=0

𝐼𝑒 (𝛽)𝐼 𝑗e (𝜅)
∫
D𝐴𝑒𝑖⟨d

†𝑒− 𝑗e ,𝐴⟩
∫
D𝜃𝑒𝑖⟨d

† 𝑗e , 𝜃 ⟩

=
∑︁
𝑒

∑︁
𝑗e |𝜕=0

𝐼𝑒 (𝛽)𝐼 𝑗e (𝜅) 𝛿(d†𝑒 − 𝑗e) 𝛿(d† 𝑗e). (103)

We interpret the 𝑘-form 𝑗e as the worldlines swept out by the
(𝑘−1)-dimensional Higgs excitations (carrying integer electric
charge), and 𝑒 as the worldsheets swept out by the 𝑘-form
electric field. The first delta function is just the Gauss law—it
tells us that the worldsheets of electric flux must terminate on
the worldlines of the Higgs charges. The second delta function
enforces that the the worldlines 𝑗e are “divergence-free,” i.e.
they form closed 𝑘-dimensional surfaces, corresponding to
global conservation of charge. Note that, because the electric
worldsheets can end, the electric 1-form symmetry d†𝑒 = 0,
present when 𝜅 = 0, is explicitly broken, though it can be
restored as an emergent symmetry at energies below the charge
gap.

With the choice of “electric” boundary conditions (Fig. 2),
we have the constraint 𝑗e = 0 on all links extending from
the bulk to the vacuum in Eq. (103), because there is no d𝜃
term for these links, while 𝑒 can be non-zero on the boundary
plaquettes. This means that electric charge cannot enter or
exit the system, but electric flux can. The fluxes in the bulk
form closed surfaces unless they terminate on charges. In the
presence of the boundary these fluxes may be cut off at the
boundary without terminating on charges.

We resolve the two constraints by writing8

𝑗e = d†ℎ, 𝑒 = ℎ + d†𝑎m, (104)

for integer (𝑘 + 1)-form ℎ and (𝑘 + 2)-forms 𝑎m, respectively.
Note that these are not gauge-invariant and can be shifted by
co-exact forms. We utilize the large-argument expansion of
the Bessel functions,

𝐼𝑛 (𝑧) ≈ 𝑒𝑧√
2𝜋𝑧

(
1 − 4𝑛2 − 1

8𝑧

)
≈ 𝑒𝑧+1/8𝑧

√
2𝜋𝑧

𝑒−𝑛
2/2𝑧 ,

to approximate the partition function by9

𝑍 ≈
∑︁
𝑎m

∑︁
ℎ

𝑒−
(d†𝑎m+ℎ)2

2𝛽 𝑒−
(d†ℎ)2

2𝜅 𝛿(d†ℎ|𝜕𝑋), (105)

where the delta function comes from the constraint 𝑗e |𝜕 = 0
and we dropped the prefactor. Finally, we apply Poisson re-
summation to turn these into real-valued fields,∑︁

𝑛∈Z
𝑓 (𝑛) =

∫
R

d𝑥
∑︁
𝑚∈Z

𝑓 (𝑥)𝑒−2𝜋𝑖𝑚𝑥 .

8 Note that 𝑗e and 𝑒 can have a harmonic component corresponding to the
electric winding sectors which we neglect. These give rise to ground state
degeneracies in the topological Coulomb phase.

9 We use the shorthand (𝜔)2 to denote ⟨𝜔, 𝜔⟩.

We promote the integer fields to real fields,

ℎ → 𝐻 and 𝑎m → 𝐴m, (106)

coupled respectively to integer currents 𝑏 and 𝑗m via Poisson
resummation. Lastly, we move to the dual lattice, replacing
d†𝛼 ↔ d�̃� for each 𝑝-form 𝛼, where �̃� is a (𝐷 − 𝑝)-form in
the dual lattice, the discrete Hodge dual of 𝛼. We thus obtain
the dual partition function

𝑍dual =
∑̃︁
𝑗m ,�̃�

∫
d�̃� |𝜕�̃�=0
D�̃�D �̃�m𝑒

− (d�̃�m+�̃�)2
2𝛽 − (d�̃�)2

2𝜅 𝑒−𝑖2𝜋 [ ⟨ �̃�m , 𝑗m ⟩+⟨�̃�,�̃�⟩ ] ,

(107)
where 𝑗m and �̃�m are (𝐷 − (𝑘 + 2)) forms, while �̃� and �̃�
are (𝐷 − (𝑘 + 1)) forms, with the constraint that d�̃� is zero
within the dual boundary layer coming from the delta function
in Eq. (105). Finally, let us rescale the fields by absorbing the
2𝜋 into the definition of �̃�m and �̃�, to obtain the dual action

𝑆dual = − 𝛽′

2
(d�̃�m + �̃�)2 − 𝜅′

2
(d�̃�)2 − 𝑖[⟨�̃�m, 𝑗m⟩ + ⟨�̃�, �̃�⟩],

(108)
with dual couplings 𝛽′ = 1/4𝜋2𝛽 and 𝜅′ = 1/4𝜋2𝜅.

The currents 𝑗m and �̃� correspond to the winding defects
of the U(1) gauge field 𝐴 and the Higgs field 𝜃, respectively.
The former are the magnetic monopole worldlines, while the
latter are the worldsheets of the vortices of the Higgs field.
Under a gauge transformation of the R-valued gauge fields
�̃�m → �̃�m + �̃�, �̃� → �̃� − d�̃�, the action is shifted by

𝛿𝑆bulk
dual = −𝑖[⟨𝜆, 𝑗m⟩ − ⟨d�̃�, �̃�⟩] = −𝑖⟨�̃�, 𝑗m − d†�̃�⟩. (109)

If we integrate over all gauges, i.e. over all the generators �̃�,
we obtain delta functions that yield the constraint

𝑗m = d†�̃�. (110)

This says that the magnetic monopole worldlines form the
boundaries of the Higgs vortex worldsheets. This is precisely
the magnetic Gauss law, i.e. it says that magnetic monopoles
are the sources of magnetic strings (compare to the electric
Gauss law Eq. (103)). This is familiar from superconductor
phenomenology—vortex cores carry magnetic flux. It also fol-
lows from this that d† 𝑗m = 0, i.e. that the magnetic worldlines
are closed and magnetic charge is conserved, which follows
from the “gauge-of-gauge” invariance �̃�m → �̃�m + d�̃� for ar-
bitrary �̃�.

This theory can be recast as a U(1) gauge theory as fol-
lows. Summing over �̃� undoes one of the Poisson resumma-
tions and forces �̃� = 2𝜋ℎ̃, where the integer field ℎ̃ is the
Hodge dual of ℎ in Eq. (105). The residual gauge symmetry
is �̃�m → �̃�m + 2𝜋𝑙 and �̃� → �̃� − 2𝜋d𝑙, where 𝑙 is an integer
shift, meaning that the gauge-invariant configuration space for
�̃�m is actuallyR/2𝜋Z and for �̃� is 2𝜋Z. The resulting theory
is therefore a Villainized 𝑘m-form U(1) gauge theory [20, 62]
(Eq. (84)) coupled to magnetic currents, the dual of the origi-
nal Abelian Higgs model model, Eq. (101), which was coupled
to electric currents. The integer gauge field ℎ̃ measures the
winding numbers of the compact �̃�m, and its fluxes d�̃� are the
homotopy defects of �̃�m, which are the electric charges of the
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original theory. They act as sources for the fluxes d�̃�m, which
are the electric strings in the direct lattice.

Let us briefly review how the dual bulk behaves in the var-
ious limits in the Maxwell case, 𝐷 = 4 and 𝑘 = 1. First, con-
sider the 𝛽 → ∞ (𝛽′ → 0) limit: in the electric formulation
the gauge field is turned off, d𝐴 = 0, and the remaining Higgs
sector is a gauged 4𝐷 XY model. In the dual theory the mag-
netic charges are turned off (integrating �̃�m sets 𝑗m = 0) and
the magnetic 1-form symmetry is restored, resulting in a gas of
closed membranes interacting via their coupling to the 2-form
gauge field. Performing the Gaussian integration over �̃� we
obtain the action (𝜅′/2)⟨𝜔, (d†d)−1𝜔⟩, i.e. the gauge field �̃�
generates Coulomb interactions among the membranes.

Next, consider the 𝜅 → 0 (𝜅′ → ∞) limit. Electric charges
are turned off, restoring the electric 1-form symmetry and re-
ducing to a pure U(1) gauge theory. In the dual theory the
gauge field �̃� is turned off, d�̃� = 0. The theory reduces to a
Coulomb gas of magnetic monopole worldlines [26, 58], which
has a transition separating the deconfined phase (low temper-
ature condensate) and the confined phase (high temperature
gas).

Lastly, consider the 𝛽 → 0 (𝛽′ → ∞) limit, the strong cou-
pling limit of the original theory. In the electric theory, we can
fix unitary gauge to remove 𝜃 and obtain the action −𝜅 cos(𝐴)
on every link independently, so the system is fully disordered.
Equivalently, if we use Eq. (103), setting 𝛽 = 0 forces all of
the Bessel functions to vanish except when 𝑒 = 𝑗e = 0, which
reduces the partition function to

∏
ℓ 𝐼0 (𝜅). In the dual theory,

𝛽′ → ∞, the weak coupling limit, and we have the constraint
�̃� = −d�̃�m, which further implies d�̃� = 0. The resulting the-
ory then just has Lagrange multipliers that force the charge
loops and membranes to vanish, so the theory trivializes com-
pletely.

2. Dual Boundary Symmetry Breaking

We now consider setting 𝜅′ = 0 in Eq. (108) (𝜅 → ∞). The
variables in play are �̃�m and 𝑗m, defined on all links of the dual
lattice, and �̃� and �̃� on all plaquettes. In the bulk, the 𝜅′ = 0
means that the kinetic term for �̃� drops out and so the fluxes
of �̃� (corresponding to electric charges of the original action)
are completely unconstrained. In other words, the bulk �̃� is in
the strong coupling limit. We may integrate out �̃�, to obtain

𝑆bulk
dual = − 1

2𝛽′
⟨�̃�, �̃�⟩ − 𝑖⟨�̃�m, ( 𝑗m − d†�̃�) |�̃�⟩. (111)

For a closed system, we can integrate out �̃�m and express the
bulk partition function in the form

𝑍bulk
dual

𝜅→∞−−−−→
∑̃︁
𝑏

∑̃︁
𝑗m

𝑒−⟨�̃�,�̃�⟩/2𝛽
′
𝛿(𝑑†�̃� − 𝑗m). (112)

The sum is over all possible configurations of the (open or
closed) worldsheets �̃� with a bare surface tension 1/𝛽′ ∝ 𝛽.
An intuitive picture in the Maxwell case, 𝑘 = 1 and 𝐷 = 4,
is that in a time slice this corresponds to magnetic monopole

pairs attached by a magnetic string with linearly rising poten-
tial, i.e. the magnetic charges are confined in this limit, as
expected for a bulk electric condensate which collimates the
magnetic field into flux tubes. The characteristic size (“De-
bye” screening length) of the neutral monopole pairs tends
to zero as 𝛽 tends to ∞. Alternatively, we may view this
as monopole strings (worldlines) 𝑗m interacting electrostati-
cally through the membranes of the 𝑏 field. For large 𝛽 the
membranes are short, meaning that the strings are bound into
charge-neutral pairs. This phase persists to all 𝛽 because the
entropic gain of dipole strings outweighs their energetic cost
at all effective temperatures.

Now consider an open boundary. Recall that the boundary
of the dual lattice is “flat”, as shown in Fig. 10, i.e. it has no
cells extending into the vacuum. This means that no magnetic
charge or magnetic flux can exit the system. More concretely,
the constraint 𝑗e |𝜕𝑋 = 0, in Eq. (102), in the electric variables
is reflected in the dual constraint d�̃� |𝜕�̃� = 0 on every dual
boundary link, which enforces that �̃� is pure gauge in the dual
boundary layer. This means that the boundary action has no 𝜅
dependence. We resolve the boundary constraint as �̃� = d 𝑓 ,
so that

𝑆
bdry
dual = − 𝛽′

2
(d( �̃�m+ 𝑓 ))2−𝑖⟨�̃�m, 𝑗m |𝜕�̃�⟩−𝑖⟨d 𝑓 , 𝑏 |𝜕�̃�⟩ (113)

We then define a composite field �̃� = �̃�m + 𝑓 , which is gauge
invariant under the gauge transformations �̃�m → �̃�m + 𝜆 and
𝑓 → 𝑓 − 𝜆. This allows us to rewrite the boundary action as

𝑆
bdry
dual = − 𝛽′

2
(d�̃�)2 − 𝑖⟨�̃�, d†�̃� |𝜕�̃�⟩ − 𝑖⟨�̃�m, ( 𝑗m − d†�̃�) |𝜕�̃�⟩.

(114)
To proceed from here we need to be careful about how the 𝑗m
and �̃� can move between the bulk and boundary layers. We
do so in the 𝜅 → ∞ limit, by combining this with the bulk
action Eq. (111). We can then integrate out �̃�m to generate
the magnetic Gauss law, which is enforced on every link. This
leaves us with the total action

𝑆dual
𝜅→∞−−−−→ − 1

2𝛽′
⟨�̃�, �̃�⟩�̃� − 𝛽′

2
(d�̃�)2

𝜕�̃�
− 𝑖⟨�̃�, 𝑗m |𝜕�̃�⟩. (115)

The boundary portion describes monopoles moving in the
boundary layer interacting via a non-compact gauge field.

One should be concerned here as to how the 𝑗m from the
bulk (edges of �̃�) couple to the boundary. The key to under-
stand what happens here is that (i) the �̃� membranes can lie
in the boundary layer where they cost zero action, and (ii) this
action to be gauge-invariant under shifts of �̃�, we must have
an additional boundary Gauss law,

d† 𝑗m |𝜕�̃� = 0 (116)

This implies that, in the limit 𝜅 → ∞, magnetic monopoles
cannot move between the boundary and the bulk, i.e. there
is a (𝑘m − 1)-form symmetry on the boundary (0-form in
the Maxwell case) corresponding to conservation of bound-
ary magnetic charge. The action Eq. (115) is precisely the
dual of the 𝜅 = ∞ boundary (𝑘 − 1)-form U(1) gauge theory
Eq. (100), a 3D XY model in the Maxwell case.
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The 𝑗m in the boundary layer must be coupled to �̃� mem-
branes by the magnetic Gauss law, but these have zero tension
if they lie entirely within the boundary layer. This means
that the Higgs vortices (magnetic field lines) are effectively
not present within the boundary layer. This was by construc-
tion, since there were no d𝜃 terms in the original action which
would allow for vortices of the Higgs field within the bound-
ary layer. As a result, in the partition function to leading order
the boundary and bulk are effectively decoupled from each
other. Given any configuration of monopole worldlines 𝑗m,
which are closed in the boundary and closed in the bulk, the
dominant contribution to the partition function will be for the
boundary 𝑗m to be connected to tensionless membranes in the
boundary, rather than to be connected to a bulk monopole by
a tensionful one. As a result, the monopoles on the boundary
can condense at small 𝛽, which is the dual to the boundary
symmetry breaking transition we found in the electric formu-
lation. One can then consider turning on small 𝜅′ and doing a
strong coupling expansion. This will have the effect of renor-
malizing the bulk length scale enabling boundary monopoles
to extend further into the bulk by extending a magnetic flux
tube while preserving the quasi-(𝐷 − 1)-dimensional nature
of the boundary.

C. Summary and Discussion: Higher-Form Case

In this section, we have generalized our results from Sec-
tion II on 1-form Abelian-Higgs models to higher form
Abelian-Higgs models in 𝐷 spacetime dimensions. In particu-
lar, we found that 𝑘-form gauge field coupled to a (𝑘 −1)-form
Higgs field reduces at infinite 𝜅 to a (𝑘 −1)-form gauge theory
on the boundary whose dynamical degrees of freedom are half-
open Wilson branes terminating on the Higgs field as soon as it
enters the bulk. This boundary theory exhibits a confinement-
deconfinement transition when 𝐷 > 𝑘 + 2 (𝑘m > 0), which
spontaneously breaks the (𝑘−1)-form global matter symmetry
at large 𝛽. Table I summarizes this pattern of boundary sym-
metry breaking. In the marginal cases, 𝐷 = 𝑘 + 2 (𝑘m = 0), a
generalized Mermin-Wagner theorem prevents the symmetry
from breaking, except in the case 𝐷 = 3 and 𝑘 = 1, where we
predict a BKT boundary transition. There are also precisely
the cases where the same mechanism destabilizes the decon-
fined phase in the bulk [55, 56]. As in the 1-form Abelian and
non-Abelian cases studied numerically in this paper, we ex-
pect that this boundary phase transition extends into the phase
diagram when bulk fluctuations are restored and will end at a
bulk critical point, demarcating a boundary between the Higgs
and confining regimes.

The general mechanism for this emergent boundary theory at
large 𝜅 identified by considering higher-form Abelian-Higgs
models revolves around the constraint 𝐴 = d𝜃 enforced ex-
actly at infinite 𝜅. This constraint implies that the Wilson
operators which create electric charges attached to electric
membranes, exp[𝑖(d𝜃 − �̂�) (𝑀)] for open surfaces 𝑀 , act as
the identity. This naïvely indicates that the system is a con-
densate of electric charge in this limit, i.e. the ground state is a
coherent state of the charge annihilation operators. As a con-

sequence, the electric-brane insertion operators exp[𝑖 �̂�(𝑀)]
for closed surfaces 𝑀 trivialize in the bulk. In the presence of
electric-flux-permeable open boundaries, however, operators
inserting electric flux through the boundary are immediately
screened as soon as they enter the bulk, terminating on the
Higgs field, as shown in Fig. 11, and become charged under
the matter symmetry. These operators are the dynamical de-
grees of freedom at play at the boundary which exhibit the
matter symmetry breaking. Presumably when 𝜅 is reduced the
electric flux can penetrate further into the system before being
screened by the electric charge condensate, forming a quasi-
(𝐷 − 1)-dimensional boundary. It would be interesting to ex-
plore whether this mechanism can be extended to higher-form
non-Abelian theories described by higher-categorical gauge
groups [63–67].

In the second part of this section, we studied the dualized
version of these theories, identifying the boundary degrees of
freedom and accounting, in the 1-form case and 𝐷 = 4, for the
existence of the dual to the 3D XY model that we found in terms
of direct variables. Magnetic charge moves in the boundary
layer, and there is an extra Gauss law in the 𝜅 → ∞ limit which
originates from the constraint that electric charge cannot leave
the system. This enforces that magnetic charge cannot leave the
boundary into the bulk, and thus the charges on the boundary
can condense, leading to the dual phase transition. It would be
of interest to study the dual theory in more detail, since it gives
a clearer picture of the boundary symmetry breaking in the
large-𝜅 (small 𝜅′) limit. In particular, it would be worthwhile
to pursue Monte Carlo simulations in the dual representation,
for which efficient algorithms have been developed [68–70].
It is also worth re-emphasising the importance of our choice
of boundary conditions, which prevented electric charge from
leaving the system while allowing electric flux to leave. In the
dual theory this led to a flat dual boundary, meaning magnetic
charge and flux is always contained in the system and cannot
leave. It follows that if one started with flat boundaries, which
keep all electric charge and flux inside the system, the dual
boundaries would be open, i.e. magnetic charges are kept in
the system but magnetic flux can leave. This implies a physical
magnetic charge symmetry which can spontaneously break in
the confined regime rather than the Higgs regime, with a phase
transition on the 𝛽 = 0 axis instead of the 𝜅′ = 0 axis.

V. DISCUSSION AND CONCLUSION

A. Summary and Outlook

In this work we have explored a variety of models of charged
Higgs fields coupled to gauge fields in the fundamental repre-
sentation, under the imposition of boundary conditions which
allow electric flux, but not charge, to exit the system. In a
closed system, the gauge field does not have a physical global
charge symmetry which can spontaneously break, because a
charge is always attached to electric flux, which must end
inside the system on another charge. With the “electric-flux-
permeable” boundary conditions we consider, the charge sec-
tors and global symmetry become physical, as non-zero bulk
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charge can be compensated by non-zero boundary flux, and
can in principle spontaneously break. This work, focusing on
the boundary degrees of freedom, complements work explor-
ing the interplay of global and gauge symmetries in the bulk.
See, for example, recent work in Refs. [71–75].

We have considered the Abelian-Higgs model, two types
of non-Abelian Higgs models (with fundamental representa-
tion and group-valued Higgs fields), and higher-form Abelian-
Higgs models. In terms of the inverse gauge coupling 𝛽 and
the matter coupling 𝜅, all of these models share the common
feature of a continuity between an electric-charge confining
regime at small 𝛽, 𝜅, and a Higgs regime at large 𝛽, 𝜅, which are
two ends of one continuous thermodynamic phase, as proven
by Fradkin and Shenker [12]. We have demonstrated through
a combination of analytical argument and numerical investiga-
tion that, under all but a few marginal cases, there is a boundary
phase transition which indicates the spontaneous breaking of
the matter symmetry at large 𝛽, 𝜅, i.e. in the Higgs regime.

Ref. [19] predicted a boundary phase transition in the case
of gauge group Z2, and verified it using DMRG in 𝐷 = 2 + 1
dimensions. Ref. [20] predicted the boundary transition for a
magnetic monopole-free Abelian U(1) Higgs model without
numerics. Using lattice gauge theory Monte Carlo simulations,
we have explored a wider range of models, both for Abelian
and non-Abelian gauge groups. In Section II, we have numer-
ically verified and studied the boundary transition for gauge
group U(1) (with monopoles) in 𝐷 = 3 + 1 dimensions, which
exhibits a boundary XY transition. In Section III, we extended
this to non-Abelian gauge groups, performing numerical sim-
ulations for both SU(2) and SU(3) gauge theories coupled
to fundamental Higgs fields in 𝐷 = 3 + 1, and considered
generalizations to SU(𝑁), SO(𝑁), and general gauge groups.
Lastly, in Section IV we studied higher-form generalizations of
Abelian-Higgs models, and demonstrated that the correspond-
ing higher-form matter symmetry can spontaneously break at
the boundary. In all of our numerical simulations, the nature
of the boundary phase transitions deduced from the numerical
data conforms to predictions obtained by studying the 𝜅 → ∞
limit.

We expect the considerations in this work to extend further to
all gauge groups and different Higgs representations. Notably
we have not discussed higher-rank gauge theories coupled to
scalar matter that are connected to fractonic excitations, but
here too one may preserve the Gauss law for tensor fields on the
boundary and expect a U(1) global symmetry that, for certain
classes of such models, can be broken spontaneously. It would
also be of interest to extend these results to discrete non-
Abelian gauge groups, and non-Abelian higher-form gauge
theories with higher-categorical gauge groups.

Already in the seminal work of Fradkin and Shenker [12] it
was understood that in gauge theories with fundamental Higgs
matter, under most circumstances thermodynamic quantities
exhibit no singularities along paths between Higgs and con-
fined regimes, meaning that they form the same bulk phase of
matter. The boundary spontaneous symmetry breaking inves-
tigated in this paper does not contradict this result, because
it does not define a precise bulk phase boundary between the
Higgs and confined regimes. Indeed, as we observed, one may

tune the boundary coupling while preserving all the bulk prop-
erties to shift the location of the boundary phase transition.

B. Higgs=SPT

It would be remiss of us to conclude this paper without a
description of some of the work that motivated this study—
namely the papers [18–20] discussing the relationship of Higgs
phases to symmetry-protected topological (SPT) phases. We
briefly summarize the main findings therein and comment on
how our results bear on the generality of this relationship.

An SPT phase is a state of matter that cannot be adiabatically
connected to a trivial phase under local symmetry-preserving
perturbations without closing a gap. In general, a trivial phase
can be reached without gap closure only if those symmetries
are broken. A classic example of an SPT phase in an interacting
lattice model is the spin one-half chain—the cluster model—
whose nontrivial topology is protected by Z2 ×Z2 symmetry.
A consequence of the topological nature of the phase is the
presence of gapless states localized at the boundary of an open
chain. In [18] it was realized that the cluster SPT order emerges
in the Higgs phase of theZ2-gauged Ising chain in the absence
of the electric string tension term. Moreover, the fermionic
SPT order of the gauged Kitaev chain in the Higgs regime was
identified.

Many 2+1 dimensional SPT phases are known and one of the
latest to be added to the inventory of phases lives in the phase
diagram of the 2+1 dimensionalZ2 gauge theory coupled min-
imally to Ising matter. Using the notation of this paper, where
the gauge coupling is denoted by 𝛽 and the matter coupling by
𝜅, the famous deconfined toric code model lives at 𝜅 = 0 and
𝛽 → ∞. It was argued in Ref. [19] that deep in the Higgs limit
𝜅 → ∞ and 𝛽 → ∞ (where both gauge and matter degrees of
freedom are frozen in the bulk and the theory has a magnetic 1-
form Ising symmetry) the model maps to the two-dimensional
cluster SPT protected by the 1−form magnetic symmetry and a
0-form Ising matter symmetry 10. The Ising matter symmetry
is trivialized in the bulk by gauging, but survives as a global
symmetry in presence of a boundary. This then has gapless
surface states localized on symmetry-preserving boundaries.
It was further shown that this phase persists to large but finite
𝜅 at 𝛽 → ∞, where both protecting symmetries remain intact.
Going to finite 𝛽 breaks the magnetic 1-form symmetry yet at
𝜅 → ∞ only the boundary degrees of freedom can fluctuate
and are governed by an effective one-dimensional transverse
field Ising model that is in the spontaneously broken phase for
large 𝛽. The gapless edge modes thus originate from the Ising
degeneracy of this phase. It is expected [77] that the 1−form
symmetry survives in the infrared even though it is explicitly
broken away from 𝛽 → ∞. In other words one can think about
it as a low-energy emergent symmetry. Protected by the Ising
matter 0-form symmetry and the emergent magnetic 1-form
symmetry, the low-energy edge modes thus should survive

10 For earlier work on SPTs protected by generalized symmetries see for
example Refs. [67, 76]
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within some window of parameters even away from 𝛽 → ∞
limit. It was verified numerically that there is indeed a phase
with a gapless boundary within the entire Higgs regime of the
model. The phase diagram of this model bears a great deal of
resemblance to our Fig. 1 with a phase transition line originat-
ing at a triple point at the innermost corner of the deconfined
phase and ending on a critical endpoint. Within the resolution
of the DMRG numerics of Ref. [19] the phase boundary to the
boundary gapless phase extends from the critical endpoint.

A follow-up work extended the results to𝑈 (1) Higgs phases
[20]. In 3+1D the relevant symmetries are the matter U(1) 0-
form symmetry associated with 𝑞 = 1 charge conservation and
an exact magnetic 𝑈 (1) 1-form symmetry, whose conserved
current 𝐽mag ≡ 𝑑𝑎. We may couple the currents to background
gauge fields—one-form 𝐴 for the matter current and two-form
𝐵 for 𝐽mag. Deep in the Higgs regime, the topological response
was found to be

𝑆SPT =
1

2𝜋

∫
𝐵 ∧ 𝑑𝐴. (117)

This SPT response is a consequence of a mixed anomaly be-
tween the matter and magnetic symmetries, which is cured by
adding boundary degrees of freedom. For the 3 + 1D Higgs
phase the boundary theory takes the form

𝑆Boundary =
1

2𝜋

∫
𝑑𝜑 ∧ 𝑑𝜗 (118)

for the conjugate pair: a compact scalar field 𝜑 and a compact
𝑈 (1) gauge field 𝜗. This describes a boundary𝑈 (1) superfluid
phase. The continuum discussion was supplemented in Ref.
[20] with a lattice Villain formulation, where monopoles are
under control and the magnetic 1-form symmetry is preserved.

We have briefly reviewed the results of [18–20] on connec-
tions between SPT and Higgs phases. But what bearing, if any,
do the results we have reported have on this scenario? After
all, at no stage of this work did we invoke bulk topological
arguments to understand the existence of the boundary phase
transition. It was possible to understand the global symmetry
breaking purely at the level of the boundary theory. Even so,
given the arguments sketched above, one might seek a descrip-
tion in terms of an SPT order since it would shed light on how
robust the boundary symmetry breaking actually is.

In the 4D compact Wilson 𝑈 (1) model coupled to the fun-
damental Higgs discussed in Sec. II the 1-form𝑈 (1) magnetic
symmetry is broken explicitly by monopoles. However, in the
limit 𝛽 → ∞, where electromagnetic fields freeze, monopole
creations/annihilations are suppressed and the magnetic 1-
form symmetry emerges. Based on general arguments of [20],
the interplay of the 0-form matter and 1-form magnetic 𝑈 (1)
symmetries should give rise to a gapless symmetry-preserving
boundary. Sure enough we have established the presence of
such a boundary phase numerically. Moreover, in agreement
with arguments of [19, 20], the gapless nature of the boundary
survives beyond the symmetric 𝛽 → ∞ limit, as is clear in
the 𝜅 → ∞ limit where the boundary maps to a three dimen-
sional XY model. This much follows from ideas put forward in
[19, 20]. However, in contrast to the models studied in [19, 20],
our bulk model in the 𝛽 → ∞ limit becomes gapless for large 𝜅

since it can be thought of (in the unitary gauge) as the ordered
phase of a four-dimensional XY model.11 Obviously, it cannot
support a gapped SPT phase. It may be interesting to explore
this regime of the phase diagram more closely and determine
whether it exhibits a gapless SPT order. It is also important
and interesting to understand better the role of the 𝛼 coupling
from the point of view of the bulk SPT.

The physics of the non-Abelian gauge theories with Higgs
matter gives rise to another puzzle. In Sec. III we have
argued that in the limit 𝛽, 𝜅 ≫ 1 boundary is expected to
be gapless rather generically. If the Higgs=SPT scenario is
general enough to encompass the non-Abelian cases too, one
should be able to identify the protecting (higher-form) bulk
symmetries. Pure SU(𝑁) gauge theory has a Z𝑁 center 1-
form symmetry and the electric field (Wilson) lines in SU(𝑁)
transform non-trivally under the center of the group. The
center symmetry, however, is broken explicitly in the presence
of the fundamental Higgs matter. This should be analogous to
the breaking of electric one-form symmetry in the Abelian case
discussed above. But, in the limit 𝛽 → ∞ the Abelian theory
also has a magnetic (𝐷 − 3)-form symmetry which, together
with the matter symmetry, protects the SPT order. In contrast,
’t Hooft lines transform trivially under the center of the group.
Currently it is unclear to us whether there is a generalized
symmetry present at 𝛽 → ∞ for non-Abelian gauge group that
is an analog of the magnetic one-form symmetry emerging in
the Abelian case. Whether SPT order is responsible for the
gapless nature of the symmetry-broken boundary phase in the
non-Abelian gauge theories coupled to Higgs matter is an open
question.

Taking a broader perspective, it would be interesting to
search for mutual anomalies between the bulk matter (equiva-
lently, boundary flux) symmetry and any emergent higher-form
symmetries which may be present in the 𝛽 → ∞ limit arising
from suppressing homotopy defects of the gauge field.
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Appendix A: Discrete Differential Calculus for Abelian Fields

We utilize notation which mimics continuum differential
forms on a lattice, borrowed from algebraic topology [78] and
used extensively in Section IV. Pedagogical treatments can be

11 In contrast, approaching 𝛽 → ∞ from the 𝜅 → ∞ limit apparently preserves
a finite gap.
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found in [29, 48]. Fields are described (locally) as differential
forms (i.e. anti-symmetric tensors), whose primary property
is that they can be integrated over surfaces. For our purposes
we can think of them simply as functions of such surfaces, i.e.
if 𝜔 is a differential 𝑘-form and 𝑈 an oriented 𝑘-dimensional
surface, 𝜔 acts on 𝑈 by integration

𝜔(𝑈) :=
∫
𝑈

𝜔, (A1)

which results in some number. There are two main properties
that we wish to preserve on the lattice: reversing the orientation
of 𝑈 changes the sign of the integral, and if 𝑈 is divided into
a collection of smaller parts the total integral is the sum of the
integrals over the parts, i.e.

𝜔(−𝑈) = −𝜔(𝑈),
𝜔(𝑈1 +𝑈2) = 𝜔(𝑈1) + 𝜔(𝑈2), (A2)

where −𝑈 denotes the reversed orientation. Lastly, we can
naturally define the derivative of a 𝑘-form 𝜔 to be a (𝑘 + 1)-
form d𝜔 whose value on a (𝑘 + 1)-dimensional surface 𝑈 is
defined by Stoke’s theorem,∫

𝑈

d𝜔 :=
∫
𝜕𝑈

𝜔, (A3)

where 𝜕𝑈 denotes the boundary of 𝑈.
In this paper, our space(time) is a 𝐷-dimensional cubical

cell complex—a collection of 𝑘-cells for 𝑘 = 0, . . . , 𝐷, i.e.
vertices, links, plaquettes, cubes, hypercubes, etc., where 𝑘-
cells are glued along their (𝑘 −1)-dimensional boundary cells.
We denote the collection of all cells by 𝑋 and the collection of
all 𝑘-cells by 𝑋𝑘 . Because we also consider open boundaries
in the form of Fig. 2, we let 𝑋𝑘 denote just the bulk 𝑘-cells and
𝜕𝑋𝑘 denote the 𝑘-cells in the boundary layer which touch the
vacuum.

The cells naturally provide the integration surfaces once
equipped with an orientation. It is natural to define the pos-
sible integration surfaces therefore as integer weighted linear
combinations of oriented 𝑘-cells, call 𝑘-chains. The signs of
the integer coefficients determine the orientations and their
magnitudes determine how many times to integrate over each
cell. Since we can formally add such chains together, they
form an Abelian group, C𝑘 . The structure of the cell complex
is contained in the boundary relation,

𝜕 : C𝑘 → C𝑘−1, (A4)

which distributes over the linear combinations on 𝑘-cells, and
sends each oriented 𝑘-cell to the linear combination of its
oriented boundary (𝑘 − 1)-cells.

The sensible lattice analog of a differential form, i.e. a
discrete 𝑘-form, also called a 𝑘-cochain, is a function which
(i) maps chains to numbers, Eq. (A1), and (ii) disributes over
linear combinations, Eq. (A2). In full generality, a discrete 𝑘-
form 𝜔 is a linear map from chains to elements of any Abelian
group G,

𝜔 : C𝑘 → G. (A5)

In practice what this means is that a disrete 𝑘-form is de-
fined by its value on each oriented 𝑘-cell 𝑐, and satsfies
𝜔(−𝑐) = −𝜔(𝑐), where −𝜔 is understood as the inverse op-
eration in the Abelian group G. The space of discrete 𝑘-forms
is denoted C𝑘 (G). Since we already have a natural notion
of the boundary operation on chains, we can define a natu-
ral exterior derivative operation on cochains, d : C𝑘 → C𝑘+1,
according to Stoke’s theorem, i.e.

d𝜔(𝑈) := 𝜔(𝜕𝑈), (A6)

where 𝜔 is a 𝑘-form, d𝜔 is a (𝑘 + 1)-form, and 𝑈 is a (𝑘 + 1)-
chain.

Denoting the coefficients in a 𝑘-chain 𝑢 by

𝑢 =
∑︁
𝑐∈𝑋𝑘

𝑢𝑘 𝑐 (𝑢𝑘 ∈ Z), (A7)

where each 𝑘-cell is summed once with a fixed orientation, we
can define a natural inner product on 𝑘-chains as

(𝑢, 𝑤) =
∑︁
𝑐

𝑢𝑐𝑤𝑐 . (A8)

Using this, we can define an adjoint of the boundary operator,
which we call the coboundary,12

(𝑢, 𝜕𝑣) = (𝜕†𝑢, 𝑣). (A9)

In particular, the coboundary of a single 𝑘-cell is

𝜕†𝑐 =
∑︁

𝑐′∈𝑋𝑘+1

(𝜕†𝑐)𝑐′𝑐′ =
∑︁

𝑐′∈𝑋𝑘+1

(𝜕†𝑐, 𝑐′)𝑐′ =
∑︁

𝑐′∈𝑋𝑘+1

(𝑐, 𝜕𝑐′)𝑐′ (A10)

By choosing to orient all the 𝑐′ in the sum such that (𝑐, 𝜕𝑐′) =
+1 or 0, we can read this to say that the coboundary of an
oriented 𝑘-cell 𝑐 is the sum of all oriented (𝑘 + 1)-cells con-
taining +𝑐 in their positively oriented boundary. For example,
the coboundary of a point 𝑖 is the set of oriented links which
terminate at it, the coboundary of a link ℓ is the set of plaque-
ttes 𝑝 touching it, oriented so that 𝜕𝑝 circulates in the same
direction as ℓ is oriented, etc.

The couboundary defines a co-exterior derivative, via a “co-
Stoke’s theorem”,

d†𝜔(𝑐) := 𝜔(𝜕†𝑐), (A11)

which reduces the degree of forms. In the case that G is Z,R,
or C, we can also define an inner product for 𝑘-forms,

⟨𝛼, 𝛽⟩ =
∑︁
𝑐∈𝑋𝑘

𝛼(𝑐)∗𝛽(𝑐) (A12)

12 Note that this differs from the algebraic topology terminology, where the
discrete exterior derivative is often called the coboundary.
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where ∗ denotes complex conjugation. It is easy to see that the
codifferential is adjoint to the differential,

⟨𝛼, d𝛽⟩ =
∑︁
𝑐∈𝑋𝑘

𝛼(𝑐)∗ 𝛽(𝜕𝑐) =
∑︁
𝑐

𝛼(𝑐)∗
∑︁
𝑐′∈𝜕𝑐

𝛽(𝑐′)

=
∑︁
𝑐∈𝑋𝑘

𝑐′∈𝑋𝑘−1

𝛼(𝑐)∗ 𝛽(𝑐′) (𝜕𝑐, 𝑐′) =
∑︁
𝑐∈𝑋𝑘

𝑐′∈𝑋𝑘−1

𝛼(𝑐)∗ 𝛽(𝑐′) (𝑐, 𝜕†𝑐)

=
∑︁

𝑐′∈𝑋𝑘−1

𝛼(𝜕†𝑐′)∗ 𝛽(𝑐′) = ⟨d†𝛼, 𝛽⟩. (A13)

Lastly, we review a bit of basic algebraic topology terminol-
ogy used in Section IV. The boundary operation is nilpotent,
𝜕2 = 0, and thus defines an exact sequence of maps,

0 → C𝐷

𝜕𝐷−−→ · · · C1
𝜕1−−→ C0 → 0. (A14)

This allows us to define the homology groups, 𝐻𝑘 :=
ker 𝜕𝑘/im 𝜕𝑘+1. The interpretation of these quotient groups
is that they classify the non-contractible 𝑘-dimensional sur-
faces. Here, ker 𝜕 is generated by the set of surfaces without
boundaries (called cycles), while im 𝜕 is generated by the set
of surfaces which are boundaries of a (𝑘 +1)-dimensional vol-
ume, and are therefore contractible. The elements of 𝐻𝑘 are
equivalence classes of surfaces which differ by a boundary, i.e.
homology classes.

The dual of the homology classes on the differential form
side are the cohomology classes, which are defined by the
discrete equivalent of the de Rham complex:

0 → C0 d0−→ C1 d1−→ · · · d𝐷−1−−−−→ C𝐷 → 0, (A15)

as

𝐻𝑘 := ker d𝑘/im d𝑘−1. (A16)

Here ker d𝑘 is the set of locally-constant 𝑘-forms (called closed
forms), and im d𝑘−1 is the set of 𝑘-forms which are gradients
of (𝑘 − 1)-forms (called exact forms). Every exact form is
closed, but there can exist closed forms which are not exact,
which are classified by cohomology. Cohomology classes are
equivalence classes of closed forms which differ by an ex-
act form, just as homology classes are equivalence classes of
closed surfaces which differ by a boundary. Note that exact
forms integrate to zero by Stoke’s theorem on any closed sur-
face, while closed forms need only integrate to zero on closed
surfaces that are boundaries. Forms with non-trivial cohomol-
ogy class integrate non-trivially on non-contractible surfaces,
defining a pairing between cohomology and homology classes.

Appendix B: U(1) Bulk Phase Diagram: Limits, Symmetries
and Monte Carlo

Here we provide a brief review of the bulk phase diagram
of the 4D 𝑈 (1) Abelian-Higgs model, described by the action
Eq. (8), the Hamiltonian Eq. (10), and dual action Eq. (108),
by considering the various limits and undertaking numerical

Monte Carlo simulation in the action formulation. The phase
diagram is sketched in Fig. 1, which conveniently summarizes
the discussion that follows. In particular, it is well-known that
there are only two distinct phases [12], the Coulomb phase
and the Higgs-confined phase. According to Eq. (102), this
is a theory of electric strings terminating on electric point
charges. The dual magnetic description is in terms of mag-
netic strings terminating on magnetic point charges (vortices
and monopoles of the Higgs and gauge fields, respectively).
The basic structure of the phase diagram can be deduced by
consider each of the four limits.

Pure gauge limit (𝜅 ≪ 1): In the limit 𝜅 = 0 the gap of the
electric point charges diverges, and the theory reduces to 4D
𝑈 (1) gauge theory. In this limit, the system has a global 1-form
symmetry, 𝐴 → 𝐴 + 𝜆 with d𝜆 = 0, called electric symmetry.
This symmetry yields corresponds to electric strings forming
closed loops. This theory has two phases, a confined phase
at small 𝛽 (strong coupling), where the system is gapped and
electric strings cost energy proportional to their length; and a
deconfined phase at large 𝛽 (weak coupling), where the elec-
tric strings condense, the electric symmetry is spontaneously
broken, and the system has a gapless photon excitation. Turn-
ing on a small 𝜅 explicitly breaks the 1-form symmetry by
introducing gapped electric point charges at which open elec-
tric strings end. Because the charges are strongly gapped,
qualitatively speaking we expect the 1-form symmetry to re-
emerge at low energies below the charge gap, thus allowing
the deconfined phase to extend to finite 𝜅.

Frozen gauge limit (𝛽 → ∞): In this limit the gauge fields
are completely trivialized by the constraint d𝐴 = 0, and equiv-
alently the mass of the magnetic monopoles diverges. We
can choose a gauge where 𝐴 = 0 and the action turns into
that of a 4𝐷 XY model, whose dual description is a gas of
vortex strings with Coulomb interactions. This theory has a 1-
form symmetry corresponding to the closure of these magnetic
strings and the corresponding absence of magnetic monopoles,
called magnetic symmetry. From the XY model we deduce
a gapless superfluid phase at large 𝜅 and a gapped phase at
small 𝜅 separated by a second-order phase transition, but this
description is not gauge-invariant. The gauge-invariant state-
ment is that at small 𝜅 the magnetic strings (disorder operators
o the XY model) condense, spontaneously breaking the mag-
netic symmetry. For large but finite 𝛽 the magnetic monopoles
explicitly break the magnetic symmetry, though one expects it
to be effectively restored at low energies below the monopole
gap. The result is that the magnetic symmetry is spontaneously
broken in the gapless Coulomb phase, while the superfluid at
large 𝜅 is gapped out by the Higgs mechanism.

Strong coupling limit (𝛽 = 0): In this limit the curvature
of the gauge field 𝐴 is not penalized, and we can say that the
magnetic monopoles are maximally proliferated. If we fix to
unitary gauge (𝜃 = const.), the action becomes−𝜅∑

ℓ cos(𝐴ℓ),
reducing to a set of completely disconnected link variables.
Thus the system is in a trivial phase for all 𝜅, and there is no
bulk phase transition on this line.

Infinite Higgs coupling limit (𝜅 → ∞): In this limit we have
the constraint 𝐴 = d𝜃. This implies that the electric charge
creation and annihilation operators, Eq. (14), act as the identity,
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FIG. 12. (a,b) Phase diagram of the 4D 𝑈 (1) Abelian Higgs model for 𝐿 = 16 revealed through (a) expectation of the minimal Wilson loop,
⟨1 − Re𝑊𝑝⟩, and (b) expectation of the Wilson link, ReΛℓ ⟩, averaged over all plaquettes and links, respectively. The color ranges from 0.1
(black) to 0.8 (yellow). (c) Cuts of ⟨1 − Re𝑊𝑝⟩, at constant 𝛽 for different values of 𝛽 from 0.525 to 1.000 in steps of 0.025 from right to
left. The system is isotropic with 𝐿 = 16 and 50000 sweeps. The data shows a clear sign of a phase transition for larger 𝛽 and a crossover for
smaller 𝛽. The data is consistent with the presence of a first order transition with a critical endpoint at about 𝛽 = 0.85.

and the system can be described as an electric condensate. The
bulk has no dynamics and is completely frozen, which can be
seen by fixing to unitary gauge (𝜃 = const.), in which 𝐴 = 0
and the Higgs field is frozen. There is therefore no bulk phase
transition along this line. For large but finite 𝜅 the bulk action
can be roughly understood as the proca-type action, Eq. (23),
describing a massive 1-form field.

This completes the general outline of the phase diagram in
the vicinity of the edges in Fig. 1. The only question that
remains is how the two transitions at small 𝜅 and large 𝛽 reach

each other to separate the confined phase (in which the electric
and magnetic symmetries are emergent and spontaneously bro-
ken) from the Higgs-confined phase. Figure 12 shows results
from Monte Carlo simulations measuring the average Wilson
plaquette and Wilson link, which fills in the remainder of the
phase diagram schematically shown in Fig. 1. The two transi-
tions extend as first-order transition lines and meet at a triple
point in the vicinity of 𝛽 ∼ 1.0 an 𝜅 ∼ 0.4. A third first order
line extends from the this triple point towards smaller 𝛽 and
larger 𝜅 which ends at a critical endpoint. We show evidence
for this first-order line in Fig. 12(c).
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