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ABSTRACT

In the framework of solid mechanics, the task of deriving material parameters from experimental data
has recently re-emerged with the progress in full-field measurement capabilities and the renewed
advances of machine learning. In this context, new methods such as the virtual fields method and
physics-informed neural networks have been developed as alternatives to the already established
least-squares and finite element-based approaches. Moreover, model discovery problems are starting
to emerge and can also be addressed in a parameter estimation framework. These developments call
for a new unified perspective, which is able to cover both traditional parameter estimation methods
and novel approaches in which the state variables or the model structure itself are inferred as well.
Adopting concepts discussed in the inverse problems community, we distinguish between all-at-once
and reduced approaches. With this general framework, we are able to structure a large portion of the
literature on parameter estimation in computational mechanics – and we can identify combinations
that have not yet been addressed, two of which are proposed in this paper. We also discuss statistical
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approaches to quantify the uncertainty related to the estimated parameters, and we propose a novel
two-step procedure for identification of complex material models based on both frequentist and
Bayesian principles. Finally, we illustrate and compare several of the aforementioned methods with
mechanical benchmarks based on synthetic and real data.

Keywords Parameter identification · all-at-once approach · virtual fields method · model discovery · parameter
uncertainty

1 Introduction

Within the framework of continuum solid mechanics, initial boundary value problems involving partial differential
equations (PDEs) are solved to determine the fields of interest, including mechanical, thermal, magnetic, and/or electric
fields. To be solvable, the PDEs need to be completed by closure models known as material models (or constitutive
equations) that describe the relationships between kinematic and kinetic quantities (and possibly additional variables),
i.e., strain and stress, or temperature gradient and heat flux, etc., for the materials under consideration. Constitutive
equations can be of algebraic, ordinary differential (ODE), or differential-algebraic (DAE) form – or they can even
be defined by PDEs, whereby the space discretized form of the PDEs leads to similar mathematical structures as the
aforementioned forms. Models of hyperelasticity lead to algebraic equations, whereas models of viscoelasticity or
viscoplasticity imply ODEs. Rate-independent plasticity, which is based on a yield condition, delivers a DAE-system,
and gradient-based damage models are described by PDEs.

Since constitutive models depend on various parameters, one of the fundamental issues in the theory of materials is the
identification (or calibration) of these parameters on the basis of given experimental data. A number of identification
approaches have been proposed, among which those based on least-squares (LS) and the finite element method (FEM)
have been especially prominent due to their high flexibility. Further methods have been proposed in the more recent
past, including so-called full-field approaches such as the virtual fields method (VFM), stochastic and machine learning
approaches, including those based on Physics-Informed Neural Networks (PINNs), for example. A detailed compilation
of the related references is provided in the following sections.

Even more recently, approaches that bring identification one step further have been proposed and are drawing significant
attention. They advocate a new paradigm, denoted as (material) model discovery, in which the structure of the material
model itself is estimated at the same time as its unknown parameters, again based on the given experimental data. A
possible strategy consists of forming a library of candidate basis functions, which are used in a model to approximate
unknown functions describing the material behavior. In this way, the model discovery problem is reformulated as a
parameter estimation problem, but with a typically much higher dimension of the parameter space. It is also possible to
apply VFM, stochastic methods, and machine learning to model discovery.

These developments call for a new unified perspective that is able to cover both traditional and novel parameter
estimation and model discovery approaches. The purpose of this paper is, on the one hand, to compile an overview
of the available methods along with a formalization and, on the other hand, to provide such a unified perspective. In
contrast to existing attempts to unify parameter estimation methods in mechanics [1, 2], our perspective is based on the
all-at-once approach [3], which so far has been mainly applied in the inverse problems community. Adopting concepts
discussed in this community, we distinguish between all-at-once and reduced approaches. The all-at-once approach
employs a weighted combination of a model-based and a data-based objective function, and we demonstrate that both
the reduced approach and the class of VFMs can be recovered as limit cases. With this general framework, we are able
to structure a large portion of the literature on parameter estimation in computational mechanics, and we can identify
combinations and settings that have not yet been addressed. Moreover, by including stochastic methods, the quality of
the identified parameters can be addressed as well. Among the various available methods for parameter inference, we
compare Bayesian and frequentist approaches and derive new results for two-step identification methods, which are
needed to calibrate complex models.

The remainder of this paper is structured as follows. In Section 2, we start with an overview of the basic equations of
the initial boundary value problems, as well as the structure of the material models. We then discuss a few aspects of
the experimental possibilities, followed by a brief review of parameter identification in elasticity, viscoelasticity, and
viscoplasticity.

Section 3 treats the numerical approaches to identify the material parameters. We formulate the LS method based on
the FEM, the equilibrium gap, and the VFM, as well as more recent methods such as PINNs and the combination of
model selection and parameter identification (i.e., model discovery).

As stated earlier, one of the major aims of this paper is to formulate a unified treatment for most of the available
parameter identification procedures, which is the subject of Section 4. Section 5 focuses on the quality of the identified
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material parameters – which is addressed in a statistical setting, including the topics of identifiability and uncertainty
quantification. In Section 6, examples are provided to compare the performance of the various schemes for selected
applications.

2 Parameter identification in solid mechanics

This section addresses the basic problem of parameter identification. First, the fundamental equations of solid mechanics
are summarized. Then, we provide an overview of the basics of experimental observations and constitutive modeling
using elastic, isotropic or anisotropic, and inelastic material models. The notation in use is defined in the following
manner: geometric vectors are symbolized by a⃗ and second-order tensors A by bold-faced letters. Furthermore, we
introduce matrices and column vectors by bold-faced italic letters A,a.

2.1 Fundamental equations

Since the procedures to identify parameters behave similarly for various PDEs, without loss of generality, we restrict
ourselves to the balance of linear momentum

ρ(x⃗, t) a⃗(x⃗, t) = divσ(x⃗, t) + ρ(x⃗, t) b⃗(x⃗, t) (1)

occurring in the field of mechanics. Here, t stands for time, x⃗ = χ⃗R(X⃗, t) symbolizes the motion of a material point
X⃗ placed in the reference configuration, ρ denotes the density, a⃗ the acceleration, σ(x⃗, t) the Cauchy stress tensor in
spatial representation, b⃗ is commonly chosen as the acceleration of gravity, and div defines the divergence operator with
respect to x⃗. In the following, we assume that accelerations are small, leading to

divσ + ρ b⃗ = 0⃗. (2)

In this paper, we thus do not treat parameter estimation in dynamical systems, where properties of wave propagation in
solid media are used for identification purposes, see [4], for example.

An alternative formulation is given by
DivP(X⃗, t) + ρR(X⃗, t) b⃗ = 0⃗, (3)

where Div defines the divergence operator with respect to X⃗ . Moreover, ρR = (detF)ρ is the density in the reference
configuration, and P = (detF)σF−T symbolizes the first Piola-Kirchhoff stress tensor, where F = Grad χ⃗R(X⃗, t)

represents the deformation gradient. Here, Grad denotes the gradient operator with respect to X⃗ .

The balance of angular momentum implies the symmetry of the Cauchy stress tensor, σ = σT . Thus, six independent
stress components have to be determined, whereas only three scalar PDEs are available. Hence, the system of equations
(2), or equivalently (3), is closed by formulating

1. the kinematics, i.e., a relation between the displacement vector u⃗(X⃗, t) = χ⃗R(X⃗, t) − X⃗ (or the motion
χ⃗R(X⃗, t)) and the deformation gradient F, and

2. a constitutive model describing the stress state in dependence of the deformation and possibly of additional,
so-called internal variables describing the process history.

Material objectivity requirements lead to some restrictions on the relation between the deformation gradient F and
the stress state σ, see [5, 6] and the references therein for details. To comply with such restrictions, it is common to
formulate the constitutive model in terms of the second Piola-Kirchhoff stress tensor S = (detF)F−1σF−T , expressed
as a function of either the right Cauchy-Green tensor C = FTF or the Green-Lagrange strain tensor E = (C− I)/2.
For purely elastic materials, S obeys

S = h̃(C) (4)

or, for the case of inelastic materials,

S = h̃(C, q)

Y q̇ = rq(C, Ċ, q),
(5)

where q ∈ Rnq represents the vector of the scalar-, vector-, or tensor-valued internal variables. Eq. (5) embraces a
very wide class of constitutive models, including models of viscoelasticity and viscoplasticity. Models incorporating
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dependencies on Ċ (or Ė) can be found, e.g., in [7, 8]. In the case of rate-independent plasticity, the matrix Y has the
structure

Y =

[
I

0

]
(6)

if the last equation defines the yield condition, see [9]. In this case, Eq. (5) represents a DAE-system, see [10, 9].
Moreover, in the field of yield-function-based, rate-independent modeling, the right-hand side rq(C, q) contains case
distinctions (loading-unloading or Karush-Kuhn-Tucker conditions) to be able to reproduce a non-smooth material
behavior.

Different approaches in constitutive modeling derive systems of the form (5) from two scalar potentials, namely
the strain energy density and the dissipation rate potential, so that (under certain conditions on the properties of
such potentials) thermodynamic consistency is automatically fulfilled, see [11, 12, 13, 14], for example. Alternative
approaches evaluate only the strain energy density function within the Clausius-Duhem inequality and motivate the
evolution equations (5)2 in a different manner [6].

Of course, there are also other constitutive models that do not fit into the aforementioned structure – such as models de-
scribed by integral equations, fractional derivatives [15], or the endochronic plasticity formulation in [16]. Alternatively
to the original formulation in [16], the stresses can also be given by a rate equation using a particular kernel function of
the endochronic formulation, so that the integral formulation can be transformed into a rate formulation [17].

Based on the general problem of solving Eqns. (3) with P = FS and (5), several special cases can be considered. A
simple example is the case of small strains, i.e., the strain tensor is assumed to depend linearly on the displacement
vector u⃗, E = (grad u⃗(x⃗, t) + gradT u⃗(x⃗, t))/2, there is no distinction between reference and current configurations,
and all stress tensors become the same. In this paper, we are interested in determining the material parameters κ∈ Rnκ ,
and restricting ourselves to small strains is sufficient to understand the entire identification process. Thus, we consider
the problem

divσ + ρ⃗b = 0⃗

σ = h(E, q,κ)

q̇ = rq(E, q,κ),

(7)

where, without a severe loss of generality, we assumed Y = I and independence from Ė. An example of such a model
is provided in Appendix H. Eq. (7)1 has to be complemented with Neumann and Dirichlet boundary conditions

σn⃗ = ¯⃗t on ΓN, u⃗ = ¯⃗u on ΓD, (8)

and initial conditions
u⃗(x⃗, 0) = ¯⃗u0(x⃗), q(x⃗, 0) = q0(x⃗). (9)

¯⃗t is the given traction vector and ¯⃗u the prescribed displacement, whereas ¯⃗u0(x⃗) and q0(x⃗) are the known initial

conditions. Mixed boundary conditions, where t⃗ = ˆ⃗t(u⃗), are allowed as well. Consistent initial conditions imply that
Eq. (7)1 is also fulfilled for the initial conditions. Formulation (7) covers a large number of models.

In the following, we discuss special cases of material models and issues when determining material parameters from
experimental data. We start with experimental possibilities and outline measurement techniques in Section 2.2, while
parameter identification for different classes of constitutive models is discussed in Section 2.3.

2.2 Experimental observations

The constitutive models in Eqns. (7)2,3 contain unknown parameters κ. They have to be determined in such a manner
that they reflect experimental observations. Since the models contain stresses and strains, the question of how to deduce
these quantities from experimental measurements is a crucial one. The principal difficulty is to find experiments where
the stress state under given (i.e., controlled) or measured external loads is known. Thus, before addressing material
parameter identification, we briefly discuss the possible options for mechanical testing and the related detectable
experimental data.

First, we consider experiments where the stress tensor σ is uniform in a certain area of the specimen, the simplest
example being the uniaxial tension/compression test. In this case, only Eqns. (7)2,3 have to be solved, since Eq. (7)1
is automatically fulfilled (provided that ρ⃗b is negligible and the material properties are homogeneously distributed).
In the data analysis, it is necessary to consider the specific structure of the tensorial quantities due to the assumed
boundary conditions, such as the absence of stress components in the lateral direction. It should also be noted that,
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(a) (b)

Figure 1: (a) Universal testing machine for tension, compression, and torsion tests, (b) Biaxial testing machine

at any time, testing machines such as the ones depicted in Fig. 1 can either control the displacement and measure the
resulting force – or vice versa. Accordingly, in order to obtain information on strains and stresses, it is necessary to
know the relationship between the displacements and the strains as well as the forces and the stresses. For a uniaxial
test, both relationships are known, but care must be taken to account for rigid body displacements (i.e., for the finite
machine stiffness) as well as to perform a sufficiently accurate measurement of the cross-sectional area of the specimen.
A further experimental choice could be to directly control the strain as a function of time rather than the displacement.
This choice would require additional technical equipment and call for a synchronization of the strain measurement
device with the testing machine. Of course, a temporal quasi-static process can be divided into two (or more) stages
with different controls, e.g., with displacement control during loading and force control during unloading.

Torsion tests on thin-walled tubes are an attractive alternative to tensile tests, since a uniform stress state over the wall
thickness can be assumed if the wall thickness is small in comparison to the tube radius. During testing, either the
torsion angle or the torsional moment is controlled. Once again, in order to compute strains and stresses, we need the
relations between the torsion angle applied by the testing machine and the shear strain, as well as between the torsional
moment and the shear stress. For the latter, the uniform stress assumption can be exploited.

Three-point or four-point bending tests are another simple test alternative. However, these experiments generate
non-uniform stress fields, so that Eq. (7)1 needs to be solved. One option is to directly solve Eq. (7)1 as a local
equilibrium equation (viewing the specimen as a three-dimensional solid), and another one is to recast it as a global
equilibrium equation (adopting the approximations of beam theory). Respectively, the material parameters are calibrated
based on full-field measurements or on discrete deflection information, see [18, 19], for example.

For large deformation cases, there exist deformations – called universal deformations – which fulfil the local balance of
linear momentum under the assumptions of isotropy and incompressibility, see e.g., [20] and [7]. In all other cases, the
entire problem (7) has to be solved.

Apart from the experiments we just discussed, there are only very few other alternatives, such as a specific type of shear
test, see [21, 22] for an overview, or experiments on specific membranes, see [23], from which the stress state can be
extracted, for example. Even a biaxial tensile test, see Fig. 1b, does not provide a uniform stress state, see [24] for a
discussion on uniformity and a measure of deviation from it. In general cases, only the forces or torques of the testing
device are directly known, and assumptions on the stress state must be provided.

On the other hand, if optical access to the sample surface and the ability to identify surface patterns are given,
displacements (and strains) can be determined locally on the surface using, e.g., digital image correlation (DIC,
see [25, 26]), as shown in Fig. 2. With this technique, out-of-plane strains cannot be obtained without introducing
further assumptions. In some situations, strain determination is only possible in an integral sense and in one direction,
employing strain gauges, clip-on strain transducers, or optical methods. Fiber-Bragg grating sensors, see [27, 28, 29],
are also used to determine strains in one direction inside a component, although care must be taken to ensure that these
measurement systems do not influence the local strain state. It is also possible to apply micro-computed tomography
(µ-CT) in combination with digital volume correlation (DVC) for volumetric determination of the strains, but the
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Figure 2: Full-field strain data on a plate with a hole

recording times are currently so long that long-term changes in the material, such as creep or relaxation effects, can
only be ruled out by estimation [30, 31]. Additional information can be obtained by the “single-valued” displacement
or angle of the specimen holder.

In some situations, there is no optical access to the specimen, e.g., in triaxial tension/compression testing machines [32],
indentation tests, [33, 34, 35], or some metal-forming processes where the specimens are not visible in the forming
press. In these cases, only a single displacement component and a single force component, both as functions of time,
can be evaluated by interpolating discrete data. In some cases, of course, a combination of full-field information and
single-valued data can be extracted and considered in the material parameter identification concept [36].

2.3 Parameter identification for various classes of constitutive models

The parameter identification procedure depends on the particular constitutive model class at hand. Thus, the choice of
the constitutive model class, which is based on the observed mechanical response of a specimen, e.g., the presence
of plastic deformations or viscous effects, directly influence on the approach to identify the sought parameters. In
the following, we provide an overview of material parameter identification for a few important classes of constitutive
models – elasticity, viscoelasticity, elastoplasticity, and viscoplasticity.

2.3.1 Linear elasticity

For linear elasticity at small strains, we distinguish between isotropic and anisotropic cases.

Isotropy In linear, isotropic elasticity for small strains, the stress state is defined by

σ =
E

1 + ν

(
E+

ν

1− 2ν
(trE)I

)
(10)

= K(trE)I+ 2GED, (11)

where trE = E · I = Ekk is the volumetric strain, ED = E − (trE)/3I represents the deviatoric strain tensor, E
the Young’s modulus or elasticity modulus, ν the Poisson’s ratio, K = E/(3(1 − 2ν)) the compression or bulk
modulus, and G = E/(2(1 + ν)) the shear modulus. The identification of this material model involves determining
two independent material parameters – such as E and ν if using (10), or K and G if using (11). Under the assumption
of uniform strains within a certain region and uniaxial tension or compression in e⃗1 direction, the strain and the stress
tensors take a simplified structure, i.e.,

E = εe⃗1 ⊗ e⃗1 + εq(e⃗2 ⊗ e⃗2 + e⃗3 ⊗ e⃗3) and (12)
σ = σe⃗1 ⊗ e⃗1 (13)

so that the identification of tensorial relations reduces to that of scalar-valued functions. The axial stress is given by
σ := σ11 = e⃗1 · σe⃗1 = EE11 = Eε (with ε := E11 = e⃗1 · Ee⃗1). The lateral strains εq := E22 = E33 = e⃗2 · Ee⃗2 are
given by εq = −νε, i.e., the Poisson’s ratio ν can be determined if the lateral strain εq is measured. Thus, we obtain a
decoupling of the identification of Young’s modulus E and Poisson’s ratio ν, whereby E can be determined from the
stress-strain information in the axial direction and ν can be obtained by measuring the transverse strain. In both cases,
furthermore, the material parameters can be determined from linear expressions.
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If one expresses the linear, isotropic elasticity relation in the form (11), the material parameters K and G are non-linearly
included in the resulting stress-strain and lateral-axial strain relations

σ =
9KG

3K +G
ε, εq = −3K − 2G

6K + 2G
ε. (14)

Then, the identification of the parameters has to be carried out, for example by a non-linear LS approach, see
Subsection 3.3.1. Moreover, the lateral strain data are of importance since the axial information alone is insufficient to
determine K and G uniquely. A detailed discussion of the reduction of the general class of material models (7)2,3 from
the 3D case to the uniaxial tensile case, which involves incorporating the boundary conditions into the strain and stress
state, is provided in [37].

Whether parameters, such as K and G in this case, can be clearly identified should be linked to a criterion. A first
attempt to investigate whether material parameters can uniquely be identified is provided in [38]. There are situations
where infinite combinations of parameters can yield a very accurate reproduction of the experiments, but this raises the
question of the physical meaning of the parameters. This is discussed in the general case of optimization by [39] and
later on by [40], referred to as local identifiability. This concept is transferred to the case of problems in solid mechanics
by [38] and a further discussion is provided by [41]. A similar approach using the terminology of local stability is
discussed by [42, 43, 44]. In a more general context, a first attempt to consider quality measures of the parameter
identification in solid mechanics can be found in [45], where the correlation between the parameters is investigated.
Here, the local identifiability concept, which can be extended to general models, is discussed in Subsection 5.1.1.

Anisotropy An extension of parameter identification for linear elastic materials to the case of anisotropy, and
particularly of transverse isotropy and orthotropy (requiring five and nine material parameters, respectively, for a 3D
model), is discussed in [46], unfortunately only at the theoretical level and with no supporting experiments. In fact, it is
not possible to devise an experiment that covers one assumed boundary condition that is connected to a volumetric
deformation. Thus, not all parameters can be uniquely inferred by the procedure in [46]. This issue is addressed in [47]
for transverse isotropy. It is shown by analytical considerations that there is one volumetric deformation process required
– apart from tensile and shear deformations – to uniquely obtain all parameters. To implement this deformation process,
a compression tool is developed [47]. However, the evaluation of the data shows that the measured lateral stresses are
very sensitive to the geometric accuracy of the specimen and of the tool itself, and also to the friction conditions within
the testing equipment. Consequently, the measurement results are not reliable and show large fluctuations. For the case
of transverse isotropy with a specific preferred direction (perpendicular to the isotropy plane) in axisymmetric problems,
the identification is discussed in [48].

The case of orthotropy is addressed in [49], where µ-CT data are evaluated to obtain the material parameters appearing
in the analytical results obtained by assuming a homogenized material response. The difficulty is again to perform
a reliable compression test to identify one of the parameters. For plane problems, the number of parameters can be
reduced, see [50], for example. Again, the main difficulty is the need for special compression tests and their evaluation,
since these tests provide only a very small amount of measurement data, which are also uncertain. Even DIC, which
delivers only the surface deformation, does not circumvent the problem of making all material parameters “uniquely”
identifiable. The problem is partly solved by using representative volume elements with individual material properties
of the constituents to numerically estimate the homogenized material behavior.

2.3.2 Hyperelasticity

The identification of the material parameters in hyperelasticity (elasticity at large strains, whereby the existence of
a strain energy density function is postulated) has to be discussed in more detail. First, hyperelasticity relations are
chosen either as part of the models of viscoelasticity, rate-independent plasticity, and viscoplasticity, or they are chosen
to model purely elastic material behavior. The latter is typically the case for rubber and of some biological materials,
which are commonly modeled as weakly compressible. Thus, we discuss the case of isotropy and incompressibility
first.

Incompressibility is modelled either by an undetermined pressure, which is calculated by the geometrical constraint
equation of no volume change [5, 6], or by introducing an arbitrarily large bulk modulus. In the latter case, the bulk
modulus can be interpreted as a penalty factor that is defined by a large number – and not determined by parameter
identification. This choice of the penalty factor, i.e., the bulk modulus, is made by the user and can lead to lateral
deformations deformations that do not precisely represent incompressibility.Further, the resulting lateral stretches might
even become non-physical at very large strains [51]. For a possible modification requiring appropriate forms of the
strain-energy density function for the compressible part, see [52]. With the choice of incompressibility, the experimental
data of the lateral stretch from a uniaxial tension/compression test are not necessary.
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In the most common hyperelastic material models – apart from the micro-mechanically motivated approaches, e.g., [53]
– the strain energy density is expressed by a polynomial function of the first and second invariants of the right Cauchy-
Green tensor [54, 52], or by a polynomial in the eigenvalues of the right stretch tensor (eigenstretches) [55]. The latter
are called Ogden-type models. The main problem in identifying the parameters from uniaxial tensile tests, torsion tests,
or combined tension-torsion tests is that some parameter values might lead to highly oscillatory tension-compression
results or to highly sensitive results, which is discussed in [56] for a number of sub-models of Rivlin-Saunders-type.
These phenomena occur especially outside the range of the measurement data used for calibration.

One possible approach to solve this issue is to assume a priori that all polynomial coefficients are positive [57]. This leads
to a linear LS identification problem with inequality constraints for uniaxial tension and torsion (universal deformations).
The inequality constraints (enforcing positivity of the parameters) can be connected to stability requirements [58], and
they raise the general question of the existence of a solution in relation to the constraints on the material parameters.
This is discussed in [52] for a new class of polynomial models in the framework of polyconvex strain energy functions.
Here, the assumption of non-negative polynomial coefficients (material parameters) is even necessary.

Further models permit arbitrary signs for the parameters, see [59] or [60]. So far, it has not been proven that negative
material parameters exclude a physical behavior in all deformation stages. Thus, special attention must be given when
applying such models.

As mentioned earlier, in Ogden-type models, the strain energy density function depends non-linearly on the eigen-
stretches. At first consideration, this has advantages for simple tests where the loading directions coincide with the
eigendirections of the stretch tensor. Here, however, the material parameters occur non-linearly in the stress-strain
relation, necessitating the solving of a non-linear optimization problem even for simple cases [61, 62, 63]. It is hardly
possible to guarantee the sensitivity of the result in material parameter identification (due to the choice of the initial
guess of the parameters in an iterative approach) or, consequently, the uniqueness of the estimated parameters.

For a recent overview of identification in hyperelasticity, see [64], where appropriate weighting functions are chosen to
identify the parameters. A comparison of hyperelasticity models can be found in [65, 66, 67]. An overview of analytical
expressions for determining the material parameters for specific isotropic hyperelasticity models is given in [68].

The treatment of material parameter identification for large strains in connection with anisotropic materials is similar to
the investigations for anisotropy at small strains. The applications here are primarily designed for biological tissues, as
these have preferred directions due to the collagen fibers present. In [69], the anisotropic material behavior of a soft
issue is experimentally investigated and calibrated using a finite strain, anisotropic hyperelasticity relation. Even the
quality of the parameters is studied, which is very difficult to be guaranteed in layered tissues as it is the case of arteries,
see [70]. [71] considers experiments on various tissues and calibrates the material parameters based on data given in
the literature. Unfortunately, the quality of the parameters is not studied. In [72], a polyconvex model for transverse
isotropy is calibrated based on virtual experiments generated with a different constitutive model. In this respect, we
refer to [73] as well. Alternative applications of anisotropic hyperelasticity are woven fabrics, see [74]. There, however,
the simpler case of a plane stress problem is considered which essentially reduces the number of unknown parameters.

2.3.3 Viscoelasticity

In the case of viscoelasticity, we have to treat either integral equations, ODEs, or DAEs to consider fading memory
properties in the material. For this type of model, after infinitely long holding times of the applied load, the stress
state coincides with the equilibrium stress state (which has no hysteresis). One common model structure goes back to
overstress-type models, i.e., the stress state is decomposed into an equilibrium stress state, formulated by an elasticity
relation, and an overstress part. This model type is sometimes also called hyper-viscoelasticity. The overstress part
can be formulated as a sum of Maxwell models, i.e. ODEs of first order. Each Maxwell element contains two material
parameters. Since all the parameters are highly correlated, a suitable procedure must be developed to determine
the parameters in a reproducible way. Another approach takes a fractional derivative model as a surrogate model to
determine the individual parameters for given relaxation spectra [75]. Unfortunately, the consistent reduction from the
three-dimensional modeling to the uniaxial tension is not addressed. An alternative scheme is proposed in [76], where
inequality constraints are used to successively determine the parameters. For a more recent investigation and literature
survey, see [77].

Since the model has a modular structure, the parameters related to the equilibrium stress and to the overstress can be
determined successively, i.e., one arrives at the identification of the parameters of an elasticity relation (discussed in
the previous subsections) and of the parameters of an ODE system. In [7], the successive identification is addressed
under the assumption of a universal deformation (tension-torsion). However, no quality measures for the identification
are discussed. Even the specification of the identification procedure is missing. Because of problems in identification,
singular value decompositions are employed in [78].
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Two questions arise here: First, how can the boundary conditions for homogeneous deformations be included in
three-dimensional material models (7)2,3? Second, which methods are available to determine the parameters in ODEs
and DAEs in the context of LS approaches? The first issue is treated in [37], where a procedure for arbitrary models
is proposed. The aspect of determining the parameters in transient problems is summarized in [79], where three
types of schemes are proposed, namely simultaneous simulation of sensitivities ([80, 81, 82]), internal numerical
differentiation ([83]), and external numerical differentiation – see [84] for an application in non-linear FEM. For the
case of viscoelasticity using full-field measurements, which is discussed in Section 3.1, the reader is referred to [85, 86].

2.3.4 Elastoplasticity and viscoplasticity

There is a large amount of articles on parameter identification in the context of plasticity. However, the quality of
the estimated parameters is not frequently addressed. Among the first papers to investigate the correlation between
parameters are [87, 88]. Models based on yield functions contain elastic parameters, whose identification is discussed in
Subsection 2.3.1. The determination of the yield stress is much more difficult for most metals. Either there are Lüders
bands resulting in a spatial motion of dislocations, so that the resulting stress-strain response is not deterministically
predictable, or the yield point is not very pronounced. Thus, the first yield stress is a very uncertain value. In the
plastic region, a number of material parameters can describe the non-linear hardening behavior (isotropic and kinematic
hardening, for example), and these parameters can be strongly correlated. A linear correlation between the driving and
the saturation term of the Armstrong & Frederick kinematic hardening model, see [89], can be concluded by analytical
considerations on this model [37, 49]. For pressure-dependent yield functions in soil mechanics, the identification using
a triaxial compression testing device is discussed in [90]. The quality of the estimated parameters is also examined.
The contribution [91] discusses the identification of material parameters for a complex viscoplasticity model using a
gradient-based method. A detailed explanation of the calculation of the sensitivities is provided, which fits into the
internal numerical differentiation procedure [83].

The more complex the models are, the more difficult it is to determine the parameters from simple experiments.
Therefore, a secondary field of material parameter identification can serve as a means of model improvement and
possibly model reduction (model identification). However, this field is often not documented, as only the final result of
a model is published. Thus, when devising new material models, attention must be paid to their identifiability from
experiments already during the development phase. This is discussed in detail in [49]. The authors of [92] discuss
the practical identifiability of the parameters for a more complex yield function, whereas [93] focuses on a non-linear
kinematic hardening model that is calibrated from uniaxial tensile tests on the basis of one-dimensional considerations
by applying an evolutionary algorithm. A further discussion on parameter identification using stress data from tensile
experiments is provided by [94]. This is extended by investigations on noisy data by [95]. A review regarding the
calibration of various plasticity models is also provided by [96].

3 Computational approaches for parameter identification

As mentioned earlier, only very few experiments lead to uniform stress and strain states. If non-uniform stress/strain
distributions occur within a specimen, problem (7) – consisting of (a) the balance equations (PDEs), (b) the constitutive
equations, and (c) the kinematic relations – has to be evaluated to obtain the parameters. Since the resulting systems of
equations are similar for uniform deformations and spatially discretized non-uniform deformation problems, we will
now discuss the latter, more challenging case. Also, the emphasis here is on the identification procedure and not on the
numerical optimization schemes.

This section is structured as follows. First, details on the space and time discretization using finite elements are
given, together with a detailed description of the three representative problems of linear elasticity for small strains,
hyperelasticity, and inelasticity (these problems are later discussed from the perspective of identification). Then, a broad
classification of the different identification methods is provided in Section 3.2, while an in-depth comparative study is
deferred to Section 4. We start our review of identification methods with the non-linear LS method using the FEM
(Section 3.3) and continue with the equilibrium gap method and the VFM (Section 3.4). Surrogate models and PINNs
are the topic of Section 3.5. Finally, an overview of model discovery and Bayesian approaches is provided in Sections
3.6 and 3.7, respectively.

3.1 Finite element method

Very often, the FEM is formulated in terms of nodal displacements. In experiments, however, there is usually also a
force, either measured or controlled, that can be formalized using the method of Lagrange multipliers, see [97]. In
the following presentation, we adopt the method of vertical lines, i.e., we carry out the spatial discretization first, by
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introducing shape functions for real and virtual displacements, resulting in the system of DAE

F (t,y(t), ẏ(t)) = 0, (15)

where

F (t,y(t), ẏ(t)) :=

{
ga(t,ua(t), q(t))−Mp(t)

Cc(t,ua(t))
q̇(t)− rq(ua(t), q(t))

}
(16)

with the discretized weak form ga, the geometric constraints Cc, and the evolution equations for the internal variables,
and where

yT (t) = {uT
a (t),p

T (t), qT (t)}, y ∈ Rnu+2np+nQ . (17)

Here, uT
a = {uT , ûT }∈ Rnu+np represents the vector of all nodal displacements, which can be decomposed into those

with prescribed values, û∈ Rnp (we initially assume that these are unknown as well), and those which are unknown,
u∈ Rnu . The size nQ of q, which now (with a slight abuse of notation) represents the vector of the internal variables in
the spatially discrete setting, will be defined shortly later on (and we have nq of these variables in the continuum setting,
see Section 2.1). Moreover,

Cc(t,ua) = û− u(t) = MTua − u(t) = 0, (18)

with

M =

[
0nu×np

Inp

]
, (19)

represents the constraint equation, i.e., the prescribed displacements u(t)∈ Rnp should be identical to û. The incidence
matrix M ∈ R(nu+np)×np extracts the concerned displacements from the vector ua. The Lagrange multipliers are
denoted with p∈ Rnp and can be interpreted as the nodal reaction forces. The last equation in Eq. (16) results from an
assembly procedure of all internal variables q ∈ RnQ

q(t) =

nel∑
e=1

ne
GP∑

j=1

Z e,j
q

T
qe,j(t), (20)

or
qe,j(t) = Z e,j

q q(t), (21)

where the matrices Z e,j
q ∈ Rnq×nQ represent data management matrices containing only zeros and ones (Boolean

matrices). Also, ne
GP is the number of integration points (commonly Gauss points) within element e, and nQ =(∑nel

e=1 n
e
GP

)
× nq defines the total number of internal variables of a mesh with nel elements.

The vector ga ∈ Rnu+np contains all equations resulting from the spatially discretized weak formulation of the balance
of linear momentum

ĝa(t,ua,p, q) =

{
g(y)

g(y)− p(t)

}
=


nel∑
e=1

Z eTpe
int − p(t)

nel∑
e=1

Z
eT

pe
int − p(t)

 , (22)

with

pe
int :=

ne
GP∑

j=1

we,jBe,jT h
(
Ee,j , qe,j

)
detJe,j (23)

which represent the nodal internal forces, whereas p(t)∈ Rnu defines the given equivalent nodal force vector. Here,
Z e ∈ Rne

u ×nu and Z
e ∈ Rne

u ×np symbolize incidence matrices assembling all element contributions into a large system
of equations (representing the assembly procedure). Moreover, Ee,j ∈ R6 denotes the column vector representation of
the element strain tensor (Voigt notation), which depends linearly on the element nodal displacement vector ue ∈ Rne

u ,
Ee,j = Be,jue, with ue = Z eu+Z

e
û. The number of element nodal displacement degrees of freedom is denoted

with ne
u , and we,j denote the weighting factors of the spatial integration in an element. Furthermore, Be,j ∈ R6×ne

u is
the strain-displacement matrix of element e evaluated at the j-th Gauss point, j = 1, . . . , ne

GP. Je,j ∈ R3×3 symbolizes
the Jacobian matrix of the coordinate transformation between reference element coordinates and global coordinates.
The symmetric stress tensor (7)2 is recast into vector T = h(Ee,j , qe,j)∈ R6, which is evaluated at the jth Gauss
point. It depends, via the strain vector, on the displacements ua and the internal variables q.

10
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If the constraint (18) in the DAE-system (15), with definition (16), is assumed to hold exactly, the reduced DAE-system

F (t, ẏ(t),y(t)) =

{
ĝa(t,u(t),p(t), q(t))
q̇(t)− rq(t,u(t), q(t))

}
= 0 (24)

results.

The DAE-system (15) is solved using the initial conditions

y(t0) :=

{
ua(t0)
p(t0)
q(t0)

}
=

{
ua0
p0

q0

}
=: y0. (25)

For this purpose, time discretization is needed. For example, the application of the backward Euler method yields

g
(
tn+1,un+1, ûn+1, qn+1

)
= 0,

g
(
un+1, ûn+1, qn+1

)
− pn+1 = 0,

Cc

(
tn+1, ûn+1

)
= 0,

l
(
un+1, ûn+1, qn+1

)
= 0,

(26)

with
l
(
un+1, ûn+1, qn+1

)
= qn+1 − qn −∆tnrq

(
un+1, ûn+1, qn+1

)
. (27)

Here, tn+1 = tn + ∆tn, n = 1, . . . , Nt − 1, where Nt is the number of load (time) steps. For details on solving
DAE-systems, see [98]. Independently of the non-linear solver, û ≈ u is obtained after one successful iteration and the
non-linear system

g
(
tn+1,un+1, qn+1

)
= 0,

g
(
tn+1,un+1, qn+1

)
− pn+1 = 0,

l
(
tn+1,un+1, qn+1

)
= 0

(28)

has to be solved at each time step. Since Eq. (28)2 is an explicit expression of the nodal reaction force vector, the
non-linear system

g
(
tn+1,un+1, qn+1

)
= 0,

l
(
tn+1,un+1, qn+1

)
= 0

(29)

is commonly solved, whereas Eq. (28)2 is used to compute the nodal reaction forces during post-processing. Although
it is common to state that a Newton-Raphson method is chosen to solve problem (29), it was shown in [9, 99] that the
Multilevel Newton algorithm proposed in [100] is applied (if an iterative stress algorithm is chosen at the local level –
i.e., at each Gauss point). This method leads to the classical structure of local iterations, often called stress algorithm
(although it is the internal variable computation), and to global iterations, where the increments of the displacement
vector are obtained (on the basis of the consistent linearization stemming from the usage of the implicit function
theorem).

Let us consider some special cases. In hyperelasticity (absence of Eq. (16)3), simply setting ṫ = 1 once again yields a
DAE-system, so that the same procedure can be applied. Thus, we obtain

g(tn+1,un+1) = 0,

pn+1 = g(tn+1,un+1).
(30)

Frequently, the step-wise increase of the load is chosen to be close to the solution of the Newton-Raphson method
applied to Eq. (30)1, see [86] for details.

For the case of linear elasticity, σ = h(E) = CE, with C ∈ R6×6 as the elasticity matrix, the functions in equation
(30) read

g(u) = Ku+Ku− p, (31)

g(u) = K
T
u+Ku, (32)

i.e., we have

Ku = p−Ku, (33)

p = K
T
u+Ku (34)
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or the classical representation [
K K

K
T

K

]{
u
u

}
=

{
p
p

}
. (35)

Here, the explicit time (or load) dependence is omitted since proportionality is given. The stiffness matrices are defined
by

K =

nel∑
e=1

Z eTkeZ e, K =

nel∑
e=1

Z
eT

keZ e, K =

nel∑
e=1

Z
eT

keZ
e

(36)

with the element stiffness matrix

ke =

ne
GP∑

j=1

we,jBe,jTCe,jBe,j detJe,j (37)

and the elasticity matrix Ce,j ∈ R6×6.

In the following, we formally restructure the equations discretized above with the aim of material parameter identification.
For this purpose, we redefine y ∈ Rns as the state vector and introduce the vector of material parameters κ∈ Rnκ . The
structure of the state vector depends on the problem under study.

Problem class I: linear elasticity In the framework of linear elasticity, the dependence on the material parameters κ
appears in the stiffness matrices, and Eqns. (33) and (34) lead us to the system

F (y,κ) = 0 (38)
with

F (y,κ) := Aup(κ)y − f(κ) (39)
and [

K(κ) 0

−K
T
(κ) I

]
︸ ︷︷ ︸

Aup(κ)

{
u
p

}
︸ ︷︷ ︸

y

=

{
p−K(κ)u

K(κ)u

}
︸ ︷︷ ︸

f(κ)

. (40)

In the forward problem, κ is given, i.e., κ = κ̄ and F (y, κ̄) = 0 has to hold. However, in parameter identification,
κ has to be determined. Usually, no time dependence is assumed within the framework of statics. To indicate that
different load values are used for parameter identification (and going back to the time-continuous setting for notational
simplicity), Eq. (38) should actually be F (t,y(t),κ) = 0. While Aup(κ) in Eq. (40) is time-independent, since the
stiffness matrices do not depend on time, f(t,κ) is time-dependent since it contains the time-dependent prescribed
displacements u(t) and equivalent nodal force vector p(t).

Different specific problem settings can be defined. In a common case, one component of a resultant reaction force p̌ is
available through the load cell of the testing machine. Temporarily ignoring the time dependence, the resulting equation
reads

p̌(u,u,κ) = mTp = mTK
T
(κ)u+mTK(κ)u, (41)

where the vector m∈ Rnp is used to sum the relevant components of the nodal reaction force vector p. The dependence
of the stiffness matrices on the parameters may be non-linear. In the case of a linear dependence, the following relations
can be obtained (see Appendix B)

AS(u,u)κ = p,

AS(u,u)κ = p,

mTAS(u,u)κ = p̌.

(42)

with the third equation stemming from (41). Defining

Aas :=

[
As

As

]
and pa :=

{
p
p

}
(43)

Eq. (42)1,2 can be abbreviated by
Aas(u,u)κ = pa. (44)

Accounting for the time dependence implies Aas(t,u(t)) and pa(t,p(t)) in Eq. (44),
Aas(t,u)κ = pa(t,p), (45)

i.e.,
F (t,u,p,κ) := Aas(t,u)κ− pa(t,p) = 0. (46)

In the time-discrete setting, Eq. (46) has to be solved for each load or time step, yielding different parameters κ. With
this approach, further considerations have to be made to finally determine a unique set of parameters (e.g., by averaging,
which is the simplest possibility).
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Problem class II: hyperelasticity If the underlying constitutive model is hyperelastic, the problem

F (t,y(t),κ) = 0, (47)

with

F (t,y(t),κ) =

{
g(t,u(t),κ)

g(t,u(t),κ)− p(t)

}
(48)

has to be solved iteratively, see also Eq. (30) in the time-discrete setting. Consideration of the time dependence has two
reasons: first, to incorporate the non-linear behavior and to consider it in the identification process; and second, for very
non-linear problems, an iterative procedure applied directly to the final load value may fail, necessitating an incremental
procedure where each incremental displacement state is chosen as the starting estimate for the solution at the next load
step. Once again, a reaction force component p̌ could be simply identified in certain parameter identification scenarios,

p̌(t) = mTp(t) = mTg(t,u(t),κ). (49)

There are hyperelastic material models which are linear in the material parameters, such as the class of Rivlin-Saunders
or Hartmann-Neff models, see [54, 52]. This leads to the same representation as in Eq. (42). Unfortunately, this is not
the case for Ogden-type models [55, 20], where the fully general case (47) has to be considered.

Problem class III: inelasticity For inelastic problems, where evolution equations describe the plastic, hardening,
and/or viscous behavior of the material,

F (t,y(t), ẏ(t),κ) = 0 (50)
is given, see Eq. (15). If an implicit time discretization is applied, ẏ disappears from the equation. However, y contains
the unknowns at all discrete times, and F consists of all non-linear systems to be solved at each of those time steps.
Now, as introduced in Eq. (17), y contains the unknown nodal displacements u, the nodal reaction forces p, and the
internal variables q evaluated at the Gauss points. In this case, it is also possible to compute the reaction forces, an
exercise which is left to the reader.

Using the implicit function theorem In preparation for the later formulation of the so-called reduced approaches,
we introduce here the implicit function theorem, which states that the solution y(t) implicitly depends on the material
parameters κ, i.e. y(t) = ŷ(t,κ). Inserting this into the model equations yields

F (t, ŷ(t,κ),κ) = 0, (51)

or
F (t, ŷ(t,κ), ˙̂y(t,κ),κ) = 0, (52)

where Eq. (24) defines F in the inelastic case. Thus, once ŷ(t,κ) is known, the parameters alone have to be determined,
which is denoted as the reduced approach, see Section 4.3.

3.2 Classification of different approaches

Calibration is used to determine model parameters with which the model can best approximate available measurement
data. A criterion for the approximation accuracy is provided in terms of a closed-form mathematical expression, i.e.,
the objective or loss function. The latter is a norm of the difference between the available measurement data and the
model predictions, obtained from the solution of the governing equations via a numerical (discretization) method or a
surrogate model. One important characteristic of the different numerical methods presented here is the type of spatial
(and/or temporal) discretization. After formulating an objective function, the optimal model parameters that minimize
this function are identified using optimization algorithms, often referred to as optimizers. Alternatively, in a statistical
setting, a single best guess of the unknown material parameters is formulated as a point estimator, i.e., a function of the
observed data [101]. Here, the likelihood function plays a central role, and Bayesian approaches additionally consider
a prior density. With statistical models, the uncertainty of an estimate can be assessed through confidence/credible
intervals, which are typically computed with sampling approaches.

In Tab. 1, the methods presented in the remainder of this manuscript are classified by the aforementioned features,
namely

1. Discretization: Galerkin or collocation methods, as well as local or global ansatz functions.
2. Parametrization: The objective or likelihood function depends on parameters κ of the material model, and

possibly also on the PDE solution or on a parametrization of the latter.
3. Optimization/sampling: While deterministic calibration approaches mostly make use of different gradient-

based optimization schemes, both optimization and sampling are common choices in a statistical setting.
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Table 1: Classification of different methods for parameter identification as outlined in Section 3.2

method discretization parametrization optimization/sampling
non-linear least-
squares using
finite elements
(Sec. 3.3)

Galerkin; local ansatz for
virtual and real displace-
ments

material parameters κ gradient-based (e.g., trust
region) or gradient-free
(e.g., Nelder-Mead sim-
plex)

equilibrium gap
method (Sec. 3.4)

Galerkin; local ansatz for
virtual fields

material parameters κ linear system for linear
problems; trust region for
non-linear problems

virtual fields
method (Sec. 3.4)

Galerkin; global ansatz
for virtual fields

material parameters κ linear system for linear
problems; trust region for
non-linear problems

physics-informed
neural networks
(Sec. 3.5)

collocation; global ansatz
parametrized in θ

material parameters κ,
parametrization of PDE
solution θ

gradient-based (e.g.,
ADAM, BFGS, L-BFGS-
B)

surrogate models
(Sec. 3.5)

collocation/regression
with polynomial ansatz,
neural network, Gaussian
process, and many more

material parameters κ,
surrogate parameters θ

any (gradient-based,
gradient-free, or sam-
pling)

model discovery
(Sec. 3.6)

any material parameters κ;
non-zero κi from a large
library are selected via
sparse regression

coordinate descent for
linear problems; trust re-
gion for non-linear prob-
lems

frequentist infer-
ence [5.1]

any any parameter combina-
tion

optimization or sampling

Bayesian infer-
ence [3.7]

any any parameter combina-
tion

sampling or variational
inference

3.3 Non-linear least-squares method using finite elements

If the material parameters cannot be identified on the basis of simple experiments, where the stress and the strain
are known, the entire boundary-value problem (7) of the experiment must be solved. This can be done by numerical
approximation methods such as finite differences, boundary elements, finite volumes, or the FEM. In the following, we
assume that the latter is the method of choice. The non-linear LS (NLS) method is applied to minimize the difference
between the results of the finite element simulation of the experimental boundary conditions and both point-wise and
full-field measurement data. First, we discuss proposals for parameter identification of phenomenological constitutive
models (macroscale), followed by schemes addressing models with scale separation, specifically materials with a
microstructure.

3.3.1 Macroscopic constitutive models

The combination of the FEM and a LS approach to determine parameters κ in the finite element model goes back to
[102]. Later, [103] linked LS and FEM with the goal to detect the location and the Young’s modulus of an inclusion in
a matrix material. Discrete data in combination with finite elements were also used in [104, 105, 106, 35, 107, 108].
This approach can be followed for experiments with non-uniform stress states when access is limited to, e.g., resultant
forces, such as in the case of indentation tests or metal forming processes, see [109, 110].

A conceptual and practical step beyond the use of pointwise data has emerged with the availability of optical methods.
Here, a special focus lies on DIC methods, see e.g., [25, 111], where the surface displacements of the specimen
are measured during loading. Approaches taking advantage of full-field displacement data, pioneered by Mahnken
[112, 42, 113], were further extended by [114, 115, 116, 117, 45, 118, 24, 119, 120, 121], see also [122] for biaxial
tensile tests and [123, 124] for more complex deformation cases. In [1], an approach of this type was denoted finite
element model updating (FEMU), a terminology that has been used continuously since then. Unfortunately, this
terminology can be misleading since the same name is well-established in structural dynamics, see [125] for a review.
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Following [125, 126], the FEMU approach is applied when the mathematical structure of the problem, here a finite
element equation (e.g., the entries in the stiffness or mass matrix), is changed during the system identification process,
see [127], for example. In contrast, when calibrating constitutive models, the finite element equation is specified once
– and only the material parameters are updated. As a result, the calibration of constitutive models has to be clearly
classified as parameter identification rather than FEMU. In [86], the combination of NLS with DIC data, where the
boundary-value problem is discretized using the FEM, is denoted as NLS-FEM-DIC – a denomination that includes the
objective function, the boundary-value problem solution technique, and the experimental measurement technique.

Alternative approaches to account for optical information are considered in [128], where gratings on the specimen
surface are incorporated, in [129] using Moiré-patterns, or in [130, 131] using contour data and discrete points on the
surface. [1] provides an overview of other schemes, such as various “gap methods” mainly applied in model updating
using vibrational data, and a comparison to determine the elastic parameters, see [1]. Further contributions propose the
“constitutive relation error” and “modified constitutive relation error” approaches, [132, 133]. A study of the integrated
DIC method and its references is provided by [134]. Overall, the testing and identification paradigm – which takes
advantage of full-field measurement data rather than simple strain transducers or strain gauges – in conjunction with the
FEM is referred to as “Material Testing 2.0” in [135].

The previously mentioned approaches bear a strong relation to the mathematical literature on the least-squares method
applied to the solution of ODE- or DAE-systems [79]. This is explained in detail in [84] and will be briefly summarized
in the following.

In the following, s denotes the vector of simulation results, to be compared with the vector of the experimental data
d (displacements or strains at single or different spatial positions and at different times, and forces – full-field or
single-valued resultant quantities). Accordingly, y contains all state quantities (unknown displacements and/or reaction
forces, internal variables evaluated at all Gauss points) from all experiments and time steps. The same structure holds
for F as well, see Appendix A. Note that s results from the computed solution inserted into the so-called observation
operator O(y). In this sense, s depends on the solution y of the problem classes I-III introduced in Subsection 3.1. In
solid mechanics, it is inherently assumed that the simulation results depend on the material parameters κ∈ Rnκ , i.e.,
s = s(κ)∈ RnD , with nD as the number of data. Here, the implicit function theorem is applied, leading to Eqns. (51)
or (52), i.e. s(κ) = O(ŷ(κ)) with y = ŷ(κ). In the LS procedure, we form the difference between the simulation
results and the experimental data, called the residual

r(κ) = s(κ)− d = O(ŷ(κ))− d. (53)

Since the number of individual entries, their magnitude, and their physical units vary within the residual r, it is
common and reasonable to introduce a diagonal weighting matrix W ∈ RnD×nD and to consider the weighted residual
r̃(κ) = W r(κ) = W {s(κ)− d}. For an approach to account for different amounts of data and different magnitudes
of the physical quantities within the data, see [56]. The steps to pre-process the experimental full-field data as well as
the data obtained from the numerical simulation are explained in detail in Appendix A.

The NLS formulation requires that the square of the weighted residuals

ϕ(κ) =
1

2
∥r̃(κ)∥2 =

1

2
∥W (s(κ)− d) ∥2 =

1

2
{Wr(κ)}TWr(κ) =

1

2
{W {s(κ)− d}}T {W {s(κ)− d}} (54)

is minimized, i.e., we obtain a solution
κ∗ = argminκ ϕ (κ) . (55)

Note that multiple minima may exist. In this case, κ∗ represents an arbitrary element of the minimization set. The
necessary condition for a minimum κ = κ∗ is given by

dϕ

dκ
= JT (κ)W TW {s(κ)− d} = 0, (56)

which represents a system of non-linear equations to determine the material parameters κ, i.e. to find the solution κ∗.
Note that in some situations, it makes sense to specify equality or inequality constraints, hec(κ) = 0, hic(κ) ≤ 0. The
quantity

J(κ) =
dr(κ)

dκ
=

ds(κ)

dκ
, J ∈ RnD×nκ , (57)

represents the sensitivity matrix (also denoted as functional matrix or Jacobian matrix). The solution of problem (56)
can be computed by various methods, see [136, 137, 138, 139, 140]. In the case of gradient-based algorithms, the
derivatives (57) are required to compute κ∗. Parameter identification with sensitivity assessment is also covered by
[141]. The computation of the sensitivities is compiled in Appendix D.

A systematization of the NLS approach with DIC data is presented in [142], where various large deformation problems
are treated. However, the problem of local identifiability is not addressed, see Subsection 5.1.1 for details.
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3.3.2 Representative volume element approaches

In some cases, materials possess a heterogeneous microstructure (an example being fiber-reinforced composites), and
the goal of the identification is to determine their macroscopic properties, i.e., the parameters describing a homogenized
material. For unidirectional fabrics or for orthogonal fabrics within the linear elastic regime, for example, appropriate
macroscopic models are transversely isotropic elasticity (with five parameters) and orthotropic elasticity (with nine
parameters), respectively. The difficulties that arise here lie in the experiments required to determine these parameters
uniquely (see Section 2.3.1). One alternative is to use a representative volume element (RVE) and, assuming that the
material parameters of the constituents are known, to determine the homogenized material parameters with analytical
mixing rules, as discussed in [143, 144], or with computational homogenization. However, care must be taken to ensure
that the appropriate deformation modes are excited in order for the related parameters to be determined; see [49] for a
specific application of an RVE to determine orthotropic material parameters. Further questions are treated in [145, 78],
discussing the issue of identifying the inelastic properties of the matrix and the interphase parameters for composite
materials.

Another task might be to identify the material parameters of the microscopic constituents of a heterogeneous material.
This can be done either by considering only the RVE and applying to it appropriate homogeneous loading conditions, or
by relying on macroscopic experiments. The latter option is discussed by [146] in a FE2 context on the basis of the
LS approach. Unfortunately, local identifiability of the parameters is not discussed. Since FE2 computations are very
expensive, an iterative identification procedure using standard FE2 codes is very time-consuming. This problem is
pointed out in [147], however, no connection to an identifiability assessment is made. The use of integrated DIC for
parameter identification within a multiscale approach is discussed in the recent contribution [148].

An example of RVE-based identification approach for a damaging material is discussed in [149]. In order to incorporate
the micro-void behavior under loading into the model, a unit cell is considered and the material parameters controlling
damage evolution are identified.

3.4 Equilibrium gap and virtual fields method

As discussed in the previous section, the NLS method with DIC data seeks to minimize the square of the weighted
residuals r̃(κ) for the unknown parameters κ, thus minimizing the mismatch between FEM predictions s(κ) and
experimental observations d.

Observing that the material parameters remain the only unknowns in a governing PDE if the mechanical state (e.g.,
the displacement field) is known from experimental measurements, another stream of research suggests minimizing
the square of the residuals of the governing PDE in its discretized weak form instead of the mismatch between FEM
predictions and experimental observations. In other words, observing that forward simulations with finite elements
compute the mechanical state of a system by minimizing the residuals of a PDE in its discretized weak form for a given
set of material parameters, one can easily deduce an inverse problem that computes the material parameters for a given
mechanical state by minimizing the same PDE residuals. The norm of the residuals of the discretized weak form of the
PDE is denoted by some authors as the equilibrium gap [150]. Assuming that the state y = u, i.e., the state contains
only the displacements, and assuming that full-field displacement data are available, we can replace y with the data d.
Then, the equilibrium gap method [150, 151] seeks to determine

κ∗ = argminκ
1

2
∥F (d,κ)∥2, (58)

where F (d,κ) are the residuals of the discretized weak form of the balance of linear momentum (after a proper
treatment of boundary conditions), considering the Bubnov-Galerkin discretization for the trial and test functions as
known from ordinary forward finite element problems. This leads to the necessary first-order condition[

∂F (d,κ)

∂κ

]T
F (d,κ) = 0, (59)

which implies that, in general, F (d,κ) = 0 is not fulfilled (“there is a gap to the equilibrium conditions”). Moreover, y
must be known. It has to be remarked that u = du (where du are the experimental displacement data) is very restrictive,
as it only allows the use of the region of the DIC measurements (which is a subset of the domain) and limits analysis to
plane problems. While the scheme is applicable for problem classes I and II, it requires additional considerations for
problem class III since the internal variables are not measurable. Thus, the scheme is only applicable for very specific
problems in the proposed form (59). Theoretically, the scheme is extendable to force data as well. However, this may
be difficult when using DIC, as the forces corresponding to the imaged regions may be unknown in this case.

In general, the equilibrium gap may be minimized for any choice of sufficiently smooth test functions (or virtual fields),
which is the core idea of the VFM, [152, 153, 154]. Denoting V as the chosen set of virtual fields and FV(d,κ) as the
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corresponding residuals of the weak form of the balance of linear momentum, the objective is to find

κ∗ = argminκ
1

2
∥FV(d,κ)∥2. (60)

Often, the number of virtual fields in V is chosen such that it coincides with the number of unknown material parameters.
These functions must be linearly independent.

Let us start with problem class I (linear elastic problems). In what follows, we consider a problem for which the residual
of the discretized PDE is affine with respect to the mechanical state and the material parameters. Thus, Problem (35)
depends linearly on κ, see Eq. (45) (an alternative approach is provided in Appendix B, see Eq. (235)). In the VFM,
the mechanical state variables u and some resultants of nodal forces are assumed to be known from measurements,
such that we can write Aas(t,du) and pa(t,dp), where dp are the force data. In reality, of course, only very few force
resultants are measured. In the following, for the sake of brevity, we discuss the entire set of equations. The VFM seeks
to identify the material parameters by minimizing the residual of Eq. (45), i.e.,

κ∗ = argminκ
1

2
∥Aas(t,du)κ− pa(t,dp)∥2 (61)

implying the necessary condition

AT
as(t,du)Aas(t,du)κ = AT

as(t,du)pa(t,dp), (62)

which is a linear system with nκ unknowns. The same property also holds for problem class II (hyperelasticity) if the
material parameters are linearly embedded, e.g., with Rivlin-Saunders and Hartmann-Neff models [54, 52], see [155].
Thus, material parameter identification with the VFM requires only the solution of one linear system of equations,
whereas the NLS-FEM approach requires to run a forward FEM simulation at each iteration of the optimization algorithm.
Note, however, that the full displacement field is here assumed to be available from experimental measurements. A
discussion on exceptions is provided in [156].

For problem class III (models with internal variables), the scheme explained above is not applicable. Details regarding
the application of the VFM to some specific models with internal variables are provided by [157, 153]. For general
considerations, we refer to Section 4.4.1. Please note that, given the conceptual similarities between equilibrium gap
and VFM, we will only refer to the VFM in the following.

3.5 Surrogate models and physics-informed neural networks

In the previous sections, we formulated different minimization problems (55), (58), and (60), which need to be solved
using iterative techniques. As follows, we consider optimization of the residual (53) in the generic form

κ∗ = argminκ
1

2
∥s(κ)− d∥2. (63)

The evaluation of s(κ) using e.g., a FEM simulation may be costly, especially if many iterations are required and the
model to be calibrated is computationally demanding. Therefore, it can be efficient to replace the simulation by a
so-called surrogate or meta model. The vector of the corresponding results is denoted as ssurr(κ).

Surrogate models require a flexible parametric regression ansatz, such as, e.g., multivariate polynomials. Recently,
machine learning approaches such as artificial neural networks (ANNs) and Gaussian processes, often referred to as
Kriging, have gained increasing attention. A brief introduction to ANNs and the notation used in the manuscript is
given in Appendix C. One of the first attempts to apply ANNs as surrogates for the identification of material parameters
goes back to [33, 34, 158]. Recent work in this direction can be found in [159, 160]. When using surrogate models in
the context of parameter identification, the overall procedure is the following:

1) To train a surrogate model ssurr(κ;θ) as a regression function through the data sampled from a given number
of evaluations of the physical model s(κ). In the context of Gaussian processes, θ are the kernel parameters
that can be fitted to the data using Bayesian model selection or by minimizing the negative log-likelihood.
After fixing the kernel parameters, the GP surrogate is conditioned on the available data to obtain the regression
function. The training of ANNs, on the other hand, requires the identification of trainable parameters θ, i.e.,
the weights and biases, via optimization.

2) To identify the physical parameters by solving the minimization problem (63), whereby s(κ) is replaced with
its surrogate ssurr(κ;θ = θ∗). Herein, θ∗ denotes the non-physical parameter set of the surrogate identified
in step 1. Note that surrogates can also be used in the context of statistical inference in combination with
sampling approaches, see sections 3.7 and 5.
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Figure 3: Schematic representation of (a) a conventional and (b) a parametric PINN formulation.

Step 1 and 2 can be interconnected, which is then referred to as adaptive sampling, see [161] for an extensive review in
the context of Kriging.

Recently, PINNs, a deep learning framework for solving forward and inverse problems involving PDEs, have gained
increasing attention, also in the context of parameter identification and inverse problems. The idea behind this method
was first proposed in the 1990s [162, 163]. Exploiting developments in automatic differentiation [164], advanced
software frameworks (such as PyTorch [165], TensorFlow [166], or JAX [167]) and hardware improvements, PINNs
have recently been revived [168]. Their key characteristic is the design of the loss function: By including the governing
PDE as regularizing term, the output of the ANN is forced to satisfy the PDE at a set of chosen points, thereby
incorporating physical knowledge [169]. Thus, via the ansatz of the displacement field

u(x, t) ≈ U(x, t;θ), (64)

the ANN acts as a function approximator (or ansatz function) of the PDE solution. The above ansatz U is parameterized
in the ANN weights and biases θ. Fig. 3a shows a schematic representation of ansatz (64).

Spatial (and, in the case of dynamic problems, temporal) derivatives of the ansatz (64) can be calculated using automatic
differentiation, see [164, 166, 167]. For dynamic problems, this approach is referred to as continuous-time PINN [168].
Alternatively, temporal derivatives can be treated by means of discrete time-integration schemes, see [168, 170]. As
mentioned earlier, dynamic problems are out of the scope of the representation. Instead, the time dependence in Eq. (64)
expresses that different load (time) steps within one experiment or various experiments are used to identify the set of
material parameters κ.

Parametric PINN as surrogate model PINNs may also act as surrogate models, when a parametric ansatz is chosen.
A parametric PINN takes parameters (here, the material parameters κ) as additional input to the ANN, such that the
ansatz (64) modifies to

u(x, t,κ) ≈ U(x, t,κ;θ). (65)

Then, with the observation operator in (53), the model response is extracted from the state via

ssurr (κ;θ) = O(U(x, t,κ;θ)). (66)

Fig. 3b shows a schematic representation of a parametric PINN ansatz in comparison to the one in Eq. (64). The
training of parametric PINNs, i.e., the identification of the ANN parameters θ, is discussed in detail in Section 4.3.2.
Parametric PINNs have been deployed for thermal analysis [171], magnetostatics [172], or for the optimization of an
airfoil geometry [173]. To the best of our knowledge, they have not yet been used for the calibration of material models
in solid mechanics.

Inverse or all-at-once PINNs An alternative to the parametric PINN approach discussed above are so-called inverse
PINNs, which are related to the all-at-once formulation introduced in Section 4. In inverse PINNs, material and network
parameters κ and θ are identified simultaneously, and the optimization problem (63) does not hold anymore. Details
are provided in Section 4.5.2.
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The following contributions deal with material model calibration from full-field displacement and force data using
PINNs. In [174], the authors propose a multi-network model for the identification of material parameters from
displacement and stress data for linear elasticity and von Mises plasticity. For the analysis of internal structures and
defects, the authors in [175] present a general framework for identifying unknown geometry and material parameters.
In [176], a framework is developed for the calibration of hyperelastic material models from full-field displacement and
global force-displacement data. Unlike in the conventional PINN approach [168], the physical constraints are imposed
by using the weak form of the PDE. In [177], variational forms of the residual for the identification of homogeneous and
heterogeneous material properties are formulated. The method is demonstrated using the example of linear elasticity.
The study in [178] considers the identification of heterogeneous, incompressible, hyperelastic materials from full-field
displacement data. It uses two independent ANNs, one for the approximation of the displacement field, and another
one for approximating the spatially dependent material parameters. A comparison of different data sampling strategies
as well as soft and hard boundary constraints is reported in [179]. In [180], PINNs are further enhanced towards the
calibration of linear elastic materials from full-field displacement and global force data in a realistic regime. The
realistic regime here refers to the order of magnitude of material parameters and displacements as well as noise levels.

3.6 Model discovery

The previously discussed methods for material characterization focus on the calibration of material parameters in an a
priori known material model. The a priori choice of the material model, i.e., the combination of mathematical operations
that describes the material behavior, typically relies on the intuition and modeling experience of the user. Inappropriate
assumptions in the material model are reflected in a poor fitting accuracy of the model even after parameter calibration.
To avoid such modeling errors, strategies have been proposed recently to automatically discover a suitable symbolic
representation of the material model, while simultaneously calibrating the corresponding material parameters. Thus, the
problem of material parameter calibration is generalized to the more intricate problem of material model discovery.

Algorithms for discovering symbolic models from data can be broadly classified into two types: symbolic regression
methods based on genetic programming [181], which repeatedly mutate a model until its agreement with the data is
satisfactory, and sparse regression methods [182] which select a model from a potentially large set (also called library
or catalogue) of candidate models based on data. Such methods have first been used in the physical sciences to deduce
symbolic expressions of the governing equations of dynamical systems [183, 184]. In the field of material modeling,
symbolic regression based on genetic programming has been used since the early work of [185], see also the more
recent works in [186, 187, 188, 189, 190]. Sparse regression for the discovery of material models has been much less
explored and has only recently gained attention [155, 191, 192, 193]. See also the review in [194], where a novel
symbolic regression approach based on formal grammars is proposed for hyperelasticity.

In [155], the authors propose EUCLID (Efficient Unsupervised Constitutive Law Identification and Discovery), a
method for discovering symbolic expressions for hyperelastic strain energy density functions using sparse regression
starting from displacement and force data. The method is later extended to elastoplasticity [195], viscoelasticity [196],
and generalized standard materials [197], see [198] for an overview. A supervised version (i.e., a version based on
stress data) of the EUCLID approach is experimentally validated in [199] using data stemming from simple mechanical
tests on human brain tissue.

The idea behind EUCLID is to construct a set of candidate material models (i.e., a material model library) by introducing
a general parametric ansatz for the material behavior, which depends on a large number of parameters (κ ∈ Rnκ with
nκ ≫ 1) comprising all material parameters of all candidate material models. Calibrating the parameters using one
of the previously discussed calibration methods would result in a highly ill-posed inverse problem. Even assuming
that such a problem is solvable, the solution would deliver a parameter vector κ with many non-zero entries and, thus,
a highly complex symbolic expression for the material model. Therefore, a regularization term is introduced which
penalizes the number of non-zero entries in κ, and, consequently, promotes simplicity of the symbolic material model
expression while alleviating the ill-posedness of the inverse problem. The so-called ℓp-regularization term takes the
form ∥κ∥pp =

∑
i | κi |p with 0 < p ≤ 1, assuming high values for dense vectors κ and smaller values otherwise. In

the limit p → 0+, the ℓp-regularization term converges to an operator that counts the number of non-zero entries in κ.
For p = 1, the approach is called Lasso-regularization.

We first focus on problem classes I and II and assume that the models in the material model library depend linearly on
the parameters κ, see [155]. For the formulation of EUCLID for problem class III [195, 197] as well as for models that
do not depend linearly on the parameters, we refer to Sec. 4.4.2. The regularized problem that constitutes the core of
EUCLID is written as

κ∗ = argminκ
1

2
∥A(d,u)κ− p̌∥2 + λ∥κ∥pp, (67)
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where the first term in the objective function quantifies the mismatch between the model and the data. Here, similar
to the VFM, see Eq. (60), the model-data mismatch is defined indirectly by the sum of squared residuals of the
discretized weak form of the balance of linear momentum. Here, however, we should note that other measures for the
model-data mismatch, see Sec. 3.3, could be chosen likewise. The matrix A(d,u) and the load vector p̌ in Eq. (67) are
constructed as described in Appendix B for linear elasticity at small strains. If more sophisticated material behavior like
hyperelasticity is considered, the matrix A(d,u) changes accordingly, see [155].

The effect of the sparsity-promoting regularization term on the minimization problem is influenced by the weighting
factor λ > 0, which can be chosen to strike a balance between the fitting accuracy and the complexity of the discovered
material model, see [195, 196, 197, 198, 199]. Abandoning the deterministic setting, the EUCLID method is investigated
from a Bayesian perspective in [156] to quantify the uncertainty in the discovered models.

In the literature, two different lines of research on model discovery can be distinguished. The first aims to discover
symbolic and thus interpretable expressions for the material models, as in the approaches we just described. The
second is concerned with the training of non-interpretable black-box machine learning models for encoding the material
response. Examples for the latter include machine learning models like splines [200], Gaussian processes [201],
neural ordinary differential equations [202], and – the arguably most popular choice – ANNs [203]. Although purely
data-driven constitutive models have shown some success [203, 204], much effort has been addressed to constrain ANNs
such that fundamental physical requirements (such as objectivity, material stability, and thermodynamical consistence)
are respected, while maintaining their expressivity. In the context of hyperelasticity, for example, [205, 206, 207, 208]
choose specifically designed ANN architectures to ensure the (poly-)convexity of the strain energy density function.
In the context of dissipative materials, [209, 210, 211, 193] consider ANNs that do not violate thermodynamic
requirements (see [212] for a review). An often disregarded drawback of ANNs is their data-hungriness. Supervised
training frameworks for ANNs require a large amount of labeled stress-strain data pairs, which are experimentally not
accessible and are therefore typically acquired through computationally expensive microstructure simulations, which
require the microstructural properties of the material to be known. To counteract the data scarcity, unsupervised training
frameworks that solely rely on experimentally available displacement and reaction force data like the NN-EUCLID
proposed by [207] are indispensable.

3.7 Bayesian approaches

Bayesian statistical methods are gaining momentum for parameter identification in mechanics, because of their ability
to incorporate prior information and because they naturally achieve a regularization of ill-posed problems. Moreover,
Bayesian inference delivers a distribution over the sought parameters, which can be used for uncertainty quantification.
The Bayesian approach [213] formulates a posterior density as

p(κ|d) ∝ p(d|κ)p(κ), (68)

where p(κ) refers to the parameter prior and p(d|κ) represents the likelihood function, which can be evaluated by
solving the mechanical model.

More precisely, writing d = s(κ) + e, with e as the observation noise vector, we obtain the Likelihood as

p(d|κ) = πe(d− s(κ)), (69)

where πe denotes the probability density function of the measurement noise. Many different parameter identification
approaches can be recovered as Bayesian point estimates. For instance, with a normally distributed prior p(κ) ∼
N (µκ,Σκ) and πe ∼ N (0,Σe), we can compute the maximum a posteriori estimate

κ∗ = argminκ − ln (p(d|κ)p(κ)) = argminκ ∥d− s(κ)∥Σ−1
e

+ ∥κ− µκ∥Σ−1
κ
, (70)

with the weighted norm ∥x∥2A = xTAx for any positive definite matrix A, and recover the NLS approach with
Tikhonov regularization, see [214] for details and further links between Bayesian approaches and regularization. One
can even obtain information about the posterior based on this optimization-based approach, by perturbing the data d
with a randomly drawn noise vector according to the density πe. This so-called randomize-then-optimize approach is
investigated in a number of papers, see [215] for instance.

When dealing with model discovery in the context of a possible large library of candidate basis functions, Bayesian
priors are also frequently used to enforce sparsity. For instance, maximum a posteriori estimates yield, together with
the Bayesian LASSO and spike-and-slab priors, the ℓ1 and ℓ0 regularization, respectively. A unifying framework to
Bayesian sparsity priors has recently been proposed in [216].

Fully Bayesian approaches, however, go beyond point estimation and determine the posterior distribution p(κ|d), most
often through sampling-based Markov chain Monte Carlo analysis. Here, a major bottleneck is the large computational
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cost, which is often alleviated by replacing the simulation model with a surrogate. A popular choice consists in
employing Gaussian process modeling with adaptive sampling, see [217], for example. A sampling-free approach
is put forth in [218], where polynomial chaos filtering is used to avoid costly sampling. An alternative consists in
building a surrogate model for the likelihood function or the posterior directly, which in turn gives easy access to
posterior moments and the marginal likelihood function [219]. The drawback here is the concentration of Likelihood
and posterior in the large data-small noise limit, which requires dedicated adaptive surrogate modeling approaches.

Bayesian parameter estimates have been employed in the context of biological hyperelastic models [220], but also
for phase-field fracture modeling [221, 222], composite modeling [223], viscoelasticity [224, 225], and plasticity
[226, 227], to name a few. See [228] for various applications in the context of computational mechanics and [229] for a
comparison of Bayesian and deterministic parameter estimation approaches.

Another feature that makes Bayesian parameter estimation interesting for mechanics is the ability to compare competing
models based on model selection criteria, such as Bayes’ scores. This is proposed, e.g., in [230] for comparing
hyperelastic material models and in [231] for selecting continuum damage mechanics models.

The Bayesian reasoning also underlies machine learning approaches, in particular Gaussian process models and
Bayesian ANNs. A recent survey covering Bayesian methods in the context of PINNs is given in [232].

Bayesian methods rely on an accurate model producing the simulation data; hence, a model error term needs to be
accounted for if the simulation results are corrupted by numerical errors or simplifying model assumptions. A simple
way to account for model error is to add a discrepancy term ϵ as

d = s(β) + ϵ+ e, (71)

see [233]. Recently, the role of model error has been emphasized in the statistical finite element framework [234], which
is mainly designed to update an uncertain state from noisy data. The reader is referred to [235] for a reaction-diffusion
model and [236] for the case of hyperelastic material models. The importance of accounting for errors in the state
representation for parameter identification is highlighted, e.g., in [237]. Therein, the authors show that a statistical
representation of the discretization error leads to improved parameter estimates for several inverse problems. A similar
approach is adopted for the calibration of hyperelastic materials in [220]. In the most basic case, one could simply
inflate the covariance matrix to account for measurement and model error at the same time.

Note that there exist many other approaches to quantify uncertainties – employing, for instance, frequentist or interval-
based methods. These methods have been applied in solid mechanics to some extent, but are not in the focus of the paper.
Various frequentist approaches and a comparison to the Bayesian approach are included and cited in Section 5. Since
publications in this direction typically do not employ the frequentist label, to the best of our knowledge, a systematic
review of these approaches is not yet available.

4 Unified framework for parameter estimation

This section presents an abstract and unifying view on parameter identification. In particular, we introduce a parameter
estimation framework which covers most available approaches in the computational mechanics literature. In the inverse
problems community, parameter estimation problems are often classified in “reduced” and “all-at-once” approaches,
see [238, 239]. The reduced approach is mainly centered around the NLS method and aims at identifying the unknown
model parameters. The all-at-once approach additionally incorporates the state equation, e.g., Eq. 38 for problem
class I, directly in the identification procedure. Thus, it allows to simultaneously identify the mechanical state and the
model parameters. This approach has also been discussed in the context of the equation error method, see [240] for a
combination of the NLS and equation error method. In computational mechanics, there exists a third important approach,
the VFM. In the following, these three important cases are discussed and the links between them are established.

In the solid mechanics literature, the all-at-once concept is not widely discussed. As we point out later, the all-at-once
setting is less restrictive regarding the model assumptions than the reduced approach and it provides a suitable framework
for the recently introduced PINN-based identification approaches. Moreover, it may result in quite diverse iterative
parameter estimation methods, regarding implementation and cost. In the following, we will first briefly introduce the
basic concepts of reduced and all-at-once approaches. Comparative aspects regarding first-order optimality conditions
are the topic of Section 4.2. Then, different variants of reduced (Section 4.3) and all-at-once approaches (Section 4.5)
are discussed. VFM and EUCLID are the subject of Section 4.4. As novel contributions, we propose both an FEM- and
VFM-based all-at-once formulation in Subsection 4.5.1.
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4.1 Introducing reduced and all-at-once approaches

Recalling the notation of Section 3, i.e., Eq. (38), and considering elastic problems for the sake of simplicity, the
parameter identification problem is governed by the following set of equations

F (y,κ) = 0, (state equation)
O(y) = d, (observation)

(72)

The state and parameter vector y and κ take values in the sets Ωy ⊂ Rny ,Ωκ ⊂ Rnκ . The so-called observation
operator O relates the model state y to the observational data d, which may be the raw data or some post-processed
version of it.

In most of the approaches discussed far, e.g. the one in Subsection 3.3, a dependence of y on κ in Eq. (72) is assumed,
y = ŷ(κ). In this case, we minimize

ϕr(κ) = dO(O(ŷ(κ)),d), (73)
with the definition d(a, b) := ∥a− b∥2/2 of a distance function, see Eq. (54). Approaches of this type correspond to
the so-called reduced formulation. The main advantage of this approach is that the minimization is carried out for the
parameter κ only, and Eq. (72)1 is fulfilled exactly. It must be mentioned that the observation operator O(ŷ(κ)) can
take many forms and may also account for integrated and/or indirectly measured quantities. For instance, O may be
chosen to select a part of the full displacement vector in the case of DIC data. If, instead, the data d consist of strains,
the observation operator computes the strains from the displacements first. Also, if measurements are available at a
set of points in the computational domain, O can be defined to interpolate the discrete solution at the sensor locations.
Here, “sensor locations” are the experimental evaluation positions, which, in the case of optical measurement data, may
be very numerous.

If the equality signs in Eqns. (72) are assumed to be a too strong requirement because data are noisy in practice and the
state equation cannot always be enforced exactly, a possible alternative is to minimize the distances

dS(F (y,κ),0) =
1

2
∥F (y,κ)∥2, (74)

dO(O (y) ,d) =
1

2
∥O (y)− d∥2, (75)

determining at the same time both y and κ (hence the name of all-at-once approaches). In the case of elastic materials
and displacement-independent loads for finite element equations, the function dS(F (y,κ),0) represents the distance
between internal and external forces, which is a helpful interpretation for the later discussion.

Of course, other choices are possible; for example minimizing a weighted norm of the state equation and observations
with a weighting matrix W . Hence, in general an all-at-once approach employs an objective function ϕaao of the form

ϕaao(y,κ) = ws dS(F (y,κ),0)︸ ︷︷ ︸
physics

+wd dO(O (y) ,d)︸ ︷︷ ︸
data

, (76)

which contains both physics- and data-based loss terms. The constants ws and wd can be used to weigh the importance
of the individual contributions or to simply rescale the different loss terms. Such a conditioning of the objective function
is often crucial to achieve numerical convergence, see [180], for example. In the setting introduced so far, the residual
F can be discretized with any numerical method.

4.2 First-order optimality conditions

In the following, we will discuss connections and differences between reduced and all-at-once approaches as well as
the VFM by inspecting necessary first-order conditions (FOCs). Exemplarily, we thereby consider elastic problems,
i.e., problem classes I and II. The main lines of this section follow [241], which reports a comparison of reduced and
all-at-once approaches in an abstract Banach space setting.

Minimizing the objective function ϕr defined in Eq. (73) yields the following optimization problem for the reduced
approach

κ∗ = argminκ ϕr(κ). (77)
In general, there may be multiple parameters for which the minimum is attained, which would require to write
κ∗ ∈ argminκ ϕr(κ) in Eq. (77). In this case, the equal sign simply chooses a single element of the set.

For the all-at-once approach and the objective function ϕaao defined in Eq. (76), we formulate the optimization problem

{y∗,κ∗} = argminy,κ ϕaao(y,κ). (78)
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Next, we derive the FOCs for both approaches.

We start with the reduced approach, where we are concerned with the minimization of

ϕr(κ) =
1

2
∥s(κ)− d∥2 =

1

2
∥O(ŷ(κ))− d∥2 (79)

subjected to the equality constraint
F (ŷ(κ),κ) = 0. (80)

Applying the Lagrange multiplier method, we seek a stationary point of

ϕ̂r(κ,Λ) = ϕr(κ) +ΛTF (ŷ(κ),κ). (81)

The necessary FOCs are

Dκ ϕ̂r(κ,Λ)[∆κ] = 0, (82)

DΛ ϕ̂r(κ,Λ)[∆Λ] = 0. (83)

where

Dx f(x)[h] =
df(x+ λh)

dλ

∣∣∣
λ=0

(84)

denotes the directional derivative. While the second condition (valid for arbitrary ∆Λ) implies that the constraint
Eq. (80) is satisfied, it follows from Eq. (82) that

Dκ ϕ̂r(κ,Λ)[∆κ] = Dκ ϕr(κ)[∆κ] +ΛTDκ F (ŷ(κ),κ)[∆κ] = 0. (85)

Since F (ŷ(κ),κ) = 0 holds for arbitrary parameters ∆κ, it is

Dκ F (ŷ(κ),κ)[∆κ] =
dF

dκ
∆κ = 0 (86)

for arbitrary ∆κ, hence the total derivative dF /dκ must vanish

dF

dκ
=

∂F

∂y

dŷ

dκ
+

∂F

∂κ
= 0. (87)

This also implies that the first term in Eq. (85) has to vanish, i.e.,

Dκ ϕr(κ)[∆κ] = ∆κT

[
dŷ

dκ

]T
dϕr

dy
= 0, (88)

for arbitrary ∆κ. For ϕr defined in Eq. (79), we obtain[
dŷ

dκ

]T
dϕr

dy
=

[
dŷ

dκ

]T [
dO

dy

]T
{O(ŷ(κ))− d} = JT (κ){O(ŷ(κ))− d} = 0 (89)

with
J =

ds

dκ
=

dO

dy

dŷ

dκ
. (90)

Clearly, Eq. (89) is equivalent to Eq. (56), where the weighting matrix is omitted for brevity. Let us summarize the
resulting equations. We have to solve Eqns. (80) and (89)

(reduced-1)


F (y,κ) = 0[

dO

dy

dŷ

dκ

]T
{O(y)− d} = 0

(91)

with the derivative evaluated by solving (87),

dŷ

dκ
= −

[
∂F

∂y

]−1 [
∂F

∂κ

]
. (92)

There is a second option to formulate the reduced approach, where the stationarity conditions are derived before
expressing the variable y as a function of κ. This approach is discussed next because it allows for a better comparison
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between the reduced and all-at-once approaches. Hence, we proceed by reformulating the reduced optimization problem
as

{y∗,κ∗} = argminy,κ dO(O (y) ,d),

subjected to F (y,κ) = 0.
(93)

This constrained optimization problem can once again be treated with the Lagrange multiplier method, which yields

{y∗,κ∗,Λ∗} = arg staty,κ,Λ

(wd

2
∥O(y)− d∥2 +ΛTF (y,κ)

)
, (94)

where arg stat denotes the solution of the saddle point problem. Here, wd is only introduced to later point out some
similarities to the all-at-once approach. The FOCs for the second formulation of the reduced approach read

(reduced-2)



[
∂F

∂κ

]T
Λ = 0,[

∂F

∂y

]T
Λ = −wd

[
dO

dy

]T
{O(y)− d},

F (y,κ) = 0.

(95)

Next, we would like to point out the equivalence of the FOCs for the reduced-1 and reduced-2 approaches. To show
this, we start from Eq. (95) and replace y with ŷ(κ). Multiplying Eq. (95)2 with [dŷ/dκ]T and adding the resulting
equation to Eq. (95)1, we obtain[

∂F

∂y

dŷ

dκ
+

∂F

∂κ

]T
Λ = −wd

[
dO

dy

dŷ

dκ

]T
{O(y)− d}. (96)

The left-hand side vanishes because of condition (87), and Eq. (90) leads us to Eq. (91)2. Reversely, starting from
Eq. (91), we define Λ as the solution of Eq. (95)2, compactly written as[

∂F

∂y

]T
Λ = −wd

dϕr

dy
. (97)

Multiplying both sides with [dŷ/dκ]
T and using Eq. (89) yields[

dŷ

dκ

]T [
∂F

∂y

]T
Λ = 0. (98)

With Eq. (87), we arrive at Eq. (95)1. Hence, we have shown the equivalence of Eq. (95) and Eq. (91).

For the all-at-once formulation, with

{y∗,κ∗} = argminy,κ
1

2

(
ws∥F (y,κ) ∥2 + wd∥O(y)− d∥2

)
, (99)

we obtain the FOCs

(AAO)


ws

[
∂F

∂y

]T
F (y,κ) = −wd

[
dO

dy

]T
{O(y)− d},[

∂F

∂κ

]T
F (y,κ) = 0.

(100)

At first sight, Eqns. (100) do not resemble the FOCs (95) of the reduced approach. However, we can reveal some
strong similarities. To this end, we introduce Λ as the solution of Eq. (95)2. This allows us to compare Eq. (95)2 with
Eq. (100), which results in

wsF (y,κ) = Λ and
[
∂F

∂κ

]T
Λ = 0.

Hence, we can recast the all-at-once FOCs as[
∂F

∂κ

]T
Λ = 0,[

∂F

∂y

]T
Λ = −wd

[
dO

dy

]T
{O(y)− d},

wsF (y,κ) = Λ,

(101)
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Table 2: Solution and parameter-to-observable maps that enable the reduced formulation.
ŷ (κ) solution map

s (κ) = O (ŷ (κ)) parameter-to-observable map

where a strong connection to the reduced FOCs (95) becomes apparent. In the limit ws → ∞, we recover the reduced
optimality conditions from those of the all-at-once formulation.

An interesting observation arises in connection with the VFM. Even the VFM can be recovered as a special case of the
all-at-once approach. If we divide Eq. (100)1 by wd and pass to the limit of wd → ∞, we obtain[

dO

dy

]T
{O(y)− d} = 0. (102)

In case of the VFM, O(y) = y holds, and hence, Eq. (102) reduces to y = d. Then, Eq. (100)2 can be recast as[
∂F

∂κ

]T
F (d,κ) = 0, (103)

which is precisely the FOC of the VFM.

4.3 The reduced formulation

The main idea of the reduced formulation is to eliminate the state and to predict the data solely based on the parameters.
This is typically achieved by expressing the state directly as a function of the parameters, y = ŷ(κ), a function which
is referred to as the solution map. In other words, the implicit function theorem is applied as discussed in [242], which
holds for ∥∥∥∥∥

[
∂F (y,κ)

∂y

]−1
∥∥∥∥∥ ≤ C, ∀y ∈ Ωy,κ ∈ Ωκ. (104)

Assuming that condition (104) holds, the implicit function theorem implies

F (ŷ(κ),κ) = 0, (105)
O (ŷ(κ)) = d. (106)

Following this approach, the parameter-to-observable map s(κ) = O(ŷ(κ)) predicts the data d for each κ, see also
Table 2.

The reduced approach has already been anticipated in Eqns. (51) or (52), and is in particular associated with the
NLS-FEM approach, cf. the minimum problem (55) and Section 3.3.1. The reduced approach for the calibration of
mechanical models is reviewed, e.g., in [42] with a focus on inelastic models.

Based on Eq. (106), the parameter vector can now be tuned to minimize the prediction-data mismatch dO. The main
advantage of this approach is that only an optimization problem in the parameter domain needs to be solved. Moreover,
the solver may be employed as a black box, providing a data prediction for each parameter value. The drawback is the
restriction (104), which may not hold in practice. In the following, we proceed by discussing several specific problems.

4.3.1 NLS-FEM-based reduced approach

In the following, the reduced approach using the NLS-FEM method is discussed.

Problem classes I and II: elasticity The NLS-FEM approach of Section 3.3 can be related to the reduced formulation.
For models in which the material parameters or the state quantities are included linearly, see, for example, Eqns. (39)
or (46), there is no significant advantage with regard to the optimization problem. Thus, the iterative computation of
equations (91) has to be carried out.

Problem class III: inelasticity We can formulate problems with internal variables either in the time-continuous or in
the time-discrete setting. We start with the time-continuous formulation, i.e., we consider the more general case of
DAEs, see Eq. (52). Thus, we have to solve the minimum problem (77) with ϕr defined in Eq. (79) under the equality
constraint (eq. (52), here repeated for convenience)

F (t, ˙̂y(t,κ), ŷ(t,κ),κ) = 0. (107)
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To solve the problem we apply a procedure similar to that in Section 4.2. The method of Lagrange multipliers requires
solving the DAE-system (107) and the non-linear system of equations (89) with the Jacobian (90). Furthermore, Eq. (87)
now reads

dF

dκ
=

∂F

∂ẏ

∂ ˙̂y

∂κ
+

∂F

∂y

∂ŷ

∂κ
+

∂F

∂κ
= 0. (108)

For the semi-discrete inelastic model F defined in Eq. (24) with ĝa introduced in Eq. (22), we obtain

F (t, ẏ(t,κ),y(t,κ),κ) =

{
ĝa(t,u(t,κ),p(t,κ), q(t,κ))

q̇(t,κ)− rq(t,u(t,κ), q(t,κ),κ)

}
= 0, (109)

Eq. (108) implies the linear matrix DAE-system:

0 =
∂g

∂u

∂û

∂κ
+

∂g

∂q

∂q̂

∂κ
+

∂g

∂κ

0 =
∂g

∂u

∂û

∂κ
+

∂g

∂q

∂q̂

∂κ
+

∂g

∂κ
− ∂p

∂κ

d

dt

∂q̂

∂κ
=

∂rq

∂u

∂û

∂κ
+

∂rq

∂q

∂q̂

∂κ
+

∂rq

∂κ

(110)

Here, the last equation results from Eq. (24)2. The solution of this DAE-system yields the sensitivities ∂q̂/∂κ, ∂û/∂κ,
∂p/∂κ. In [80, 81, 79], the system (110) is denoted as “simultaneous sensitivity equations”, see also [84] in the context
of the FEM.

An alternative approach can be derived if a time discretization scheme is first applied to the DAE-system (109). In
this case, the sensitivities are computed at each individual time tn+1; this is termed “internal numerical differentiation”
since it is based on analytical derivatives provided upfront, see [79]. The details within the FEM context are discussed
in [84] and form the basis of most implementations. In the time-discrete formulation with the backward-Euler method,
see Eq. (28) with the abbreviation (27) as well as (22), we have at each time

F (tn+1, ŷn+1(κ), ŷn(κ),κ) = 0, (111)

i.e., a large system
FA(ŷA(κ),κ) = 0, (112)

with

F T
A = {F T (t1, . . .), . . . ,F

T (tN , . . .)}
ŷT

A = {ŷT
1 (κ), . . . , ŷ

T
N (κ)} (113)

ŷT
n+1 = {ûT

n+1(κ), p̂
T
n+1(κ), q̂

T
n+1(κ)}

(where the initial conditions y0 are assumed to be independent of κ). In a concrete setting, Eq. (111) reads

F
(
tn+1, ŷn+1(κ), ŷn(κ),κ

)
=

 g
(
tn+1, ûn+1(κ), q̂n+1(κ),κ

)
g
(
tn+1, ûn+1(κ), q̂n+1(κ),κ

)
− p̂n+1(κ)

l
(
tn+1, ûn+1(κ), q̂n+1(κ), q̂n(κ),κ

)
 (114)

with

l
(
tn+1, ûn+1(κ), q̂n+1(κ), q̂n(κ),κ

)
= q̂n+1(κ)− q̂n(κ)−∆tnrq

(
tn+1, ûn+1(κ), q̂n+1(κ),κ

)
. (115)

Eq. (112) represents the first equation in the FOC (91). The linear system in Eq. (92)[
∂FA

∂yA

]
dŷA

dκ
= −∂FA

∂κ
(116)

leads to linear systems at each time tn+1 of the form

∂g

∂un+1

dûn+1

dκ
+

∂g

∂qn+1

dq̂n+1

dκ
= − ∂g

∂κ

∂g

∂un+1

dûn+1

dκ
+

∂g

∂pn+1

dp̂n+1

dκ
+

∂g

∂qn+1

dq̂n+1

dκ
= − ∂g

∂κ
(117)

∂l

∂un+1

dûn+1

dκ
+

∂l

∂qn+1

dq̂n+1

dκ
+

∂l

∂qn

dq̂n

dκ
= − ∂l

∂κ
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with
∂g

∂pn+1
= −I,

∂l

∂qn+1
= I −∆tn

∂rq

∂qn+1
,

∂l

∂qn
= −I,

∂l

∂κ
= −∆tn

∂rq

∂κ
. (118)

Eqns. (117)1 and (117)3 can be combined leading to several matrices which are already available within classical
finite element implementations, where a Multilevel-Newton algorithm is applied. This leads to the functional matrices
dûn+1/dκ and dq̂n+1/dκ. Particularly, the evaluation of Eq. (117)3 can be carried out at Gauss-point level, since l
are only formally assembled into a large vector. See [84] for details, and [86] for a concrete implementation.

Since direct access to the finite element code is required in the internal numerical differentiation version, an alternative
for the case of black box finite element programs has to considered. This is called “external numerical differentiation”,
see [79, 84], where finite differences are chosen to obtain the derivatives in Eq. (116).

4.3.2 Parametric PINN-based reduced approach

In the following, the general procedure for parameter identification with parametric PINNs is presented for the different
problem classes. We thereby consider PINN formulations based on the strong form of the balance of linear momentum
(7), which can be regarded as a meshfree collocation method. Note that it is equally possible to approximate other
physical principles using ANNs, e.g., the minimum of potential energy. This approach is known as the deep energy
method, see [243] and [244] for a mixed formulation.

From here on, the superscript •c denotes quantities defined at collocation points xc. For an introduction to the notation
of ANNs, the reader is referred to Appendix C.

Problem class I & II: elasticity In elasticity, the parametric ansatz below is used for the displacements

u(x, t,κ) ≈ U(x, t,κ;θ) (119)

to approximate the local equilibrium conditions gc. The latter must be satisfied at all ncol spatial collocation points xc,

gc =


divh(E(U(xc

1, t,κ;θ)),κ) + ρ b
...

divh(E(U(xc
ncol

, t,κ;θ)),κ) + ρ b

 = 0. (120)

Neumann boundary conditions are defined at nN
col collocation points xN ⊂ xc on the Neumann boundary

CN :=


h(E(U(xN

1 , t,κ;θ)),κ)n− t(xN
1 , t)

...
h(E(U(xN

nN
col
, t,κ;θ)),κ)n− t(xN

nN
col
, t)

 = 0 (121)

and Dirichlet boundary conditions at nD
col collocation points on the Dirichlet boundary xD ⊂ xc

CD :=


U(xD

1 , t,κ;θ)− u(xD
1 , t)

...
U(xD

nD
col
, t,κ;θ)− u(xD

nD
col
, t)

 = 0. (122)

The semi-discrete model summarizes Eqns. (120)-(122) and results in

F c(t,U(xc, t,κ;θ),κ) =

 gc(U(xc, t,κ;θ),κ)
CN(t,U(xN, t,κ;θ),κ)
CD(t,U(xD, t,κ;θ))

 = 0. (123)

Herein, reaction forces at Dirichlet boundaries have been neglected. Since these are relevant in the context of
displacement controlled-experiments, they could be accounted for by an additional loss term or by using the method of
Lagrange multipliers, see Section 3.1 in the context of the FEM.

Spatial derivatives occurring in the semi-discrete model (123) are computed using automatic differentiation. Alterna-
tively, the automatic differentiation can be enriched or even replaced by incorporating discrete derivative operators
known from other numerical methods, e.g., peridynamics [245].

For the sake of a unified notation, we define the state vector ŷn (κ;θ) at one specific time (load) step tn as

ŷn(κ;θ) =


U(xc

1, tn,κ;θ)
...

U(xc
ncol

, tn,κ;θ)

 , n = 1, . . . , tN (124)
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and assemble the full state vector ŷa(κ;θ) as

ŷa(κ;θ) = {ŷT
1 . . . ŷT

N}T . (125)

Of course, the state vector (124) can be generalized to incorporate different experiments as well, following the notation
in Appendix A. In this sense, the full discrete model is assembled to

F c
a (ŷa(κ;θ),κ) =


F c(t1, ŷ1(κ;θ),κ)

...
F c(tN, ŷN(κ;θ),κ)

 = 0. (126)

The network parameters θ are identified by solving an optimization problem, where the sum of the norm of F c
a ,

evaluated at a set of Monte Carlo or other evaluation points κ(i) in the parameter domain, is minimized as

θ∗ = argminθ

n∑
i=1

1

2

∥∥∥F c
a

(
ŷa(κ

(i);θ),κ(i)
)∥∥∥2 . (127)

Note that the mean squared error is often minimized in machine learning, see [246]. Here, we keep the squared error for
the sake of consistency with the rest of the paper. After training, the material parameter vector κ can be identified using
a reduced approach.

Dirichlet conditions (122) enforced via the loss function are referred to as soft boundary conditions. Alternatively, the
ansatz function (119) can be modified such that it fulfills boundary conditions by construction; these are referred to as
hard boundary conditions [247, 170, 246]. Hard boundary conditions can be formulated using a boundary extension G
and distance function D (here for the non-parametric case),

u (x, t) ≈ G (x, t) +D (x, t) ◦ U (x, t;θ) . (128)

Note that hard Neumann boundary conditions can also be imposed if the ansatz is extended by the stress tensor σ,
Eq. (7), see [174]:

{u(x, t),σ(x, t)} = Uu,σ(x, t;θ) (129)

Once trained in an offline stage according to the minimization problem (127), the parametric PINN can, in a second
step, be used for online parameter identification. This second step is related to the reduced approach, with the loss, i.e.,
distance function

ϕr (κ) =
1

2
∥O(ŷa (κ;θ))− d∥2 (130)

and the optimization problem
κ∗ = argminκ ϕr (κ) . (131)

The necessary condition is given by

Dκ ϕr(κ)[∆κ] = ∆κT

[
∂ŷa

∂κ

]T
dϕr

dya
= 0 (132)

and, with ϕr given by the loss function (130),[
∂ŷa

∂κ

]T
dϕr

dya
=

[
dO

dya

dŷa

dκ

]T
{O(ŷa)− d}

= JT {O(ŷa)− d} = 0.

(133)

The Jacobian J is defined by

J =
∂ssurr

∂κ
=

dO

dya

dŷa

dκ
(134)

where ssurr denotes the parametric PINN surrogate model, see also Section 3.5. It becomes apparent that Eq. (133) is
analogous to the reduced formulation of the FEM-based reduced approach (89). The partial derivatives ∂ŷa/∂κ can be
computed using automatic differentiation, see also Appendix C.
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Problem class III: inelasticity For inelastic problems, the constitutive model becomes a function of the internal
variables q, see Eq. (7). Consequently, a parametric ansatz is required for both the displacements and the internal
variables {

u (x, t,κ)
q (x, t,κ)

}
≈

{
U (x, t,κ;θu)
Q (x, t,κ;θq)

}
. (135)

Here, separate networks with trainable parameters θu, θq are used as an ansatz to simplify the notation, and we define
θ =

{
θT
u θT

q

}T
. Note that both networks depend on the same set of material parameters κ. In analogy to its FEM

counterpart (50), the semi-discrete model operator is completed by evolution equations for the internal variables q and
reads

F c
(
t,U (xc, t,κ;θu),Q (xc, t,κ;θq) , Q̇ (xc, t,κ;θq) ,κ

)
=

=


gc (U (xc, t,κ;θu) ,Q (xc, t,κ;θq) ,κ)

CN
(
t, U

(
xN, t,κ;θu

)
,Q

(
xN, t,κ;θq

)
,κ

)
CD

(
t, U

(
xD, t,κ;θu

))
Q̇(xc, t,κ;θq)− rq (U(xc, t,κ;θu),Q(xc, t,κ;θq),κ)


(136)

There are two options to handle the time- (history-) dependence in the inelastic model above. First, the ansatz (135) is
referred to as a continuous time PINN [168]. Alternatively, a time discretization scheme such as the backward Euler
method can be applied, leading to a so-called discrete-time PINN [168, 170]. In the latter case, a separate discrete-time
PINN needs to be trained at each time (load) step. In the following, we adopt the continuous time formulation, which is
trained with discrete samples in space and time. The inelastic state vector at one time (load) step tn is defined by

yn (κ;θ) =



U (xc
1, tn,κ;θu)

...
U
(
xc
ncol

, tn,κ;θu
)

Q (xc
1, tn,κ;θq)

...
Q
(
xc
ncol

, tn,κ;θq
)


, n = 1, . . . , tN (137)

and its rate by

ẏn (κ;θ) =



U̇ (xc
1, tn,κ;θu)

...
U̇
(
xc
ncol

, tn,κ;θu
)

Q̇ (xc
1, tn,κ;θq)

...
Q̇
(
xc
ncol

, tn,κ;θq
)


, n = 1, . . . , tN, (138)

whereby the full state vector ya (κ;θ) and its rate ẏa (κ;θ) are obtained through the assembling step (125).

Next, the full inelastic discrete model F c
a (ya (κ;θ) , ẏa (κ;θ) ,κ) is assembled as in Eq. (126) and the training follows

in analogy to Eq. (127). Parameter identification once again requires again minimizing (130) by solving the minimum
problem (131). Here, we restrict ourselves to cases where the observation operator depends on the state y only, and not
on its rate ẏ. As a consequence, the same necessary FOC (132) as in the elastic case can be applied.

4.4 Virtual fields method and EUCLID

There are methods that do not fit exactly into either the reduced formulation or the all-at-once approach. The VFM,
for instance, is based on an optimization problem over the parameter domain only, while replacing the unknown state
with experimental data directly. Hence, it shares similarities with the reduced approach. In the following, we discuss
the material parameter identification process for the VFM in Section 4.4.1. A generalization of the VFM to model
discovery is EUCLID, presented in Section 4.4.2.

4.4.1 Virtual fields method

In the case of the VFM – and for the equilibrium gap method as a particular case – the minimization problem is given by

κ∗ = argminκ =
1

2
∥FV(t,d,κ)∥2 (139)
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where the unknown state y is fully replaced by the experimental data vector d. As mentioned earlier, the equilibrium gap
method can be interpreted as finite element equations F (t,d,κ) = 0, whereas the VFM adopts special ansatz functions
for the virtual displacements, leading to modified equations FV(t,d,κ) = 0. However, the general considerations are
very similar. Thus, we omit the index V in the following. The minimum problem (139) implies the FOC[

∂F (t,d,κ)

∂κ

]T
F (t,d,κ) = 0, (140)

see Eq. (103) as well.

Problem class I: linear elasticity For the case of linear elasticity, the equilibrium conditions are defined as

F (t,u,p,κ) := Aas(t,u)κ− pa(t,p), (141)

see Eq. (46), or Eq. (235) for a specific implementation. Here, however, the experimental data are inserted, including
displacements u = du and reaction forces p = dp,

F (t,d,κ) = Aas(t,du)κ− pa(t,dp). (142)

In this case, the FOC (140) reads

AT
as(t,du)Aas(t,du)κ = AT

as(t,du)pa(t,dp). (143)

In other words, a very small system of linear equations has to be solved, which makes the method attractive for the
problems under consideration.

To further reduce the effort of the matrix-matrix multiplication in Eq. (143), a different implementation can be
considered, see App. B, Eq. (235), where only one resulting force is extracted.

We further note that the VFM is closely related to the FEM-based reduced approach for problem class I. This is shown
in [248], where it is observed that the objective functions of the minimization problems of the VFM and the FEM-based
reduced approach differ only by the choice of the norm that measures the difference between the measured and the
simulated displacements.

Problem class II: hyperelasticity If the constitutive equations of hyperelasticity are linear in the parameters, Eq. (143)
holds as well. If the constitutive model depends non-linearly on κ, such as, e.g., for Ogden-type hyperelasticity models,
the FOC (140) reads[

dga(d,κ)

dκ

]T
ga(d,κ) =

[
dg

dκ

]T
g(du,κ) +

[
dg

dκ

]T
{g(du,κ)− dp} = 0 (144)

with

F (d,κ) = ga(d,κ) =

{
g(du,κ)

g(du,κ)− dp

}
. (145)

Hence, a system of nκ non-linear equations must be solved to determine κ.

Problem class III: inelasticity For the case of inelasticity, various approaches are possible. We start by writing

κ∗ = argminκ,qA

1

2
∥FA(dA, qA,κ)∥2

with FA defined in Eq. (113) for the time-discretized DAE-system, where the displacements and the reaction forces are
substituted by the experimental displacements and forces, whereas the internal variables are unknown. In this case, the
FOCs read [

∂FA

∂qA

]T
FA = 0[

∂FA

∂κ

]T
FA = 0

(146)

and we obtain a coupled system of non-linear equations. For stiff problems or unstable evolution equations, as discussed
in [249], the fact that the integration step for the evolution equations are not exactly satisfied may lead to problems.
Thus, a different approach may be needed, which is discussed in the following.
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First of all, as with the reduced formulation using the FEM, a time-continuous and a time-discrete formulation can be
considered. In the time-continuous case, we can write

κ∗ = argminκ
1

2
∥ga(t,d, q(t,κ),κ)∥2 (147)

subjected to q̇(t,κ)− rq(t,d, q(t,κ),κ) = 0, (148)

see Eq. (24) with ga defined in Eq. (22). In this case, the differential part of the DAE-system is treated in such a manner
that it is fulfilled exactly. As before, the dependence on d only indicates that the state y is replaced by the experimental
data d. Using Lagrange multipliers, we thus write

ϕ(t,Λ, q̇(t,κ), q(t,κ),κ) =
1

2
∥ga(t,d, q(t,κ),κ)∥2 +ΛT {q̇(t,κ)− rq(t,d, q(t,κ),κ)} → stat. (149)

The differential of this function with respect to Λ, equated to zero, yields

q̇(t,κ)− rq(t,d, q(t,κ),κ) = 0, (150)

implying
∂

∂κ
{q̇(t,κ)− rq(t,d, q(t,κ),κ)} = 0. (151)

Thus, differentiation of Eq. (149) with respect to κ leads to[
∂ga

∂q

∂q̂

∂κ
+

∂ga

∂κ

]T
ga(t,d, q(t,κ),κ) = 0. (152)

In other words, an algebraic equation is required to obtain the parameters κ, and Eq. (150) is necessary to compute the
remaining unknowns. The term ∂q̂/∂κ in Eq. (152) can be obtained by the matrix ODE-system (151)

d

dt

∂q

∂κ
=

∂rq

∂q

∂q̂

∂κ
+

∂rq

∂κ
. (153)

This can be interpreted as the simultaneous sensitivity equation for the VFM.

Alternatively, we can discretize Eq. (150) by a time discretization scheme first, and determine the derivatives, such as
for the internal numerical differentiation approach [79]. In this case, we solve the minimum problem

κ∗ = argminκ
1

2
∥gA(dA, q̂A(κ),κ∥2

subjected to lA(dA, q̂A(κ),κ) = 0.
(154)

Here, dT
A = {dT

1 , . . . ,d
T
N} contains the measured displacements and reaction forces, with dT

n+1 = {dT
u n+1,d

T
p n+1

}.
Further, gA and lA contain the discretized weak form and the integration step for the internal variables at all times tn,
n = 1, . . . , tN . Similarly, we have

gT
A = {gT

a (t1,du1,dp1, q1,κ), . . . , g
T
a (tN ,duN ,dpN , qN ,κ)}

lTA = {lT (t1,du1, q1, q0,κ), . . . , l
T (tN ,duN , qN , qN−1,κ)}.

(155)

Applying the Lagrange multiplier method to the problem (154) yields the objective function

ϕ(κ, q̂A(κ),Λ) =
1

2
∥gA(dA, q̂A(κ),κ)∥2 +ΛT lA(dA, q̂A(κ),κ) (156)

leading to the necessary FOCs [
∂gA

∂qA

∂q̂A

∂κ
+

∂gA

∂κ

]T
gA = 0,

lA(dA, q̂A,κ) = 0,

(157)

where the matrix
∂lA

∂qA

∂q̂A

∂κ
+

∂lA

∂κ
= 0 (158)

vanishes due to condition (157)2. In other words, Eq. (157)1 represents a small system of nκ non-linear equations,
which is coupled to the integration step of the internal variables (157)2. Various special cases can be treated – such as
linearity in the material parameters, pre-calculation of the internal variables, and others, depending on the structure of
the constitutive equations. This is not discussed in detail here.
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4.4.2 EUCLID

In EUCLID, instead of a specific material model, a so-called model library with a large number of material parameters
(e.g., in the order of hundreds [196] or thousands [199] parameters) is employed in the formulation of the model F .
Applying the previously discussed identification methods to such a model library would result in a highly ill-posed
minimization problem and in uninterpretable and impractical models with a large number of non-zero parameters. In
order to obtain interpretable models, the number of non-zero parameters contained in the identified κ must be as small
as possible, which is ensured using Lasso regularization by modifying the objective functions (139) and (147).

Problem class I: linear elasticity We note that, for the linear elastic case there is not much freedom in how to choose
the material model. The material characterization problem essentially boils down to identifying the elasticity tensor.
Thus, formulating a model library for linear elasticity is not meaningful, and applying EUCLID is unnecessary.

Problem class II: hyperelasticity For nonlinear elastic materials, the choice of the specific material model is not
trivial, and EUCLID can be leveraged to select a suitable material model from a predefined model library. The
minimization problem that constitutes the core of EUCLID is formulated as a regularized version of (139)

κ∗ = argminκ
1

2
∥F (t,d,κ)∥2 + λ∥κ∥pp, (159)

with λ > 0 and 0 < p ≤ 1. A possible choice for a hyperelastic material model library is to choose a parametric ansatz
for the strain energy density function that is linear in the material parameters κ (see [155] for details). In this way, the
minimization problem simplifies to

κ∗ = argminκ
1

2
∥Aas(t,u)κ− pa(t,p)∥2 + λ∥κ∥pp. (160)

Due to the non-smooth regularization term, deriving a linear system of equations via the FOC as for the VFM is not
possible and the solver has to be chosen thoughtfully. Efficient solvers for problems of this type have been proposed,
for instance, by [182, 250]. The assumption that the strain energy density depends linearly on the material parameters
covers well-known hyperelastic material models like Rivlin-Saunders or Hartmann-Neff-type models. Other models,
e.g., those of Ogden type, do not fall into this category. In [199, 196], a discretization of the parameter space is used to
recast the latter models in the form (160). So far, EUCLID has been proposed in conjunction with the VFM, which
is also the basis for the following presentation. Nevertheless, the concept can be transferred to other identification
approaches as well.

Problem class III: inelasticity For inelastic problems, EUCLID is formulated as a regularized version of (147), i.e.,

κ∗ = argminκ
1

2
∥ga(t,d, q(t,κ),κ)∥2 + λ∥κ∥pp

subjected to q̇(t,κ)− rq(t,d, q(t,κ),κ) = 0.
(161)

The choice of the model library, which determines the characteristics of ga(t,d, q(t,κ),κ) and the ODE constraint, is
not as straightforward as for elastic problems. In [195], a Fourier expansion of the yield surface is proposed to formulate
a general library for plasticity models, and in [197], the concept of generalized standard materials [14] is leveraged to
construct a general model library containing elastic, viscoelastic, plastic, and viscoplastic material models.

4.5 All-at-once approach

The all-at-once approach, also referred to as the "piggyback" or one-shot approach to inverse problems, see [251],
directly employs the parameter identification problem (72) and the objective function (76). Hence, the implicit function
theorem does not need to be applied, and assumption (104) as well as the necessity of defining a solution operator are
avoided. The approach can be seen as a parameter estimation problem for the joint vector β = {yT κT }T , which is, in
the case of elasticity, related to the data by {

F (y,κ)
O(y)

}
=

{
0
d

}
. (162)

Then, the generalized minimization problem of the loss function (76) reads

β∗ = argminβ ϕaao (β) (163)

In the all-at-once approach, we jointly estimate the state and the parameter vector over Ωy × Ωκ, which is a much
larger space than in the reduced formulation. Inverse problems involving the estimation of the state vector are typically
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ill-posed, and, therefore, the aspect of regularization becomes particularly important, see [252] for a recent overview.
In general, a regularization may contain both the state and the parameter vector, allowing for a robust solution of the
inverse problem. The minimization problem with regularization reads

β∗ = argminβ ϕaao (β) + r (β) (164)

The Tikhonov regularization, for instance, reads

r(y,κ) =
γS

2
∥y − y0∥2 +

γP

2
∥κ− κ0∥2. (165)

Here, y0 and κ0 denote nominal values, which are either zero or express prior knowledge about the expected
state/parameter values, and γS, γP > 0 are penalty parameters. However, we can also consider cases where r(y,κ)
only contains a penalty regularization on the state, as discussed in [241], because the high-dimensional state vector is
the main source of ill-posedness in the inverse problem. An alternative approach to solve ill-posed inverse problems
without explicit regularization is the Landweber iteration, a particular form of gradient descent. Interestingly, the
Landweber iteration results in quite different implementations for the reduced and all-at-once approaches, as noted in
[3]. In particular, the reduced Landweber iteration requires the repetitive solution of systems of equations, whereas the
all-at-once Landweber iteration only requires matrix-vector multiplications. A short description of the method can be
found in Appendix F.

Despite the challenges of a high-dimensional parameter space, the all-at-once approach is appealing because of its
flexibility, but also because it may result in efficient iterative methods. A Bayesian all-at-once approach is outlined,
for instance, in [253]. In [251], the all-at-once approach is presented in combination with an ensemble Kalman
inversion method. Therein, a similarity to the PINN setting is indicated [251], and in Section 4.5.2, we elaborate on this
connection in detail.

4.5.1 FE- and VFM-based all-at-once approaches

In this section, we propose a new FEM-based all-at-once approach. For simplicity, we drop the regularization term
(165) for the following derivations. Starting from the objective function

ϕaao(y,κ) =
σs

2
∥F (y,κ)∥2 + σd

2
∥O(y)− d∥2 (166)

with σs, σd > 0, the necessary FOCs yield the two coupled systems of non-linear equations

σs

[
∂F

∂y

]T
F (y,κ) + σd

[
dO

dy

]T
{O(y)− d} = 0,[

∂F

∂κ

]T
F (y,κ) = 0,

(167)

consisting of ns and nκ equations, respectively. Note that the discretized equilibrium conditions F (y,κ) = 0 are no
longer exactly fulfilled, see Eq. (167)2. If a Newton-like scheme is applied, the second derivatives of F with respect
to y and κ are required, making the scheme difficult from an implementation point of view. Thus, a Gauss-Newton
scheme that circumvents this drawback is of higher interest, or the Landweber iteration may be applied, see Appendix F.

Problem class I: linear elasticity For linear elastic problems, the function F (y,κ) is given by Eq. (39). In this case,
Eqns. (167) can be written as

σsA
T
up

{
Aupy − f

}
+ σd

[
dO

dy

]T
{O(y)− d} = 0,

AT
as

{
Aasκ− pa

}
= 0

(168)

where we also used Eq. (44). Since Aup(κ) depends on κ and Aas(u,u) depends on u, the equations are certainly
non-linear (in the displacements u). For example, an iterative Block-Gauss Seidel method could be considered to obtain
an efficient procedure, where step-wise systems of linear equations are solved to determine u, p, and κ. An alternative
is provided in Appendix F. An open question is the influence of uncertain measurement data in Eq. (168)1, which affect
the violation of the equilibrium conditions due to the coupling to Eq. (168)2.

Problem class II: hyperelasticity In the case of hyperelasticity with constitutive models that depend linearly on the
material parameters, we have F (y,κ) defined in Eq. (48), which is coupled with Eq. (168)2 (of course, with a matrix
Aas(u,u) written for large strains). Thus, we obtain a very similar structure of equations. If this is not the case, the
more general form (167) has to be evaluated.

33



Reduced and All-at-Once Approaches in Computational Solid Mechanics

Problem class III: inelasticity In a consistent approach, we would have to consider the DAE-system (15) with the
functions (16), so that even the geometric boundary conditions would not be exactly fulfilled later. In the following,
however, we use version (24), where Dirichlet boundary conditions are fulfilled exactly. We define the objective function

ϕ(ẏ,y,κ) =
σs

2
dS(F (ẏ,y,κ),0) +

σd

2
dO(O(y),d)

=
σs

2
∥F (ẏ,y,κ)∥2 + σd

2
∥O(y)− d∥2,

(169)

which must be minimized. The FOCs are the three coupled equations[
∂F

∂ẏ

]T
F (ẏ,y,κ) = 0

σs

[
∂F

∂y

]T
F (ẏ,y,κ) + σd

[
dO

dy

]T
{O(y)− d} = 0,[

∂F

∂κ

]T
F (ẏ,y,κ) = 0.

(170)

With F given by Eq. (24), Eq. (170)1 reads

[0 I]

{
ĝa(t,u,p, q,κ)

q̇(t)− rq(t,u, q,κ)

}
= q̇(t)− rq(t,u, q,κ) = 0, (171)

implying the fulfillment of the differential part of the DAE-system. In Appendix E the functional matrices of the
decomposed system are derived, leading to the DAE-system

σs

{[ ∂g
∂u

]T
{g − p}+

[ ∂g
∂u

]T
{g − p}

}
+ σd

[dOu

du

]T
{Ou − du} = 0,

−σs{g − p}+ σd

[dOp

dp

]T
{Op − dp} = 0,[ ∂g

∂κ

]T
{g − p}+

[ ∂g
∂κ

]T
{g − p} = 0,

q̇(t)− rq(t,u, q,κ) = 0

(172)

where Eq. (171) represents the differential part of the DAE-system.

An alternative approach might be to apply the implicit function theorem ẏ(y) inserted into Eq. (169). Then, a reduction
of the number of equations is obtained. Alternatively, the time discretization of the DAE-system can be performed first,
resulting in a similar approach as for problems class II.

Further considerations Regarding the all-at-once approach of the case of linear elasticity, two aspects are considered.
First, an efficiency treatment reducing the matrix-matrix multiplication in Eq. (168) can be carried out, and only
displacement data are taken into account

{u∗,κ∗} = argminu,κ

σs

2

(
∥A(u,u)κ− ďp∥2

)
+

σd

2

(
∥u− du∥2

)
,

= argminu,κ

σs

2

(
∥Kfr(κ)u+K

fr
(κ)u− ďp∥2

)
+

σd

2

(
∥u− du∥2

)
.

(173)

Here, ďp describes the measurement data of the reaction forces. In the following, the above method is referred to as
AAO-FEM. The matrices, e.g., Kfr, are defined in Eq. (238).

Second, it should be noted that we have only considered the Euclidean norm in the objective function above. Inspired
by the considerations by [248] – who show that different calibration methods based on full-field data can be interpreted
as similar minimization problems which differ only in the choice of norm – we also explore the possibility of changing
the norm to the semi-norm ∥v∥Kfr =

∥∥Kfrv
∥∥, here applied to the distance function of the observation

{u∗,κ∗} = argminu,κ

σs

2

(
∥Kfr(κ)u+K

fr
(κ)u− p̌∥2

)
+

σd

2

(
∥u− du∥2Kfr(κ)

)
,

= argminu,κ

σs

2

(
∥A(u,u)κ− p̌∥2

)
+

σd

2

(
∥[A(u,u)−A(du,u)]κ∥2

)
.

(174)

Since in [248] the Euclidean norm is related to the FEM-based reduced approach and the Kfr-semi-norm is related to
the VFM, we denote the method (174) as AAO-VFM. As changing the norm to a semi-norm has an influence on the
solution uniqueness, a proper regularization might be necessary to treat the problem, which is beyond the scope of this
work.

34



Reduced and All-at-Once Approaches in Computational Solid Mechanics

Table 3: Notation of state and parameter vectors used in the unified framework.
κ vector of material parameters
θ neural network parameter

(state parametrization)
β joint parameter vector

β = {κTyT }T for AAO-FEM and AAO-VFM
β = {κTθT }T for AAO-PINN

4.5.2 PINN-based all-at-once approach

The training of an inverse physics-informed neural network (PINN) can be classified as an all-at-once approach: Both
network parameters θ and material parameters κ are identified simultaneously, expressed by the vector of trainable
parameters β =

{
κT θT

}T
, see also Table 3. In comparison to the AAO-FEM approach, the state vector y is not

identified directly, but through its parametrization in network parameters θ, as outlined below for the different problem
classes.

Problem classes I & II: elasticity The ansatz function for AAO-PINNs in elasticity is given by

u(x, t;θ) ≈ U(x, t;θ) (175)

and the states at one time (load) step tn are defined as

yn (θ) =


U (xc

1, tn;θ)
...

U
(
xc
ncol

, tn;θ
)
 , n = 1, . . . , tN. (176)

As for parametric PINNs, the full state vector ya (θ) and the full elastic discrete model F c
a (y (θ)) are assembled in

analogy to (125) and (126), respectively.

For parameter identification, the PINN needs to map some data d, which can be either strain or displacement fields,
as reflected by the observation operator O(ŷ(θ)). This constraint arises from the discretization of the parameter
identification problem (72) with ŷa(θ)

{θ∗,κ∗} = argminθ,κ ϕaao(ya(θ),κ)

= argminθ,κ
1

2

(
σs∥F c

a (ya(θ),κ)∥2 + σd∥O(ya(θ))− d∥2
)
.

(177)

To avoid trivial solutions and ensure the identifiability of material parameters κ, it is important to incorporate force
information into the loss function. This can be either achieved via (i) volumetric forces, (ii) Neumann boundary
conditions, or (iii) the balance of internal and external work, see [246, 254], for example. For the aspect of identifiability,
see also Sec. 5.1.1.

Since network and material parameters θ and κ differ considerably in their respective order of magnitude, the
formulation of the loss function is crucial for the convergence of (177), as discussed in detail in [254]. This might be
achieved, for example, by adaptive weighting of the loss terms [255, 256].

The necessary FOCs related to (177) are given by

Dθ ϕaao(β)[∆θ] = 0,

Dκ ϕaao(β)[∆κ] = 0,
(178)

which yields

σs

[
∂F c

a

∂ya

dŷa

dθ

]T
F c

a (ŷa(θ),κ) + σd

[
dO

dŷa

dŷa

dθ

]
{O(ŷa(θ))− d} = 0[

∂F c
a

∂κ

]T
F c

a (ŷa(θ),κ) = 0

(179)

Problem class III: inelasticity For inelastic problems, the ansatz (175) needs to be extended by the internal variables
q {

u (x, t)
q (x, t)

}
≈

{
U (x, t;θu)
Q (x, t;θq)

}
. (180)
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As for inelastic parametric PINNs, two different networks parametrized in θu and θq , respectively, are employed for
ease of notation. We again define the state vector for each loading step by

yn (θ) =



U(xc
1, tn;θ)

...
U(xc

ncol
, tn;θ)

Q(xc
1, tn;θ)

...
Q(xc

ncol
, tn;θ)


, n = 1, . . . , tN (181)

and assemble the full state vector ya(θ) and its rate ẏa (θ) in analogy to Eqs. (125) and (138), respectively. The
full inelastic discrete model F c

a (ẏa(θ),ya(θ)),κ) follows in analogy to Eqns. (136) and (126). Finally, the material
parameters are identified by determining

{θ∗,κ∗} = argminθ,κ ϕaao(ẏa(θ),ya(θ),κ)

= argminθ,κ
1

2

(
σs∥F c

a (ẏa(θ),ya(θ),κ)∥2 + σd∥O(ya(θ))− d∥2
)
.

(182)

The FOCs (178) of the minimum problem (182) read

σs

[
∂F c

a

∂ẏa

d ˙̂ya

dθ

]T

F c
a (

˙̂ya(θ), ŷa(θ),κ) + σs

[
∂F c

a

∂ya

dŷa

dθ

]T
F c

a (
˙̂ya (θ) , ŷa(θ),κ)

+σd

[
dO

dya

dŷa

dθ

]
{O(ŷa(θ))− d} = 0,

(183)

[
∂F c

a

∂κ

]T
F c

a (
˙̂ya(θ), ŷa(θ),κ) = 0. (184)

5 Statistical parameter inference

In this section, we address the parameter identification problem in a statistical setting and discuss issues of identifiability
and uncertainty quantification. The section covers both frequentist and Bayesian approaches. The former assume a
true, but unknown, deterministic material parameter vector, whereas the latter treat the unknown material parameter
vector as a random variable with a prior distribution that is conditioned on data. To illustrate the concepts, we first
consider problem classes I and II (elasticity) in the following. The statistical counterpart of the deterministic parameter
identification problem defined in Eq. (72) reads

F (y,κ) = ϵ,

O (y) = d+ e,
(185)

which now additionally contains the observation noise vector e and the model error ϵ. In the following, we assume
that e is normally distributed with mean value 0 and positive definite covariance matrix Σe, i.e., e ∼ N (0,Σe). More
generally, Σa will from now on refer to the covariance matrix of a random vector a, defined by

Σa = E[{a− E {a}} {a− E {a}}T ]. (186)

The quantity ϵ can represent some missing part of the physics that is difficult to resolve, or simply numerical errors, see
also Section 3.7. In the following, we restrict ourselves to problems where ϵ = 0.

With s(κ) = O(ŷ(κ)), the statistical parameter identification problem (185) in the reduced approach gives rise to the
conditional probability density

p(d|κ) = N (s(κ),Σe)

=
1

(2π)nD/2 det(Σe)1/2
exp

(
−1

2
(s(κ)− d)

T
Σ−1

e (s(κ)− d)

)
,

(187)

i.e., we model the probability density of the data conditional on a specific value of the parameters. Here nD represents
the number of data variables. The conditional density can be linked to the likelihood function as p(d|κ) = Ld(κ). The
likelihood function plays a crucial role for both frequentist and Bayesian approaches.
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Regarding the all-at-once formulation, cf. (162), we consider the statistical model

s̃ (β) =

{
F (y,κ)
O (y)

}
=

{
0

d+ e,

}
= d̃+ ẽ (188)

where again ẽ ∼ N (0,Σẽ). Then, we obtain the likelihood function Ld̃(β) in complete analogy to (187) as

p(d̃|β) = 1

(2π)(nD+ns)/2 det(Σẽ)1/2
exp

(
−1

2

(
s̃(β)− d̃

)T

Σ−1
ẽ

(
s̃(β)− d̃

))
. (189)

Here, ns represents the number of state variables. It should be noted that the high-dimensional parameter vector β poses
severe problems for the inference approach. Bayesian approaches are particularly appealing in this case because the
prior enables regularization, which is needed when inferring a high-dimensional state variable. A Bayesian all-at-once
approach was outlined in [253].

The remaining part of this section covers frequentist approaches in Section 5.1, while Bayesian approaches are discussed
in Section 5.2. A two-step approach is covered in Section 5.3, which is important to calibrate complex models.

5.1 Frequentist approach

Here, we mainly cover aspects of estimation and asymptotic uncertainty analysis, whereas hypothesis testing is not
addressed. Our goal is to define a point estimator κ∗, which represents a single best guess for the parameters given the
data. We thereby focus on the reduced approach. Various methods, such as the method of moments and the maximum
likelihood method are available to this end, see [101]. With the maximum likelihood method – the most common
method for parametric frequentist inference – we recover the ordinary LS formulations

κ∗ = arg maxκ Ld(κ) = argminκ

(
− lnLd(κ)

)
= argminκ

1

2
∥s(κ)− d∥2 (190)

in the reduced formulation, Σe = I , see also Eq.(54). The minimum of the LS objective (190) can be characterized by
the normal equation

JT (κ){s(κ)− d} = 0, (191)
which, in the linear case s(κ) = Jκ, simplifies to

JTJκ = JTd. (192)

Provided that some regularity conditions on the parameter domain and the map κ 7→ s(κ) are satisfied, the NLS
estimator asymptotically follows a normal distribution, i.e.,

√
nD{κ∗ − κ0} → N

(
0,Q−1(κ0)Z(κ0)Q

−1(κ0)
)

(193)

in the infinite-data limit nD → ∞, where κ0 denotes the true but unknown parameter value and where the matrices Q
and Z are detailed in Section 5.1.2 and 5.3.1, in the context of uncertainty quantification. Before that, the important
topic of parameter identifiability is discussed in Section 5.1.1.

Note that the all-at-once approach can be handled along the same lines by using a •̃ for the quantities s, d, and e and
by replacing κ with β, see also Eq. (188).

5.1.1 Identifiability

Another important aspect concerns the question whether the parameters can in theory be recovered from the data. In the
context of this paper, this mainly concerns the material parameters κ, which are identifiable, if for any κ,κ′,

Ld(κ) = Ld(κ
′) =⇒ κ = κ′, ∀d ∈ ΩD, (194)

see [257]. Next, we study identifiability in the context of the reduced approach. Noting that a maximizer of Ld(κ)
corresponds to a minimizer of ϕr(κ), we proceed in analogy to [39, 40] by performing a Taylor expansion,

ϕ̂r(κ) = ϕr(κ
∗) +

{
dϕr(κ)

dκ

}T
∣∣∣∣∣
κ=κ∗

∆κ+
1

2
∆κT

[
d2ϕr(κ)

dκdκ

]∣∣∣∣
κ=κ∗

∆κ, (195)

with ∆κ = κ− κ∗. Here,

Hij(κ) =
∂2ϕr(κ)

∂κi∂κj
=

[
nD∑
k=1

W 2
kk

(
∂2sk(κ)

∂κi∂κj
(sk(κ)− dk) +

∂sk(κ)

∂κi

∂sk(κ)

∂κj

)]
(196)
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are the components of the Hessian matrix. Remember that dϕr(κ)/dκ vanishes in the local minimum κ∗ according to
Eq. (56) and Wkk are the diagonal entries in the weighting matrix W . Since at κ∗, sk(κ)− dk ≈ 0 holds, the Hessian
is usually approximated by

H ≈ JTW TWJ with Hij ≈

[
nD∑
k=1

W 2
kk

∂sk(κ)

∂κi

∂sk(κ)

∂κj

]
. (197)

The evaluation of the Hessian matrix H provides information on whether a unique solution exists locally, at the
obtained solution κ∗. If the determinant of the Hessian matrix or any sub-determinant vanishes, detH = 0, there
is no unique solution, see [39, 40]. This concept is called local identifiability and has been investigated for common
material models of solid mechanics in [38]. This approach can be adopted if there are no constraints in the optimization
problem (or if none of the constraints are active in the solution). Moreover, it is also difficult to decide whether the
determinant is really zero, especially since very small values can occur because of large numbers of data and/or the
assigned units. To circumvent this issue, [40] describe a measure which is based on the relation between the eigenvalues
of the Hessian matrix. In [43] and [44] this is linked to stability investigations, where also the eigenvalues are evaluated.
Here, stability implies that small perturbations of the experimental data do not lead to any significant changes in the
parameters [64]. It is noteworthy that the evaluation of the local identifiability is useful for investigations of different
parameter identification procedures. Thus, the studies are usually performed in re-identifications of given parameters
with synthetic data.

The concept of local identifiability has been applied in several works, see [38, 41, 47], for example. The case of finite
strain viscoelasticity using DIC-data is addressed in [86] and finite strain viscoplasticity by [49]. With regard to the
identifiability of parameters, see also [258].

For parameter identification using parametric PINNs, the same conditions on identifiability apply as for the FEM-based
reduced approach. In the context of all-at-once PINNs, the Hessian of the loss function with respect to the trainable
parameters takes the form

d2ϕaao

dβ2
=

∂2ϕaao
∂θ2

∂2ϕaao
∂θ∂κ

∂2ϕaao
∂κ∂θ

∂2ϕaao
∂κ2

 . (198)

Again, the same conditions on identifiability apply to ∂2ϕaao/∂κ
2. Note that in the context of ANNs, identifiability of

∂2ϕaao/∂θ
2 is usually not considered.

5.1.2 Uncertainty analysis

The following considerations are presented for the reduced approach, but can be transferred to the all-at-once
formulation by using a •̃ for the quantities s, d, and e and by replacing κ with β, see Eq. (188). Note, however, that the
numerical realization of the all-at-once approach may be more complex and may require additional steps to achieve
robustness. In the following, we illustrate the quantification of parameter uncertainty in the context of a weighted
LS problem. The derivation holds for any surrogate, e.g., the parametric PINNs of Section 4.3.2, provided that some
moderate regularity conditions are satisfied. The development covers the misspecified case, where the data is not
generated by the model used for inference, which is important to cover, for instance, surrogate approximation errors.
Consider the relation

κ∗ = argminκ
(
− logLd(κ)

)
= argminκ

1

2
∥r̃(κ)∥2

Σ−1
e
. (199)

The weighting matrix in the LS formulation can be related to the diagonal noise covariance by

W = Σ−1/2
e , (200)

where
Σe = E[{e− E {e}} {e− E {e}}T ] = diag((Var(ei))i) (201)

and Var denotes the variance. If we assume that Var(ei) = σ2
e for all measurements, the covariance of the estimator C

can be written and approximated as

C =
1

nD
Q−1

0 Z0Q
−1
0 ≈ σ2

e[J
T
0 J0]

−1. (202)

Here, we have used the Hessian approximation derived in the preceding subsection and the subscript 0 refers to
evaluation at the true value κ0. Note that σ2

e[J
T
0 J0]

−1 corresponds to the inverse Fisher information matrix, whereas
Q0,Z0 represent the factors appearing in the Huber sandwich [259].
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A consistent estimator is obtained by replacing κ0 with κ∗. Hence, we can quantify the uncertainty as
C ≈ σ2

e[J
T (κ∗)J(κ∗)]−1 ≈ s2[JTJ ]−1, (203)

where ei = di − si(κ
∗) = ri(κ

∗) and the assumption of independent and identically distributed (i.i.d.) measurement
noise leads to the unbiased estimate

s2 =
1

nD − 1
rT (κ∗)r(κ∗), (204)

see, for example, [260]. It is worth mentioning that the unweighted residuals have to be used in Eq. (204) and the
estimate holds only for constant measurement noise. Moreover, it is noteworthy that the fraction in Eq. (204) is
sometimes applied as 1/ (nD − nκ), see [40], leading to comparable results since nD is usually large. The diagonal
entries of C can be used as a variance estimate for each parameter from which a confidence interval can be derived, e.g.,

κconf = κ∗ ± 1.96∆κ (205)
for a confidence level of 95%, with the uncertainty

∆κi =
√
Cii, i = 1, . . . , nκ. (206)

If the sought parameter is high-dimensional, a regularization is required. Although this can be achieved in a frequentist
setting, e.g., via Tikhonov regularization, see Section 4.5, we will consider regularization in the form of a prior model
in the next section.

5.2 Bayesian approach

The following considerations are derived for the reduced approach. In analogy to Section 5.1, the all-at-once approach
can be handled along the same lines by using a •̃ for the quantities s, d, and e and by replacing κ with β, see also
Eq. (188).

In the Bayesian approach, a prior density p(κ) is formulated in addition to the likelihood function. Hence, a Bayesian
procedure posits a model for the data (likelihood) and a distribution over the parameter space (prior), which expresses
plausible ranges or other physical constraints without any recurrence to an observation. The result is a distribution over
the parameter domain, conditional on the observations (posterior), which expresses our uncertainty about the unknown
parameters and which allows to extract an estimate of the parameters themselves. Bayesian inference can be carried out
by treating the model as a black box, similar to LS-based approaches, however, the model structure can also be used
explicitly to improve the numerical efficiency.

In a Bayesian approach, the unknown parameter κ is treated as a random variable with a prior distribution, which is
updated using Bayes’ law as

p(κ|d) ∝ Ld(κ)p(κ),
where p(κ|d) represents the posterior density. A fully Bayesian approach would seek to compute the entire density,
providing simultaneously a point estimate and a quantification of uncertainty. For instance, we can employ the mean
κ∗ = Eκ|d[κ] or maximum a posteriori estimate κ∗ = argmaxκ p(κ|d) and derive some credible intervals from
p(κ|d). Then, if we consider a Gaussian prior

p(κ) ∝ exp

(
−1

2
∥κ∥2/σ2

κ

)
, (207)

the maximum a posteriori estimate is given by

κ∗ = argminκ − log p(κ|d) = argminκ −
(
logLd(κ) + log p(κ)

)
, (208)

which, together with Eqns. (187) and (207), leads to

κ∗ = argminκ
1

2

(
∥r(κ)∥2/σ2

e + ∥κ∥2/σ2
κ

)
. (209)

Hence, the prior naturally leads to a regularized LS problem, and the frequentist estimate (190) is recovered for a
uniform (non-informative) prior.

But even in the case of normally distributed data and a normally distributed prior, the posterior is not normally distributed
for finite sample sizes. This is because of the nonlinear dependence between the parameter vector and simulated data
s(κ). The posterior density therefore needs to be approximated numerically, where a large variety of algorithms are now
in use, see, e.g., [261] for an overview of Markov chain Monte Carlo approaches and [262] for variational approaches
to Bayesian parameter estimation.

Once approximated, the posterior distribution provides insights on the parameter dependence structure and on the
parameter uncertainty. For instance, we can extract the posterior covariance matrix, which is appealing if the posterior
is unimodal and close to a normal distribution. In the case of a multimodal non-Gaussian posterior, empirical credible
intervals can be derived directly from the Markov chain.
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Linkage to frequentist approach Here, we highlight the connection of the Bayesian to the frequentist approach.
The frequentist and Bayesian approaches can be connected in the so-called large data / small noise regime, where the
influence of the prior vanishes. Precisely, there holds

dTV

(
p(κ|d),N

(
κ∗, σ2

e

[
JT
0 J0

]−1)) → 0 (210)

for nD → ∞ or σe → 0 in the distribution, where dTV denotes the total variation distance – a distance measure
for probability distributions. The limit statement (210) is known as the Bernstein-von-Mises theorem and implies
that, asymptotically, the posterior distribution contracts to the true value and that frequentist confidence intervals are
asymptotically equivalent to their Bayesian counterparts derived from p(κ|d). Note that the theorem requires the data
to be generated from the model with the true parameter κ0, see [263], and it is known that Bayesian methods perform
sub-optimally under model misspecification. Bernstein-von-Mises theorems for the case of a model misspecification
are reviewed in [264].

Identifiablity in the Bayesian approach Regarding the concept of solution uniqueness, the recently published article
[265] states (relatively mild) conditions under which a unique posterior measure exists, which depends continuously
on the observed data in appropriate distances between probability measures. This underlines the global viewpoint
of Bayesian methods, contrary to the local identifiability analysis outlined for frequentist approaches in the previous
subsection. Please note that a precise definition of identifiability in a Bayesian context is still a topic of discussion
[266].

5.3 Inference for complex materials with two-step approach

When parameter identification is carried out for inelastic materials, it is common to identify the elastic parameters first
before estimating the remaining parameters characterizing the inelastic behavior. The approach can be formalized in a
statistical way with the concept of two-step inference methods [267]. A Bayesian counterpart is obtained by hierarchical
modeling, as we show in this section. In the following, we focus on the reduced approach.

First, we partition the parameter vector as κ = {κT
e ,κ

T
p }T ∈ Rne+np , where the subscripts e,p refer to elasticity and

plasticity, respectively. We also partition the data and simulated results as

d = {dT
e ,d

T
p }T , s = {sTe , sTp }T . (211)

Multiple load steps are particularly necessary for calibration in the plasticity regime, where the vectorial responses are
all stacked into a single response and data vector, see also the notation in Appendix A.

The underlying assumption is that se(κ) = še(κe), i.e., that the elastic data can be explained with the elastic material
parameters only. Hence, κe can be estimated first, independently of the remaining plastic parameters. The uncertainty
analysis is more involved in this case because the uncertainty of the initial elasticity inference step needs to be taken
into account when inferring the plasticity parameters.

In the following, a two-step frequentist and the corresponding hierarchical Bayesian approach are presented in
Sections 5.3.1 and 5.3.2, respectively.

5.3.1 Two-step frequentist approach

This section covers a derivation of uncertainty estimates through asymptotic normality considerations and Gaussian
error propagation, which, to the best of our knowledge, is new in the context of a two-stage parameter identification
framework in solid mechanics.

Uncertainty via asymptotic normality A detailed derivation of the results presented in this section is provided in
Appendix G. We denote with me and mp the number of loading steps, i.e., the number of data vectors, in the elastic and
plastic regime, respectively. The FOCs associated to the two-step NLS problem read

dϕe(κe)

dκe
=

1

me
JT

e (κe) {še(κe)− de} = 0,

∂ϕp(κ
∗
e ,κp)

∂κp
=

1

mp
JT

p (κ∗
e ,κp) {sp(κ

∗
e ,κp)− dp} = 0,

and their solutions are denoted as (κ∗
e ,κ

∗
p). Please note the introduction of scaling factors me,mp to simplify the

derivations.

40



Reduced and All-at-Once Approaches in Computational Solid Mechanics

For the identification of elasticity parameters, similar to Section 5.1,

κ∗
e ∼ N

(
κe,0,

[
JT

e (κe,0)ΣreJe(κe,0)
]−1

)
(212)

holds, where κe,0 denotes the unknown true value of the elasticity parameter vector. It is, however, more difficult to
obtain an accurate uncertainty estimate for the plasticity parameters because the additional uncertainty in κ∗

e needs to
be considered as well.

First, observe that the structure of the asymptotic covariance once again reads

Cκp =
1

mp
Q−1

p (κ0)Zp(κ0)Q
−1
p (κ0). (213)

Then, based on mean-value expansions, we can derive
√
mp{κ∗

p − κp,0} = −Q−1
p (κ0)

√
mp {v1 + v2} , (214)

where

v1 =
∂ϕp(κe,0,κp,0)

∂κp
, (215)

v2 =

[
∂

∂κe

{∂ϕp(κ
+
e ,κp,0)

∂κp

}]
{κ∗

e − κe,0}. (216)

Note that κ+
e refers to the expansion point in a mean-value expansion, see Appendix G. Note that the vector v2

represents the effect of uncertainty in κe on the inferred κp. The matrix Qp(κ0) can be estimated as

Qp(κ0) ≈
2

mp
JT

p (κ∗)Jp(κ
∗). (217)

Finally, following the steps reported in the Appendix G, we obtain

Zp(κe,0,κp,0) =
4

mp

[
σ2

pJ
0T
p J0

p + J0T
p J0

p,eΣκ∗
e
J0T

p,e J0
p + σ2

pG
0
p,eΣκ∗

e

]
, (218)

where the quantities Jp,e and G0
p,e, which are defined in the Appendix, reflect sensitivities of the plasticity parameter

estimate to changes in the elasticity parameters. A computable estimate is obtained by replacing all true parameters in
the previous equations with their parameter estimates. Hence, all terms appearing in the definition of the covariance
matrix (213) have been specified.

Uncertainty via Gaussian error propagation A different approach to account for the elasticity parameter uncertainty
in the second identification step is put forth [268, 49], based on the concept of Gaussian error propagation, i.e. the
first-order second-moment method or delta method in statistics. The uncertainty δF of a quantity F (κ̂) is estimated by

δF =

√√√√ nκ∑
k=1

(
∂F

∂κk
∆κk

)2

, (219)

i.e., the confidence interval reads F ± δF . In [269], this is interpreted as the norm of the Gateaux derivative in the
direction of the uncertainties of the individual parameters, where mixed partial derivatives are neglected (i.e., the
parameters are assumed to be uncorrelated). Moreover, the same concept is chosen in [49, 268, 270] to also estimate
the uncertainty in FEM simulations caused by uncertainties in the material parameters. The covariance matrix (203)
and confidence interval (205) are often denoted as quality measures in the frequentist approach.

5.3.2 Hierachical Bayesian approach

With the same notations as in the previous section, we are now going to summarize the Bayesian approach to inference
in the two-step case. Once again starting with the elasticity identification step, the posterior distribution reads

p(κe|d) = p(κe|de), (220)

because of the assumption that the data for the elasticity regime is independent of κp. The full posterior can be rewritten
as

p(κ|d) = p((κp,κe)|d) = p(κp|κe,d)p(κe|d),
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where we used the definition of a conditional density function and where p(κp|κe,d) represents the density of κp,
conditional on both κe and d. Assuming that κp only depends on dp and with (220), we obtain

p(κ|d) = p(κp|κe,dp)p(κe|de). (221)

Eq. (221) represents a hierarchical model for the posterior of the two-step problem. The posterior distribution of the
plasticity calibration step p(κp|κe,dp) contains κe as a hyperparameter, which can be inferred at the next level. The
final level, i.e., the prior densities, is not explicitly re-stated here.

6 Examples

This section presents illustrative examples for the theoretical considerations of Sections 4 and 5. The numerical setups
for the different reduced approaches, the VFM and the all-at-once approaches, outlined in Section 4, are the topic of
Section 6.1. For the reduced approaches, results are presented both in a deterministic and in a stochastic setting based
on Bayesian inference.

In Section 6.2, we present results for the novel two-step inference procedure with inelastic materials, as discussed in
Section 5.3. In this context, the focus lies on the uncertainty quantification of a small-strain elasto-plasticity model,
where full-field data are not considered. Instead, stress-strain data obtained from real-world experiments are used.

Note that the main aim of this section is to illustrate how the various methods reviewed and introduced in this paper
can be used in practice for parameter identification. We thereby identify the main capabilities and requirements of
each approach. It is out of the scope of the paper to investigate the detailed cost-accuracy trade-off for the individual
methods.

6.1 Plate with a hole

As a first example, we consider a plate with a hole under tensile load and assume linear elastic isotropic material
behavior. The corresponding material parameters under consideration are κ = {E, ν}T , where we choose the true
values κ∗ = {210 000Nmm−2, 0.3}T . To compare the results obtained by the different calibration methods, we draw
on so-called re-identifications, as follows. The boundary-value problem with prescribed material parameters is first
solved with the FEM. The computed displacement data are subsequently polluted with artificially generated noise and
applied as generated full-field data for the model calibration in order to re-identify the previously prescribed material
parameters.

The geometry of the domain is shown in Fig. 4. The plate is subjected to a tensile load F̄ = 1500N on the left edge,

Figure 4: Geometry and loading conditions of plate with a hole

which is applied as equivalent nodal force on the corresponding nodes in the FEM. Here, symmetry is employed,
i.e., only a quarter of the geometry is used for the two-dimensional spatial discretization with 4-noded quadrilateral
elements (bilinear Q4-elements). Further, a plane stress state is assumed. To minimize the influence of the spatial
discretization error, a high-fidelity solution is computed with nel = 251500 elements. To mimic DIC data, a linear
interpolation of the high-fidelity displacement data to a coarser spatial discretization (nnodes = 3097, nel = 2980) is
performed. The distance of the finite element nodes in this coarse discretization is approximately 0.2mm – a spatial
resolution which can be obtained by real DIC measurements. These artificial full-field displacements are treated as
synthetic experimental data (with nD = 6194 experimental data points, see App. A) for calibration, and they are studied
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(a) Generated axial displacement data with artificial noise (b) Generated lateral displacement data with artificial noise

Figure 5: Generated displacement data with artificial noise N (0, (4× 10−4 mm)2) for re-identification of elasticity
parameters

as clean data and with different levels of Gaussian noise N (0, σ2). Following [157, 269], the standard deviation of the
displacements obtained from DIC measurements is σ = 4× 10−4 mm. To investigate the effect of the applied noise on
the calibration results, we choose a second noise level σ = 2× 10−4 mm as well. The generated displacement data
with artificial additive Gaussian noise N (0, (4× 10−4 mm)2) is shown in Fig. 5.

6.1.1 FEM-based reduced approach

In the following, we first discuss the deterministic parameter identification, followed by a stochastic approach based on
Bayesian inference with the FEM.

Deterministic identification A weighted NLS scheme according to Sections 3.3 or 4.3.1 is applied to re-identify
both parameters based on the artificially generated displacement data. The corresponding weighting factors are chosen
as the maximum displacement values in each direction to account for the order of magnitude of the displacements. A
trust-region reflective algorithm, implemented in the Matlab routine lsqnonlin.m, is applied to find the solution κ∗.
The particular termination criteria for the optimizer, the change in the function value of the objective function, and
the change in the arguments, are set to 10−8. The re-identified parameters in Tab. 4 show good agreement with the
true values, with slight deviations stemming from the interpolation of the high-fidelity data to the coarser grid. The
node-wise relative error e = ||ufit −uexp|| between the computed displacements ufit in the solution κ∗ and the generated
displacements uexp are given in Fig. 6. It is noteworthy that the applied noise level does not significantly influence the
identification results. Although the determinant of the approximated Hessian (197) is small

(
detH = 10−4 mm4 N−2

)
,

the parameters are uniquely identifiable from different initial values. Further, the trust-region algorithm requires the
computation of the Jacobian (57), which is done here by means of numerical differentiation employing a forward
difference quotient. As a result, 12 calls of the FEM program are required as the optimizer stops after 4 iterations
(including the initial evaluation of the start values).

Bayesian inference with FEM Next, we apply a sampling-based approach according to Section 5.2 to identify the
material parameters. In particular, we employ an in-house variant of the affine-invariant ensemble sampler [271],
which features only one free parameter, the step size, and shows very robust performance for a wide range of densities.
Compared to the LS approach, sampling approaches to Bayesian inference require a large number of model evaluations,
particularly for high-dimensional problems. Hence, tractable approaches need to include surrogate modeling. Here,
however, we sample the original FEM model directly, since the simulation times are manageable, and the posterior
density is free of surrogate modeling errors in this case. We employ uniform priors, covering 10 % variation around the
nominal parameter values. The Bayesian approach permits to estimate the measurement noise size together with the
unknown parameters. In our experiments, however, we prescribe this value, as is done for all other methods discussed
herein. For all test cases, we employ an ensemble consisting of 50 chains, each of size 100. The step size is varied to
achieve sound acceptance rates. In all cases, 50% of all ensemble chains are removed to account for burn-in, i.e. the
phase where the Markov chain explores the parameter space and the samples are not representative for the posterior
distribution. All chains are merged afterwards to form a sample from the posterior density. Exemplarily, we depict the
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(a) Absolute error in the axial displacements with artificial
noise

(b) Absolute error in the lateral displacements with artificial
noise

Figure 6: Absolute error between generated displacements with N (0, (4× 10−4 mm)2) and computed displacements
with the identified parameters in the NLS scheme with FEM
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Figure 7: Posterior densities for Bayesian inference using FEM and noise level σ = 2× 10−4 mm

results for noise level σ = 2× 10−4 mm and step size 5, consisting of the posterior histograms in Fig. 7. We observe a
good concentration of the posterior with a small uncertainty. The expected values (red lines) are slightly off the true
parameter values; however, the performance is comparable to the other methods and the slight offset can again be
attributed to the coarse grid interpolation of the data. The trace plots further underline the good stationary behavior of
the chains. The determined parameters are reported in Tab. 4. Note that for clean data, a step size of 4 was found to give
better results.

6.1.2 Parametric PINN-based reduced approach

In this section, we use a parametric PINN surrogate for calibration, and the material parameters E and ν become
additional inputs to the ANN alongside the coordinates x. The displacements in both x1- and x2-direction are the
outputs of the artificial neural network (ANN) (see Sec. 3.5 for more details). For this example, we choose an ANN
with 4 hidden layers with 32 neurons each and the hyperbolic tangent as activation. The imposed displacements
are enforced by hard boundary conditions [247]. In an offline phase, the parametric PINN is first trained to learn a
parameterized solution of the displacement field for a range of [180 000Nmm−2, 240 000Nmm−2] and [0.2, 0.4] for
E and ν, respectively. For the training, we sampled 32 uniformly distributed E and ν in the specified range, resulting in
1024 different combinations. For each combination of material parameters, in turn, we sampled 64 collocation points in
the domain and 32 points on each of the five boundaries.
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In a subsequent online phase, we use the parametric PINN for the re-identification of the material parameters with both
the NLS method (similar to Secs. 3.3 and 4.3.1) and Bayesian inference (Secs. 5.2), where the parametric PINN acts
as a surrogate of the solution map. Both for the optimization problems resulting from PINN training and for solving
the NLS problem, we use the L-BFGS algorithm [137]. For Bayesian inference, we employ the same algorithm and
hyperparameters as for Bayesian inference with FEM in Section 6.1.1. The results of the re-identification are reported
in Tab. 4. The results of both the NLS method and the Bayesian inference are in good agreement with the true material
parameters. For the Bayesian inference, we achieve similar small uncertainties as for the Bayesian inference with FEM.

6.1.3 PINN-based all-at-once approach

Next, an inverse PINN is used to calibrate the linear-elastic material model from the artificially generated displacement
data following the all-at once approach. The PINN formulation used here is identical to that in [180] and is described in
an abstract manner in Section 4.5.2. Equivalent to the mean squared error, for the weights σs and σd in (177), we choose
σs =

2
3097 and σd = 2

3097 × 103, where 3097 is the number of observation points. To take the force information into
account, the balance between internal and external energy is used as a further loss term. While the integral of the strain
energy is approximated via the observation points, the external energy is approximated at 64 points distributed uniformly
on the Neumann boundary. As an initial guess for E and ν, we choose 210 000Nmm−2 and 0.3, respectively. Please
note that a sensible choice of the initial guess is important for solving the optimization problem. The displacement field
in both x1- and x2-direction is approximated by two independent, fully connected feed-forward ANNs with 2 hidden
layers with 16 neurons each, and we choose the hyperbolic tangent as activation. The resulting optimization problem is
solved using the BFGS [272, 273, 274, 275] optimizer. The re-identification yields the material parameters given in
Tab. 4. For the clean displacement data, the re-identified parameters are in good agreement with the true values. As
already mentioned for the other approaches, at least for the clean data, a significant cause for the slight deviation in
the re-identified Young’s modulus E lies in the linear interpolation of the high-fidelity data to the coarser grid. For
increasing noise levels, however, increasingly significant deviations of the re-identified material parameters can be
observed, especially for the Poisson’s ratio. One possible reason for the large deviation is the overfitting of the ANN
to the noisy displacement data, see also the discussion in [180]. Although the PDE acts as regularization, additional
regularization might be necessary for further improvement. Further investigation of this method for noisy data is the
subject of current research.

6.1.4 Virtual fields method

We now apply the VFM to identify the elastic parameters from the given displacement and force data. We interpolate
the given displacement data with local finite element ansatz functions and choose the same local finite element ansatz
functions for the virtual fields to assemble the overdetermined system of equations (235) (see Appendix B for details).
As more information is provided in the interior of the domain than at the boundary, we choose the weighting factor
σr = 104 (see Appendix B) to increase the influence of the boundary data in the regression problem. The overdetermined
system of equations is solved in a LS sense to arrive at the desired material parameters, which are reported in Tab. 4.

The computation of the system of equations (235) requires computing the strain field from the given displacement
data. As the displacement data are interpolated with local finite element ansatz functions, adding artificial noise to
the displacement data has a significant effect on the computed strain field. Therefore, the results of the VFM become
unreliable for the noisy data cases. This could be counteracted by denoising the displacement data before using them as
input to the VFM. For the sake of brevity, and because the VFM has been validated for noisy data in previous studies
[1], we omit this denoising step here and present only results of the VFM for the noiseless case.

6.1.5 FEM- and VFM-based all-at-once approaches

Finally, we apply the all-at-once approach, see Section 4.5.1. As for the reduced VFM, we interpolate the given
displacement data with local finite element ansatz functions, and we choose the same local finite element ansatz
functions for the virtual fields. Then, the system matrices are assembled as described in Appendix B. We choose
the weights of the optimization problem as σr = 104 (see Appendix B), σs = 1, σd = 10−5 for the AAO-FEM
and σr = 104, σs = 1, σd = 10−10 for the AAO-VFM. Further, we choose the initial elasticity parameters C11 =
225 000Nmm−2, C12 = 65 000Nmm−2 (corresponding to E = 206 220Nmm−2 and ν = 0.2889) and the noisy
artificial data for the initial displacement field. To solve the optimization problem ((173), (174)), we choose the reflective
trust-region method implemented in the Matlab function lsqnonlin.m. The all-at-once approach simultaneously
identifies the displacement field and the material parameters. Hence, an advantage of the all-at-once approach over, for
example, the VFM is that a smooth displacement field is obtained even if the measurement data are noisy, while at the
same time identifying the material parameters. The results of the identified parameters are reported for different noise
levels in Tab. 4.

45



Reduced and All-at-Once Approaches in Computational Solid Mechanics

6.1.6 Discussion

The material parameters E and ν identified with the different schemes are provided in Tab. 4. All deterministic and
stochastic reduced approaches yield satisfactory results, independently of the noise level. While a noisy case is not
considered for the VFM here, the VFM yields satisfactory results for the noiseless case. The AAO-PINN exhibits quite
a strong dependence on the noise level, see also [254]. Also, the accuracy of the results obtained with AAO-FEM and
AAO-VFM is more affected by noise compared to their reduced counterparts.

Further, during the numerical studies on the all-at-once approaches (AAO-PINN, AAO-FEM, AAO-VFM), a relatively
high sensitivity of the identified parameters with respect to the initial guesses was observed (see also the related
discussion for AAO-PINNs in [180]). In addition to the numerical examples shown in this section, a proper mathematical
analysis of the well-posedness and in particular the sensitivity with respect to the initial guess of the methods would
be highly interesting – but this goes beyond the scope of this article. As outlined in Section 4.5.1, regularization, e.g.,
using a prior, could help to alleviate this issue.

Table 4: Results of re-identification of material parameters for linear elasticity from clean and noisy data

method σ [mm] E∗ [Nmm−2] ν∗ [-]

true values 210000 0.3000

reduced approaches [4.3]

LS (FEM) [3.3, 4.3.1]
0 205410 0.3007

2× 10−4 205963 0.3025
4× 10−4 205855 0.3034

Bayesian inference
(FEM) [5.2, 4.3.1]

0 207757 0.3051
2× 10−4 207857 0.3061
4× 10−4 207415 0.3064

LS (parametric
PINN) [4.3.2]

0 210121 0.2999
2× 10−4 210199 0.3008
4× 10−4 209795 0.3012

Bayesian inference
(parametric PINN)
[5.2, 4.3.2]

0 210688 0.3011
2× 10−4 210794 0.3019
4× 10−4 210373 0.3021

VFM [4.4]

VFM [4.4.1] 0 209294 0.2993

all-at-once approaches [4.5]

AAO-FEM [4.5.1]
0 210009 0.2581

2× 10−4 212698 0.2338
4× 10−4 206222 0.2889

AAO-VFM [4.5.1]
0 210018 0.2581

2× 10−4 212728 0.2336
4× 10−4 206242 0.2857

AAO-PINN [4.5.2]
0 203911 0.2999

2× 10−4 201715 0.3733
4× 10−4 195740 0.4278

6.2 Two-step inference of small-strain von Mises plasticity

In this example, two-step inference is investigated for a small-strain plasticity model with von Mises yield function
and non-linear kinematic hardening of Armstrong and Frederick type. The numerical treatment of the constitutive
model was originally developed in [276, 277], and the material model is summarized in Appendix H. The experimental
data are obtained from tensile tests on specimens according to DIN EN ISO 6892-1 and simultaneous measurements
with a DIC system. The information from the DIC system allows to determination the axial and lateral strains in the
parallel region of the specimen as explained in [47], whereas an additional compensation of rigid body movements is
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applied here. The specimens are made of the steel alloy TS275 and are loaded in a displacement-controlled process
with u̇ = 0.01mms−1. The experimental data of five specimens are employed up to a maximum axial strain of 5%.
The experimental stress-strain data are shown in Fig. 8.
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Figure 8: Stress-strain data for calibration

The material parameters of the constitutive model can be identified in a sequential manner. First, the Young’s modulus
E is determined from the stress-strain response of the specimens in the elastic region, which here comprises the data
until a maximum axial strain of 0.1%. Then, the Poisson’s ratio ν is identified from the lateral strain data in the elastic
region. The constitutive model, see App. H, requires a different set of elastic parameters κe = {K,G}T , namely the
bulk modulus K and shear modulus G, instead of the elastic parameters κ̃e = {E, ν}T . This has to be considered
during the model calibration, as will be explained later. Finally, the plastic parameters κp, i.e., the yield stress k and the
kinematic hardening parameters b and c of the Armstrong and Frederick ansatz of kinematic hardening, are identified,
i.e. κp = {k, b, c}T . The experimental data obtained from the five tensile tests are reduced to one dataset by computing
the mean values of stresses and lateral strains. To account for uncertainties, the covariance matrix Σ of the observations
d is considered during calibration. In this example, the calibration is carried out with a frequentist approach and
Bayesian inference using a similar setup to obtain comparable results, especially regarding the uncertainties of the
parameters. For the theoretical considerations, see also Section 5.3.

6.2.1 Two-step frequentist approach

Herein, a formulation corresponding to Sections 3.3.1 and 4.3 is applied, where the covariance matrix Σ of the
observations is chosen in the weighted LS approach, i.e., Σ−1 = W TW in Eq. (54). Further, the settings of the
optimization algorithm are the same as in the previous example. All confidence intervals in the following are provided
for a confidence level of 68%.

Elasticity parameters: The Young modulus E is identified from the axial stress-strain data in the elastic region utilizing
a weighted linear LS scheme as E∗ = 202 465 ± 1468Nmm−2. The Hessian indicates local uniqueness of the
solution

(
detH = 10−4

)
. The result of the calibration is visualized in Fig. 9, where the shaded area corresponds to the

experimental data. Five data points, i.e., nD = 5, are used for the identification.

Moreover, the Poisson ratio ν is estimated from the lateral strain data in the elastic domain, where a weighted linear LS
scheme is applied again.

The LS method yields ν∗ = 0.2764 ± 0.0041. As before, the obtained solution is locally unique, although the
determinant of the Hessian is small

(
detH = 10−11

)
. The experimental and calibrated lateral strain data are shown in

Fig. 10.

Since the elasticity relation of the constitutive model is formulated with the bulk modulus K and the shear modulus G,
see App. H, both material parameters are computed by drawing on the well-known relations

K =
E

3(1− 2ν)
, G =

E

2(1 + ν)
, (222)

using a Monte Carlo approach to account for the corresponding uncertainties. To this end, we assume normally
distributed E and ν and randomly pick 4000 samples, which are used to evaluate Eq. (222). The computed distributions
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Figure 9: Experimental and calibrated stress-strain data in the elastic domain
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Figure 10: Experimental and calibrated lateral strain data in the elastic domain

for K and G yield the mean value as parameter estimation κ∗ and the standard deviation for the uncertainty δκ∗ under
consideration of error propagation effects. As a result, the elasticity parameters K∗ = 150 991± 2951Nmm−2 and
G∗ = 79 321 ± 628Nmm−2 are obtained. It is worth mentioning that the Gaussian error propagation (219) as an
alternative approach for the uncertainty quantification yields values very similar to the Monte Carlo approach, namely
K∗ = 150 937± 2984Nmm−2 and G∗ = 79 309± 629Nmm−2.

Plasticity parameters: As previously mentioned, the plasticity parameters κp can be identified from the stress-
strain response of the specimens. For this purpose, we only apply data that have not already been considered in
the calibration of the elasticity parameters. The weighted NLS method employs nD = 50 data points and yields
k∗ = 282.6 ± 1.12Nmm−2, b∗ = 41.04 ± 1.76, and c∗ = 3499.8 ± 116.8Nmm−2. The Hessian indicates local
uniqueness

(
detH = 102

)
for the minimum found. The calibrated stress-strain curve including elastic and plastic

stages is shown in Fig. 11 together with the experimental data.
The aforementioned uncertainties of the plasticity parameters stem from the mismatch between experimental data and

model response in the obtained solution κ∗
p . However, it also has to be considered that the plasticity parameters are

identified with uncertain elasticity parameters κe. To account for this, we proceed according to Section 5.3.1. Then, the
uncertainties δk∗ = 1.07N/mm2, δb∗ = 1.68, and δc∗ = 111.7N/mm2 of the plasticity parameters are obtained.

6.2.2 Hierarchical Bayesian inference

In the following, we compare the frequentist approach of Section 5.1 with a sampling-based Bayesian approach to
parameter estimation and uncertainty quantification. In particular, we employ a nested Markov chain Monte Carlo
approach for the hierarchical Bayesian model Eq. (221). The same experimental data as in the NLS calibration are
employed, and a hierarchical model is used for the two-step calibration approach, following Section 5.3.2. We directly
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Figure 11: Experimental and calibrated stress-strain data

sample the finite element model with the affine-invariant ensemble sampler [271].

Elasticity parameters: The elasticity parameters κ̃e = {E, ν}T are determined using uniform priors with 20% variation
around the estimates E = 200 000Nmm−2 and ν = 0.275 with step size 12 and employing 100 chains of chain
length 100. Afterwards, the chains are merged to represent a sample of the posterior density. The calibration yields
E∗ = 202 820± 8634Nmm−2 and ν∗ = 0.2770± 0.0143, which is in good agreement with the experimental data,
see Figs. 9 and 10, and with the previously reported NLS results. The posterior histograms are depicted in Fig. 12, and
the trace plots are shown in Fig. 13, where the stationary behavior of the chains is evident.
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Figure 12: Posterior densities for elasticity parameters E and ν

The obtained Markov chain can be directly used for the computation of the elasticity parameters κe = {K,G}T ,
hence, contrary to the NLS approach, no assumption regarding the distribution of the elasticity parameters E
and ν is required. In this way, we obtain K∗ = 152 306 ± 11 803Nmm−2 and G∗ = 79 392 ± 3526Nmm−2.
Note that reporting the mean value and standard deviation here does not imply a Gaussian distribution for the
parameters. Indeed, the Bayesian sampling approach allows to estimate complex distributions from the posterior sample.

Plasticity parameters: Analogously to the NLS approach, the plastic material parameters κp are inferred from the elasto-
plastic stress response of the material. Again, uniform priors are used, where 20% variation around k̂ = 290Nmm−2

is chosen for the yield stress k and 30% variation around b̂ = 35 and ĉ = 3000Nmm−2 is applied for the hardening
parameters. Step sizes of 4 and 80 chains of chain length 100 are selected to obtain sufficient acceptance rates.
Exemplarily, we show the calibration results for two different sets of elasticity parameters in Figs. 14 and 15.
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Figure 13: Trace plots of Markov chains for elasticity parameters E and ν after burn-in

Figure 14: Corner plot for calibration of plasticity parameters κp using Bayesian inference with elasticity parameters
κe = {163299, 82661}TNmm−2

The parameter estimation and uncertainty quantification is done according to Section 5.3.2 using 1000 samples of the
elasticity parameters κe. Depending on the elasticity parameters, different plasticity parameters κ∗

p and uncertainties
∆κ∗

p are determined. The distributions are shown in Figs. 16 and 17, where the calibrated parameters κ∗
p and

uncertainties δκ∗ under consideration of elasticity parameter uncertainty are indicated with red lines. The model
response with the calibrated parameters compared to the experimental data is shown in Fig. 11 as well.

6.2.3 Discussion

The identified material parameters are compiled in Tab. 5, where the notation ∆κ∗ is used for uncertainties computed
by the model calibration scheme and δκ∗ for uncertainties when considering uncertain elasticity parameters. The
determined parameters κ∗ = {κ∗T

e ,κ∗T
p }T of both methods are in good agreement. Both methods yield reasonable

parameter uncertainties. However, the Bayesian approach yields larger uncertainties compared to the NLS method for the

50



Reduced and All-at-Once Approaches in Computational Solid Mechanics

Figure 15: Corner plot for calibration of plasticity parameters κp using Bayesian inference with elasticity parameters
κe = {K,G}T = {155136, 75105}TNmm−2
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Figure 16: Distributions of calibrated plasticity parameters κ∗
p , when using different sets of elasticity parameters κe

plasticity parameters. This can be attributed to the fact that the LS uncertainties are based on linearization and Gaussian
assumptions, and they only hold exactly in the asymptotic regime of very large data sets. The posterior histograms
for the plasticity parameters are also clearly non-Gaussian. Although the sampling-based Bayesian approach can
handle these types of uncertainties, the associated sampling cost can be very high. Instead of the hierarchical Bayesian
approach, outlined in Section 5.3.2, one could also determine the full posterior p(κ|d) directly. The hierarchical setting
was chosen here, since it closely resembles the frequentist two-step procedure.

It should further be mentioned that – in contrast to [49, 268], for example, where the Gaussian error propagation is
employed – a different approach is followed here to compute the uncertainties of subsequently identified parameters.
The main advantage of the procedure, which is explained in Section 5.3.1 and in more detail in Appendix G, is that the
majority of the required quantities, such as the Jacobians, are already known from the model calibration. Thus, the
computation of the partial derivatives required for the Gaussian error propagation, see Eq. (219), is circumvented, and
the uncertainty estimation can be easily performed in a post-processing step.
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Figure 17: Distributions of calibrated parameter uncertainties ∆κ∗
p when using different sets of elasticity parameters κe

Table 5: Results from calibration of small strain elasto-plasticity constitutive model from experimental data
Para-

K G k b c

meter [Nmm−2] [Nmm−2] [Nmm−2] [-] [Nmm−2]

NLS

κ∗ 150 991 79 321 282.6 41.04 3499.8
∆κ∗ - - 1.12 1.76 116.8
δκ∗ 2951 628 1.07 1.68 111.7

Bayesian inference

κ∗ 152 306 79 392 283.0 40.31 3453.7
δκ∗ 11 803 3526 1.63 2.59 162.7

7 Conclusions

While increasingly large amounts of data can be obtained from experimentation and measurement techniques, these
data are usually sparse, i.e., they provide a reduced amount of information compared to a full-field simulation, and
it tends to be noisy. A question that often arises in this context is how such data can be related to physical models
and high-fidelity 3D fields, that can be computed from such models. Thus, apart from model calibration using real
experiments, there is an increasing need for solutions to interpret the experimental data. As a consequence, parameter
identification, which in the past played a role mainly in constitutive modeling combined with experimental mechanics,
is increasingly gaining attention across disciplines.

The present manuscript provides a coherent overview of well-established experiments and measurement possibilities
as well as known and newly developed computational approaches for parameter identification in the context of solid
mechanics. By following a classification into reduced and all-at-once approaches from the inverse problems community,
most of the methods available in the literature can be classified. The all-at-once formulation combines the model
residual and the difference between simulated and observed data into a single objective function, and the reduced
formulation is obtained as the limit when the discrete model equation is enforced as a strong constraint. Interestingly,
the virtual fields method can be recovered at the other end of the spectrum when the data-related objective is enforced
strictly. This holistic view, which is one of the main contributions of this work, highlights the connections between
the different methods – which then allows for a better understanding of identifiability and the need for regularization,
which is often crucial in parameter estimation problems. Moreover, this structured framework allows to easily formulate
new approaches to parameter identification, two of which are put forth in this work. Since data are usually noisy, an
uncertainty quantification perspective is included in the considerations as well. Bayesian uncertainty quantification,
in particular, provides a parallel derivation for well-established regularization approaches. Our main contribution in
this regard is the formulation of a parameter estimation and uncertainty quantification method for material models,
proceeding in two subsequent steps, whereby we compare frequentist and Bayesian approaches.

The review is accompanied by two numerical examples. The first is a linear elastic problem with artificially generated
data, for which the different reduced and all-at-once approaches as well as virtual fields methods are applied and

52



Reduced and All-at-Once Approaches in Computational Solid Mechanics

compared. The second example focuses on two-step inference in a frequentist setting and hierachical Bayesian inference
for an inelastic material using real-world experimental data within the classical finite element least-squares approach.

From an application point of view, not all methods have the same level of maturity. Whereas reduced approaches
are already widely used in practice, the all-at-once paradigm still needs further developments to be applicable to
large-scale problems. The main difficulty is the large parameter space consisting of both material parameters and state
vector. Additionally, the sensitivity to noise, which we observed in our numerical examples, needs to be reduced. Still,
the all-at-once approach is of interest not only because of the unified perspective but also because efficient iterative
solutions seem possible. While the paper mainly compares and discusses the first-order necessary conditions of different
approaches, black box and mildly intrusive adaptations are possible in many cases, which is often desirable in practice.
As a minimum implementation requirement, access to the parametric model residuals and the state quantities is needed
to compute the objective function value.

We hope that the present study might help researchers and engineers working on different aspects of parameter
identification to gain a better understanding of the potentials and pitfalls in parameter identification. In this sense, the
unified framework may serve as an anchor point for the development of new methods by leveraging knowledge from
statistics, optimization, machine learning, and finite elements.
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A Processing of experimental and numerical full-field data

The identification of material parameters from full-field data requires particular attention to the extraction of the data
from both experiment as well as numerical model. Therefore, the procedure is explained in detail with a focus on the
non-linear least-squares method using finite elements, see Sec. 3.3.

For full-field measurement data, one obtains from experiment Ê, Ê = 1, . . . , nexp, a data vector d (Ê) ∈ Rn(Ê)
exp . The

data are displacements, in-plane stretches/strains, or in-plane strain components at spatial positions on the surface
of the specimen at particular times. In addition, it can be extended by discrete force information from a load cell.
In other words, in the case of n(Ê)

N (temporal) load, i.e., time steps, each time step consists of n(Ê)
D entries (discrete

spatially distributed displacements, in-plane principal stretches, in-plane strains, and forces concerned, . . . ), i.e.,
n
(Ê)
exp = n

(Ê)
N n

(Ê)
D . In experiment Ê, there is a sampling rate that provides the time points tm, m = 1, . . . , n

(Ê)
N , at

which we need to evaluate. The data of each experiment is compiled in the vector d (Ê)T = {d (Ê)T
0 , . . . ,d

(Ê)T

n
(Ê)
N

},

where d
(Ê)
m ∈ Rn

(Ê)
D symbolizes the data from one experiment at time tm. If all data, from all considered experiments,

is assembled, the entire data vector dT = {d (1)T , . . . ,d (nexp)T }, d∈ RnD with nD =
∑nexp

Ê=1
n
(Ê)
exp is obtained. This

includes either experiments that are repeated several times, or completely different loading paths, boundary conditions,
or geometries.

On the other hand, the finite element model provides for each re-computed experiment Ê, displacements (u (Ê)
n and

u
(Ê)
n ) – or strains/stretches, . . . –, and reaction forces p (Ê)

n for the time points t (Ê)
n , n = 1, . . . , N (Ê). Obviously, the
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temporal and the spatial points of the experiment and the finite element model are different. Consequently, the finite
element results are temporally and spatially interpolated to match the time points and the measurement points of the
experiment. In the time domain, a linear interpolation is chosen to align the experimental data with the model time data
because sensitivities (particular derivatives), which should not be interpolated, are required later on. Accordingly, the
dimension of the data vectors d is as large as it is given by the finite element simulations.

Some remarks concerning the digital image correlation data need to be added. Initially, DIC-data can only provide
information about the deformation of the surface of a sub-area of a specimen or component. These displacements
partly contain rigid body motions (based on the insufficient machine stiffness or the test equipment), which are
difficult to consider in a finite element program. Some commercial DIC suppliers provide a rigid-body compensation
(unfortunately, without specifying the mathematical background and procedures). Here, it thus makes more sense not to
use the surface displacements, but the surface strains. This is done on the level of displacements in [120] or on the level
of strains/stretches in [86].

Commercial finite element programs have a similar problem: Only a few programs are available for the comparison
with DIC-data of the surface strains, where it is possible to evaluate the strains or measures, which can be determined
from the strains (principal strains, shear angles, . . . ) at arbitrary points of the surface. Here, it could help to employ
evaluation tools that are based either on triangulation, [278, 279, 280], or, for example, global strain determination tools,
[281]. These concepts can be applied to both the DIC-data as well as to the finite element nodal displacement data.
This has the additional advantage that the same interpolation scheme and strain evaluation is applied to both systems,
i.e., DIC and FEM. Furthermore, the sensitivity analysis, i.e., the derivatives, can be computed analytically.

Usually, the displacements – or resulting quantities such as the principal strains or stretches – are only compared with
the assigned quantities of the experiment in a sub-area of the finite element (surface) domain, i.e., only the subset

ũ
(Ê)
n = M̃ (Ê)u

(Ê)
n , ũ(Ê)

n ∈ Rñ(Ê)
u of the finite element nodal displacements u

(Ê)
n ∈ Rn(Ê)

u are included. For this

purpose, the assignment matrix M̃ (Ê) ∈ Rñ(Ê)
u ×n(Ê)

u is introduced. In addition, single forces should be included, which

are determined from the reaction forces pn, F (Ê)
FEMn = −M

(Ê)
pn, F (Ê)

FEMn ∈ Rn
(Ê)
F . In a tensile experiment n(Ê)

F = 1,

whereas in a biaxial tensile test n(Ê)
F = 2. For tension-torsion problems n

(Ê)
F = 2, namely the axial force and the

torque. The matrix M
(Ê)

is exploited to extract the reaction force(s) / moment(s) from the Lagrange multipliers. The
consideration of reaction forces in the NLS-FEM-DIC approach can be found in [282, 86] for inelastic materials.

B System matrices for linear expressions in the parameters

In the case of linear elasticity, see the finite element matrix representation in Eq. (40), the term K(κ)u +K(κ)u,
which is linear in the material parameters κ, can be reformulated. For this purpose, the elasticity matrix is reformulated

Cel =

6∑
k=1

6∑
l=1

ckleke
T
l = [c1 . . . c6] (223)

with the unit vectors ek ∈ R6 with zero entries, and only a 1 on the k-th entry. ck ∈ R6 represents the k-th column
vector of the matrix Cel. This expression is inserted into Eq. (35), and with Eq. (37) as well as (36), we obtain

K(κ)u+K(κ)u =

nel∑
e=1

Z eT

{ ne
GP∑

j=1

we,jBe,jT

[
6∑

k=1

6∑
l=1

ckleke
T
l

]
Ee,j detJe,j

}
. (224)

The expression CelE
e,j with Ee,j = Be,j{Z eu+Z

e
û} is reformulated[

6∑
k=1

6∑
l=1

ckleke
T
l

]
Ee,j =

6∑
k=1

6∑
l=1

(Ee,jT cklel)ek =

6∑
k=1

(Ee,jT ck)ek =

E
e,jT

. . .
Ee,jT


︸ ︷︷ ︸

Ee,j
S ∈R6×nκ

κ (225)

with the vector of material parameters
κ = {cT1 . . . cT6 }T . (226)

This leads to the final linear expression

K(κ)u+K(κ)u = AS(u,u)κ = p (227)
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with

AS =

nel∑
e=1

Z eTa
(e)
S , AS ∈ Rnu×nκ (228)

and the element contribution

a
(e)
S =

ne
GP∑

j=1

we,jBe,jTEe,j
S detJe,j . (229)

Of course, by exploiting symmetry conditions (less entries in κ) or the specific structure of the elasticity matrix C, the
matrix a

(e)
S has to be adapted. This holds for the consideration of omitting zero-multiplications in the matrix-matrix

product as well.

Analogously,
p = K

T
(κ)u+K(κ)u = AS(u,u)κ (230)

can be obtained with

AS =

nel∑
e=1

Z
eT

a
(e)
S , AS ∈ Rnp×nκ . (231)

With respect to the investigation here, the special consideration of equivalent nodal forces which are non-zero is of
special interest. Furthermore, a scaling of the non-zero elements is performed, and the influence of the reaction force on
the inverse problem is treated. For this purpose, the equivalent nodal vector p is reassembled into zero and non-zero
values, {

0
p̌

}
= Mp (232)

where M symbolizes a reordering matrix. Thus, Eq. (227) reads

[MAS]κ =

[
Af

S
Ap

S

]
κ =

{
0
p̌

}
. (233)

Second, a resulting force p̌ is required for comparison purposes to experimental data (of course, the investigation can be
extended to further resulting forces as it is necessary in, for example, biaxial tensile tests. However, this is omitted for
the sake of brevity). This is done by summing up particular entries of p in Eq. (230)

p̌ = mTp =
[
mTAS

]︸ ︷︷ ︸
A

r
S

κ = A
r
Sκ. (234)

m∈ Rnp might be a vector containing ones or zeros to sum up the entries in p∈ Rnp . This relationship is weighted to
obtain similar magnitudes of the entries for the system of equations that will be derived later,

Aκ = p̌ (235)

with

A =

[
Af

S√
σr A

r
S

]
, p̌ =

[
0√
σrp̌

]
. (236)

σr is chosen for scaling purposes. A similar treatment is carried out for the expressions using the stiffness matrix
representation of Eqns. (227) and (230). Eq. (227) is decomposed into

p := Mp = M{Ku+Ku} = MKu+MKu

such that

p =

{
0
p̌

}
=

[
Kf K

f

Kp K
p

]{
u
u

}
, (237)

i.e., nodes where no equivalent nodal forces act are explicitly set to zero.

Next, the resulting force (234) is reformulated

p̌ = mTp = mTK
T︸ ︷︷ ︸

K
r

u+mTK︸ ︷︷ ︸
K

r

u. (238)
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Once again compiling the terms above into a large system[
Kf

√
σr K

r

]
︸ ︷︷ ︸

Kfr

u+

[
K

f

√
σr K

r

]
︸ ︷︷ ︸

K
fr

u =

{
0√
σrp̌

}
︸ ︷︷ ︸

p̌

, (239)

we finally obtain the system
Kfru+K

fr
u = p̌. (240)

A node-wise implementation for plane problems can be found in [155].

C Artificial neural networks

An artificial neural network (ANN) is a global, smooth function approximator U defining a mapping from an input
space RN to an output space RM , such that

U : RN → RM . (241)

ANNs typically consist of a high number of computational units called neurons, which are arranged in an input, an
output, and any number of so-called hidden layers. A fully connected feed-forward neural network (FFNN) with a total
of L+ 1 layers has L− 1 hidden layers, where layer 0 is the input layer and layer L the output layer. The neurons of
each two successive layers are connected, and a weight is associated to the connection. The weight of the connection
between neuron k in layer l− 1 and neuron j in layer l for l ∈ [1, L] is denoted by wl

jk. All weights between layer l− 1

and l can then be combined in the weight matrix W l with entries wl
jk. In addition, the neurons in the hidden layers

and the output layer are parameterized by a constant that is added to the weighted input, namely the bias parameter.
The bias of neuron j in layer l is denoted by blj , and the biases of all neurons in layer l can be combined in vector bl

with entries blj . The output of the neurons in the hidden layers and the output layer are computed from the sum of their
weighted inputs and their bias as an argument of an activation function.

According to the above notation, the mapping from an input to an output vector by an FFNN can be formulated as
follows: The weighted input zlj of neuron j in the hidden layer or output layer l with an upstream layer consisting of
Nl−1 neurons is defined by

zlj =

Nl−1∑
k=1

wl
jky

l−1
k + blj , ∀ l ∈ [1, L], (242)

where yl−1
k is the output of neuron k in the upstream layer l − 1, given by

yl−1
k = σl−1(zl−1

k ). (243)

Here, σl−1 is the activation function of the neurons in layer l − 1. Inserting (243) in (242), we obtain in symbolic
notation

zl = W lσl−1(zl−1) + bl, ∀ l ∈ [1, L], (244)

where zl−1 contains the weighted inputs of all neurons in layer l − 1, and σl−1 is applied element-wise. In the hidden
layers, non-linear functions are usually used as activation functions, such as hyperbolic tangent. The activation of the
output neurons is typically computed by the identity. For the input layer l = 0,

σ0(z0) = x (245)

applies, where x is the input vector to the FFNN. Given (242)-(245), the output vector yL of the FFNN as a function of
x can be recursively defined as follows:

yL = σL(zL)

zL = WLσL−1(zL−1) + bL

zL−1 = WL−1σL−2(zL−2) + bL−1

...

z2 = W 2σ1(z1) + b2

z1 = W 1x+ b1.

(246)
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The definition in Eq. (246) demonstrates that FFNNs are highly parameterized, nonlinearly composed functions.

During the so-called training process, the parameters of the FFNN U are adjusted to approximate the mapping between
the inputs xi and outputs di, represented by the Ni training points in the training data set T train = {xi,di}Ni

i=1 as
closely as possible. The objective of this optimization problem is the loss function ϕ(θ;T train) depending on the
trainable FFNN parameters θ = {W l, bl}1≤l≤L and the training data T train. The problem of finding the optimal FFNN
parameters θ∗ can be formulated as

θ∗ = argminθ ϕ(θ;T
train). (247)

The loss function is usually defined in terms of the mean squared error, such that

ϕ(θ;T train) =
1

Ni

∑
i

∥U(θ;xi)− di∥2 . (248)

It is generally possible to choose other metrics, depending on the problem.

For the optimization of parameters, it is common to use gradient-based optimization algorithms. The gradient of the
loss function with respect to the FFNN parameters θ can be calculated using automatic differentiation [164].

It is well known that FFNN are universal function approximators [283, 284, 285]. Provided that an FFNN has a
sufficient number of parameters, the FFNN, according to the universal approximation theorem, can theoretically
approximate any continuous function and its derivatives to an arbitrarily small error. It should be noted, however, that
the question of optimal training of FFNNs – to reach their full potential – has not yet been solved. For a more in-depth
introduction to deep learning, we refer to standard textbooks, for example, [286].

D Sensitivities in least-squares method using finite elements

Since the simulation response s(κ) in Eq. (57) is composed of each experiment, and each re-simulation of the experiment
leads to a system of non-linear equations (28) depending on the material parameters

g
(
tn+1,un+1(κ), qn+1(κ),κ

)
= 0,

l
(
tn+1,un+1(κ), qn+1(κ), qn(κ),κ

)
= 0,

pn+1(κ) = g
(
tn+1,un+1(κ), qn+1(κ),κ

)
,

(249)

the sensitivity (57) of each temporal point tn is required. The sensitivities can be computed applying the chain-rule to
Eq. (249)1,2 yielding – after computing the resulting linear system with several right-hand sides[

∂g

∂un+1
− ∂g

∂qn+1

[
∂l

∂qn+1

]−1
∂l

∂un+1

]
dun+1

dκ
= − ∂g

∂κ
+

∂g

∂qn+1

[
∂l

∂qn+1

]−1 [
∂l

∂κ
+

∂l

∂qn

dqn
dκ

]
, (250)

i.e. dun+1/dκ, see, for details, [84, 86]. Here, the index (E) of the experiment is omitted for brevity. The leading
coefficient matrix represents the tangential stiffness matrix, which can be approximated by the last one compiled in the
iterative Newton-step of the Multilevel Newton algorithm or the Newton-Raphson scheme. Since we only use a subset
of the nodal displacements with respect to the least-squares method, we obtain

dũn+1

dκ
= M̃

dun+1

dκ
. (251)

If the experimental surface data are mapped to the finite element mesh, the derivative of the interpolation scheme of the
projection to the displacements in between an element has to be performed as well. Thus, it is recommended to project
the nodal displacement information to the DIC-data in order to circumvent this step.

Next, the sensitivity of the reaction force has to be calculated by the Lagrange-multiplier

dpn+1

dκ
=

[
∂g

∂un+1
− ∂g

∂qn+1

[
∂l

∂qn+1

]−1
∂l

∂un+1

]
dun+1

dκ
− ∂g

∂qn+1

[
∂l

∂qn+1

]−1
∂l

∂κ
+

∂g

∂κ
, (252)

i.e., the sensitivity of a single reaction force, as an example, reads

dFFEMn+1

dκ
= MT dpn+1

dκ
. (253)

In [86], it is also explained which quantities can be calculated on Gauss-point level, where either automatic differentiation
schemes, [287, 288], or the code generation approach of [289, 290, 291, 292] can be applied.
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If principal strains are compared within the NLS-method, the evaluation tool of the interpolation scheme to calculate
the strains has to be considered as well, but this once again requires the derivative (251), see [86].

The applied approach to determine the sensitivities is called “internal numerical differentiation”, see [79]. The alternative
approach is labeled as “external numerical differentiation”. In that case, the derivatives are obtained by numerical
differentiation

dũn

dκ
≈

nκ∑
j=1

ũn+1(κ+∆κjej)− ũn+1(κ)

∆κj
eTj , (254)

with ej ∈ Rnκ (all entries are zero except for one entry which has a 1 in the j-th row), i.e., the finite element program
has to be called nκ + 1 times. ∆κj is a small quantity depending on the precision of the implementation, see [293],
where we apply double precision arithmetic. This has advantages for black box finite element programs. To obtain the
quantities ũn(κ+∆κjej) and ũn(κ) the computations

g(tn+1,un+1, qn+1;κ) = 0

l(tn+1,un+1, qn+1;κ) = 0
;

{
un+1(κ)
qn+1(κ)
λn+1(κ)

(255)

and
g(tn+1,un+1, qn+1;κ+∆κjej) = 0
l(tn+1,un+1, qn+1;κ+∆κjej) = 0

;

{
un+1(κ+∆κjej)
qn+1(κ+∆κjej)
λn+1(κ+∆κjej)

(256)

are required (here, the post-processing step (28)2 is omitted for brevity). In this sense, the same time steps are required
for both calculations. Otherwise, additional interpolations are necessary. An application using the commercial finite
element program Abaqus within a gradient-based optimization scheme is given by [294] (among many others), and a
comparison of the required computational times with respect to internal numerical differentiation is provided in [86].

E Derivation of finite element all-at-once approach

In view of Eq. (170), in the special form (24) with ga defined by Eq. (22), we have

F (t, ẏ,y,κ) =

{
g(t,u, q,κ)− p(t)
g(t,u, q,κ)− p

q̇(t)− r(t,u, q,κ)

}
(257)

with

y =

{
u
p
q

}
and O(y) =

{
Ou(u)
Op(p)

0

}
. (258)

This implies the derivatives

∂F

∂ẏ
=

[
0
0
I

]
,

∂F

∂y
=


∂g
∂u

0
∂g
∂q

∂g
∂u

−I
∂g
∂q

∂r
∂u

0 −∂r
∂q

 ,
∂F

∂κ
=


∂g
∂κ
∂g
∂κ

− ∂r
∂κ

 , (259)

as well as

dO

dy
=


dOu
du

0 0

0
dOp
dp

0

0 0 0

 . (260)

Evaluating property (171), then Eqns. (170)1,2 can be concretized to Eqns. (172) using the aforementioned functional
matrices.

F Iterative methods

Iterative methods can be used to solve the optimization problems for both reduced and all-at-once approaches. Once
again following [241], we only consider the Landweber iteration as a special case of gradient descent applied to the
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least-squares functional. Interestingly, one can avoid explicit regularization in this case, i.e., we can set γS = γP = 0.
The reduced approach iterative Landweber step reads

κk+1 = κk − µkJ
T (κ){s(κ)− d}, (261)

whereas the all-at-once approach leads to the following iterative update

βk+1 = βk − µkJ̃
T (β){s̃(β)− d̃}. (262)

The step sizes µk are chosen to ensure convergence. Note that, here, regularization is applied implicitly during iteration
as discussed in [241].

Working out the individual cases in more detail, one iteration in the reduced setting results in

F (yk,κk) = 0,[
∂F (yk,κk)

∂y

]T
wk = −

[
dO(yk)

dy

]T
{O(yk)− d} ,

κk+1 = κk − µk

[
∂F (yk,κk)

∂κ

]T
wk,

(263)

which involves solving a non-linear mechanics problem together with its linearized adjoint. The corresponding
all-at-once formulation reads

κk+1 = κk − µk

[
∂F (yk,κk)

∂κ

]T
F (yk,κk),

yk+1 = yk − µk

{[
∂F (yk,κk)

∂y

]T
F (yk,κk) +

[
dO(yk)

dy

]T
{O(yk)− d}

}
,

(264)

which does not involve any solution of a linear or non-linear model.

G Details on the two-step inference procedure

The derivation is an adaption of the general concepts presented in [267] to the considered two-step elastic-plastic setting.
We denote with me and mp the number of loading steps, representing the number of data vectors in the elastic and
plastic regime, respectively. Resuming from Section 5.3.1, the starting point is

κ∗
e ∼ N

(
κe,0,

[
Je(κ

∗
e )

TΣreJe(κ
∗
e )
]−1

)
. (265)

This uncertainty in κ∗
e now needs to be considered for the estimation of the plasticity parameters. The matrix Q can

be approximated asymptotically as Q∗ = Q(κ∗
e ,κ

∗
p) = 2/(mp)[J

∗
p ]

TJ∗
p , where J∗

p = Jp(κ
∗
e ,κ

∗
p) ∈ RmpnD×np , for

brevity, and plugged into √
mp{κ∗

p − κp,0} = − [Q∗]
−1 √

mp∇κpϕp(κ
∗
e ,κp,0). (266)

While inspecting the distribution of the right-hand-side, two independent sources of randomness appear: the uncertainty
in dp ∈ RmpnD and the uncertainty in κ∗

e . If κ∗
e is replaced with κe,0 in the gradient of ϕp, because of

∇κpϕp(κ
∗
e ,κp,0) = ∇κpϕp(κe,0,κp,0) +∇κe∇κpϕp(κ

+
e ,κp,0){κ∗

e − κe,0}, (267)

which holds due to the mean value theorem, an additional term appears as

√
mp{κ∗

p − κp,0} = − [Q∗]
−1 √

mp

∇κpϕp(κe,0,κp,0)︸ ︷︷ ︸
v1

+∇κe∇κpϕp(κ
+
e ,κp,0){κ∗

e − κe,0}︸ ︷︷ ︸
v2

 . (268)

With the definition
Jp,e = ∇κe {sp(κe,0,κp,0)− dp} , (269)

the vectors v1 and v2 are asymptotically equivalent to

v1 = [J0
p ]

T {sp(κe,0,κp,0)− dp} (270)

v2 =
[
[J0

p ]
TJ0

p,e + [∇κe(J
0
p )

T ] {sp(κe,0,κp,0)− dp}
]
{κ∗

e − κe,0}, (271)
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where we abbreviate J0
p := Jp(κe,0,κp,0) and J0

p,e := Jp,e(κe,0,κp,0). Note that

c := [∇κe [J
0
p ]

T ]︸ ︷︷ ︸
F 0

p,e

{sp(κe,0,κp,0)− dp} {κ∗
e − κe,0} (272)

=

ne∑
k=1

mp∑
i=1

[F 0
p,e]i,j,k {sp(κe,0,κp,0)− dp}j {κ

∗
e − κe,0}k (273)

=

ne∑
k=1

[B0
p,e]ik{κ∗

e − κe,0}k, (274)

where tensor notation is omitted for simplicity.

What is left is the computation of

Z(κe,0,κp,0) = Covdp,κ∗
e

{
2

√
mp

{v1 + v2}
}

(275)

=
4

mp
Covdp {v1}+

4

mp
Covdp,κ∗

e
{v2}+

8

mp
Covdp,κ∗

e
{v1,v2} . (276)

Computing each term we obtain

Covdp {v1} = [J0
p ]

TΣrpJ
0
p , (277)

Covdp,κ∗
e
{v2a} = Edp,κ∗

e
[[J0

p ]
TJ0

p,e{κ∗
e − κe,0}

{
[J0

p ]
TJ0

p,e{κ∗
e − κe,0}

}T
] (278)

= [J0
p ]

TJ0
p,eCov{κ∗

e}[J0
p,e]

TJ0
p (279)

and moreover,

Covdp,κ∗
e
{v2b} = Edp,κ∗

e

[
ccT

]
(280)

= Edp,κ∗
e

[
B0

p,e{κ∗
e − κe,0}{κ∗

e − κe,0}T [B0
p,e]

T
]

(281)

= Edp [F
0
p,e {sp(κe,0,κp,0)− dp}Cov[κ∗

e ]
[
F 0

p,e {sp(κe,0,κp,0)− dp}
]T

] (282)

= G0
p,eCov{κ∗

e}. (283)

In the derivation, we assumed independence of the residuals, which resulted in

[Edp [F
0
p,e {sp(κe,0,κp,0)− dp}Cov{κ∗

e}
[
F 0

p,e {sp(κe,0,κp,0)− dp}
]T

]]j,j′

= Edp(

m∑
i,i′=1

ne∑
k,k′=1

[F 0
p,e]j,i,k[F

0
p,e]j′,i′,k′ [Cov{κ∗

e}]k,k′ {sp(κe,0,κp,0)− dp}i {sp(κe,0,κp,0)− dp}i′) (284)

=

ne∑
k,k′=1

m∑
i=1

[F 0
p,e]j,i,k[F

0
p,e]j′,i,k′ [Cov{rp}]i,i︸ ︷︷ ︸

=:[G0
p,e]j,k,j′,k′

[Cov{κ∗
e}]k,k′ . (285)

The last term in Eq. (276) is obtained as
Covdp,κ∗

e
{v1,v2} = 0. (286)

To see this, observe that

Covdp,κ∗
e
{v1,v2} = Edp,κ∗

e
[v1v

T
2 ]− Edp,κ∗

e
{v1}Edp,κ∗

e
{v2}T (287)

= Edp [v1Eκ∗
e
{v2}T ]− Edp,κ∗

e
{v1}Edp{Eκ∗

e
{v2}}T (288)

and that Eκ∗
e
{v2} = 0 holds.

In summary, the covariance of the estimated parameters reads

Z(κe,0,κp,0) =
4

mp
[[J0

p ]
TΣr,pJ

0
p + [J0

p ]
TJ0

p,eCov{κ∗
e}[J0

p,e]
TJ0

p + σ2
pG

0
p,eCov{κ∗

e}]. (289)

Assuming uncorrelated plastic residuals rp with common variance σ2
p results in Eq. (218).
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H Applied viscoplasticity model

Here, the constitutive model of a small strain Perzyna-type viscoplasticity model with von Mises yield function is
summarized. The constitutive model fits into the structure of Eq. (5). The stress algorithm developed in [276, 277]
integrates the evolution equations with an elastic-predictor/inelastic-corrector method. Further, non-linear kinematic
hardening of Armstrong and Frederick-type is considered, [295], while no isotropic hardening is taken into account
here, for the sake of brevity. X defined the kinematic hardening variable, whereas Ev symbolize the viscous strains. ṡ
represent the rate of viscous arc length, and λv symbolizes the “plastic” multiplier, which is given by a constitutive
model for the case of viscoplasticity. Utilizing the limit η → 0 yields the rate-independent small strain elasto-plasticity
material, which is applied in Section 6.2. The constitutive model is compiled in Tab. 6. The case distinction in elastic

Table 6: Summary of constitutive equations for a model of viscoplastic (von Mises-type viscoplasticity with non-linear
kinematic hardening)

Elasticity Viscoplasticity

Yield
function f(σ,X) =

1

2
(σ − X)D · (σ − X)D − 1

3
k2 (290)

Loading
condition f < 0 f ≥ 0

Elasticity
relation σ = K(trE) I+ 2G(E− Ev)

D (291)

Flow rule Ėv = 0 Ėv = λv
(σ − X)D

||(σ − X)D||
(292)

Kinematic
hardening Ẋ = 0 Ẋ = cĖv − bṡX (293)

Abbrevia-
tions ṡ = λv

√
2

3
, λv =

1

η

〈f(σ,X)
σ0

〉r
(294)

Material
parame-

ters
κ = {K, G, k, b, c, η, r}∈ R7 (295)

and viscoplastic deformations is enabled with Macauley brackets, ⟨x⟩ = x for x > 0 and ⟨x⟩ = 0 for x ≤ 0. The
parameter σ0 = 1Nmm−2 is assumed for obtaining a dimensionless quantity in the Macauley brackets. Thus, σ0 is
not seen as a material parameter. The material parameters as shown in Tab. 6 are: bulk modulus K, shear modulus
G, yield stress k, the parameters b and c for describing the non-linear kinematic hardening, the viscosity η, and the
exponent r of the viscosity function.

In the context of the general representation (7), the viscous strains and the back stress tensor define the internal variables,
qT = {ET

v ,XT }. The evolution equations r(E, q,κ) are given by Eqns. (292) and (293), which contain a case
distinction.
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