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ABSTRACT
Test smells can pose difficulties during testing activities, such as
poor maintainability, non-deterministic behavior, and incomplete
verification. Existing research has extensively addressed test smells
in automated software tests but little attention has been given to
smells in natural language tests. While some research has identified
and catalogued such smells, there is a lack of systematic approaches
for their removal. Consequently, there is also a lack of tools to
automatically identify and remove natural language test smells.
This paper introduces a catalog of transformations designed to
remove seven natural language test smells and a companion tool
implemented using Natural Language Processing (NLP) techniques.
Our work aims to enhance the quality and reliability of natural
language tests during software development. The research employs
a two-fold empirical strategy to evaluate its contributions. First,
a survey involving 15 software testing professionals assesses the
acceptance and usefulness of the catalog’s transformations. Second,
an empirical study evaluates our tool to remove natural language
test smells by analyzing a sample of real-practice tests from the
Ubuntu OS. The results indicate that software testing professionals
find the transformations valuable. Additionally, the automated tool
demonstrates a good level of precision, as evidenced by a F-Measure
rate of 83.70%.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Empirical software validation.
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1 INTRODUCTION
Test smells are indications of bad decisions when designing or im-
plementing tests. Such decisions may introduce potential problems
in testing activities [26]. Examples of these problems are poor main-
tanability (e.g., duplication in test code [11]), non-deterministic
scenarios [16], and missing verifications [22] due to code branches.
In this context, the literature is particularly vast when consider-
ing test smells in automated software tests. Previous studies have
been introduced to provide catalogues of test smells [2, 9], to count
and study their occurrences [4, 20, 21], and to provide tools capa-
ble of identifying and removing them automatically using code
transformations [14, 15, 20, 21, 26].

Unfortunately, the same does not apply when considering test
smells in manual tests, i.e., natural language tests. These tests are
written in natural language and also suffer from problems intro-
duced by smells [10, 19]. Figure 1 illustrates part of a natural lan-
guage test extracted from the Ubuntu Operating System (Ubuntu
OS) [25]. The test contains the Ambiguous Test smell [10], which
indicates an “under-specified test that leaves room for interpretation.”
In Step 2, the required action is to “Open any application.” How-
ever, it is not specified which application should be opened. This
ambiguity can lead to different test results based on the application
selected by the tester. Hence, identifying and removing this smell
might bring better quality standards for the tests.

As mentioned, differently from test smells in automated soft-
ware tests, test smells in natural language are still poorly explored.
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Figure 1: Natural Language Test Smell: Ambiguous Test.

Hauptmann et al. [10] presented seven natural language test smells
and after ten years Soares et al. [19] complemented the list with
six additional smells. Both studies introduced rules to identify the
test smells. However, we still miss a catalog of transformations
to remove natural language test smells. In addition, we miss tool
support to make this whole process automatic, i.e., a tool capable
of removing natural language test smells automatically.

To minimize these problems, in this paper we introduce a catalog
of transformations to remove natural language test smells presented
in recent research [19]. Our catalog contains seven transformations
capable of removing the following natural language test smells:
Unverified Action, Misplaced Precondition, Misplaced Action, Mis-
placed Verification, Eager Action, Ambiguous Test, and Conditional
Test. For each smell, our catalog contains details with respect to
the addressed test smell, the mechanics to apply the transformation
in the test in order to remove such smell, and an example. The
catalog works considering a left-hand side test, i.e., the test that
contains the test smell; and a right-hand side test, i.e., the test after
the transformation without the smell. We also contribute to a tool
based on Natural Language Processing (NLP) techniques. The tool
is capable of identifying the test smells and removing them auto-
matically. In case the test contains more than one smell, the tool
works sequentially, tackling one smell at a time.

To evaluate the catalog and the tool, we conduct a two-fold em-
pirical strategy. First, we conduct a survey to answer the research
question RQ1:“How software testing professionals perceive and eval-
uate the transformations of our catalog?” To answer it, we recruited
15 software testing professionals from a large smartphone manufac-
turer. The name of the company is omitted due to non-disclosure
agreements. Answering RQ1 is important to better understand
whether the software testing professionals find our transforma-
tions useful to improve the quality of the tests. Second, we conduct
an empirical study to evaluate our tool. Here we focus on the re-
search question RQ2:“How precise is our tool in the task of removing
natural language test smells?” To conduct this study and answer
RQ2, we consider real-practice natural language tests from the
Ubuntu OS. The tests consist of not only software functionalities,
but also interactions with the hardware. After executing our tool
against 973 natural language tests, we identified 8, 386 occurrences
of the seven smells we focus on in this paper. In this scenario, to
evaluate the precision of our tool in removing the smells, we would
need to manually analyze more than eight thousand transforma-
tions, exceeding our capabilities. Thus, to make our manual analysis
feasible, we use the Cochran’s Sample Size Formula [3] and analyze
a sample of 264 randomly selected smell occurrences.

The results of our survey indicate an average acceptance of
91.43% among the software testing professionals we recruited. Re-
garding the tool, ourmanual analysis showed that it achieved 83.70%
rate of F-Measure.

In summary, this paper provides the following contributions:

• A catalog of transformations to remove seven test smells
from natural language tests (Section 3);

• A survey with software testing professionals to validate the
catalog (Section 4);

• The development of a tool that makes our transformations
automatic (Section 5);

• An empirical study to check the precision of our tool using
real-practice natural language tests from the Ubuntu OS
(Section 6).

A replication package with all results is available at Figshare
[23]. Our tool is available at our companion website [24].

2 NATURAL LANGUAGE TEST SMELLS
Previous works showed that test smells also exist in natural lan-
guage tests [10, 19]. Besides the Ambiguous Test smell we discussed
in Section 1, we now show three additional test smells in natural
language tests. We also discuss why they could be harmful during
testing activities. All examples of natural language tests in this pa-
per are extracted from the Ubuntu OS manual test repository [25].

2.1 Unverified Action
This smell occurs when there is no verification for a given action.
When compared to automated tests, this smell is similar to the As-
sertionless smell, which is defined by the absence of assertions [1].
Figure 2 presents the Unverified Action smell. Step 7 lacks a verifi-
cation for the “Click one more time on the same message” action.

Figure 2: Unverified Action - Example

Without proper verification, tests may not effectively validate
whether the application is behaving as expected. Regarding the ex-
ample, the tester may experience confusion regarding the outcomes
of the clicking action. Questions such as “What should happen when
the message is clicked one more time?” and “Do additional elements
disappear? And if they do not, does the test fail?” may arise, leaving
the tester uncertain on how to proceed. Addressing these uncertain-
ties is crucial to maintain clarity and ensure effective test execution.

2.2 Eager Action
This smell happens when a single step groups multiple actions.
Figure 3 depicts an example of the Eager Action smell.

The Eager Action test smell can introduce problems such as non-
isolated tests and difficulties in debugging. In our example, we have
four actions, represented by the verbs “select”, “enter”, “select”, and
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Figure 3: Eager Action - Example

“click.” Since we have one verification for four actions, in the event
of a failure, it may be unclear which action caused it.

2.3 Conditional Test
This smell is defined by a conditional clause appearing in a step
description [10]. Figure 4 shows an example.

Figure 4: Conditional Test - Example

The conditional introduces uncertainty and variability to the
test, as the tester may not know how to proceed or what to expect.
Notice that the action in Step 2 contains a conditional clause “If
your printer doesn’t show up, add it to the list (click Add and follow
the wizard).” If the printer is already showing up, the tester might
need assistance deciding whether to skip Step 2 and proceed to Step
3 or stop the test execution altogether because there is no mention
of the printer being on the list. This situation can reduce the test’s
determinism, maintainability, coverage, and reliability [21].

3 REMOVING NATURAL LANGUAGE TEST
SMELLS

This section introduces a catalog of proposals to remove test smells
in natural language tests. Concerning our terminology, according
to Fowler et al. [8], refactorings preserve the observable behavior
of a code. On the other hand, van Deursen et al. [26] define test
refactorings as changes in test code that do not add or remove test
cases. Since our proposals do not strictly align with Fowler’s and
van Deursen’s definitions because they may alter the test behavior
and even introduce new test cases, we call them transformations.

Our catalog contains transformations in terms of a left-hand
side and a right-hand side [21]. The left-hand side holds the prob-
lematic test (i.e., the test with test smells). The right-hand side
presents the test transformed, i.e., the test without test smells, after
the transformations. To apply a transformation, the catalog uses
semantic pattern matching. In other words, a natural language test

that matches the left-hand side of a transformation is converted to
the right-hand side.

3.1 Natural Language Test Template
To better explain our transformations, we first need to introduce
a template to represent natural language tests. Here, we define a
natural language test as 𝑇 = (𝑃, 𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑖 , . . . , 𝑆𝑛), where:

• 𝑃 is a boolean expression, representing the preconditions to
execute 𝑇 ;

• 𝑆𝑖 is a tuple representing the i-th step of the test. This tuple
consists of an ordered list of actions 𝐴𝑖 and an ordered list
of verifications 𝑉𝑖 , defined as 𝑆𝑖 = (𝐴𝑖 ,𝑉𝑖 );

• The elements of the 𝐴𝑖 list are denoted by [𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛];
• The elements of the 𝑉𝑖 list are denoted by [𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑛].

Thus, given the above definitions, the following equations are
interchangeable:

𝑆𝑖 = (𝐴𝑖 ,𝑉𝑖 ) (1)

𝑆𝑖 = ( [𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛], [𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑛]) (2)
Considering the test illustrated in Figure 3, we have:
• 𝑃 = “This test will check that Firefox can print websites”;
• 𝐴3 = [“Select ‘print to file’ as printer”, “enter ‘firefox.pdf’ as
filename”, “Select your home folder as location”, “Then click
on ‘Print’”];

• 𝑉3 = [“A window opens, showing the progress of the print”].
Figure 5 presents𝑇 and all its elements in terms of a table. Notice

that in Step 𝑆𝑖 we use the form presented in Equation 1. When con-
sidering Steps 𝑆1 and 𝑆𝑛 we use the form presented in Equation 2.

Figure 5: Natural Language Test Template

By using this template and particularly the Step 𝑆𝑖 , we can discuss
how to avoid natural language test smells. For example: to avoid
the Ambiguous Test smell, the sentences in 𝐴𝑖 and in 𝑉𝑖 should not
be ambiguous; To avoid the Eager Action smell in 𝑆𝑖 , the cardinality
of the list𝐴𝑖 should be |𝐴𝑖 | = 1, i.e., there should be only one action
instead of several ones in the i-th step; To avoid the Unverified
Action smell in 𝑆𝑖 , the cardinality of the list 𝑉𝑖 should be |𝑉𝑖 | ≥ 1,
i.e., there is at least one verification in 𝑉𝑖 .

When presenting our transformations, we also consider the infix
++ operator, which is used for list concatenation. It takes two lists
as operands and combines them to form a new list. Equation 3
shows a simple usage of the ++ operator.

𝑆𝑖 =[𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛] + + [𝑎𝑘 ]
𝑆𝑖 =[𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛, 𝑎𝑘 ]

(3)
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3.2 A Catalog of Transformations
We now present our catalog having each transformation in terms
of (i) the smell that the transformation addresses, (ii) the mechanics
to apply the transformation (left-hand side and right-hand side),
(iii) implications—in case the transformation removes a smell but
adds another, or the transformation removes more than one smell
—, and (iv) an example of the transformation in a natural language
test extracted from the Ubuntu OS.

In this paper, we propose transformations for seven natural lan-
guage test smells, namely Unverified Action, Misplaced Precondition,
Misplaced Action, Misplaced Verification, Eager Action, Ambiguous
Test, and Conditional Test. We focus on these smells because they
may introduce difficulties in testing activities and have been studied
by the literature [10, 19].

3.2.1 Fill Verification.

Addressed Smell. The Unverified Action. We discussed this smell
in Section 2.1.

Formalization. Figure 6a presents our transformation to remove
the Unverified Action smell. Notice that, at the left-hand side, the
verifications list𝑉𝑖 is empty. To remove the smell, we can implement
two strategies. The first and simplest one is to just warn the tester
that 𝑉𝑖 is empty and then add a sort of “FILL_VERIFICATION” flag
in the Verifications field. The second strategy needs to deal
with more complex algorithms. As 𝐴𝑖 and 𝑉𝑖 should be somehow
linked by the same context, we can use NLP techniques to infer the
verification from the action. Then, we add the inferred verification
sentence in 𝑉𝑖 .

Example. Figure 6b shows an example of the Fill Verification trans-
formation. In this example, we add the “Dash appears” verification
based on the text contained in the actions list 𝐴1.

(a) Transformation

(b) Example

Figure 6: Fill Verification

3.2.2 Extract Precondition.

Addressed Smell. TheMisplaced Precondition, which appearswhen
a precondition is placed as the first action of the test. This situation
might bring difficulties in test correctness. For example, the tester
might report a test failure. However, what actually happened was
that a precondition to execute the test was not met.

Formalization. Figure 7a shows a precondition 𝑝 as the first ele-
ment of 𝐴1. We deal with the smell by removing 𝑝 from the actions
list 𝐴1 and placing it in the boolean expression 𝑃 using the con-
junction operator, yielding 𝑃 ∧ 𝑝 .

Example. Figure 7b presents an example of applying our Extract
Precondition transformation. Notice that the precondition “Ensure
that Ristretto is loaded [...]” was removed from the actions list and
added to the Preconditions field.

(a) Transformation

(b) Example

Figure 7: Extract Precondition

3.2.3 Extract Action.

Addressed Smell. The Misplaced Action, which happens when
there is an action in the verifications list. Such confusion can result
in inconsistent execution and potentially misguide the interpreta-
tion of results.

Formalization. Figure 8a illustrates the action element 𝑎 in the
verifications list of Step 𝑆𝑖 . To remove the smell, all we need to do
is to remove 𝑎 from the verifications list𝑉𝑖 and add it to the actions
list 𝐴𝑖 . To perform the adding task, we use the ++ operator.

Implications. The Extract Action transformation might introduce
the Eager Action smell in case there already exists an action in 𝐴𝑖 .
In this sense, to remove the Eager Action smell, we propose the
Separate Actions transformation. We introduce this transformation
in Section 3.2.5.
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Example. Figure 8b presents a test with the action “Open some
windows” located in the verifications list. After executing our trans-
formation, such an action is placed in the actions list and removed
from the verifications list.

(a) Transformation

(b) Example

Figure 8: Extract Action

3.2.4 Extract Verification.

Addressed Smell. The Misplaced Verification, which occurs when
there is a verification in the actions list.

Formalization. Figure 9a illustrates a verification 𝑣 in 𝐴𝑖 list. To
address the smell, we remove 𝑣 from the actions list 𝐴𝑖 and add it
to the verifications list𝑉𝑖 . In this transformation, we rely on the ++
operator. Notice that we add 𝑣 at the beginning of 𝑉𝑖 . We opt for
this because 𝑣 should be the first verification to be checked right
after executing action 𝑎𝑖𝑛 .

Implications. Applying this transformation might remove not
only the Misplaced Verification, but also the Unverified Action smell.
This happens in case |𝑉𝑖 | = 0 and we move 𝑣 from 𝐴𝑖 to 𝑉𝑖 , making
|𝑉𝑖 | = 1.

Example. Figure 9b illustrates the verification “Verify that ‘Enable
Volume Management’ is checked [...]” in the actions list. After our
transformation, we place such a verification in the verifications
list. With this transformation, notice that we remove the Misplaced
Verification and the Unverified Action smells.

3.2.5 Separate Actions.

Addressed Smell. The Eager Action, discussed in Section 2.2.
Formalization. Figure 10a illustrates that 𝐴𝑖 contains 𝑛 elements,

characterizing the Eager Action smell: |𝐴𝑖 | > 1. To remove the smell,
we define a new step for each element of the 𝐴𝑖 list. Additionally,
in our transformation, we associate the verifications list𝑉𝑖 with the
step created for the last action originally in 𝐴𝑖 , i.e., the 𝑎𝑖𝑛 action.
We opt for this because we consider that the tester will check the
verifications list 𝑉𝑖 only after executing the last action.

(a) Transformation

(b) Example

Figure 9: Extract Verification

Implications. The Separate Actions transformationmay lead to the
Unverified Action smell. After the transformation, we have empty
verifications lists for the Steps from 𝑆𝑖 to 𝑆𝑘+𝑛−1. To deal with the
Unverified Action smell, we introduce the Fill Verification transfor-
mation (Section 3.2.1).

Example. Figure 10b shows Step 3 with two actions: “Add content
to the popped up memo” and “Then click the green tick.” According
to our transformation, they should be split in two different steps.
Moreover, the verification “Did the window showed [...]” has been
associated with the last action, i.e., “Then click the green tick.”

3.2.6 Extract Ambiguity.

Addressed Smell. The Ambiguous Test smell. Ambiguities and
under-specified activities may lead to problems during the test
execution, such as different outcomes.

Formalization. Figure 11a shows the actions list 𝐴𝑖 with 𝑛 ele-
ments. Any of these elements might have ambiguous sentences,
such as “quickly” or “accurately.” To remove the ambiguities, we
propose the use of a 𝛾 function that receives an action sentence
as input and returns the same action sentence in case it is not am-
biguous; and a modified action sentence in case the original one is
ambiguous. We then apply 𝛾 to all elements of 𝐴𝑖 . Although our
transformation to remove the Ambiguous Test smell focused on the
actions list, we can use the same rationale on the verifications list.

Example. Figure 11b illustrates an action with the adverb of
manner “approximately.” Here the tester could ask: “Is 25 seconds
enough to make the wireless network visible? If I wait 25 seconds and
the wireless network does not appear, did the test fail?”
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(a) Transformation

(b) Example

Figure 10: Separate Actions

(a) Transformation

(b) Example

Figure 11: Extract Ambiguity

3.2.7 Extract Conditional.

Addressed Smell. The Conditional Test smell, detailed in Sec-
tion 2.3. To deal with this smell, we create two different tests [7].

Formalization. Figure 12a illustrates our transformation. To do
so, we rely on two functions. The first one, 𝛽 , receives an action
sentence 𝑎 as input. In case 𝑎 has no conditional, 𝛽 simply skips.
In case 𝑎 has a conditional 𝑐 , 𝛽 returns a map (𝑎′, 𝑐), where 𝑎′ is
the action element without the conditional and 𝑐 is the removed
conditional. In Figure 12a, 𝛽 identified a conditional 𝑐 in action 𝑎𝑖𝑘
and removed it, transforming 𝑎𝑖𝑘 into 𝑎′

𝑖𝑘
. Because now we have

the conditional 𝑐 , it is time to create two tests. We consider another
function 𝜃 that receives the original test 𝑇 and the conditional 𝑐 .
𝜃 yields two tests: 𝑇 ′ considering 𝑐 as true; and 𝑇 ′′ considering 𝑐
as false. Because the conditional 𝑐 is necessary to execute 𝑇 ′, we
place it in the boolean expression 𝑃 using the conjunction operator,
yielding 𝑃∧𝑐 . As to𝑇 ′′, we exclude the step that originally contained
the conditional and the following steps. Notice that we need to
repeat this process to all actions in all steps of the original test.

Example. Figure 12b presents an example of the Conditional Test
smell removal. Once we identify the conditional “If you have a
USB drive,” we create a test considering it in the precondition and
another test without the step that originally had the conditional
and the subsequent steps.

3.2.8 Summary. Illustrated in Table 1 is the list of our proposed
transformations and their addressed smells.

Table 1: Transformations and addressed smells

No. Transformation Addressed Smell

1 Extract Conditional Conditional Test
2 Extract Action Misplaced Action
3 Separate Actions Eager Action
4 Extract Verification Misplaced Verification
5 Extract Ambiguity Ambiguous Test
6 Extract Precondition Misplaced Precondition
7 Fill Verification Unverified Action

4 CATALOG EVALUATION
This section presents our evaluation, conducted as an online survey
with software testing professionals. Here we aim to answer the
research question RQ1: “How do software testing professionals
perceive and evaluate the transformations of our catalog?”

4.1 Planning
The goal of this study is to evaluate the effectiveness of our trans-
formations. To do so, we assess the opinions of software testing
professionals about the transformations through an online survey.
By analyzing “before” and “after” test transformation snippets—
originally taken from the Ubuntu OS manual tests and transformed
according to our proposals—along with the participants’ comments
on their answers, we would be able to validate whether the respon-
dents were aware of any benefits.

Each survey question had a test smell definition, problem, iden-
tification steps, original and transformed samples, the query “Do
you agree that, in the example below, the identified problem was ad-
dressed according to the definition?”, a Likert scale ranging from “I
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(a) Transformation

(b) Example

Figure 12: Extract Conditional

strongly agree” to “I strongly disagree”, and an optional comments
field. Finally, we recruited participants from a large smartphone
manufacturer, which received invitations by email.

4.2 Results
We performed the survey in November 2023 – January 2024, achiev-
ing 15 responses. Concerning the demographics, 71% of the par-
ticipants defined their primary work area as the industry (over
academia) and their average experience with software testing was
4,1 years. One participant works in Portugal and 14 in Brazil. Fig-
ure 13 details the obtained results concerning the participants’
opinions about the transformation samples.

4.3 Discussion
Regarding the proposed transformations, the opinion of the experi-
enced test professionals served as a validation that obtained a high
average acceptance rate of 91.43%. There were no disagreements to
the Extract Action transformation, that was accepted by 93.3% of
the respondents (one respondent was indifferent). Four transforma-
tions reached 93.3% acceptance rate (14 respondents) and 6.7% of
rejection rate (one respondent): Fill Verification, Separate Actions,
Extract Verification, and Extract Conditional. Our transformations
with the lowest acceptance rate were the Extract Ambiguity and
Extract Precondition, and still achieved an 86.7% approval. Among
the transformations positively commented, we highlight “Follow-
ing the logic that every action has a reaction, every test step must
have an expected result [...],” which reinforces the Fill Verification
transformation. Another comment received highlights that “In this
case, some steps could be included in a ‘test setup’ column, so that
before the person/machine performs the steps, it ensures that it has the
necessary resources to carry out the test.” This comment reinforces
transforming the Misplaced Precondition smell.

Some respondents disagreed with some transformations offered
and exemplified in our research. For example, in one of the tests
presented in our survey, we used the following actions: “Start Nau-
tilus,” “Maximize it’s window,” and “Start Firefox.” Our transforma-
tion considered three verifications for these three actions. However,
a respondent mentioned the following: “[...] its not necessary a ver-
ification in this case.” Another disagreement was in the Extract
Verification, where a respondent commented: “There’s (verify xxxxx)
two times. If you’ll join to one block, don’t repeat process.” This case is
connected to the provided example, where a test had two similar ver-
ifications written slightly differently but for the same action. This
outcome highlights the need to identify semantic Test Clones [10]
in future work.

Answer to RQ1. The online survey shows software testing pro-
fessionals mostly agree with our proposals.

4.4 Threats to Validity
As a threat to external validity, collecting answers from only 15
participants may bring bias in terms of generalization. We minimize
this threat by relying on the experience of the participants to pro-
vide good responses. Also, we might experience a threat to internal
validity when selecting the examples for the study. We minimize
this threat by using real-practice examples from the Ubuntu OS. A
last threat to the conclusion validity relates to all participants
working for the same company. We minimize this selection bias
with staff from different roles and hierarchical positions.

5 A TOOL TO REMOVE SMELLS FROM
MANUAL TESTS

We now present details on developing an NLP-based tool called
Manual Test Alchemist. It extends prior work [19] on automatically
detecting natural language test smells and implements their removal
according to the transformations presented in Section 3.

The Manual Test Alchemist tool development is centered on
spaCy [12]—a commercial open-source library for NLP—to imple-
ment our transformations for natural language test smells. The
spaCy library features convolutional neural network models for
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Figure 13: Online Survey Results

part-of-speech (POS) tagging [13], dependency parsing [17], mor-
phology parsing, and named entity recognition [12]. Table 2 shows
the analysis of the action sentence in Figure 11b provided by spaCy.
Such analysis enables the implementation of our transformations.

For example, adverbs of manner can be identified through
POS=ADV, TAG=RB and Dependency=advmod properties, i.e., the ap-
proximately found in Table 2. Such detection is used in the Extract
Ambiguity transformation (Section 3.2.6).

In another example, imperative verbs identify action steps
POS=VERB, VerbForm=Inf and Dependency=ROOT properties, i.e.,
open in Table 2. This detection is used in the Separate Actions (Sec-
tion 3.2.5), Extract Action (Section 3.2.3), and Extract Precondition
(Section 3.2.2) transformations.

Table 2: Example of spaCy’s text analysis in detail.

Text POS TAG Dependency Morphology

After ADP IN prep
approximately ADV RB advmod
30 NUM CD nummod NumType=Card
seconds NOUN NNS pobj Number=Plur
, PUNCT , punct PunctType=Comm
open VERB VB ROOT VerbForm=Inf
the DET DT det Definite=Def|PronType=Art
network NOUN NN compound Number=Sing
manager NOUN NN dobj Number=Sing
. PUNCT . punct PunctType=Peri

Illustrated in Figure 14 is a simplified architecture of our tool,
which functions by receiving an XML file of a test suite as its input.
This test suite may contain multiple tests and is parsed using a
customizable parser implementation into a consistent test format.
Every implementation of the Transformator interface is responsi-
ble for identifying and adrressing a specific test smell.

The Extract Conditional transformation results in the creation
of new tests. Therefore, a relation between the execution order
of transformations and their impact was identified. According to
the implications shown in Section 3, the correction of some test
smells may result in new ones. For instance, adjusting actions be-
fore Separate Actions is important for proper functionality, and Fill
Verification should run last to address the Unverified Action smell
generated by Separate Actions and Extract Action. Hence, to mini-
mize this effect, we defined the execution sequence to be the one
presented on Table 1.

To provide a more detailed account of the tool’s inner work-
ings, Algorithm 1 presents the pseudocode of the Separate Actions

Figure 14: Simplified UML class diagram.

transformation. The algorithm highlights the key steps involved
in identifying the presence of multiple action verbs within a single
test step, separating the sentences related to each of these actions,
allocating the separated sentences to new steps, and notifying the
test professional that a verification must be written for the newly
added step.

Algorithm 1 The Separate Actions transformation (simplified)
for every test step do

Search for action verbs;
if action verbs > 1 then

for every action verb do
Identify sentence connectors;
Separate sentences;
for every sentence do

Move sentence to new step;
Fill missing verification advise;

end for
end for

end if
end for

6 TOOL EVALUATION
In this section, we present our tool evaluation. Here we aim to
answer the research question RQ2:“How precise is our tool in the
task of removing natural language test smells?”

6.1 Planning
The goal of this evaluation is to validate the tool in terms of Pre-
cision, Recall, and F-Measure metrics. To accomplish the goal, we
first execute our tool against the 973 natural language tests from
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Ubuntu OS, yielding 8, 386 test smell occurrences. However, vali-
dating more than eight thousand transformations manually would
be infeasible. Therefore, we perform a manual analysis in a sample
of 264 randomly selected smell occurrences (90% confidence with
5% margin of error, using the Cochran’s Sample Size Formula [3]).
Table 3 distributes the total and sampled occurrences per test smell.

Table 3: Total and sample occurrences per test smell

Test Smell Total Sample

Unverified Action 1,967 67
Misplaced Precondition 49 5
Misplaced Action 345 8
Misplaced Verification 426 16
Eager Action 2,663 69
Ambiguous Test 2,656 90
Conditional Test 279 9

TOTAL 8, 386 264

For each transformation, three authors analyzed and validated
whether the tool performed the transformations steps correctly
or not, assuming that the transformation itself has been correctly
chosen [19]. In eight cases out of 264 occurrences (0.03%), they
disagreed. However, the researchers reached a consensus in all
cases after discussions. They collected the results in terms of true
positives (𝑇𝑃 )—the smell was corrected—, false positives (𝐹𝑃 )—the
smell was not corrected—, and false negatives (𝐹𝑁 )—no correction
was attempted.

6.2 Results
As results, we achieved the following: a Precision of 86.75%, a Recall
of 80.85%, and a F-Measure of 83.70%. Table 4 illustrates our results
for each transformation presented in Section 3.

Notice that the Fill Verification transformation reached the high-
est 𝑇𝑃 percentage. On the other hand, the Separate Action trans-
formation reached the lowest 𝑇𝑃 percentage. Two extract transfor-
mations reached 25% false positive rate: Extract Action and Extract
Verification. Last but not least, the Separate Action transformation
reached 36.23% false negative rate.

Table 4: TP, FP, and FN per transformation

Transformation TP % FP % FN %

Fill Verification 89.55% 2.99% 7.46%
Extract Precondition 80.00% 0.00% 20.00%
Extract Action 62.50% 25.00% 12.50%
Extract Verification 62.50% 25.00% 12.50%
Separate Actions 50.72% 13.04% 36.23%
Extract Ambiguity 76.67% 12.22% 11.11%
Extract Conditional 77.78% 11.11% 11.11%

6.3 Discussion
After having the results illustrated in Table 4, we performed an in-
depth analysis on some of our 264 sample tests to better understand
potential problems of our tool.

When there is poor test writing (e.g., wrong phrases, excessive
use of special characters, wrong formatting, etc.), the tool malfunc-
tions, mostly adding new special characters and breaking phrases
into small ones. Also, in some tests, the special characters led the
tool to apply the Extract Action and Extract Verification in a wrong
way. For example, the tool detected the following action as a verifi-
cation: “Re-Check release-setting [...],” leading the Extract Verification
transformation to wrongly move the action. Here, spaCy separated
“Re-Check” in two words, and then the “Check” verb was considered
as a verification.

As our tool depends on semantic pattern matching coupled with
syntax analysis, a transformation that relies on verb placement
such as Separate Actions is heavily affected by spaCy rules that
do not comprehend some cases, such as in the following phrase:
“Select a plugin and configure it by doing click on ‘Configure’”. In this
example, the tool considered “Configure” as an action. This way, it
created a Step 𝑆𝑖 containing only the “Configure” word.

To sum up, the results presented in Table 4 provide a comprehen-
sive overview of the effectiveness of each transformation, guiding
further refinements and optimizations in our tool.

Answer to RQ2. Our analysis shows promising tool results,
achieving a F-Measure of 83.70%.

6.4 Threats to Validity
As a threat to external validity, we have validated the tool in 264
test smells occurrences, but all the sample is based only on one
system (Ubuntu OS). This way, it may be difficult to generalize
to other systems. To validate the tool, we performed a manual
analysis, which poses threats to internal validity. The subjectivity
of the process and the unawareness regarding technical items of
the tests may led the authors who performed the manual analysis
to disagreements and to commit errors. We minimize this threat
by considering three persons to analyze the transformations. All
disagreements have reached a consensus.

7 RELATEDWORK
Hauptmann et al. [10] firstly applied the idea of smells to natural
language tests. A set of seven test smells has been proposed and
analyzed in real-practice tests. Ten years later, Soares et al. [19]
complemented the list of natural language test smells with six more.
Both works presented techniques to identify the smells. Whilst
Hauptmann et al. used keywords and metrics, Soares et al. used
newer NLP-based technologies. However, differently from our work,
none of them presented neither transformations nor tools to remove
the smells automatically.

Our work is also related to the software requirements field, since
some test smells are similar to smells that appear in requirements.
For example, Femmer et al. [5] define a set of requirements smells
from ISO 29148. As an example, they define the Ambiguous Adverbs
and Adjectives requirement smell, which is quite related to the Am-
biguous Test smell. Also, Rajkovic and Enoiu [18] proposed a tool,
named NALABS, to identify requirements smells, like Vagueness,
Optionality, and Subjectivity (all of them also related to the Am-
biguous Test). Recently, Fischbach et al. [7] implemented a tool to
generate a minimal set of test cases to a given set of requirements
containing conditionals. The requirement smell explored is very
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related to the Conditional Test. These works provide tools to identify
the requirements smells, but not to remove them automatically as
we do in the context of natural language test smells.

Fischbach et al. [6] conducted a survey to understand how re-
quirements engineers interpret conditionals in software require-
ments. The authors found that the conditionals led the engineers
to interpret the requirements in an ambiguous way. In our work,
we considered an analogous smell, i.e., the Conditional Test smell.
We also conducted a survey and our results show that the majority
of the respondents agrees with our transformation to remove the
Conditional Test smell.

8 IMPLICATIONS FOR PRACTICE
As implications for practitioners, our catalog and tool might provide
a standardized and systematic approach to address natural language
test smells, promoting consistency in test practices across projects
and teams and ensuring that similar issues are addressed uniformly.
Also, they can help to improve test quality and maintenance. In
addition, our tool avoids repetitive tasks related to identifying and
fixing test smells, which provides time and cost savings and could
lead practitioners to focus on more complex and valuable aspects
of testing. Last but not least, our research could also bring im-
plications for the training and development of software testing
professionals. By providing a catalog of transformations along with
a tool to remove test smells, we introduce learning resources for
understanding what these smells are and how to address them.

For researchers, our catalog represents a step forward towards
more research on NLP-based techniques to avoid and remove smells
in natural language tests. For instance, researchers can build upon
our catalog as a starting point to develop more transformations
and improve our propositions. Our work might also be a prelimi-
nary benchmark for evaluating and comparing different NLP-based
techniques and tools to remove natural language test smells.

9 CONCLUDING REMARKS
In this paper, we introduced a catalog of transformations to remove
seven natural language test smells. We assessed the quality of our
catalog by recruiting 15 software testing professionals. The profes-
sionals found the transformations valuable, which is supported by
the high average acceptance rate. We also introduced a tool that
implements the catalog. We executed the tool in 264 occurrences
of test smells and achieved 83.70% of F-Measure rate.

As future work, we intend to (i) increase the set of transfor-
mations to include other smells (e.g., Tacit Knowledge [19], Test
Clones [10], and Long Test Steps [10]); and (ii) use Large Language
Models (LLMs) to improve the effectiveness of our tool.

ACKNOWLEDGMENTS
Thisworkwas partially funded byCNPq 312195/2021-4, 310313/2022-
8, 403361/2023-0, 443393/2023-0, 404825/2023-0, 315840/2023-4, FA-
PEAL 60030.0000000462/2020, 60030.0000000161/2022, and FAPESB
PIE002/2022 grants.

REFERENCES
[1] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi, Mo-

hamed Wiem Mkaouer, Ali Ouni, Christian D. Newman, Abdullatif Ghallab,

and Stephanie Ludi. 2021. Test Smell Detection Tools: A Systematic Mapping
Study. In EASE 2021. 170–180.

[2] Diogo Almeida, José Creissac Campos, João Saraiva, and João Carlos Silva. 2015.
Towards a catalog of usability smells. In SAC 2015. 175–181.

[3] James E. Bartlett II, JoeW. Kotrlik, and Chadwick C. Higgins. 2001. Organizational
research: Determining appropriate sample size in survey research. Information
technology, learning, and performance journal 19, 1 (2001), 43–50.

[4] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? an empirical study. Empirical
Software Engineering 20 (2015), 1052–1094.

[5] Henning Femmer, Daniel Méndez Fernández, Stefan Wagner, and Sebastian Eder.
2017. Rapid quality assurance with Requirements Smells. Journal of Systems and
Software 123 (2017), 190–213.

[6] Jannik Fischbach, Julian Frattini, Daniel Mendez, Michael Unterkalmsteiner,
Henning Femmer, and Andreas Vogelsang. 2021. How Do Practitioners Interpret
Conditionals in Requirements?. In PROFES 2021. 85–102.

[7] Jannik Fischbach, Julian Frattini, Andreas Vogelsang, Daniel Mendez, Michael
Unterkalmsteiner, Andreas Wehrle, Pablo Restrepo Henao, Parisa Yousefi, Tedi
Juricic, Jeannette Radduenz, and Carsten Wiecher. 2023. Automatic creation of
acceptance tests by extracting conditionals from requirements: NLP approach
and case study. Journal of Systems and Software 197 (2023), 111549.

[8] Martin Fowler and Kent Beck. 1997. Refactoring: Improving the design of existing
code.

[9] Vahid Garousi and Barış Küçük. 2018. Smells in software test code: A survey of
knowledge in industry and academia. Journal of systems and software 138 (2018),
52–81.

[10] Benedikt Hauptmann, Maximilian Junker, Sebastian Eder, Lars Heinemann,
Rudolf Vaas, and Peter Braun. 2013. Hunting for smells in natural language
tests. In ICSE 2013. 1217–1220.

[11] Benedikt Hauptmann, Maximilian Junker, Sebastian Eder, Elmar Juergens, and
Rudolf Vaas. 2012. Can clone detection support test comprehension?. In ICPC
2012. 209–218.

[12] Matthew Honnibal and Ines Montani. 2024. spaCy – Industrial-strength Natural
Language Processing in Python. https://spacy.io/

[13] Mitchell P. Marcus, Beatrice Santorini, and Mary AnnMarcinkiewicz. 1993. Build-
ing a Large Annotated Corpus of English: The Penn Treebank. Computational
Linguistics 19, 2 (1993), 313–330. https://aclanthology.org/J93-2004

[14] Luana Martins, Heitor Costa, and Ivan Machado. 2023. On the diffusion of test
smells and their relationship with test code quality of Java projects. Journal of
Software: Evolution and Process (2023).

[15] Luana Martins, Heitor Costa, Márcio Ribeiro, Fabio Palomba, and Ivan Machado.
2023. Automating Test-Specific Refactoring Mining: A Mixed-Method Investiga-
tion. In SCAM 2023. 13–24.

[16] Gerard Meszaros. 2006. XUnit Test Patterns: Refactoring Test Code. Prentice Hall
PTR, USA.

[17] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan
Hajič, Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Universal Dependencies
v1: A Multilingual Treebank Collection. In LREC 16. 1659–1666.

[18] Kostadin Rajkovic and Eduard Paul Enoiu. 2022. NALABS: Detecting Bad Smells
in Natural Language Requirements and Test Specifications. Technical Report.
Mälardalen Real-Time Research Centre, Mälardalen University. http://www.es.
mdu.se/publications/6382-

[19] Elvys Soares, Manoel Aranda, Naelson Oliveira, Márcio Ribeiro, Rohit Gheyi,
Emerson Souza, Ivan Machado, André Santos, Baldoino Fonseca, and Rodrigo
Bonifácio. 2023. Manual Tests Do Smell! Cataloging and Identifying Natural
Language Test Smells. In ESEM 2023. 1–11.

[20] Elvys Soares, Márcio Ribeiro, Guilherme Amaral, Rohit Gheyi, Leo Fernandes,
Alessandro Garcia, Baldoino Fonseca, and André Santos. 2020. Refactoring Test
Smells: A Perspective from Open-Source Developers. In SAST 2020. 50–59.

[21] Elvys Soares, Márcio Ribeiro, Rohit Gheyi, Guilherme Amaral, and André Santos.
2023. Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-
Date? IEEE Transactions on Software Engineering 49, 3 (2023), 1152–1170.

[22] Davide Spadini, Martin Schvarcbacher, Ana-Maria Oprescu, Magiel Bruntink,
and Alberto Bacchelli. 2020. Investigating Severity Thresholds for Test Smells. In
MSR 2020. 311–321.

[23] Manoel Terceiro, Naelson Oliveira, Elvys Soares, Márcio Ribeiro, Davi Romão,
Ullyanne Patriota, Rohit Gheyi, Emerson Souza, and Ivan Machado. 2024. A
Catalog of Transformations to Remove Test Smells in Natural Language Tests -
Replication Package. https://doi.org/10.6084/m9.figshare.24993906.v1

[24] Manoel Terceiro, Naelson Oliveira, Elvys Soares, Márcio Ribeiro, Davi Romão,
Ullyanne Patriota, Rohit Gheyi, Emerson Souza, and Ivan Machado. 2024. Manual
Test Alchemist. Retrieved April 19, 2024 from https://github.com/easy-software-
ufal/manual-test-alchemist

[25] Ubuntu. 2024. Ubuntu Manual Tests in Launchpad. https://launchpad.net/ubuntu-
manual-tests

[26] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001.
Refactoring test code. In XP 2001. 92–95.

https://spacy.io/
https://aclanthology.org/J93-2004
http://www.es.mdu.se/publications/6382-
http://www.es.mdu.se/publications/6382-
https://doi.org/10.6084/m9.figshare.24993906.v1
https://github.com/easy-software-ufal/manual-test-alchemist
https://github.com/easy-software-ufal/manual-test-alchemist
https://launchpad.net/ubuntu-manual-tests
https://launchpad.net/ubuntu-manual-tests

	Abstract
	1 Introduction
	2 Natural Language Test Smells
	2.1 Unverified Action
	2.2 Eager Action
	2.3 Conditional Test

	3 Removing Natural Language Test Smells
	3.1 Natural Language Test Template
	3.2 A Catalog of Transformations

	4 Catalog Evaluation
	4.1 Planning
	4.2 Results
	4.3 Discussion
	4.4 Threats to Validity

	5 A Tool to Remove Smells from Manual Tests
	6 Tool Evaluation
	6.1 Planning
	6.2 Results
	6.3 Discussion
	6.4 Threats to Validity

	7 Related Work
	8 Implications for Practice
	9 Concluding Remarks
	Acknowledgments
	References

