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Abstract. We propose a new notion of uniqueness for the adversarial Bayes classifier in the setting of binary
classification. Analyzing this notion of uniqueness produces a simple procedure for computing all
adversarial Bayes classifiers for a well-motivated family of one dimensional data distributions. This
characterization is then leveraged to show that as the perturbation radius increases, certain notions of
regularity improve for adversarial Bayes classifiers. We demonstrate with various examples that the
boundary of the adversarial Bayes classifier frequently lies near the boundary of the Bayes classifier.
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1. Introduction. A crucial reliability concern for machine learning models is their suscep-
tibility to adversarial attacks. Neural nets are particularly susceptible to small perturbations
to data. For instance, [5, 19] show that perturbations imperceptible to the human eye can
cause a neural net to misclassify an image. In order to reduce the susceptibility of neural nets
to such attacks, several methods have been proposed to minimize the adversarial classifica-
tion risk, which incurs a penalty when a data point can be perturbed into the opposite class.
However, state-of-the-art methods for minimizing this risk still achieve significantly lower ac-
curacy than standard neural net training on simple datasets, even for small perturbations. For
example, on the CIFAR10 dataset, [16] achieves 71% robust accuracy for ℓ∞ perturbations
size 8/255 while [7] achieves over 99% accuracy without an adversary.

In the setting of standard (non-adversarial) classification, a Bayes classifier is defined as a
minimizer of the classification risk. This classifier simply predicts the most probable class at
each point. If multiple classes have the same probability, then the Bayes classifier may not be
unique. The Bayes classifier has been a helpful tool in the development of machine learning
classification algorithms [12, Chapter 2.4]. On the other hand, in the adversarial setting,
computing minimizers of the adversarial classification risk in terms of the data distribution
is a challenging problem. These minimizers are referred to as adversarial Bayes classifiers.
Prior work [1, 4, 17] calculates these classifiers by first proving a minimax principle relating
the adversarial risk with a dual problem, and then showing that the adversarial risk of a
proposed set matches the dual risk of a point in the dual space.

In this paper, we propose a new notions of ‘uniqueness’ and ‘equivalence’ for adversarial
Bayes classifiers in the setting of binary classification under the evasion attack. In the non-
adversarial setting, two classifiers are equivalent if they are equal a.e. with respect to the
data distribution, and one can show that any two equivalent classifiers have the same classifi-
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cation risk. The Bayes classifier is unique of any two minimizers of the classification risk are
equivalent. However, under this notion of equivalence, two equivalent sets can have different
adversarial classification risks. This discrepancy necessitates a new definition of equivalence.

Further analyzing these new notions of uniqueness and equivalence in one dimension results
in a method for calculating all possible adversarial Bayes classifiers for a well-motivated family
of distributions. We apply this characterization to show that certain forms of regularity in
adversarial Bayes classifiers improve as ϵ increases. Subsequent examples show that different
adversarial Bayes classifiers achieve varying levels of (standard) classification risk. Prior work
[23] discusses the tradeoff between robustness and standard accuracy, and such examples
illustrate that this tradeoff could be mitigated by a careful selection of an adversarial Bayes
classifier. Followup work [8] demonstrates that the concepts presented in this paper have
algorithmic implications— when the data distribution is absolutely continuous with respect
to Lebesgue measure, adversarial training with a convex loss is adversarially consistent iff the
adversarial Bayes classifier is unique, according to the new notion of uniqueness defined in this
paper. Hopefully, a better understanding of adversarial Bayes classifiers will aid the design of
algorithms for robust classification.

2. Background.

2.1. Adversarial Bayes Classifiers. We study binary classification on the space Rd with
labels {−1,+1}. The measure P0 describes the probability of data with label −1 occurring in
regions of Rd while the measure P1 describes the probability of data with label +1 occurring
in regions of Rd. [ todo: is this clear enough] Vectors in Rd will be denoted in boldface (x).
Many of the results in this paper focus on the case d = 1 for which we will use non-bold
letters (x). Most of our results will assume that P0 and P1 are absolutely continuous with
respect to the Lebesgue measure µ. The functions p0 and p1 will denote the densities of P0, P1

respectively. A classifier is represented as the set of points A with label +1. The classification
risk of the set A is then the proportion of incorrectly classified data:

(2.1) R(A) =

∫
1ACdP1 +

∫
1AdP0.

A minimizer of the classification risk is called a Bayes classifier. Analytically finding
the minimal classification risk and Bayes classifiers is a straightforward calculation: Let P =
P0 + P1, representing the total probability of a region, and let η be the the Radon-Nikodym
derivative η = dP1/dP, the conditional probability of the label +1 at a point x. Thus one can
re-write the classification risk as

(2.2) R(f) =

∫
C(η(x), f)dP(x).

and the minimum classification risk as inff R(f) =
∫
C∗(η)dP with

(2.3) C(η, α) = η1α≤0 + (1− η)1α>0, C∗(η) = inf
α

C(η, α).

The set B = {x : η(x) > 1 − η(x)} is then a Bayes classifier. Note that the set of points
with η(x) = 1/2 can be arbitrarily split between B and BC . The Bayes classifier is unique if
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this ambiguous set has P-measure zero. Equivalently, the Bayes classifier is unique if the value
of P0(B) or P1(B

C) are the same for each Bayes classifier. When p0 and p1 are continuous,
points in the boundary of the Bayes classifier must satisfy

(2.4) p1(x)− p0(x) = 0

A central goal of this paper is extending (2.4) and a notion of uniqueness to adversarial
classification.

In the adversarial scenario an adversary tries to perturb the data point x into the opposite
class of a classifier A. We assume that perturbations are in a closed ϵ-ball Bϵ(0) in some norm
∥·∥. The proportion of incorrectly classified data under an adversarial attack is the adversarial
classification risk,1

(2.5) Rϵ(A) =

∫
Sϵ(1AC )dP1 +

∫
Sϵ(1A)dP0

where the Sϵ operation on a function g is defined as

(2.6) Sϵ(g)(x) = sup
∥h∥≤ϵ

g(x+ h).

Under this model, a set A incurs a penalty wherever x ∈ A ⊕ Bϵ(0), and thus we define
the ϵ-expansion of a set A as

Aϵ = A⊕Bϵ(0).

Hence the adversarial risk can also be written as

Rϵ(A) =

∫
1(AC)ϵdP1 +

∫
1AϵdP0

Prior work shows that there always exists minimizers to (2.5), referred to as adversarial Bayes
classifiers [2, 4, 9, 18], see [9, Theorem 1] for an existence theorem that matches the setup of
this paper. Finding minimizers to (2.5) is difficult because unlike the standard classification
problem, one cannot write the integrand of (2.5) so that it can be minimized in a pointwise
manner. Furthermore, prior research [6] on the structure of minimizers to Rϵ proves:

Lemma 2.1. If A1, A2 are two adversarial Bayes classifiers, then so are A1∪A2 and A2∩A1.

See Appendix A for a proof.
Next, we focus on classifiers in one dimension as this case is simple to analyze yet still

yields non-trivial behavior. Prior work shows that when P0,P1 ≪ µ and p0, p1 are continuous,
if the adversarial Bayes classifier is sufficiently ‘regular’, one can find necessary conditions
describing the boundary of the adversarial Bayes classifier [21] . Assume that an adversarial
Bayes classifier A can be expressed as a union of disjoint intervals A =

⋃M
i=m(ai, bi), where the

m,M, ai, and bi can be ±∞. Notice that one can arbitrarily include/exclude the endpoints

1In order to define the adversarial classification risk, one must show that Aϵ is measurable for measurable
A. A full discussion of this issue is delayed to subsection 5.2.
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{ai}, {bi} without changing the value of the adversarial risk Rϵ. If bi−ai > 2ϵ and ai+1−bi >
2ϵ, the adversarial classification risk can then be expressed as:

(2.7) Rϵ(A) = · · ·+
∫ ai+ϵ

bi−1−ϵ
p1(x)dx+

∫ bi+ϵ

ai−ϵ
p0(x)dx+

∫ ai+1+ϵ

bi−ϵ
p1(x)dx+ · · ·

When the densities for p0 and p1 are continuous, differentiating this expression in ai and bi
produces necessary conditions describing the adversarial Bayes classifier:

(2.8a) p1(ai + ϵ)− p0(ai − ϵ) = 0 (2.8b) p0(bi + ϵ)− p1(bi − ϵ) = 0

When ϵ = 0, these equations reduce to the condition describing the boundary of the Bayes
classifer in (2.4). Prior work shows that when p0, p1 are well-behaved, this necessary condition
holds for sufficiently small ϵ.

Theorem 2.2 ([21]). Assume that p0, p1 are C1, the relation p0(x) = p1(x) is satisfied at
finitely many points x ∈ suppP, and that at these points, p′0(x) ̸= p′1(x). Then for sufficiently
small ϵ, there exists an adversarial Bayes classifier for which the ai and bi satisfy the necessary
conditions (2.8).

For a proof, see the discussion of Equation (4.1) and Theorem 5.4 in [21]. A central goal of
this paper is producing necessary conditions analogous to (2.8) that hold for all ϵ.

2.2. Minimax Theorems for the Adversarial Classification Risk. We analyze the proper-
ties of adversarial Bayes classifiers by expressing the minimal Rϵ risk in a ‘pointwise’ manner
analogous to (2.2). The Wasserstein-∞ metric from optimal transport and the minimax the-
orems in [9, 18] are essential tools for expressing Rϵ in this manner.

Informally, the measure Q′ is in the Wasserstein-∞ ball of radius ϵ around Q if one can
produce the measure Q′ by moving points in Rd by at most ϵ under the measure Q. Formally,
the W∞ metric is defined in terms the set of couplings Π(Q,Q′) between two positive measures
Q,Q′:

Π(Q,Q′) = {γ positive measure on Rd × Rd : γ(A× Rd) = Q(A), γ(Rd ×A) = Q′(A)}.

The Wasserstein-∞ distance between two positive finite measures Q′ and Q with Q(Rd) =
Q′(Rd) is then defined as

W∞(Q,Q′) = inf
γ∈Π(Q,Q′)

ess sup
(x,y)∼γ

∥x− y∥.

The W∞ metric is in fact a metric on the space of measures, see [22] for details. We denote
the ϵ ball in the W∞ metric around a measure Q by

B∞
ϵ (Q) = {Q′ : Q′ Borel,W∞(Q,Q′) ≤ ϵ}

Prior work [18, 20] applies properties of the W∞ metric to find a dual problem to the
minimization of Rϵ: let P′

0,P′
1 be finite Borel measures and define

(2.9) R̄(P′
0,P′

1) =

∫
C∗
(

dP′
1

d(P′
0 + P′

1)

)
d(P′

0 + P′
1)

where C∗ is defined by (2.3). Theorem 1 of [9] relates this risk to Rϵ.
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Theorem 2.3. Let R̄ be defined by (2.9). Then

(2.10) inf
A Borel

Rϵ(A) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1)

and furthermore equality is attained for some Borel measurable A and P∗
1,P∗

0 with W∞(P∗
0,P0) ≤

ϵ and W∞(P∗
1,P1) ≤ ϵ.

This minimax theorem then implies complimentary slackness conditions that characterize
optimal A and P∗

0,P∗
1. See Appendix B for a proof.

Theorem 2.4. The set A is a minimizer of Rϵ and (P∗
0,P∗

1) is a maximizer of R̄ over the
W∞ balls around P0 and P1 iff W∞(P∗

0,P0) ≤ ϵ, W∞(P∗
1,P1) ≤ ϵ, and

1)

(2.11)

∫
1ACdP∗

1 =

∫
Sϵ(1AC )dP1 and

∫
1AdP∗

0 =

∫
1AdP0

2) If we define P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗, then

(2.12) η∗(y)1AC + (1− η∗(y))1A = C∗(η∗(y)) P∗-a.e.

3. Main Results.

Definitions. As discussed in subsection 2.1, a central goal of this paper is describing the
regularity of adversarial Bayes classifiers and finding necessary conditions that hold for every
ϵ in one dimension.

As an example of non-regularity, consider a data distribution defined by p(x) = 3/5,
η(x) = 1 for 1 ≥ |x| > 1/4 and p(x) = 1/5, η(x) = 0 for |x| ≤ 1/4 (see Figure 2c for an
illustration of p0 and p1 for this distribution). If ϵ = 1/8, an adversarial Bayes classifier is
A = R. However, any subset S of [−1/4 + ϵ, 1/4 − ϵ] satisfies Rϵ(SC) = Rϵ(R), and thus is
an adversarial Bayes classifier as well. (These claims are rigorously justified in Example 4.6.)
Thus there are many adversarial Bayes classifiers lacking regularity, but they all seem to be
morally equivalent to the regular set A = R. The notion of equivalence up to degeneracy
encapsulates this behavior.

Definition 3.1. Two adversarial Bayes classifiers A1 and A2 are equivalent up to degen-
eracy if for any Borel set E with A1 ∩ A2 ⊂ E ⊂ A1 ∪ A2, the set E is also an adversarial
Bayes classifier. We say that that the adversarial Bayes classifier is unique up to degeneracy
if any two adversarial Bayes classifiers are equivalent up to degeneracy.

Due to Lemma 2.1, to verify that an adversarial Bayes classifier is unique up to degeneracy,
it suffices to show that if A1 and A3 are any two adversarial Bayes classifiers with A1 ⊂ A3,
then any set satisfying A1 ⊂ E ⊂ A3 is an adversarial Bayes classifier as well. In the example
presented above, the non-regular portion of the adversarial Bayes classifier could only be some
subset of D = [−1/4 + ϵ, 1/4− ϵ]. The notion of ‘degenerate sets’ formalizes this behavior.

Definition 3.2. A set S is degenerate for an adversarial Bayes classifier A if for all Borel
E with A− S ⊂ E ⊂ A ∪ S, the set E is also an adversarial Bayes classifier.
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Equivalently, a set S is degenerate for A if for all disjoint subsets S1, S2 ⊂ S, the set
A ∪ S1 − S2 is also an adversarial Bayes classifier. In terms of this definition: the adversarial
Bayes classifiers A1 and A2 are equivalent up to degeneracy iff the set A1△A2 is degenerate
for either A1 or A2.

This paper first studies properties of these new notions, and then uses these properties to
characterize adversarial Bayes classifiers in one dimension. To start, we show that when P ≪ µ,
equivalence up to degeneracy is in fact an equivalence relation (Theorem 3.3) and furthermore,
every adversarial Bayes classifier has a ‘regular’ representative when d = 1 (Theorem 3.5). The
differentiation argument in subsection 2.1 then produces necessary conditions characterizing
regular adversarial Bayes classifiers in one dimension (Theorem 3.7). These conditions provide
a tool for understanding how the adversarial Bayes classifier depends on ϵ; see Theorem 3.9 and
Propositions 4.7 to 4.9. Identifying all adversarial Bayes classifiers then requires characterizing
degenerate sets, and we provide such a criterion under specific assumptions. Furthermore,
Theorem 3.4 provides alternative criteria for equivalence up to degeneracy, which are helpful
for understanding degenerate sets.

Theorem Statements. First, equivalence up to degeneracy is in fact an equivalence rela-
tion for many common distributions.

Theorem 3.3. If P ≪ µ, then equivalence up to degeneracy is an equivalence relation.

Example 5.4 shows that the assumption P ̸≪ µ is necessary for this result. Additionally,
uniqueness up to degeneracy generalizes multiple notions of uniqueness for the Bayes classifier.

Theorem 3.4. Assume that P ≪ µ. Then the following are equivalent:
A) The adversarial Bayes classifier is unique up to degeneracy
B) Amongst all adversarial Bayes classifiers A, either the value of P0(A

ϵ) is unique or
the value of P1((A

C)ϵ) is unique
C) There are maximizers P∗

0,P∗
1 of R̄ for which P∗(η∗ = 1/2) = 0, where P∗ = P∗

0 + P∗
1

and η∗ = dP∗
1/dP∗

When ϵ = 0, Item A), Item B), and Item C) are equivalent notions of uniqueness of the
Bayes classifier (see subsection 2.1). When P ̸≪ µ, Theorem 3.3 is false although Item B) and
Item C) are still equivalent (see Example 5.4 and Lemma C.5). This equivalence suggests a
different notion of uniqueness for such distributions, see the subsection 5.1 for more details.

A central result of this paper is that degenerate sets are the only form of non-regularity
possible in the adversarial Bayes classifier in one dimension.

Theorem 3.5. Assume that d = 1 and P0,P1 ≪ µ. Then any adversarial Bayes classifier is
equivalent up to degeneracy to an adversarial Bayes classifier A′ =

⊔M
i=m(ai, bi) with bi−ai >

2ϵ and ai+1 − bi > 2ϵ.

This result motivates the definition of regularity in one dimension.

Definition 3.6. We say E ⊂ R is a regular set of radius ϵ if one can write both E and EC

as a disjoint union of intervals of length strictly greater than 2ϵ.

We will drop ‘of radius ϵ’ when clear from the context.
When p0, p1 are continuous, the necessary conditions (2.8) always hold for a regular ad-

versarial Bayes classifier.
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Theorem 3.7. Let d = 1 and assume that P ≪ µ. Let A =
⋃M

i=m(ai, bi) be a regular
adversarial Bayes classifier.

If p0 is continuous at ai − ϵ (resp. bi + ϵ) and p1 is continuous at ai + ϵ (resp. bi − ϵ),
then ai (resp. bi) must satisfy the second order necessary conditions (2.8a) (resp. (2.8b)).
Similarly, if p0 is differentiable at ai − ϵ (resp. bi + ϵ) and p1 is differentiable at ai + ϵ (resp.
bi−ϵ), then ai (resp. bi) must satisfy the first order necessary conditions (3.1a) (resp. (3.1b)).

(3.1a) p′1(ai + ϵ)− p′0(ai − ϵ) ≥ 0 (3.1b) p′0(bi + ϵ)− p′1(bi − ϵ) ≥ 0

This theorem provides a method for identifying a representative of every equivalence class
of adversarial Bayes classifiers under equivalence up to degeneracy.

1) Let a, b be the set of points that satisfy the necessary conditions for ai, bi respectively
2) Form all possible open regular sets

⋃M
i=m(ai, bi) with ai ∈ a and bi ∈ b.

3) Identify which of these sets would be be equivalent up to degeneracy, if they were
adversarial Bayes classifiers.

4) Compare the risks of all non-equivalent sets from step 2) to identify which are adver-
sarial Bayes classifiers.

One only need to consider open sets in step 2) because the boundary of a regular adversarial
Bayes classifier is always a degenerate set, as noted in subsection 2.1. Section 4 applies this
procedure above to several example distributions, see Example 4.1 for a crisp example. This
analysis reveals interesting patterns across several example distributions. First, boundary
points of the adversarial Bayes classifier are frequently within ϵ of boundary points of the
Bayes classifier. Proposition 4.9 and Proposition 4.10 prove that this phenomenon occurs
when either P is a uniform distribution on an interval or η ∈ {0, 1}, and Proposition 4.7
shows that this occurrence can reduce the accuracy-robustness tradeoff. Second, uniqueness
up to degeneracy often fails only for a small number of values of ϵ when P0(R) ̸= P1(R).
Understanding both of these occurrences in more detail is an open problem.

Theorem 3.7 is a tool for identifying a representative of each equivalence class of adversarial
Bayes classifiers under equivalence up to degeneracy. Can one characterize all the members
of a specific equivalence class? Answering this question requires understanding properties of
degenerate sets.

Theorem 3.8. Assume that d = 1, P ≪ µ, and let A be an adversarial Bayes classifier.
• If some interval I is degenerate for A and I is contained in suppP, then |I| ≤ 2ϵ.
• Conversely, the connected components of A and AC of length less than or equal to 2ϵ

are contained in a degenerate set.
• A countable union of degenerate sets is degenerate.
• Assume that suppP is an interval and P(η ∈ {0, 1}) = 0. If D is a degenerate set for
A, then D must be contained in the degenerate set (suppPϵ)C ∪ ∂A.

The first two bullets state that within the support of P, degenerate intervals must have length
at most 2ϵ, and conversely a component of size at most 2ϵ must be degenerate. The last
bullet implies that when suppP is an interval and P(η ∈ {0, 1}) = 0, the equivalence class of
an adversarial Bayes classifier A consists of all Borel sets that differ from A by a measurable
subset of (suppPϵ)C∪∂A. This result is a helpful tool for identifying sets which are equivalent
up to degeneracy in step 3) of the procedure above. Both of the assumptions present in
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this fourth bullet are necessary— Example 4.6 presents a counterexample where suppP is
an interval and P(η ∈ {0, 1}) > 0 while Example 6.5 presents a counterexample for which
P(η ∈ {0, 1}) = 0 but suppP is not an interval.

Prior work [2, 6] shows that a certain form of regularity for adversarial Bayes classifiers
improves as ϵ increases. Theorem 3.5 is an expression of this principle: this theorem states
that each adversarial Bayes classifier A is equivalent to a regular set of radius ϵ, and thus the
regularity guarantee improves as ϵ increases. Another form of regularity also improves as ϵ
increases—the number of components of A and AC must decrease for well-behaved distribu-
tions. Let comp(A) ∈ N ∪ {∞} be the number of connected components in a set A.

Theorem 3.9. Assume that d = 1, P ≪ µ, suppP is an interval I, and P(η ∈ {0, 1}) = 0.
Let ϵ2 > ϵ1 and let A1, A2 be regular adversarial Bayes classifiers corresponding to perturbation
radiuses ϵ1 and ϵ2 respectively. Then comp(A1∩ Iϵ1) ≥ comp(A2∩ Iϵ2) and comp(AC

1 ∩ Iϵ1) ≥
comp(AC

2 ∩ Iϵ2).

Subsection 6.3 actually proves a stronger statement: typically, no component of A1 ∩ Iϵ1 can
contain a connected component of AC

2 and no component of AC
1 ∩ Iϵ1 can contain a connected

component of A2. Due to the fourth bullet of Theorem 3.8, the assumptions of Theorem 3.9
imply that there is no degenerate interval within int suppPϵ, and hence every adversarial
Bayes classifier is regular. When computing adversarial Bayes classifiers, Theorem 3.9 and
the stronger version in subsection 6.3 are useful tools in ruling out some of the sets in step 2)
of the procudure above without explicitly computing their risk.

When d > 1, we show:

Theorem 3.10. Let A be an adversarial Bayes classifier. Then A is equivalent up to degen-
eracy to a classifier A1 for which A1 = Cϵ and a classifier A2 for which AC

2 = Eϵ, for some
sets C, E.

Further understanding uniqueness up to degeneracy in higher dimension is an open question.

Paper Outline. Section 4 applies the tools presented above to compute adversarial Bayes
classifiers for a variety of distributions. Subsequently, section 5 presents properties of equiv-
alence up to degeneracy, including proofs of Theorems 3.3, 3.4, and 3.10. Subsections 5.2
and 5.3 further study degenerate sets, and these results are later applied in subsection 6.1
to prove Theorems 3.5 and 3.7. Subsection 6.2 further studies degenerate sets in one dimen-
sion to prove Theorem 3.8. Lastly, subsection 6.3 proves Theorem 3.9. Technical proofs and
calculations appear in the appendix, which is organized so that it can be read sequentially.

4. Examples. The examples below find the equivalence classes under equivalence up to
degeneracy for any ϵ > 0. Examples 4.2 and 4.6 demonstrate a distribution for which the
adversarial Bayes classifier is unique up to degeneracy for all ϵ while Example 4.5 demonstrates
a distribution for which the adversarial Bayes classifier is not unique up to degeneracy for any
ϵ > 0, even though the Bayes classifier is unique. Example 4.1 and Example 4.4 describe an
intermediate situations— uniqueness up to degeneracy fails fails only for a single value of ϵ in
Example 4.4 and only for sufficiently large ϵ in Example 4.1. Lastly, Example 4.6 presents an
example with a degenerate set.

Examples 4.5 and 4.6 exhibit situations where different adversarial Bayes classifiers have
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Unequal Weights
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Figure 1: (a) Gaussian Mixture with equal means and unequal variances as a in Example 4.2.
(b) Gaussian Mixture with equal weights, unequal means, and equal variances as in Exam-
ple 4.1. (c) Gaussian Mixture with unequal weights, unequal means, and equal variances.

varying levels of (standard) classification risk, for all ϵ contained in some interval. For such dis-
tributions, a deliberate selection of the adversarial Bayes classifier would mitigate the tradeoff
between robustness and accuracy.

Furthermore, all the examples below except Example 4.2 exhibit a curious occurrence—
the boundary of the adversarial Bayes classifier is within ϵ of the boundary of the Bayes
classifier. Propositions 4.9 and 4.10 state conditions under which this phenomenon must
occur. Next, Proposition 4.7 shows that if furthermore the Bayes and adversarial Bayes have
the same number of components, then one can bound the (standard) classification risk of the
adversarial Bayes classifier in terms of the Bayes risk and ϵ, suggesting a reduced robustness-
accuracy tradeoff.

The first two examples study Gaussian mixtures: p0 = (1 − λ)gµ0,σ0(x), p1 = λgµ1,σ1(x),
where λ ∈ (0, 1) and gµ,σ is the density of a gaussian with mean µ and variance σ2. Prior
work [17] calculates a single adversarial Bayes classifier for λ = 1/2 and any value of µi and
σi. Below, our goal is to find all adversarial Bayes classifiers.

Example 4.1 (Gaussian Mixtures— equal variances, equal weights). Consider a gaussian
mixture with p0(x) = 1

2 · 1√
2πσ

e−(x−µ0)2/2σ2
, p1(x) = 1

2 · 1
2

1√
2πσ

e−(x−µ1)2/σ2
and µ1 > µ0, as

depicted in Figure 1a. The solutions to the first order necessary conditions p1(b−ϵ)−p0(b+ϵ) =
0 and p1(a+ ϵ)− p0(a− ϵ) = 0 from (2.8) are

a(ϵ) = b(ϵ) =
µ0 + µ1

2

However, one can show that b(ϵ) does not satisfy the second order necessary condition (3.1b)
(see Appendix K.1). Thus the candidate sets for the Bayes classifier are R, ∅, and (a(ϵ),+∞).
The fourth bullet of Theorem 3.8 implies that none of these sets could be equivalent up to
degeneracy. By comparing the adversarial risks of these three sets, one can show that the
set (a(ϵ),+∞) is an adversarial Bayes classifier iff ϵ ≤ µ1−µ0

2 and R, ∅ are adversarial Bayes
classifiers iff ϵ ≥ µ1−µ0

2 (see Appendix K.1 for details). Thus the adversarial Bayes classifier
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is unique up to degeneracy only when ϵ < µ1−µ0

2 .

When ϵ ≤ (µ1 − µ0)/2, the set (a(1/2),+∞) is both a Bayes classifier and an adversarial
Bayes classifier, and thus there is no accuracy-robustness tradeoff. In this example, uniqueness
up to degeneracy fails for all sufficiently large ϵ. In contrast, the example below demonstrates
a distribution for which the adversarial Bayes classifier is unique up to degeneracy for all ϵ.

Example 4.2 (Gaussian Mixtures— equal means). Consider a Gaussian mixture with
p0(x) = 1−λ√

2πσ0
e−x2/2σ2

0 and p1(x) = λ√
2πσ1

e−x2/2σ2
1 . Assume that p0 has a larger variance

than p1 but that the peak of p0 is below the peak of p1, or other words, σ0 > σ1 but
λ
σ1

> 1−λ
σ0

,
see Figure 1b for a depiction. Calculations similar to Example 4.1 show that the adversarial
Bayes classifier is unique up to degeneracy for every ϵ, and is given by (−b(ϵ), b(ϵ)) where

(4.1) b(ϵ) =

ϵ
(

1
σ2
1
+ 1

σ2
0

)
+

√
4ϵ2

σ4
0σ

4
1
− 2

(
1
σ2
1
− 1

σ2
0

)
ln (1−λ)σ1

λσ0

1
σ2
1
− 1

σ2
0

.

The computational details are similar to those of Example 4.1, and thus are delayed to Ap-
pendix K.2.

Unlike Example 4.1, when σ0 and σ1 are close, the Bayes and adversarial Bayes classifiers
differ substantially.

The next three examples are distributions for which suppP is a finite interval. In such
situations, it is often helpful to assume that ai, bi are not near ∂ suppP.

Lemma 4.3. Consider a distribution for which suppP is an interval. Then every adver-
sarial Bayes classifier is equivalent up to degeneracy to a regular adversarial Bayes classifier
A =

⋃M
i=m(ai, bi) for which the finite ai, bi are contained in int suppP−ϵ

See Appendix K.3 for a proof.

Example 4.4 (Uniqueness fails for a single value of ϵ). Consider a distribution for which

p0 =

{
1
6(1 + x) if |x| ≤ 1

0 otherwise
p1 =

{
1
3(1− x) if |x| ≤ 1

0 otherwise

The only solutions to the first order necessary conditions p1(a + ϵ) − p0(a − ϵ) = 0 and
p0(b+ ϵ)− p1(b− ϵ) = 0 within suppPϵ are

a(ϵ) =
2

3
(1− ϵ) and b(ϵ) =

2

3
+ ϵ

We first consider ϵ small enough so that both of these points lie in int suppP−ϵ, or in other
words, ϵ < 1/5. Then p′0(a(ϵ)− ϵ) = p′0(b(ϵ) + ϵ) = 1/3 and p′1(a(ϵ) + ϵ) = p′0(b(ϵ)− ϵ) = 1/6.
Consequently, the point a(ϵ) fails to satisfy the second order necessary condition (3.1a). To
identify all adversarial Bayes classifiers under uniqueness up to degeneracy for ϵ < 1/5, it
remains to compare the adversarial risks of ∅, R, and (−∞, b(ϵ)), and Theorem 3.8 implies that
none of these sets could be equivalent up to degeneracy. These values compute to Rϵ(∅) = 2/3,

Rϵ(R) = 1/3, and Rϵ((−∞, b(ϵ))) =
(
1+ϵ
2

)2
. Therefore, for all ϵ < 1/5, the set (−∞, b(ϵ)) is
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Figure 2: (a) The distribution of Example 4.4. (b) The distribution of Example 4.5. (c) The
distribution of Example 4.6.

an adversarial Bayes classifier iff ϵ ≤ 2/
√
3 − 1 while R is an adversarial Bayes classifier iff

ϵ ≥ 2/
√
3−1. Theorem 3.9 then implies that this last statement holds without the restriction

ϵ < 1/5.

Uniqueness up to degeneracy fails for only a single value of ϵ in the example above. In
contrast, uniqueness up to degeneracy fails for all ϵ in the distribution below.

Example 4.5 (Non-uniqueness for all ϵ > 0). Let p be the uniform density on the interval
[−1, 1] and let

η(x) =

{
1
4 if x ≤ 0
3
4 if x > 0

Calculations for this example are similar to those in Example 4.4, so we delay the details
to Appendix K.4. For this distribution, the set (y,∞) is an adversarial Bayes classifier for any
y ∈ [−ϵ, ϵ] iff ϵ ≤ 1/3 and ∅,R are adversarial Bayes classifiers iff ϵ ≥ 1/3. Theorem 3.8 implies
that none of these sets could be equivalent up to degeneracy. Therefore, the adversarial Bayes
classifier is not unique up to degeneracy for all ϵ > 0 even though the Bayes classifier is unique.

Again, the adversarial Bayes classifier (0,∞) is also a Bayes classifier when ϵ ≤ 1/3, and
thus there is no accuracy-robustness tradeoff for this distribution.

A distribution is said to satisfy Massart’s noise condition if |η(x) − 1/2| ≥ δ P-a.e. for
some δ > 0. Prior work [14] relates this condition to the sample complexity of learning from
a function class. For the example above, Theorem 3.4 implies that Massart’s noise condition
cannot hold for any maximizer of R̄ even though |η − 1/2| ≥ 1/4 P-a.e.

The next example exhibits a degenerate set that has positive measure under P.
Example 4.6 (Example of a degenerate set). Consider a distribution on [−1, 1] with

η(x) =

{
1 if 1 ≥ |x| > 1/4

0 if |x| ≤ 1/4
p(x) =

{
3
5 if 1 ≥ |x| > 1/4
1
5 if |x| ≤ 1/4

Theorem 3.7 and Lemma 4.3 imply that one only need consider ai, bi ∈ {−1
4 ± ϵ, 14 ± ϵ} when
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identifying a regular representative of each equivalence class of adversarial Bayes classifiers.
By comparing the adversarial risks of the regular sets satisfying this crieterion, one can show
that when ϵ < 1/8, every adversarial Bayes classifier is equivalent up to degeneracy to the
regular set (−∞,−1/4 + ϵ) ∪ (1/4 − ϵ,∞) but when ϵ ≥ 1/8 then every adversarial Bayes
classifier is equivalent up to degeneracy to the regular set R (see Appendix K.5 for details.)

Next consider ϵ ∈ (1/8, 1/4]. If S is an arbitrary subset of [−1/4 + ϵ, 1/4 − ϵ], then
Rϵ(R) = Rϵ(SC). Thus the interval [−1/4 + ϵ, 1/4− ϵ] is a degenerate set.

When ϵ ∈ (1/8, 1/4], the (standard) classification error of R and (−∞,−1/4+ϵ)∪(1/4−ϵ)
differ by 2

5(1−4ϵ), which is close to 1/5 for ϵ near 1/8. Thus a careful selection of the adversarial
Bayes classifier can mitigate the accuracy-robustness tradeoff.

The last three propositions in this section specify conditions under which one could hope
that the boundary of the adversarial Bayes classifier would be within ϵ of the boundary of
the Bayes classifier. If in addition the Bayes and adversarial Bayes classifiers have the same
number of components, one can bound the minimal adversarial Bayes error in terms of the
Bayes error rate and ϵ.

Proposition 4.7. Let B =
⋃M

i=1(ci, di), A =
⋃M

i=1(ai, bi) be the Bayes and adversarial Bayes
classifiers respectively. Assume that p0, p1 are bounded above by K. Then if |ai − ci| ≤ ϵ and
|bi − di| ≤ ϵ, then R(A)−R(B) ≤ 2ϵMK.

Thus there will be a minimal robustness-accuracy tradeoff so long as ϵ ≪ 1/MK.

Proof.

R(A)−R(B) =

M∑
i=1

∫ max(ai,ci)

min(ai,ci)
p1dx+

∫ max(bi,di)

min(bi,di)
p0dx ≤ 2ϵMK

The next proposition stipulates a widely applicable criterion under which there is always
a solution to the necessary conditions p1(a+ ϵ)− p0(a− ϵ) = 0 and p1(b− ϵ)− p0(b+ ϵ) = 0
within ϵ of solutions to p1(x) = p0(x) (which specifies the boundary of the Bayes classifier).

Proposition 4.8. Let z be a point with p1(z) − p0(z) = 0 and assume that p0 and p1 are
continuous on [z − r, z + r] for some r > 0. Furthermore, assume that one of p0, p1 is non-
increasing and the other is non-decreasing on [z − r, z + r]. Then for all ϵ ≤ r/2 there is a
solution to the first order necessary conditions (2.8a) and (2.8b) within ϵ of z.

Proof. Without loss of generality, assume that p1 is non-increasing and p0 is non-decreasing
on [z − r, z + r]. The applying the relation p1(z) = p0(z), one can conclude that

p1((z − ϵ) + ϵ)− p0((z − ϵ)− ϵ) = p1(z)− p0(z − 2ϵ) = p0(z)− p0(z − 2ϵ) ≥ 0.

An analogous argument shows that p1((z+ ϵ)+ ϵ)−p0((z+ ϵ)− ϵ) ≤ 0. Thus the intermediate
value theorem implies that there is a solution to (2.8a) within ϵ of z. Analogous reasoning
shows that there is a solution to (2.8b) within ϵ of z.

However, this proposition does not guarantee that the solution to the necessary conditions
within ϵ of z must be a boundary point of the adversarial Bayes classifier. To illustrate

the utility of this result, consider a gaussian mixture with p1(x) = λ√
2πσ

e−
(x−µ1)

2

2σ2 , p0(x) =
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1−λ√
2πσ

e−
(x−µ0)

2

2σ2 for which p1(µ1) > p0(µ1) and p0(µ0) > p1(µ0), see Figure 1c) for an illus-

tration. Just as in Example 4.1, the necessary conditions (2.8) reduce to linear equations
and so there is at most one a(ϵ) solving (2.8a) and at most one b(ϵ) solving (2.8b). Thus
Proposition 4.8 implies that the solutions to the first order necessary conditions (2.8) must
be within ϵ of the boundary of the Bayes classifier.

Next, if P is the uniform distribution on an interval, an argument similar to the proof of
Proposition 4.8 implies that solutions to the first order necessary conditions (2.8) are within
ϵ of solutions to p0(z) = p1(z).

Proposition 4.9. Assume that P is the uniform distribution on an finite interval, p and η are
continuous on suppP, and η(x) = 1/2 only at finitely many points within suppP. Then any
adversarial Bayes classifier is equivalent up to degeneracy to an adversarial Bayes classifier
A =

⋃M
i=m(ai, bi) for which each ai, bi is at most ϵ from some point z satisfying η(z) = 1/2.

The proof is very similar to that of Proposition 4.8, see Appendix K.6 for details.
Finally, under fairly general conditions, when η ∈ {0, 1}, the boundary of the adversarial

Bayes classifier must be within ϵ of the boundary of the Bayes classifier.

Proposition 4.10. Assume that suppP is an interval P ≪ µ, η ∈ {0, 1}, and p is continuous
on suppP and strictly positive. Then any adversarial Bayes classifier is equivalent up to
degeneracy to a regular adversarial Bayes classifier A =

⋃M
i=m(ai, bi) for which each ai, bi is

at most ϵ from ∂{η = 1}.

Again, the proof is very similar to that of Proposition 4.8, see Appendix K.7 for details.

5. Equivalence up to Degeneracy.

5.1. Equivalence up to Degeneracy as an Equivalence Relation. When P ≪ µ, there
are several useful characterizations of equivalence up to degeneracy.

Proposition 5.1. Let P ≪ µ. Let (P∗
0,P∗

1) be a maximizer of R̄ and set P∗ = P∗
0 + P∗

1. Let
A1 and A2 be adversarial Bayes classifiers. Then the following are equivalent:

1) The adversarial Bayes classifiers A1 and A2 are equivalent up to degeneracy
2) Either Sϵ(1A1) = Sϵ(1A2)-P0-a.e. or Sϵ(1AC

2
) = Sϵ(1AC

1
)-P1-a.e.

3) P∗(A2△A1) = 0

Item 2) states that A1, A2 are equivalent up to degeneracy if the ‘attacked’ classifiers Aϵ
1, A

ϵ
2

are equal P0-a.e. Item 3) further states that the adversarial Bayes classifiers A1, A2 are unique
up to degeneracy if they are equal under the measure of optimal adversarial attacks.

Proposition 5.1 is proved in Appendix C.2, and we provide an overview of this argument
below. In this proof, we show that Item 3) is equivalent to Item 2), Item 2) implies Item 1),
and Item 1) implies Item 3). First, the complimentary slackness conditions of Theorem 2.4
implies that Item 2) and Item 3) equivalent, (see the proof of Lemma C.5 in Appendix C). To
show that Item 2) implies Item 1), we prove that Item 2) implies Sϵ(1A1∪A2) = Sϵ(1A1∩A2)
P0-a.e. (Lemma C.3), and thus any two sets between A1 ∩ A2 and A1 ∪ A2 must have the
same adversarial risk.

Lastly, to show that Item 1) implies Item 3), we apply the complimentary slackness condi-
tion of (2.11) of Theorem 2.4 to argue that D = A1△A2 has P∗-measure zero. First, we show
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that if D1 = intD∩Qd, D2 = intD∩ (Qd)C then Dϵ
1 = Dϵ

2 = (intD)ϵ (see Lemma C.7). Thus∫
1(A1∩A2∪D1)ϵdP0 =

∫
1(A1∩A2∪D2)ϵdP0 =

∫
1(A1∩A2∪intD)ϵdP0 and the complimentary slack-

ness condition (2.11) implies that P∗
0(intD) = 0. Similarly, one can argue that P∗

1(intD) = 0.
Next, to prove P∗(D ∩ ∂D) = 0, we prove that when P ≪ µ, the boundary ∂A is always a
degenerate set for an adversarial Bayes classifier A when P ≪ µ. Consequently:

Lemma 5.2. Let A be an adversarial Bayes classifier. If P ≪ µ, then A, A, and intA are
all equivalent up to degeneracy.

See Appendix C.1 for a proof. Proposition 5.1 has several useful consequences for understand-
ing degenerate sets, which we explore in subsection 5.3. Specifically, when P ≪ µ, equivalence
up to degeneracy is in fact an equivalence relation.

Proof of Theorem 3.3. Item 3) of Proposition 5.1 states that two adversarial Bayes clas-
sifiers A1, A2 are equivalent up to degeneracy iff 1A1 = 1A2 P∗-a.e. Thus equivalence up to
degeneracy is an equivalence relation because equality of functions P∗-a.e. is an equivalence
relation.

Furthermore, Proposition 5.1 implies Theorem 3.4. Item 2) of Proposition 5.1 is equivalent
to Item B) of Theorem 3.4 when the adversarial Bayes classifier is unique up to degeneracy.
In the following discussion, we assume that the adversarial Bayes classifier is unique up to
degeneracy and show that Item 3) of Proposition 5.1 is equivalent to Item C) of Theorem 3.4.

First, to show Item C) ⇒ Item 3), notice that the complimentary slackness condition in
(2.12) implies that

(5.1) 1η∗>1/2 ≤ 1A ≤ 1η∗≥1/2 P∗-a.e.

for any adversarial Bayes classifier A and any maximizer (P∗
0,P∗

1) of R̄. Thus, if P∗(η∗ =
1/2) = 0 then every adversarial Bayes classifier must satisfy 1A = 1η∗>1/2 P∗-a.e. and thus
P∗(A1△A2) = 0 for any two adversarial Bayes classifiers A1 and A2.

It remains to show that Item 3) implies Item C). To relate the quantity P∗(A1△A2) to
η∗, we show that there are adversarial Bayes classifiers Â1, Â2 which match {η∗ > 1/2} and
{η∗ ≥ 1/2} P∗-a.e.

Lemma 5.3. There exists P∗
0 ∈ B∞

ϵ (P0), P∗
1 ∈ B∞

ϵ (P1) which maximize R̄ and adversarial
Bayes classifiers Â1, Â2 for which 1η∗>1/2 = 1Â1

P∗-a.e. and 1η∗≥1/2 = 1Â2
P∗-a.e., where

P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗.

Item B) in conjunction with this lemma implies that 0 = P∗(Â2△Â1) = P∗(η∗ = 1/2). See
Appendix D for proofs of Theorem 3.4 and Lemma 5.3. The classifiers Â1 and Â2 can be inter-
preted as minimal and maximal adversarial Bayes classifiers, in the sense that

∫
Sϵ(1Â1

)dP0 ≤∫
Sϵ(1A)dP0 ≤

∫
Sϵ(1Â2

)dP0 and
∫
Sϵ(1ÂC

1
)dP1 ≥

∫
Sϵ(1AC )dP1 ≥

∫
Sϵ(1ÂC

2
)dP1 for any ad-

versarial Bayes classifier A (see Lemma D.2 in Appendix D.1).
Theorem 3.3 is false when P is not absolutely continuous with respect to µ:

Example 5.4. Consider a distribution for which P0 = 1
2δ−ϵ and P1 = 1

2δϵ. If 0 ∈ A then
Sϵ(1A)(ϵ) = 1 and if 0 ̸∈ A then Sϵ(1AC )(−ϵ) = 1. If either case, Rϵ(A) ≥ 1/2. The
classifier A = R achieves adversarial classification 1/2 and therefore Rϵ

∗ = 1/2. The sets R≥0

and R>0 also achieve error 1/2 and thus are also adversarial Bayes classifiers. These two
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classifiers are equivalent up to degeneracy because they differ by one point. Furthermore, the
classifiers R and R≥0 are equivalent up to degeneracy: if D ⊂ R<0, then Sϵ(1R≥0∪D)(−ϵ) = 1
while Sϵ(1(R≥0∪D)C )(ϵ) = 0 and hence Rϵ(R≥0 ∪ D) = 1/2. However, if D ⊂ (−2ϵ, 0) then

Rϵ(R>0 ∪D) = 1 and thus R and R>0 cannot be equivalent up to degeneracy.
In short— the classifiers R>0 and R≥0 are equivalent up to degeneracy, the classifiers R≥0

and R are equivalent up to degeneracy, but R>0 and R are not equivalent up to degeneracy.
Thus equivalence up to degeneracy cannot be an equivalence relation for this distribution.

However, Item 2) and Item 3) of Proposition 5.1 are still equivalent when P ̸≪ µ, as are
Item B) and Item C) of Theorem 3.4 (see Lemma C.5 in Appendix C.2 and Proposition D.3 of
Appendix D.2). As the proof of Theorem 3.3 relies only on Item 3), one could use Item 2) and
Item 3) to define a notion of equivalence for adversarial Bayes classifiers even when P ̸≪ µ.

5.2. The Universal σ-algebra, Measurability, and Fundamental Regularity Results. We
introduce another piece of notation to state our regularity results. Define A−ϵ = ((AC)ϵ)C .
The set Aϵ represents all points in Rd that can be moved into A by a perturbation of size at
most ϵ and A−ϵ is the set of of points inside A that cannot be perturbed outside of A:

(5.2) Aϵ = {x : Bϵ(x) intersects A} (5.3) A−ϵ = {x : Bϵ(x) ⊂ A}

See Appendix E for a proof. Prior works [2, 6] note that applying the ϵ, −ϵ operations in
succession can improve the regularity of an adversarial Bayes classifier. Additionally,

Lemma 5.5. For any set A, Rϵ((A−ϵ)ϵ) ≤ Rϵ(A) and Rϵ((Aϵ)−ϵ) ≤ Rϵ(A).

See Appendix E for a proof. Thus applying the ϵ and −ϵ operations in succession can only
reduce the adversarial risk of a set. In order to perform these regularizing operations, one
must minimize Rϵ over a σ-algebra Σ that is preserved by the ϵ operation: in other words,
one would wish that A ∈ Σ implies Aϵ ∈ Σ.

To illustrate this concern, [18] demonstrate a Borel set C for which Cϵ is not Borel mea-
surable. However, prior work shows that if A is Borel, then Aϵ is measurable with respect to
a larger σ-algebra called the universal σ-algebra U (Rd). A set in the universal σ-algebra is
referred to as universally measurable. Theorem 29 of [10] states that

Theorem 5.6. If A is universally measurable, then Aϵ is as well.

See Appendix F for the definition of the universal σ-algebra U (Rd).
As 1Aϵ = Sϵ(1A), Theorem 5.6 implies that Sϵ(1A) is a universally measurable function if

A is universally measurable.
Thus, in order to guarantee the existence of minimizers to Rϵ with improved regularity

properties, one could minimize Rϵ over the universal σ-algebra U (Rd). However, many prior
papers such as [9, 17, 18] study this minimization problem over the Borel σ-algebra. We show
that these two approaches are equivalent:

Theorem 5.7. Let B(Rd) denote the Borel σ algebra on Rd. Then

inf
A∈B(Rd)

Rϵ(A) = inf
A∈U (Rd)

Rϵ(A)
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See Appendix F for a proof. Due to this result, in the remainder of the paper, we treat the
minimization of Rϵ over U (Rd) and B(Rd) as interchangable.

5.3. Describing Degenerate Sets and Proof of Theorem 3.10. Proposition 5.1 together
with fundamental properties of the ϵ and −ϵ operations imply several results on degenerate
sets.

First, Lemma 2.1 implies that countable unions and intersections of adversarial Bayes clas-
sifiers are adversarial Bayes classifiers. Item 3) of Proposition 5.1 then implies that countable
unions and intersections preserve equivalence up to degeneracy. As a result:

Lemma 5.8. Let P ≪ µ. Then a countable union of degenerate sets is degenerate.

See Appendix G.1 for a formal proof.
Next, using the regularizing ϵ and −ϵ operations, we study the relation between uniqueness

up to degeneracy and regular adversarial Bayes classifiers. First notice that (A−ϵ)ϵ is smaller
than A while (Aϵ)−ϵ is larger than A:

Lemma 5.9. Let A be any set. Then (A−ϵ)ϵ ⊂ A ⊂ (Aϵ)−ϵ.

Furthermore, one can compare Sϵ(1A) with Sϵ(1(A−ϵ)ϵ) and Sϵ(1AC ) with Sϵ(1(Aϵ)−ϵ):

Lemma 5.10. For any set A ⊂ Rd, the following set relations hold: ((Aϵ)−ϵ)ϵ = Aϵ,
((Aϵ)−ϵ)−ϵ ⊃ A−ϵ, ((A−ϵ)ϵ)−ϵ = A−ϵ, ((A−ϵ)ϵ)ϵ ⊂ Aϵ.

See Appendix E for proofs of Lemma 5.9 and Lemma 5.10. Lemma 5.5 then implies:

Corollary 5.11. Assume P ≪ µ and let A be an adversarial Bayes classifier. Then A, (Aϵ)−ϵ, (A−ϵ)ϵ

are all equivalent up to degeneracy.

Proof. Lemma 5.10 implies that (A−ϵ)ϵ, (Aϵ)−ϵ are both adversarial Bayes classifiers sat-
isfying Sϵ(1A) = Sϵ(1(Aϵ)−ϵ) and Sϵ(1AC ) = Sϵ(1((A−ϵ)ϵ)C ). Therefore, when P ≪ µ, Item 2)
of Proposition 5.1 implies that A, (A−ϵ)ϵ), and (Aϵ)−ϵ are all equivalent up to degeneracy.
Lemma 5.9 then implies that (Aϵ)−ϵ − (A−ϵ)ϵ is a degenerate set.

Theorem 3.10 is an immediate consequence of Corollary 5.11. Furthermore, Corollary 5.11
implies that “small” components of A and AC are degenerate sets. Specifically, one can show
that if C is a component with C−ϵ = ∅, then C is contained in (Aϵ)−ϵ − (A−ϵ)ϵ.

Proposition 5.12. Let A be an adversarial Bayes classifier and let C be a connected com-
ponent of A or AC with C−ϵ = ∅. Then C is contained in (Aϵ)−ϵ − (A−ϵ)ϵ, and thus the
set

(5.4)
⋃{

C : connected components of A or AC with C−ϵ = ∅
}

is contained in a degenerate set of A.

See Appendix G.2 for a proof. This result has a sort of converse: A degenerate set D must
satisfy 1D−ϵ = 1∅ P-a.e:

Lemma 5.13. Assume that P ≪ µ and let D be a degenerate set for an adversarial Bayes
classifier A. Then P(D−ϵ) = 0.



UNIQUENESS FOR THE ADVERSARIAL BAYES CLASSIFIER IN BINARY CLASSIFICATION 17

See Appendix G.3 for a proof.
The adversarial classification risk heavily penalizes the boundary of a classifier. This

observation suggests that if two connected components of a degenerate set are close together,
then they must actually be included in a larger degenerate set. The ϵ and −ϵ operations
combine to form this enlarging operation.

Lemma 5.14. Assume that P ≪ µ. If D is a degenerate set for an adversarial Bayes
classifier A, then (Dϵ)−ϵ is as well.

Proof. Let A2 = A ∪ (Dϵ)−ϵ. Then Sϵ(1AC ) ≥ Sϵ(1AC
2
). We will show that Sϵ(1A2) =

Sϵ(1A) P0-a.e., which will then imply that A is an adversarial Bayes classifier, and furthermore
A and A2 are equivalent up to degeneracy by Proposition 5.1. Notice that the set A2 satisfies

A ⊂ A2 ⊂ ((A ∪D)ϵ)−ϵ

and then Lemma 5.10 implies that Aϵ ⊂ (A∪ (Dϵ)−ϵ)ϵ ⊂ (A∪D)ϵ. Because D is a degenerate
set, A3 = A ∪ D is an adversarial Bayes classifier and thus Proposition 5.1 implies that
1Aϵ = 1(A∪D)ϵ-P0-a.e. which in turn implies 1Aϵ = 1(A∪(Dϵ)−ϵ)ϵ-P0-a.e.

6. The Adversarial Bayes Classifier in One Dimension. In this section, we assume that
d = 1 and the length of an interval I will be denoted |I|. Recall that connected subsets of R
are either intervals or single point sets.

6.1. Regular adversarial Bayes classifiers—Proof of Theorem 3.5 and Theorem 3.7.
Notice that if I is a connected component of A and AC and |I| < 2ϵ, then I−ϵ = ∅. Thus
the set of connected components of A and AC of length strictly less than 2ϵ is contained in a
degenerate set by Proposition 5.12.

However, if |I| = 2ϵ, then I−ϵ contains at most one point: if I = [x − ϵ, x + ϵ] then
I−ϵ = {x} while I−ϵ = ∅ if I is not closed. Due to this observation, the set of connected
components of A and AC of length 2ϵ is actually degenerate set as well. Thus one can argue:

Lemma 6.1. Let P0,P1 ≪ µ, A be an adversarial Bayes classifier. Then there are ad-
versarial Bayes classifiers Ã1, Ã2 satisfying Ã1 ⊂ A ⊂ Ã2 which are equivalent to A up to
degeneracy and

Ã1 =
M⋃

i=m

(ãi, b̃i), ÃC
2 =

M⋃
j=n

(ẽj , f̃j)

where the intervals (ãi, b̃i), (ẽi, f̃i) satisfy b̃i − ãi > 2ϵ and f̃i − ẽi > 2ϵ.

This statement is a consequence of Proposition 5.12 and Lemma 5.2.

Proof of Lemma 6.1. Lemma 5.2 implies that intA and A are both adversarial Bayes
classifiers, and thus Corollary 5.11 implies that D1 = ((intA)ϵ)−ϵ − ((intA)−ϵ)ϵ and D2 =
((A)ϵ)−ϵ − ((A)−ϵ)ϵ are degenerate sets for intA and A respectively. Thus Lemma 5.2 and
Corollary 5.11 imply that Ã1 = intA − D1, Ã2 = A ∪ D2, and A are all equivalent up to
degeneracy.

The adversarial Bayes classifier intA is an open set, and thus every connected component
of intA is open. Therefore, if I is a connected component of intA of length less than or
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equal 2ϵ, then I−ϵ = ∅ and Corollary 5.11 and Lemma 5.9 imply that I ⊂ D1. Hence every
connected component of Ã1 has length strictly larger than 2ϵ.

As (A)C is an open set and ÃC
2 = (A)C − D2, the same argument implies that every

connected component of ÃC
2 has length strictly larger than 2ϵ.

These classifiers Ã1 and Ã2 have “one-sided” regularity— the connected components of
Ã1 and ÃC

2 have length strictly greater than 2ϵ. Next, we use these classifiers with one-sided
regularity to construct a classifier A′ for which both A′ and (A′)C have components larger
than 2ϵ.

This result suffices to prove Theorem 3.5, which is detailed in Appendix H.1, and we
discuss an overview of this proof below. As Ã1 ⊂ Ã2, the sets Ã1 and ÃC

2 are disjoint.
Therefore, one can express Rd as a disjoint union

R = Ã1 ⊔ ÃC
2 ⊔D.

Both Ã1 and ÃC
2 are a disjoint union of intervals of length greater than 2ϵ, and thus D =

ÃC
1 ∩ Ã2 must be a disjoint union of countably many intervals and isolated points. Notice

that because D is degenerate, the union of Ã1 and an arbitrary measurable portion of D is
an adversarial Bayes classifier as well. To construct a regular adversarial Bayes classifier, we
let D1 be the connected components of D that are adjacent to some open interval of A. The
remaining components of D, D2 = D−D1, must be adjacent to Ã2. Therefore, if A

′ = Ã1∪D1

the connected components of A′ = Ã1 ∪ D1 and (A′)C = Ã2 ∪ D2 must have length strictly
greater than 2ϵ.

Next, Theorem 3.7 follows the fact that one can express the adversarial risk of A =⋃M
i=m(ai, bi) as (2.7) when A is regular.

Proof of Theorem 3.7. Because bi − ai > 2ϵ and ai − bi−1 > 2ϵ, we can treat Rϵ(A) as
a differentiable function of ai on a small open interval around ai as described by (2.7). The
first order necessary conditions for a minimizer then imply the first relation of (2.8) and the
second order necessary conditions for a minimizer then imply the first relation of (3.1). The
argument for bi is analogous.

6.2. Degenerate Sets in One Dimension—Proof of Theorem 3.8. First, every compo-
nent of A or AC with length less than equal to 2ϵ must be degenerate. In comparison, notice
that this statement is strictly strong than Proposition 5.12.

Lemma 6.2. If a connected component C of A or AC has length less than or equal to 2ϵ,
then C is degenerate.

Proof of Lemma 6.2. Let A be an adversarial Bayes classifier and let Ã1 and Ã2 be the two
equivalent adversarial Bayes classifiers of Lemma 6.1. Because every connected component
of component of Ã1 has length strictly larger than 2ϵ, the connected components of A of
length less than or equal to 2ϵ must be included in the degenerate set A− Ã1. Similarly, the
connected components of A of length less than or equal to 2ϵ are included in Ã2 − A, which
is a degenerate set.

Conversely, the length of a degenerate interval contained in suppP is at most 2ϵ.
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Corollary 6.3. Let P ≪ µ. Assume that I ⊂ suppP is a degenerate interval for an adver-
sarial Bayes classifier A. Then |I| ≤ 2ϵ.

Proof. Lemma 5.13 implies that if I is a degenerate interval then P(I−ϵ) = 0. Because I
is an interval, the set I−ϵ is either empty, a single point, or an interval. As I ⊂ suppP and
every interval larger than a single point has positive measure under µ, it follows that I−ϵ is
at most a single point and thus |I| ≤ 2ϵ.

This result is then sufficient to prove the fourth bullet of Theorem 3.8. To start:

Lemma 6.4. Let P ≪ µ and let A be an adversarial Bayes classifier. If suppP is an interval
and A has a degenerate interval I contained in suppPϵ, then η(x) ∈ {0, 1} on a set of positive
measure.

A formal proof is provided in Appendix I.1, we sketch the main ideas below. Let I be a
degenerate interval in suppP. One can then find a ‘maximal’ degenerate interval J = [d3, d4]
contained in suppP, in the sense that if J ′ is a degenerate interval and J ⊂ J ′ then J ′ = J .
Corollary 6.3 implies that |J | ≤ 2ϵ and Lemma 5.14 implies that J is a distance strictly more
than 2ϵ from any other degenerate set. Thus the intervals (d3 − ϵ, d3), (d4, d4 + ϵ) do not
intersect a degenerate subset of A, and these intervals must be entirely contained in A or
AC due to Lemma 6.2. Thus one can compute the difference Rϵ(A ∪ J) − Rϵ(A − J) under
four cases: 1) (d3 − ϵ, d3) ⊂ A, (d4, d4 + ϵ) ⊂ A; 2) (d3 − ϵ, d3) ⊂ A, (d4, d4 + ϵ) ⊂ AC ; 3)
(d3 − ϵ, d3) ⊂ AC , (d4, d4 + ϵ) ⊂ A; 4) (d3 − ϵ, d3) ⊂ AC , (d4, d4 + ϵ) ⊂ AC .

In each case, this difference results in
∫
I′ p1(x)dx = 0 or

∫
I′ p0(x)dx = 0 on some interval

I ′, which imply η = 1 and η = 0, respectively on a set of positive measure.
Lemma 6.4 and Lemma 5.14 together imply the fourth bullet of Theorem 3.8. The ar-

gument is outlined below, with a formal proof in Appendix I.2. If D ⊂ int suppPϵ is a
degenerate set which contains two points x ≤ y at most 2ϵ apart, then Lemma 5.14 implies
that [x, y] ⊂ (Dϵ)−ϵ is degenerate, which would contradict Lemma 6.4. Thus D ∩ int suppPϵ

must be comprised of points that are strictly more than 2ϵ apart. However, if x ∈ D is more
than 2ϵ from any point in ∂A, then one can argue that Rϵ(A−{x})−Rϵ(A) > 0 if x ∈ A and
Rϵ(A ∪ {x} − Rϵ(A) > 0 if x ̸∈ A. Thus if D is a degenerate set is disjoint from (suppPϵ)C ,
then D must be contained in ∂A.

Combining previous results then proves Theorem 3.8— The first bullet of Theorem 3.8 is
Lemma 6.2, the second bullet is Corollary 6.3, the third bullet is Lemma 5.8, and the fourth
bullet is shown in Appendix I.2.

Lemma 6.4 and the fourth bullet of Theorem 3.8 are false when suppP is not an interval.

Example 6.5. Consider a probability distribution for which

p1(x) =


1
4ϵ if 2ϵ ≤ |x| ≤ 3ϵ
1
12ϵ if |x| ≤ ϵ

0 otherwise

p0(x) =


1
9ϵ if 2ϵ ≤ |x| ≤ 3ϵ
1
18ϵ if |x| ≤ ϵ

0 otherwise

See Figure 3 for an illustration. Then there are no solutions x to the necessary conditions
(2.8) within suppPϵ at which p0 is continuous at x± ϵ and p1 continuous at x∓ ϵ. Thus the
only possible values for the ais and bis within suppPϵ are {−4ϵ,−3ϵ,−2ϵ,−ϵ, 0, ϵ, 2ϵ, 3ϵ, 4ϵ}.
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Figure 3: The distribution of Example 6.5.

By comparing the risks of all adversarial Bayes classifiers with endpoints in this set, one can
show that R is an adversarial Bayes classifier. At the same time, Rϵ(SC) = Rϵ(R) for any
subset S of [−ϵ, ϵ]. Thus S is a degenerate set, but η(x) = 3/5 on [−ϵ, ϵ].

6.3. Regularity as ϵ Increases—Proof of Theorem 3.9. Let A1 and A2 be two regular
adversarial Bayes classifiers corresponding to perturbation radiuses ϵ1 and ϵ2 respectively.
Notice that the adversarial classification risk in (2.5) pays a penalty of 1 within ϵ of each
ai and bi. This consideration suggests that as ϵ increases, there should be fewer transitions
between the two classes in the adversarial Bayes classifier. The key observation is that so long
as A1 is non-trivial, no connected component of A2 should contain a connected component of
A1 and no connected component of AC

2 should contain a connected component of A1.
We adopt an additional notation convention to formally state this principle. When⋃M

i=m(ai, bi) is a regular adversarial Bayes classifier and M is finite, define aM+1 to be +∞.
Similarly, if m is finite, define bm−1 as −∞.

Lemma 6.6. Assume that P ≪ µ is a measure for which suppP is an interval I and
P(η(x) = 0 or 1) = 0. Let A1 =

⋃M
i=m(a1i , b

1
i ) and A2 =

⋃N
j=n(a

2
j , b

2
j ) be two regular adversarial

Bayes classifiers corresponding to perturbation sizes ϵ1 < ϵ2.
• If both R and ∅ are adversarial Bayes classifiers for perturbation radius ϵ1, then both
R and ∅ are adversarial Bayes classifiers for perturbation radius ϵ2.

• Assume that R and ∅ are not both adversarial Bayes classifiers for perturbation radius
ϵ1. Then for each interval (a1i , b

1
i ), the set (a1i , b

1
i )∩ Iϵ1 cannot contain any non-empty

(b2j , a
2
j+1) ∩ Iϵ1 and for each interval (b1i , a

1
i+1), the set (b1i , a

1
i+1) ∩ Iϵ1 cannot contain

any non-empty (b2j , a
2
j+1) ∩ Iϵ1.

Example 4.1 demonstrates the the exception to the second bullet of this lemma— when ϵ ≥
(µ1 − µ0)/2, both R and ∅ are adversarial Bayes classifiers.

To show Lemma 6.6, notice that if A2 =
⋃M

i=1(a
2
i , b

2
i ) is a regular adversarial Bayes clas-

sifier, then Rϵ2(A2 − (a2j − b2j )) ≥ Rϵ2(A2) which is equivalent to

0 ≤
∫ b2j+ϵ2

a2j−ϵ2

p1dx−

(∫ a2j+ϵ2

a2j−ϵ2

pdx+

∫ b2j−ϵ2

a2j+ϵ2

p0dx+

∫ b2j+ϵ2

b2j−ϵ2

pdx

)
=

∫ b2j−ϵ2

a2j+ϵ2

p1(x)dx−
∫ b2j+ϵ2

a2j−ϵ2

p0(x)dx

As p0, p1 are non-zero on suppP, replacing ϵ2 with ϵ1 in this last expression would increase
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the first integral and decrease the second, thereby increasing the entire expression.
Thus, if (a2j − ϵ1, b

2
j + ϵ1) ⊂ AC

1 , this calculation would imply that Rϵ1(A1 ∪ (a2i , b
2
i )) <

Rϵ1(A1), which would contradict the fact that A1 is an adversarial Bayes classifier. Similar
but more technical calculations performed in Appendix J show that if (a2i , b

2
i ) ⊂ AC

1 ∩Iϵ1 then
Rϵ1(A1 ∪ (a2i , b

2
i )) < Rϵ1(A1) and so A1 cannot be an adversarial Bayes classifier.

7. Related Works. Prior work analyzes several variations of our setup, such as pertur-
bations in open balls [6], alternative perturbation sets [4], attacks using general Wasserstein
p-metrics [21, 20], minimizing Rϵ over Lebesgue measurable sets [18], the multiclass setting
[20], and randomized classifiers [11, 20]. Due to the plethora of attacks present in the liter-
ature, this paper contains proofs of all intermediate results that appear in prior work (such
as Lemma 2.1 from [6]). Understanding the uniqueness of the adversarial Bayes classifier in
these contexts remains an open question. Establishing a notion of uniqueness for randomized
classifiers in the adversarial context is particularly interesting, as randomized classifiers are
essential in calculating the minimal possible error in adversarial multiclass classification [20]
but not binary classification [11].

Prior work [1, 4, 17] adopts a different method for identifying adversarial Bayes classifiers
for various distributions. To prove a set is an adversarial Bayes classifier, [4] first show a
strong duality result infARϵ(A) = supγ D̃(γ) for some dual risk D̃ on the set of couplings
between two measures. Subsequently, [1, 4, 17] exhibit a set A and a coupling γ for which the
adversarial risk of A matches the dual risk of γ, and thus A must minimize the adversarial
classification risk. This approach involves solving the first order necessary conditions (2.8),
and [1] relies on a result of [21] which states that these relations hold for sufficiently small
ϵ under reasonable assumptions. In contrast, this paper uses equivalence up to degeneracy
to show that it suffices to consider sets with enough regularity for the first order necessary
conditions to hold; and the solutions to these conditions typically reduce the possibilities for
the adversarial Bayes classifier to a finite number of sets.

Prior work on regularity [2, 6] prove the existence of adversarial Bayes classifiers with one
sided tangent balls. Theorem 3.10 states that each equivalence class under equivalence up
to degeneracy has a representative with this type of regularity. Furthermore, results of [1]
imply that under reasonable assumptions, one can choose adversarial Bayes classifiers A(ϵ) for
which comp(A(ϵ)) + comp(A(ϵ)C) is always decreasing in ϵ. Specifically, they show that for
increasing ϵ, the only possible discontinuous changes in A(ϵ) are merged components, deleted
components, or a endpoint of a component changing discontinuously in ϵ. This statement
does not imply the stronger result of Lemma 6.6, and Lemma 6.6 does not imply this result
of [1].

8. Conclusion. We defined a new notion of uniqueness for the adversarial Bayes classifier,
which we call uniqueness up to degeneracy. This concept generalizes uniqueness for the Bayes
classifier. The concept of uniqueness up to degeneracy produces a method for calculating
the adversarial Bayes classifier for a reasonable family of distributions in one dimension, and
assists in understanding their regularity properties. We hope that the theoretical insights in
this paper will assist in the development of algorithms for robust learning.
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[14] P. Massart and É. Nédélec, Risk bounds for statistical learning, The Annals of Statistics, 34 (2006).
[15] T. Nishiura, Absolute Measurable Spaces, Cambridge University Press, 2010.
[16] S. Peng, W. Xu, C. Cornelius, M. Hull, K. Li, R. Duggal, M. Phute, J. Martin, and D. H.

Chau, Robust principles: Architectural design principles for adversarially robust cnns, 2023, https:
//arxiv.org/abs/2308.16258.

[17] M. S. Pydi and V. Jog, Adversarial risk via optimal transport and optimal couplings, ICML, (2020).
[18] M. S. Pydi and V. Jog, The many faces of adversarial risk, Neural Information Processing Systems,

(2021).
[19] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,

Intriguing properties of neural networks, arXiv preprint arXiv:1312.6199, (2013).
[20] N. G. Trillos, M. Jacobs, and J. Kim, The multimarginal optimal transport formulation of adversarial

multiclass classification, arXiv, (2022).
[21] N. G. Trillos and R. Murray, Adversarial classification: Necessary conditions and geometric flows,

arxiv, (2022).
[22] C. Villani, Topics in Optimal Transportation, American Mathematical Society, 2nd ed., 2003.
[23] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan, Theoretically principled

trade-off between robustness and accuracy, 2019, https://arxiv.org/abs/1901.08573.

https://bruce2142.github.io/research/assets/pdfs/AVL_work_in_progress.pdf
https://bruce2142.github.io/research/assets/pdfs/AVL_work_in_progress.pdf
https://arxiv.org/abs/2112.01694
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2308.16258
https://arxiv.org/abs/2308.16258
https://arxiv.org/abs/1901.08573


UNIQUENESS FOR THE ADVERSARIAL BAYES CLASSIFIER IN BINARY CLASSIFICATION 23

Appendix A. Proof of Lemma 2.1.
First, the Sϵ operation satisfies a subadditivity property:

Lemma A.1. Let S1 and S2 be two subsets of Rd. Then

(A.1) Sϵ(1S1) + Sϵ(1S2) ≥ Sϵ(1S1∩S2) + Sϵ(1S1∪S2)

Proof. First, notice that

(A.2)
Sϵ(1S1)(x) + Sϵ(1S2)(x) =


0 if x ̸∈ Sϵ

1 and x ̸∈ Sϵ
2

1 if x ∈ Sϵ
1△Sϵ

2

2 if x ∈ Sϵ
1 ∩ Sϵ

2

= 1Sϵ
1∩Sϵ

2
(x) + 1Sϵ

1∪Sϵ
2
(x)

Next, one can always swap the order of two maximums but a min-max is always larger
than a max-min. Therefore:

(A.3)
Sϵ(1S1∩S2) + Sϵ(1S1∪S2) = Sϵ(min(1S1 ,1S2)) + Sϵ(max(1S1 ,1S2))

≤ min(Sϵ(1S1), Sϵ(1S2)) + max(Sϵ(1S1), Sϵ(1S2)) = 1Sϵ
1∩Sϵ

2
+ 1Sϵ

1∪Sϵ
2

Comparing (A.2) and (A.3) results in (A.1).

Therefore, the adversarial classification risk is sub-additive.

Corollary A.2. Let S1 and S2 be any two sets. Then

Rϵ(S1 ∩ S2) +Rϵ(S1 ∪ S2) ≤ Rϵ(S1) +Rϵ(S2)

This result then directly implies Lemma 2.1:

Proof of Lemma 2.1. Let A1 and A2 be two adversarial Bayes classifiers. Then Corol-
lary A.2 implies that

Rϵ
∗ ≥ Rϵ(A1 ∪A2) +Rϵ(A1 ∩A2)

and hence A1 ∩A2 and A1 ∪A2 must be adversarial Bayes classifiers as well.

Appendix B. Complimentary Slackness– Proof of Theorem 2.4.
The complimentary slackness relations of Theorem 2.4 are a consequence of the minimax

relation of Theorem 2.3 and properties of the W∞ metric.
Integrating the maximum of an indicator function over an ϵ-ball is intimately linked to

maximizing an integral over a W∞ ball of measures:

Lemma B.1. Let Q be a positive measure. Then for any Borel set A∫
Sϵ(1A)dQ ≥ sup

Q′∈B∞
ϵ (Q)

∫
gdQ′

Lemma 5.1 of [18] and Lemma 3 of [10] proved slightly different versions of this result, so
we include a proof here for completeness.
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Proof. Let Q′ be any measure with W∞(Q,Q′) ≤ ϵ. Let γ be any coupling between for
which

ess sup
(x,y)∼γ

∥x− y∥ = W∞(Q,Q′)

Such a coupling exists by Theorem 2.6 of [13]. Then Sϵ(1A)(x) ≥ 1A(x
′) γ-a.e. Thus∫

Sϵ(1A)(x)dQ(x) =

∫
Sϵ(1A)(x)dγ(x,x

′) ≥
∫

1Adγ(x,x
′) =

∫
1A(x

′)dQ′(x′)

Now taking a supremum over all Q′ ∈ B∞
ϵ (Q) concludes the proof.

Subsequently, one can proof Theorem 2.4 with this result.

Proof of Theorem 2.4.
Forward Direction:

Let A be a minimizer of Rϵ and assume that P∗
0 ∈ B∞

ϵ (P0), P∗
1 ∈ B∞

ϵ (P1) maximize R̄.
Then:

Rϵ(A) =

∫
Sϵ(1AC )dP1 +

∫
Sϵ(1A)dP0 ≥

∫
1ACdP∗

1 +

∫
1AdP∗

0(B.1)

=

∫
η∗1ACdP1 +

∫
(1− η∗)1AdP∗

0 ≥ C∗(η∗)dP∗ = R̄(P∗
0,P∗

1)(B.2)

The first inequality follows from Lemma B.1 while the second inequality follows from the
definition of C∗ in (2.3). By Theorem 2.3, the first expression of (B.1) and the last expression
of (B.2) are equal. Thus all the inequalities above must in fact be equalities. Thus the fact
that the inequality in (B.2) is an equality implies (2.12). Lemma B.1 and the fact that the
inequality in (B.1) must be an equality implies (2.11).

Backward Direction:
Let P∗

0,P∗
1 be measures satisfying W∞(P∗

0,P0) ≤ ϵ, W∞(P∗
1,P1) ≤ ϵ, and let A be a Borel

set. Assume that A, P∗
0, and P∗

1 satisfy (2.11) and (2.12). We will argue that A is must be a
minimizer of Rϵ and P∗

0,P∗
1 must maximize R̄.

First, notice that Theorem 2.3 implies that Rϵ(A′) ≥ R̄(P′
0,P′

1) for any Borel A′ and
P′
0 ∈ B∞

ϵ (P0),P′
1(P1). Thus if one can show

(B.3) Rϵ(A) = R̄(P∗
0,P∗

1),

then A must minimize Rϵ because for any other A′,

Rϵ(A′) ≥ R̄(P∗
0,P∗

1) = Rϵ(A).

Similarly, one could conclude that P∗
0,P∗

1 maximize R̄ because for any other P′
0 ∈ B∞

ϵ (P0) and
P′
1 ∈ B∞

ϵ (P1),
R̄(P′

0,P′
1) ≤ Rϵ(A) = R̄(P∗

0,P∗
1).

Hence it remains to show (B.3). Applying (2.11) followed by (2.12), one can conclude that

Rϵ(A) =

∫
Sϵ(1

C
A)dP1 +

∫
Sϵ(1A)dP0 =

∫
1ACdP∗

1 +

∫
1AdP∗

0 (2.11)

=

∫
C∗(η∗)dP∗ = R̄(P∗

0,P∗
1) (2.12)
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Appendix C. Proof of Proposition 5.1 and Lemma 5.2.
The proof of Proposition 5.1 relies on Lemma 5.2.

C.1. Proof of Lemma 5.2. The ϵ operation on sets interacts particularly nicely with
Lebesgue measure.

Lemma C.1. For any set A, ∂Aϵ has Lebesgue measure zero.

This result is standard in geometric measure theory, see for instance the proof of Lemma 4
in [2] for a proof. Next, the closure and ϵ operations commute:

Lemma C.2. Let A be any set in Rd. Then Aϵ = A
ϵ
.

Proof. We show the two inclusions Aϵ ⊂ A
ϵ
and Aϵ ⊃ A

ϵ
separately.

Showing Aϵ ⊂ A
ϵ
: First, because the direct sum of a closed set and a compact set must

be closed, A
ϵ
is a closed set that contains Aϵ. Therefore, because Aϵ is the smallest closed set

containing Aϵ, the set Aϵ must be contained in A
ϵ
.

Showing Aϵ ⊃ A
ϵ
: Let x ∈ A

ϵ
, we will show that x ∈ Aϵ. If x ∈ Aϵ, then x = a + h,

where a ∈ A and h ∈ Bϵ(0). Let ai be a sequence of points contained in A that converges to
a. Then ai + h ∈ Aϵ, and ai + h converges to a+ h. Therefore, a+ h ∈ Aϵ.

Proof of Lemma 5.2. We will show that if E is any set with intA ⊂ E ⊂ A, then E is an
adversarial Bayes classifier.

First, Lemmas C.1 and C.2 imply that

(C.1) P0(A
ϵ) = P0(Aϵ = P0(A

ϵ
)

Furthermore, P1((A
C)ϵ) ≥ P1((A

C
)ϵ) and thus Rϵ(A) ≥ Rϵ(A). Consequently, A must be an

adversarial Bayes classifier and

(C.2) P1((A
C)ϵ) = P1((A

C
)ϵ)

A similar line of reasoning shows that

(C.3) P1((AC)ϵ) = P1((AC)
ϵ
) = P1((intA

C)ϵ)

and thus

(C.4) P0(A
ϵ) = P0((intA)ϵ)

Equations (C.1)–(C.4) imply that if E is any measurable set with intA ⊂ E ⊂ A, then
P0(E

ϵ) = P0(A
ϵ) and P1((E

C)ϵ) = P1((A
C)ϵ). Therefore, E must be an adversarial Bayes

classifier.

C.2. Proof of Proposition 5.1. The following lemma show that Item 2) implies Item 1).

Lemma C.3. Let A1 and A2 be adversarial Bayes classifiers for which either Sϵ(1A1) =
Sϵ(1A2) P0-a.e. or Sϵ(1AC

1
) = Sϵ(1AC

2
)-P1-a.e. Then

(C.5) Sϵ(1A1) = Sϵ(1A2) = Sϵ(1A1∩A2) = Sϵ(1A1∪A2) P0-a.e.

and

(C.6) Sϵ(1AC
1
) = Sϵ(1AC

2
) = Sϵ(1(A1∩A2)C ) = Sϵ(1(A1∪A2)C ) P1-a.e.
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See Appendix C.2.1 for a proof. As a result:

Corollary C.4. Let A1 and A2 be two adversarial Bayes classifiers. Then Sϵ(1A1) = Sϵ(1A2)
P0-a.e. iff Sϵ(1AC

1
) = Sϵ(1AC

2
) P1-a.e.

Furthermore, the last equality in (C.5) and (C.6) implies that A1 and A2 are equivalent up
to degeneracy.

This result suffices to prove the equivalence between Item 2) and Item 3), even when P is
not absolutely continuous with respect to Lebesgue measure.

Lemma C.5. Let A1 and A2 be two adversarial Bayes classifiers. Then the following are
equivalent:

2) Either Sϵ(1A1) = Sϵ(1A2)-P0-a.e. or Sϵ(1AC
2
) = Sϵ(1AC

1
)-P1-a.e.

3) P∗(A2△A1) = 0

Proof of Lemma C.5. Assume thatA1 andA2 are both adversarial Bayes classifiers. Lemma 2.1
then implies that A1 ∪ A2, A1 ∩ A2 are both adversarial Bayes classifiers. Equation (2.11) of
Theorem 2.4 implies that∫

Sϵ(1A1∪A2)dP0 =

∫
1A1∪A2dP∗

0 =

∫
A1∩A2

1A1∩A2dP∗
0+P∗

0(A1△A2) =

∫
Sϵ(1A1∩A2)dP0+P∗

0(A1△A2)

Because Sϵ(1A1∩A2) ≤ Sϵ(1A1∪A2), P∗
0(A1△A2) = 0 is equivalent to Sϵ(1A1∩A2) = Sϵ(1A1∪A2)

P0-a.e. Next, Sϵ(1A1∩A2) = Sϵ(1A1∪A2) P0-a.e. is equivalent to Sϵ(1A1) = Sϵ(1A2) P0-a.e. by
Lemma C.3. Therefore, Corollary C.4 implies that P∗

0(A1△A2) = 0 is equivalent to Item 2).
The same argument implies that P∗

1(A1△A2) = 0 is equivalent to Item 2). Lastly,
P∗(A1△A2) = 0 is equivalent to P∗

0(A1△A2) = 0 and P∗
1(A1△A2) = 0.

Next, the equivalence of equivalence up to degeneracy with Item 3) is a consequence of
Lemma 5.2 and a result on the ϵ operation. See Appendices C.1 and C.2.2 proofs.

Lemma C.6. If A is any adversarial Bayes classifier, then P0(A
ϵ) = P0(A

ϵ
) = P0((intA)ϵ)

and P1((A
C)ϵ) = P1(((intA)C)ϵ) = P1((A

C
)ϵ)

Lemma C.7. Let U be an open set and let Q be the set of rational numbers. Then U ϵ =
(U ∩Qd)ϵ = (U ∩ (Qd)C)ϵ.

Proof of Proposition 5.1. Lemma C.5 states that Item 3) implies Item 2). It remains to
show Item 2) implies Item 1) and Item 1) implies Item 3).

Item 2) ⇒ Item 1): Assume that Item 2) holds; then Corollary C.4 implies that both
Sϵ(1A1) = Sϵ(1A2) P0-a.e. and Sϵ(1AC

1
) = Sϵ(1AC

2
) P1-a.e. Lemma C.3 implies than any set

A with A1 ∩ A2 ⊂ A ⊂ A1 ∪ A2 satisfies Sϵ(1A1) = Sϵ(1A) P0-a.e. and Sϵ(1AC
1
) = Sϵ(1AC )

P1-a.e. Therefore Rϵ(A) = Rϵ(A1) so A is also an adversarial Bayes classifier.
Item 1) ⇒ Item 3): Assume that for all A satisfying A1 ∩ A2 ⊂ A ⊂ A1 ∪ A2, the set

A is an adversarial Bayes classifier. Let P∗
0,P∗

1 be any maximizers of R̄ and let P∗ = P∗
0 + P∗

1.
Further let A3 = A1 ∩ A2, A4 = A1 ∪ A2, and D = A1△A2. As A3 ⊔ D ⊔ AC

4 = Rd, the
boundary ∂D is included in ∂A3 ∪ ∂A4.

We split D := A1△A2 into four sets, D1 = intD∩Qd, D2 = intD∩(Qd)C , D3 = D∩∂D∩
∂A3, and D4 = D∩∂D∩A4−D3. Notice that these four sets satisfy D = D1⊔D2⊔D3⊔D4.
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BecauseD is a degenerate set, the sets A3∪D1, A3∪D2, and A3∪intD are all adversarial Bayes
classifiers. However, Lemma C.7 implies that Dϵ

1 = Dϵ
2 = intDϵ and therefore Sϵ(1A3∪D1) =

Sϵ(1A3∪intD) = Sϵ(1A3∪D2). Because each of these sets is an adversarial Bayes classifier,
Equation (2.11) of Theorem 2.4 implies that P∗

0(A3∪D1) = P∗
0(A3∪ intD) = P∗

0(A3∪D2). As
D1 and D2 are disjoint sets whose union is intD, it follows that P∗

0(intD) = 0. Analogously,
comparing Sϵ(1(A4−D1)C ), Sϵ(1(A4−D2)C ), and Sϵ(1(A4−intD)C ) results in P∗

1(intD) = 0.
Next we argue that P∗(D3) = 0. Lemma C.6 implies that Sϵ(1A3∪D3) = Sϵ(1A3) P0-a.e.,

and (2.11) of Theorem 2.4 then implies that P∗
0(A3∪D3) = P∗

0(A3). Thus P∗
0(D3) = 0 because

A3 and D3 are disjoint. Similarly, Lemma C.6 implies that Sϵ(1(A3∪D3)C ) = Sϵ(1AC
3 −D3

) =

Sϵ(1AC
3
) P1-a.e., and (2.11) of Theorem 2.4 then implies that P∗

1(A
C
3 − D3) = P∗

1(A
C
3 ), and

thus P∗
1(D3) = 0.

Similarly, one can conclude that P∗(D4) = 0 by comparing A4, A4 −D4, and A4 ∪D4.

C.2.1. Proof of Lemma C.3.

Proof of Lemma C.3. We will assume that Sϵ(1A1) = Sϵ(1A2) P0-a.e., the argument for
Sϵ(1AC

1
) = Sϵ(1AC

2
) P1-a.e. is analogous. If Sϵ(1A1) = Sϵ(1A2) P0-a.e., then

Sϵ(1A1) = max(Sϵ(1A1), Sϵ(1A2)) = Sϵ(max(1A1 ,1A2)) = Sϵ(1A1∪A2) P0-a.e.

However, Sϵ(1AC
1
) ≥ Sϵ(1(A1∪A2)C ). If this inequality were strict on a set of positive P1-

measure, we would have Rϵ(A1 ∪ A2) < Rϵ(A1) which would contradict the fact that A1 is
an adversarial Bayes classifier. Thus Sϵ(1AC

1
) = Sϵ(1(A1∪A2)C ) P1-a.e. The same argument

applied to A2 then shows that Sϵ(1AC
1
) = Sϵ(1(A1∪A2)C ) = Sϵ(1AC

2
) P1-a.e.

Now as Sϵ(1AC
1
) = Sϵ(1AC

2
) P1-a.e., one can conclude that

Sϵ(1AC
1
) = Sϵ(1AC

2
) = max(Sϵ(1AC

1
), Sϵ(1AC

2
)) = Sϵ(1(A1∩A2)C ) P1-a.e.

An analogous argument to implies (C.5).

C.2.2. Proof of Lemma C.7. Before proving Lemma C.7, we reproduce another useful
lemma from [2].

Lemma C.8. Let an be a sequence that approaches a. Then Bϵ(a) ⊂
⋃∞

n=1Bϵ(an).

Proof. Let y be any point in Bϵ(a) and let δ = ∥y − a∥. Pick n large enough so that
∥a− an∥ < ϵ− δ. Then

∥y − an∥ ≤ ∥a− an∥+ ∥y − a∥ < ϵ− δ + δ = ϵ

and thus y ∈ Bϵ(an).

Proof of Lemma C.7. We will argue that U ϵ = (U ∩Qd)ϵ, the argument for U ∩ (Qd)C is
analogous.

First, U ∩Qd ⊂ U implies that (U ∩Qd)ϵ ⊂ U ϵ.
For the opposite containment, let u be a point in U . We will argue that Bϵ(u) ⊂ (U ∩Q)ϵ.

Because U is open, there is a ball Br(u) contained in U . Because Qd is dense in Rd, for every
y ∈ Br(u), there is a sequence yn ∈ Q converging to y. Thus Lemma C.8 implies that

Bϵ(u) ⊂ Br(u)
ϵ ⊂ (Br(u) ∩Qd)ϵ ⊂ (U ∩Qd)ϵ
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Taking a union over all u ∈ U results in U ϵ ⊂ (U ∩Qd)ϵ.

Appendix D. Proof of Theorem 3.4.

D.1. Proof of Lemma 5.3. Lemma 24 of [10] show that there exists a function η̂ and
maximizers P∗

0,P∗
1 of R̄ for which optimal attacks on η̂ are are given by P∗

0, P∗
1:

Proposition D.1. There exists a function η̂ : Rd → [0, 1] and measures P∗
0 ∈ B∞

ϵ (P0),
P∗
1 ∈ B∞

ϵ (P1) with the following properties:
1. Let P∗ = P∗

0 + P∗
1 and η∗ = dP∗

1/dP∗. Then

η̂(y) = η∗(y) P∗ − a.e.

2. Let γ∗i be a coupling between Pi and P∗
i supported on ∆ϵ as defined in (F.3). Then for

these P∗
0,P∗

1, η̂ satisfies

Iϵ(η̂)(x) = η̂(y) γ∗1-a.e. and Sϵ(η̂)(x) = η̂(y) γ∗0-a.e.

Recall that Theorem 2.6 of [13] proves that when W∞(Q,Q′) ≤ ϵ, there always exists a
coupling γ between Q and Q′ with ess sup(x,y)∼γ ≤ ϵ.

Next, we argue that Â1 = {η̂ > 1/2} and Â2 = {η̂ ≥ 1/2}.
Proof of Lemma 5.3. Let P∗

0, P∗
1, γ

∗
0 , and γ∗1 be the measures given by Proposition D.1

and set P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗. Let η̂ be the function described by Proposition D.1.

We will show that the classifier Â1 = {η̂ > 1/2} and Â2 = {η̂ ≥ 1/2} satisfy the required
properties by verifying the complimentary slackness conditions in Theorem 2.4.

Below, we verify these conditions for {η̂ > 1/2}, the argument for {η̂ ≥ 1/2} is analogous.
First, Item 1 of Proposition D.1 implies that 1{η̂>1/2} = 1η∗>1/2 P∗-a.e. and 1{η̂>1/2}C =
1η̂≤1/2} = 1η∗≥1/2 P∗-a.e.

Therefore,
η∗1{η̂>1/2}C + (1− η∗)1{η̂>1/2} = C∗(η∗) P∗-a.e.

Next, Item 2 of Proposition D.1 implies that η̂ assumes its maximum over closed ϵ-balls
P0-a.e. and hence Sϵ(1η̂>1/2) = 1Sϵ(η̂)>1/2 P0-a.e. Additionally, Item 2 of Proposition D.1
implies that 1Sϵ(η̂)(x)>1/2 = 1η̂(y)>1/2 γ∗0 -a.e. Therefore, one can conclude that

(D.1)

∫
Sϵ(1η̂>1/2)(x)dP0(x) =

∫
1η̂>1/2(y)dγ

∗
0(x,y) =

∫
1η̂>1/2dP∗

0

Similarly, using the fact that Iϵ(η̂)(x) = η̂(y) γ∗1 -a.e., one can show that
∫
Sϵ(1η̂≤1/2)dP1 =∫

1η̂≥1/2dP∗
1. This statement together with (D.1) verifies (2.11).

The classifiers Â1 and Â2 areminimal andmaximal classifiers in the sense that
∫
Sϵ(1Â1

)dP0 ≤∫
Sϵ(1A)dP0 ≤

∫
Sϵ(1Â2

)dP0 for any other adversarial Bayes classifier A.

Lemma D.2. Let A be any adversarial Bays classifier and let Â1, Â2 be the two adversarial
Bayes classifiers of Lemma 5.3. Then

(D.2)

∫
Sϵ(1Â1

)dP0 ≤
∫

Sϵ(1A)dP0 ≤
∫

Sϵ(1Â2
)dP0
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and

(D.3)

∫
Sϵ(1ÂC

2
)dP1 ≤

∫
Sϵ(1

C
A)dP1 ≤

∫
Sϵ(1ÂC

1
)dP1.

Proof. Let P∗
0, P∗

1, P∗, and η∗ be as described by Lemma 5.3. Then the complimen-
tary slackness condition (2.11) implies that

∫
Sϵ(1A)dP0 =

∫
1AdP∗

0 and (2.12) implies (5.1),
and hence

∫
1η∗>1/2dP∗

0 ≤
∫
1AdP∗

0 ≤
∫
1η∗≥1/2dP∗

0. Lemma 5.3 implies that
∫
1Â1

dP∗
0 ≤∫

1AdP∗
0 ≤

∫
1Â2

dP∗
0. The complimentary slackness condition (2.11) applied to Â1 and Â2

then implies (D.2).
The fact that

∫
Sϵ(1AC ) = Rϵ

∗ −
∫
Sϵ(1A)dP0 for any adversarial Bayes classifier A then

implies (D.3).

D.2. Proving Theorem 3.4.

Proof of Theorem 3.4. Item A)⇒Item B): Assume that the the adversarial Bayes clas-
sifier is unique up to degeneracy. Then Item 2) of Proposition 5.1 implies that P1(A

ϵ
1) = P1(A

ϵ
2)

for any two adversarial Bayes classifiers A1 and A2.
Item B) ⇒ Item C): Assume that P0(A

ϵ
1) = P0(A

ϵ
2) for any two adversarial Bayes

classifiers. Then Lemma 2.1 implies that P0((A1 ∪A2)
ϵ) = P0((A1 ∩A2)

ϵ). Then 1(A1∪A2)ϵ =
1(A1∩A2)ϵ P0-a.e. because (A1∩A2)

ϵ ⊂ (A1∪A2)
ϵ. As Aϵ

1 and Aϵ
2 are strictly between (A1∩A2)

ϵ

and (A1 ∪A2)
ϵ, one can conclude that

Sϵ(1A1) = 1Aϵ
1
= 1Aϵ

2
= Sϵ(1A2) P0-a.e.

Similarly, if P1((A
C
1 )

ϵ) = P1((A
C
2 )

ϵ) implies Sϵ(1A1) = Sϵ(1A2). Therefore, Item B) of The-
orem 3.4 implies Item 2) of Proposition 5.1. Consequently, Proposition 5.1 implies that
P∗(Â1△Â2) = P∗(η∗ = 1/2) = 0, where P∗

0, P∗
1 are the measures described by Lemma 5.3 and

Â1 and Â2 are the adversarial Bayes classifiers described by Lemma 5.3.
Item C) ⇒ Item A): Item 3) of Proposition 5.1 then implies that Item C) of Theorem 3.4

implies that the adversarial Bayes classifier is unique up to degeneracy.Assume that P∗(η∗ =
1/2) = 0 for some (P∗

0,P∗
1) that maximize R̄, where P∗ = P∗

0 + P∗
1 and η∗ = dP∗

1/dP∗. Then
(5.1) implies that 1η∗>1/2 = 1A P∗-a.e. for any adversarial Bayes classifier A. Thus if P∗(η∗ =
1/2) = 0 then 1A1 = 1A2 P∗

0 for any two adversarial Bayes classifiers A1, A2, or in other words,
P∗(A1△A2) = 0.

The same argument shows that Item B) and Item 3) are equivalent when P ̸≪ µ:

Proposition D.3. The following are equivalent:
A) For all adversarial Bayes classifiers A, either the value of P0(A

ϵ) is unique or the
value of P1((A

C)ϵ) is unique
B) There are maximizers P∗

0,P∗
1 of R̄ for which P∗(η∗ = 1/2) = 0, where P∗ = P∗

0 + P∗
1

and η∗ = dP∗
1/dP∗

Proof. First, to show that Item A) implies Item B), one can use the same argument as in
the proof of Theorem 3.4 with Item 2) of Proposition 5.1 replaced with Item 2) of Lemma C.5.

Next, to show that Item B) implies Item A), assume that P∗(η∗ = 1/2) = 0 where
P∗ = P∗

0 + P∗
1 and η∗ = dP∗

1/dP∗ for some P∗
0, P∗

1 that maximize the dual R̄. Then the
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same argument as Item C)⇒ Item A) of Theorem 3.4 with Item 3) of Lemma C.5 in place of
Item 3) of Proposition 5.1 shows that P∗(η∗ = 1/2) = 0 implies that P∗(A1△A2) = 0 for any
two adversarial Bayes classifiers A1 and A2. Applying this statement to the adversarial Bayes
classifiers Â1, Â2 of Lemma 5.3 implies that 1Â1

= 1Â2
P∗
0-a.e. and hence the complimentary

slackness condition (2.11) implies that
∫
Sϵ(1Â1

)dP0 =
∫
Sϵ(1Â2

)dP0. Lemma D.2 then implies

that
∫
Sϵ(1A)dP0 =

∫
Sϵ(1Â1

)dP0 =
∫
Sϵ(1Â2

)dP0 for any other adversarial Bayes classifier
A.

Appendix E. More about the ϵ, −ϵ, and Sϵ operations. This appendix provides a unified
exposition of several results relating to the ϵ and −ϵ relations—namely Equations (5.2) and
(5.3), Lemmas 5.5, 5.9, and 5.10. These results have all appeared elsewhere in the literature
—[2, 6].

The characterization of the ϵ and −ϵ operations provided by (5.2) and (5.3) is an essential
tool for understanding how ϵ and −ϵ interact.

Proof of Equation (5.2). To show (5.2), notice that x ∈ Aϵ iff x ∈ Bϵ(a), where a is some
element of A. Thus:

x ∈ Aϵ ⇔ x ∈ Bϵ(a) for some a ∈ A ⇔ a ∈ Bϵ(x) for some a ∈ A ⇔ Bϵ(x) intersects A

Equation (5.3) then follows directly from Equation (5.2):

Proof of Equation (5.3). By Equation (5.2),

x ∈ (AC)ϵ ⇔ Bϵ(x) intersects A
C

Now A−ϵ = ((AC)ϵ)C , and so taking compliments of the relation above implies

x ∈ A−ϵ ⇔ Bϵ(x) does not intersect A
C ⇔ Bϵ(x) ⊂ A

Next, Equation (5.2) and Equation (5.3) immediately imply Lemma 5.9:

Proof of Lemma 5.9. By Equation (5.2), Equation (5.3), (Aϵ)−ϵ is the set of points x for
which Bϵ(x) ⊂ Aϵ. For any point a ∈ A, Bϵ(a) ⊂ Aϵ and thus A ⊂ (Aϵ)−ϵ. Applying this
statement to the set AC and then taking compliments results in (A−ϵ)ϵ ⊂ A.

Lemma 5.9 then immediately implies Lemma 5.10:

Proof of Lemma 5.10. First, Lemma 5.9 implies that A ⊂ (Aϵ)−ϵ and thus Aϵ ⊂ ((Aϵ)−ϵ)ϵ.

At the same time, Lemma 5.9 implies that ((Aϵ)−ϵ)ϵ =
((

Aϵ
)−ϵ)ϵ

⊂ Aϵ. Therefore, ((Aϵ)−ϵ)ϵ =

Aϵ. Applying this result to AC and then taking compliments then results in ((A−ϵ)ϵ)−ϵ = A−ϵ.
Next, Lemma 5.9 implies that (A−ϵ)ϵ ⊂ A and hence ((A−ϵ)ϵ)ϵ ⊂ Aϵ. Applying this result

to AC and then taking compliments ((Aϵ)−ϵ)−ϵ ⊃ A−ϵ.

Lemma 5.5 is then an immediate consequence of Lemma 5.10.

Appendix F. Measurability.
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F.1. Defining the Universal σ-algebra. Let M+(Rd) be the set of finite positive measures
on the Borel σ-algebra B(Rd). For a Borel measure ν inM+(Rd), let Lν(Rd) be the completion
of B(Rd) under ν. Then the universal σ-algebra U (Rd) is defined as

U (Rd) =
⋂

ν∈B(Rd)

Lν(Rd)

In other words, U (Rd) is the σ-algebra of sets which are measurable with respect to the
completion of every finite positive Borel measure ν. See [3, Chapter 7] or [15] for more about
this construction.

Due to Theorem 5.6, throughout this paper, we adopt the convention
∫
Sϵ(1A)dν is the

integral of Sϵ(1A) with respect to the completion of ν.

F.2. Proof of Theorem 5.7. First, notice that because every Borel set is universally
measurable, infA∈B(Rd)R

ϵ(A) ≥ infA∈U (Rd)R
ϵ(A). The opposite inequality relies on a duality

statement similar to Theorem 2.3, but with the primal minimized over universally measurable
sets and the dual maximized over measures on U (Rd).

For a Borel measure Q, there is a canonical extension to the universal σ-algebra called the
universal completion.

Definition F.1. The universal completion Q̃ of a Borel Q is the completion of Q restricted
to the universal σ-algebra.

Notice that Q(E) = Q̃(E) for any Borel measure Q and Borel set E. As a consequence,

(F.1)

∫
gdQ =

∫
gdQ̃ for any Borel function g.

In addition to the W∞ ball of Borel measures B∞
ϵ (Q) around Q, one can consider the

W∞ ball of universal completions of measures around Q, which we will call B̃∞
ϵ (Q). The

following result shows that if Q′ ∈ B∞
ϵ (Q), then W∞(Q̃, Q̃′) ≤ ϵ, and thus B̃∞

ϵ (Q) contains
only measures that are within ϵ of Q̃ in the W∞ metric.

Lemma F.2. Let Q and Q′ be Borel measures with W∞(Q,Q′) ≤ ϵ and let Q̃, Q̃′ be their
universal completions. Then W∞(Q̃, Q̃′) ≤ ϵ.

Explicitly, for a Borel measure Q, let

B̃∞
ϵ (Q) = {Q̃′ : Q′ ∈ B∞

ϵ (Q)}.

Next, to compare the values of R̄ on B∞
ϵ (P0)× B∞

ϵ (P1) and B̃∞
ϵ (P0)× B̃∞

ϵ (P1), we show:

Corollary F.3. Let P0,P1 be two Borel measures and let P̃0, P̃1 be their universal comple-
tions. Then R̄(P0,P1) = R̄(P̃0, P̃1).

Thus Lemma F.2 and Corollary F.3 imply that

(F.2) sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1) = sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

R̄(P̃′
0, P̃′

1)

See Appendix F.3 for proofs of Lemma F.2 and Corollary F.3.
Then (F.1) and Lemma B.1 imply that
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Corollary F.4. Let Q be a finite positive measure on U (Rd). Then for any universally
measurable set A, ∫

Sϵ(1A)dQ ≥ sup
Q′∈B̃∞

ϵ (Q)

∫
1AdQ′

This result implies a weak duality relation between the primal Rϵ minimized over U (Rd)
and the dual R̄ maximized over B̃∞

ϵ (P0)× B̃∞
ϵ (P1):

Lemma F.5 (Weak Duality). Let P0,P1 be two Borel measures. Then

inf
A∈U (Rd)

Rϵ(A) ≥ sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

R̄(P̃′
0, P̃′

1)

Proof. Let A be any universally measurable set and let P̃′
0, P̃′

1 be any measures in B̃∞
ϵ (P0)

and B̃∞
ϵ (P1) respectively.

Then Corollary F.4 implies that

inf
A∈U (Rd)

Rϵ(A) ≥ inf
A∈U (Rd)

sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

∫
1ACdP̃′

1 +

∫
1AdP̃′

0

However, because inf-sup is always larger than a sup-inf, one can conclude that

inf
A∈U (Rd)

Rϵ(A) ≥ sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

inf
A∈U (Rd)

∫
1ACdP̃′

1 +

∫
1AdP̃′

0 = sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

R̄(P̃′
0, P̃′

1)

This observation suffices to prove Theorem 5.7:

Proof of Theorem 5.7. First, because every Borel set is universally measurable, infA∈B(Rd)R
ϵ(A) ≥

infA∈U (Rd)R
ϵ(A). Thus the strong duality result of Theorem 2.3 and (F.2) imply that

inf
A∈U (Rd)

Rϵ(A) ≤ inf
A∈B(Rd)

Rϵ(A) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1) = sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

R̄(P̃′
0, P̃′

1).

However, the weak duality statement in Lemma F.5 implies that the inequality above must
actually be an equality.

F.3. Proofs of Lemma F.2 and Corollary F.3. Notice that if γ is a coupling between two
Borel measures, ess sup(x,y)∼γ ∥x− y∥ ≤ ϵ iff γ(∆C

ϵ ) = 0, where ∆ϵ is the set defined by

(F.3) ∆ϵ = {(x,y) ∈ Rd × Rd : ∥x− y∥ ≤ ϵ}.

This notation is helpful in the proof of Lemma F.2.
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Proof of Lemma F.2. Let γ be the Borel coupling betweenQ andQ′ for which ess sup(x,y)∼γ ∥x−
y∥ ≤ ϵ, which exists by Theorem 2.6 of [13]. Let γ be the completion of γ restricted to
σ(U (Rd)× U (Rd)). We will show γ is the desired coupling between Q̃ and Q̃′. Let S be an
arbitrary universally measurable set. Then there are Borel sets E1, E2 for which E1 ⊂ S ⊂ E2

and Q̃(E1) = Q̃(S) = Q̃(E2). Then because γ and γ are equal on Borel sets,

Q̃(E1) = Q(E1) = γ(E1 × Rd) = γ(E1 × Rd)

and similarly,

Q̃(E2) = Q(E2) = γ(E2 × Rd) = γ(E2 × Rd)

Therefore,

Q̃(S) = γ(E1 × Rd) = γ(E2 × Rd) = γ(S × Rd).

Similarly, one can argue

Q̃′(S) = γ(Rd × S)

Therefore, γ is a coupling between Q̃ and Q̃′. Next, recall that ess sup(x,y)∼γ ∥x− y∥ ≤ ϵ

iff γ(∆C
ϵ ) = 0, where ∆ϵ defined by

Therefore, because ∆ϵ is closed (and thus Borel),

γ(∆C
ϵ ) = γ(∆C

ϵ ) = 0

Consequently, ess sup(x,y)∼γ ∥x− y∥ ≤ ϵ and thus W∞(Q̃, Q̃′) ≤ ϵ.

Next, we will show:

Lemma F.6. Let ν, λ be two Borel measures with ν ≪ λ, and let dν/dλ be the Raydon-
Nikodym derivative. Then dν̃/dλ̃ = dν/dλ λ̃-a.e.

This result together with (F.1) with immediately implies Corollary F.3.

Proof. First, if a function g is Borel measurable, (g−1 : (R,B(R)) → (R,B(Rd)), then
it is necessarily universally measurable (g−1 : (R,B(R)) → (Rd,U (Rd))). Thus the Radon-
Nikodym derivative dν/dλ is both Borel measurable and universally measurable.

Next, if S ∈ U (Rd) then there is a Borel set E and λ-null sets N1, N2 for which S =
E ∪ N1 − N2. Because ν is absolutely continuous with respect to λ, the sets N1 and N2 are
null under ν as well. Therefore, by the defintion of the Radon-Nikodym derivative dν/dλ and
the fact that

∫
gdλ =

∫
gdλ̃ for all Borel functions g,

ν̃(S) = ν(E) =

∫
E

dν

dλ
dλ =

∫
E

dν

dλ
dλ̃ =

∫
S

dν

dλ
dλ̃

Because the Radon-Nikodym derivative is unique λ̃-a.e., it follows that dν̃/dλ̃ = dν/dλ λ̃-a.e.

Appendix G. Deferred Proofs From subsection 5.3.
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G.1. Proof of Lemma 5.8.

Proof of Lemma 5.8. Let {Di}∞i=1 be a countable sequence of degenerate sets for an ad-
versarial Bayes classifier A. Then by Proposition 5.1, one can conclude that Sϵ(1A) =
Sϵ(1A∪Di) = 1Aϵ∪Dϵ

i
P0-a.e. and Sϵ(1AC ) = Sϵ(1AC∪Di

) = 1(AC)ϵ∪Dϵ
i
P1-a.e. for every i.

Countable additivity then implies that Sϵ(1A) = 1Aϵ∪
⋃∞

i=1 D
ϵ
i
= Sϵ(1A∪

⋃∞
i=1 Di

) P0-a.e. and
Sϵ(1AC ) = 1(AC)ϵ∪

⋃∞
i=1 D

ϵ
i
= Sϵ(1AC∪

⋃∞
i=1 Di

). Therefore, Proposition 5.1 implies that A,

A ∪
⋃∞

i=1Di, and A−
⋃∞

i=1Di are all equivalent up to degeneracy. Consequently,
⋃∞

i=1Di is
a degenerate set.

G.2. Proof of Proposition 5.12.

Lemma G.1. Let A be an adversarial Bayes classifier. If C is a connected component of A
with C−ϵ = ∅, then

(G.1) Cϵ = {y ∈ AC : Bϵ(y) intersects C}ϵ

If C is a component of AC with C−ϵ = ∅, then

(G.2) Cϵ = {y ∈ A : Bϵ(y) intersects C}ϵ

Proof. We will prove (G.1), the argument for (G.2) is analogous. Assume that C is a
component of A, (5.2) implies the containment ⊃ of (G.1).

Next, we prove the containment ⊂ in (G.1). Specifically, we will show that for every
x ∈ Cϵ, there is a y ∈ AC for which x ∈ Bϵ(y) and Bϵ(y) intersects C.

Assume first that x ∈ C. Because C−ϵ = ∅, Equation (5.3) implies that Bϵ(x) is not
entirely contained in C. Thus the set C ∪Bϵ(x) is connected and strictly contains C. Recall
that a connected component of a set A is a maximal connected subset. If Bϵ(x) were entirely
contained in A, C ∪ Bϵ(x) would be a connected subset of A that strictly contains C, and
then C would not be a maximal connected subset of A. This statement contradicts the fact
that C is a connected component of A. Therefore, Bϵ(x) contains a point y in AC , and thus
x ∈ Bϵ(y).

Next assume that x ∈ Cϵ but x ̸∈ C. Then Equation (5.2) states that the ball Bϵ(x)
intersects C at some point z. Consider the line defined by ℓ := {tx + (1 − t)z : 0 ≤ t ≤ 1}.
Again ℓ is a connected set that intersects C, so ℓ ∪ C is connected as well. However, ℓ also
contains a point not in C and thus if ℓ were entirely contained in A, then C ∪ ℓ would be a
connected subset of A that strictly contains C. As C is a maximal connected subset of A, the
set ℓ is not entirely contained in A. Let y be any point in AC ∩ ℓ, then x ∈ Bϵ(y).

Proof of Proposition 5.12. First assume that C is a connected component of A with C−ϵ =
∅. We will argue that C ⊂ (Aϵ)−ϵ − (A−ϵ)ϵ, and then Corollary 5.11 will imply that C is a
degenerate set for A.

If C is a component of A, then Cϵ ⊂ Aϵ and thus C ⊂ (Cϵ)−ϵ ⊂ (Aϵ)−ϵ. Next, (G.1)
of Lemma G.1 implies that Cϵ ⊂ (AC)ϵ and thus C ⊂ (Cϵ)−ϵ ⊂ ((AC)ϵ)−ϵ = ((A−ϵ)ϵ)C .
Therefore, C is disjoint from (A−ϵ)ϵ. Consequently, C is contained in (Aϵ)−ϵ − (A−ϵ)ϵ, which
is degenerate by Lemma 5.10.
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The argument for a connected component of AC is analogous, with (G.2) in place of (G.1)
As each connected component of A or AC is contained in the degenerate set (Aϵ)−ϵ−(A−ϵ)ϵ,

it follows that the set in (5.4) is contained in the degenerate set (Aϵ)−ϵ − (A−ϵ)ϵ.

G.3. Proof of Lemma 5.13.

Proof of Lemma 5.13. We will show that P0(D
−ϵ) = 0, the argument for P1 is analogous.

As both A − D and A ∪ D are adversarial Bayes classifiers, Proposition 5.1 implies that
P0((A−D)ϵ ∪Dϵ) = P0((A−D)ϵ) and thus P0(D

ϵ − (A−D)ϵ) = 0. However, (5.2) and (5.3)
imply that

Dϵ −Aϵ = {x : Bϵ(x) intersects D but not A−D}
⊃ {x : Bϵ(x) ⊂ D} = D−ϵ

Thus P0(D
−ϵ) = 0.

Appendix H. Deferred proofs from subsection 6.1.
Lemma 5.2 was proved in Appendix C.1.

H.1. Proof of Theorem 3.5.

Proof of Theorem 3.5. Let Ã1 ⊂ Ã2 be the adversarial Bayes classifiers defined in Lemma 6.1
with

Ã1 =
M⋃

i=m

(ãi, b̃i), ÃC
2 =

N⋃
j=n

(ẽj , f̃j).

for which D = Ã2 − Ã1 is a degenerate set. Then one can write

(H.1) R = D ⊔
M⋃

i=m

(ãi, b̃i) ⊔
N⋃
i=n

(ẽi, f̃i)

For each i, define

âi = inf{x : (x, b̃i) does not intersect Ã
C
2 }

b̂i = sup{x : (ãi, x) does not intersect Ã
C
2 }

and let

Â =
M⋃

i=m

(âi, b̂i)

Notice that (âi, b̂i) ⊃ (ãi, b̃i) so that b̂i − âi > 2ϵ. Similarly, by the definition of the âi and b̂i,
every interval (b̂i, âi+1) with i, i+1 ∈ [m,M ] must include some (ẽj , f̃j) and thus b̂i−âi+1 > 2ϵ.
As Ã△A ⊂ D, the set Ã is still an adversarial Bayes classifier.

Next, we will show that any two intervals (âk, b̂k), (âp, b̂p) are either disjoint or equal.

Assume that (âk, b̂k) and (âp, b̂p) intersect at a point x. By the definition of b̂k, (x, b̂k) does

not intersect ÃC
2 and thus b̂p ≥ b̂k. Reversing the roles of b̂p and b̂k, one can then conclude
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that b̂p = b̂k. One can show that âp = âk via a similar argument. Thus we can choose (ai, bi)
be unique disjoint intervals for which

K⊔
i=k

(ai, bi) =
M⋃

i=m

(âi, b̂i)

Appendix I. Deferred Proofs from subsection 6.2.

I.1. Proof of Lemma 6.4. First, we show Lemma 6.4 for points near the boundary of
suppP.

Lemma I.1. Assume P ≪ µ and let A =
⋃M

i=m(ai, bi) be a regular adversarial Bayes clas-
sifier for radius ϵ. Let y represent any of the ais or bis.

• Assume that suppP = [ℓ,∞) or suppP = [ℓ, r].
If y ∈ (ℓ − ϵ, ℓ + ϵ] then [ℓ − ϵ, y] is a degenerate set. If furthermore suppP is an
interval, then for some δ > 0, either η ≡ 0 or η ≡ 1 µ-a.e. on [ℓ, ℓ+ δ].

• Assume that suppP = (−∞, r] or suppP = [ℓ, r].
If y ∈ (r − ϵ, r + ϵ] then [y, r − ϵ] is a degenerate set. If furthermore suppP is an
interval, then for some δ > 0, either η ≡ 0 or η ≡ 1 µ-a.e. on [r − δ, r].

Proof. We will prove the first bullet; the second bullet follows from the first by considering
distributions with densities p̃0(x) = p0(−x) and p̃1(x) = p1(−x).

Assume that some ai is in [ℓ− ϵ, ℓ+ ϵ], the argument for bi is analogous. Then because A
is adversarial Bayes classifier:

(I.1) 0 ≥ Rϵ(A)−Rϵ(A ∪ [ℓ− ϵ, ai]) =

∫ ai+ϵ

ℓ
pdx−

∫ ai+ϵ

ℓ
p0dx =

∫ ai+ϵ

ℓ
p1(x)dx.

By assumption ai > ℓ − ϵ and thus δ = ai + ϵ − ℓ > 0. Hence (I.1) implies that η ≡ 0 µ-a.e.
on [ℓ, ℓ+ δ].

Next we argue that the set [ℓ−ϵ, ai] is a degenerate set. Let D be an arbitrary measurable
subset of [ℓ− ϵ, ai]. Then

Rϵ(A ∪D)−Rϵ(A ∪ [ℓ− ϵ, ai]) ≤
∫ ai+ϵ

ℓ
pdx−

∫ ai+ϵ

ℓ
p0dx =

∫ ai+ϵ

0
p1(x)dx

and this quantity must be zero by (I.1).

Proof of Lemma 6.4. Assume that the endpoints of I are d1, d2, so that I = [d1, d2]. Define
an interval J via

J =
⋃

I′⊃I:
I degenerate interval

I ′

Because each interval I ′ includes I, the interval J can be expressed as a countable union of
intervals of length at least |I| and thus is a degenerate set as well by Lemma 5.8. The interval
J must be closed because the boundary of every adversarial Bayes classifier is a degenerate
set when ϵ ≪ µ. If J ∩(suppPϵ− int suppP−ϵ) is nonempty, Lemma I.1 implies that η ∈ {0, 1}
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on a set of positive measure under P. It remains to consider the case J ⊂ int suppP−ϵ.
Corollary 6.3 implies that J has finite length and so one can express J as J = [d3, d4]. Now if
any point {x} in [d3 − ϵ, d3) were a degenerate set, then Lemma 5.8 and Lemma 5.14 would
imply that ((J ∪{x})ϵ)−ϵ = [x, d4] would be a degenerate interval strictly containing J , which
would contradict the definition of J . Thus [d3 − ϵ, d3) cannot contain any degenerate sets. If
this interval contained both points in A and AC , this [d3 − ϵ, d3) would also be degenerate by
Proposition 5.12. Thus [d3−ϵ, d3) must be contained entirely in A or AC . Similarly, (d4, d4+ϵ]
must be contained entirely in A or AC .

We will analyze the two cases (d3−ϵ, d3], [d4, d4+ϵ) ⊂ A and (d3−ϵ, d3] ⊂ A, [d4, d4+ϵ) ⊂
AC . The cases (d3−ϵ, d3], [d4, d4+ϵ) ⊂ AC and (d3−ϵ, d3] ⊂ AC , [d4, d4+ϵ) ⊂ A are analogous.

Assume first that (d3 − ϵ, d3], [d4, d4 + ϵ) ⊂ A. Then because J is degenerate and J ϵ ⊂
suppP Corollary 6.3, implies that |J | ≤ 2ϵ. Hence one can conclude

0 = Rϵ(A−J)−Rϵ(A∪J) =
∫ d4+ϵ

d3−ϵ
p(x)dx−

∫ d4+ϵ

d3−ϵ
p0(x)dx =

∫ d4+ϵ

d3−ϵ
p1(x)dx ≥

∫ d2+ϵ

d1−ϵ
p1(x)dx

Thus on [d1 − ϵ, d2 + ϵ], one can conclude that p1(x) = 0 µ-a.e. As [d1, d2] ⊂ suppPϵ and
d2 > d1, one can conclude that [d1− ϵ, d2+ ϵ] intersects suppP on an open set. Thus η(x) = 0
µ-a.e. on a set of positive measure.

Next assume that (d3 − ϵ, d3] ⊂ A, [d4, d4 + ϵ) ⊂ AC . Again, Corollary 6.3 implies that
|I| ≤ 2ϵ. Then

0 = Rϵ(A ∪ (J ∩Q))−Rϵ(A ∪ J) ≥
∫ d4+ϵ

d3−ϵ
p(x)dx−

(∫ d4−ϵ

d3−ϵ
p0(x)dx+

∫ d4+ϵ

d3−ϵ
p(x)dx

)
≥
∫ d2−ϵ

d1−ϵ
p1(x)dx

Thus p1(x) = 0 on [d1 − ϵ, d2 − ϵ]. Similarly, by considering Rϵ(A∪ (J ∩Q))−Rϵ(A− J), one
can argue that p0(x) = 0 on [d1 + ϵ, d2 + ϵ].

Now if [d1, d2] ⊂ suppPϵ, then at least one of [d1 − ϵ, d2 − ϵ], [d1 + ϵ, d2 + ϵ] intersects
suppP on an open interval. Thus either η(x) = or η(x) = 0 on a set of positive measure.

I.2. Proof of the fourth bullet of Theorem 3.8. The following lemma implies (suppPϵ)C

is a degenerate set.

Lemma I.2. If A and Bϵ are disjoint, then Aϵ and B are disjoint.

Proof. We will show the contrapositive of this statement: if Aϵ and B intersect, then A
and Bϵ intersect.

If Aϵ an B intersect, then there is a a ∈ A, b ∈ B and x ∈ Bϵ(0) for which a+h = b and
thus a = b− h ∈ Bϵ. Thus A and Bϵ intersect.

Next, we argue that the set (suppPϵ)C ∪ ∂A is indeed degenerate for any regular adversarial
Bayes classifier A. The proof of this result relies on Lemma C.1 of Appendix C.1.

Lemma I.3. Assume that P ≪ µ and let A be a regular adversarial Bayes classifier. Then
the set (suppPϵ)C ∪ ∂A is degenerate for A.

Proof. First, suppPϵ and (suppPϵ)C are disjoint, so Lemma I.2 implies that suppP and
((suppPϵ)C)ϵ) are disjoint. Thus P((suppPϵ)C)ϵ) = 0, and so (suppPϵ)C is a degenerate set.
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Next, Lemma C.1 implies that ∂ suppPϵ)C)ϵ has Lebesgue measure zero. Lemma 5.2 implies
that ∂A is a degenerate set. Lastly, Lemma 5.8 implies that the union of these three sets is a
degenerate set.

Next, using the fact that (suppPϵ)C is degenerate, one can prove the fourth bullet of
Theorem 3.8 for regular adversarial Bayes classifiers.

Lemma I.4. Assume that P ≪ µ and suppP is an interval. Then if D is a degenerate set
for a regular adversarial Bayes classifier A, then D ⊂ (suppPϵ)C ∪ ∂A.

Proof. Let D be a degenerate set disjoint from (suppPϵ)C . We will show that D ⊂ ∂A.
First, we use a proof by contradiction to argue that the points in D ∪ ∂A are strictly greater
than 2ϵ apart. If ∂A and D are both degenerate, Lemma 5.8 implies that D∪∂A is degenerate
as well. For contradiction, assume that x ≤ y are two points in D∪∂A With y−x ≤ 2ϵ. Then
Lemma 5.14 implies that [x, y] ⊂ ((D ∪ ∂A)ϵ)−ϵ is a degenerate set as well. This statement
contradicts Lemma 6.4. Therefore, D ∪ ∂A is comprised of points that are at least 2ϵ apart.

Next, we will show that a degenerate set cannot include any points in int suppPϵ which
are more than 2ϵ from ∂A. Let z be any point in int suppPϵ that is strictly more than 2ϵ from
∂A. Assume first that z ∈ A. Then

Rϵ(A− {z})−Rϵ(A) =

∫ z+ϵ

z−ϵ
η(x)dP

However, if z ∈ int suppPϵ then (z − ϵ, z + ϵ) ̸⊂ suppPC and thus has positive measure under
P. As η > 0 on suppP, one can conclude that Rϵ(A−{z})−Rϵ(A) > 0. Similarly, if z ∈ AC ,
then one can show that Rϵ(A ∪ {z}) − Rϵ(A) > 0. Therefore z cannot be in any degenerate
set.

In summary: D ∪ ∂A is comprised of points that are at least 2ϵ apart, but no more than
2ϵ from ∂A. Therefore, one can conclude that D ⊂ ∂A.

Finally, one can extend Lemma I.4 to all adversarial Bayes classifiers by comparing the bound-
ary of a given adversarial Bayes classifier A to the boundary of an equivalent regular adversarial
Bayes classifier Ar.

Proof of the fourth bullet of Theorem 3.8. Any adversarial Bayes classifier A is equivalent
up to degeneracy to a regular adversarial Bayes classifier Ar. Lemma I.4 implies that if D a
degenerate set for A, then D ⊂ (suppPϵ)C ∪ ∂Ar. Let Ã be any adversarial Bayes classifier
equivalent up to degeneracy to A (and Ar).

We will show that ∂Ar ∩ int suppPϵ = ∂Ã ∩ int suppPϵ, and this statement together with
Lemma I.3 will imply the desired result.

As ∂ intAr ∩ int suppPϵ = ∂Ar ∩ int suppPϵ and

intAr ∩ int suppPϵ ⊂ Ã ∩ int suppPϵ ⊂ Ar ∩ int suppPϵ,

it follows that ∂Ã ∩ int suppPϵ = ∂Ar ∩ int suppPϵ.

Appendix J. Deferred Proofs from subsection 6.3. In this appendix, we adopt the same
notational convention as subsection 6.3 regarding the ais and bis: Namely, when A =

⋃M
i=m
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is a regular adversarial Bayes classifier, aM+1 is defined to be +∞ if M is finite and bm−1 is
defined to be −∞ if m is finite.

The following observation will assist in proving the first bullet of Lemma 6.6.

Lemma J.1. Let ϵ2 > ϵ1. If R minimizes Rϵ2 but ∅ minimizes Rϵ1, then both R and ∅
minimize both Rϵ1 and Rϵ2.

Similarly, if ∅ minimizes Rϵ2 but R minimizes Rϵ1, then both R and ∅ minimize both Rϵ1

and Rϵ2.

Proof. First, assume that R minimizes Rϵ2 and ∅ minimizes Rϵ1 . The values of

Rϵ(A) =

∫
R
dP0 Rϵ(∅) =

∫
R
dP1

are independent of the value of ϵ. Next, notice that Rϵ2(A) ≥ Rϵ1(A) for an set A. Therefore,

Rϵ2
∗ ≥ Rϵ1

∗ = Rϵ1(∅) = Rϵ2(∅)

and thus ∅ also minimizes Rϵ2 . As a result, the sets R and ∅ achieve the same Rϵ2 risk, and
so

Rϵ1(R) = Rϵ2(∅) = Rϵ2(R) = Rϵ1(∅).
Consequently, R is also a minimizer of Rϵ1 .

Next, recall that Lemma I.1 implies that if the an endpoint of an adversarial Bayes classifier
are too close to the boundary of suppP, then that endpoint must be in the boundary of a
degenerate interval. As a result:

Corollary J.2. Assume P ≪ µ is a measure for which suppP is an interval I, and P(η =
0 or 1) = 0. Then if A is a regular adversarial Bayes classifier at radius ϵ, then A has no
finite endpoints in Iϵ − int I−ϵ.

[ todo: ai+1, bi conventions in the next lemma and the proof of lemma 5.6]
Next, proving Lemma 6.6 is simpler when (a2j , b

2
j ) ⊂ (b1i , a

1
i+1) or (b

2
j , a

2
j+1) ⊂ (a1i , b

1
i ). The

following lemma will allow us to always reduce to this scenario.

Proof of Lemma 6.6. We will show that (b1i , a
1
i+1)∩ Iϵ1 does not include (a2j , b

2
j )∩ Iϵ1 , the

argument for (a1i , b
1
i ) ∩ Iϵ1 and (a2j , b

2
j+1) ∩ Iϵ1 is analogous. Fix an interval (a2j , b

2
j ) and for

contradiction, assume that (a2j , b
2
j ) ∩ Iϵ1 ̸= ∅ and (a2j , b

2
j ) ∩ Iϵ1 ⊂ (b1i , a

1
i+1) ∩ Iϵ1 .

First, notice that the assumption η ̸= 0, 1 implies that none of the a2j s, b
2
j s are in Iϵ2 −I−ϵ2

due to Corollary J.2. Thus if the intersection (a2j , b
2
j ) ∩ Iϵ1 is non-empty, then either Iϵ2 ⊂

(a2j , b
2
j ) or at least one endpoint of (a2j , b

2
j ) is in I−ϵ2 .

If in fact (a2j , b
2
j ) ⊃ Iϵ2 , then (b1i+1, ai) must include Iϵ1 . Thus Rϵ1(A1) = Rϵ1(∅) while

Rϵ2(A2) = Rϵ2(R). Lemma J.1 then implies that R, ∅ are both adversarial Bayes classifiers
for both perturbation sizes ϵ1 and ϵ2, which implies the first bullet of Lemma 6.6.

Thus, to show the second bullet, one can assume that (a2j , b
2
j ) ̸⊃ Iϵ2 . As b2j − a2j > 2ϵ2

and the interval (a2j , b
2
j ) is included in the adversarial Bayes classifier A2, it follows that

Rϵ(A2) ≤ Rϵ(A2 − (a2j , b
2
j )) which implies∫ a2j+ϵ2

a2j−ϵ2

pdx+

∫ b2j−ϵ2

a2j+ϵ2

p0dx+

∫ b2j+ϵ2

b2j−ϵ2

pdx ≤
∫ b2j+ϵ2

a2j−ϵ2

p1dx
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Which in turn implies

(J.1)

∫ b2j+ϵ2

a2j−ϵ2

p0dx ≤
∫ b2j−ϵ2

a2j+ϵ2

p1

Next, b2j − a2j > 2ϵ2 because A2 is regular and thus (b2j − (ϵ2− ϵ1))− (a2j +(ϵ2− ϵ1)) > 2ϵ1.
Notice that

(a2j + ϵ2 − ϵ1, b
2
j − (ϵ2 − ϵ1)) ∩ Iϵ1 ⊂ (a2j , b

2
j ) ∩ Iϵ1 ⊂ (b1i , a

1
i+1) ∩ Iϵ1

is then a connected component of (A1 ∪ (a2j + (ϵ2 − ϵ1), b
2
j − (ϵ2 − ϵ1))) ∩ Iϵ1 . Therefore,

Rϵ1(A1)−Rϵ1(A1∪(a2j+ϵ2−ϵ1, b
2
j−(ϵ2−ϵ1))) =

∫ di,j

ci,j

p1dx−

(∫ a2j+ϵ2

ci,j

pdx+

∫ b2j−ϵ2

a2j+ϵ2

p0dx+

∫ di,j

b2j−ϵ2

pdx

)

where ci,j = max(b1i +ϵ1, a
2
j +ϵ2−2ϵ1) and di,j = min(a1i+1+ϵ1, b

2
j −ϵ2+2ϵ1). We will now

argue that this quantity is positive, which will contradict the fact that A1 is an adversarial
Bayes classifier.

Adding ∫ a2j+ϵ2

ci,j

p1dx+

∫ di,j

b2j−ϵ2

p1dx

to both sides of (J.1) implies that∫ di,j

ci,j

p1dx ≥
∫ a2j+ϵ2

ci,j

pdx+

∫ di,j

b2j−ϵ2

pdx+

∫ b2j−ϵ2

a2j+ϵ2

p0dx+

∫ ci,j

a2j−ϵ2

p0dx+

∫ b2j+ϵ2

di,j

p0dx

>

∫ a2j+ϵ2

ci,j

pdx+

∫ di,j

b2j−ϵ2

pdx+

∫ b2j−ϵ2

a2j+ϵ2

p0dx

The last inequality follows because ci,j−(a2j−ϵ2) ≥ 2(ϵ2−ϵ1) > 0, b2j+ϵ2−di,j ≥ 2(ϵ2−ϵ1) > 0,

z ∈ int I−ϵ2 implies that z + ϵ, z − ϵ int I, and (a2j , b
2
j ̸⊃ Iϵ2 together with Corollary J.2

imply that int suppPϵ2 must include at least one of a2j , b
2
j . This inequality would imply that

Rϵ1(A1) − Rϵ1(A ∪ (a2j + ϵ2 − ϵ1, b
2
j − (ϵ2 − ϵ1)) > 0, which contradict the fact that A is an

adversarial Bayes classifier.

Theorem 3.9 then directly follows from Lemma 6.6.

Proof of Theorem 3.9. The first bullet of Lemma 6.6 together with the fourth bullet of
Theorem 3.8 imply that if both ∅, R are adversarial Bayes classifiers for perturbation size ϵi,
then either A ∩ Iϵi = R ∩ Iϵi and AC ∩ Iϵi = ∅ ∩ Iϵi , or A ∩ Iϵi = ∅ ∩ Iϵi and Aϵ ∩ Iϵi =
R ∩ Iϵi . In either case, one can conclude that comp(A ∩ Iϵ1) + comp(AC ∩ Iϵ1) = 1 and
comp(A ∩ Iϵ2) + comp(AC ∩ Iϵ2) = 1.

Next, assume that for perturbation size ϵ1, the sets R, ∅ are not both adversarial Bayes
classifiers. Corollary J.2 implies that there are no a2j , b

2
j ∈ Iϵ2 − I−ϵ2 . As I−ϵ2 ⊂ Iϵ2 ⊂ Iϵ2 are

all intervals which are connected sets, one can conclude that comp(A2∩Iϵ2) = comp(A2∩Iϵ1)
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and comp(AC
2 ∩ Iϵ2 = comp(AC

2 ∩ Iϵ1 . Therefore, it remains to show that comp(A1 ∩ Iϵ1) ≥
comp(A2∩Iϵ1) and comp(AC

1 ∩Iϵ1) ≥ comp(AC
2 ∩Iϵ1). We will show the statement for A1∩Iϵ1

and A2 ∩ Iϵ1 . The argument for AC
1 ∩ Iϵ1 and AC

2 ∩ Iϵ1 is analogous.
Let

A1 =

M⋃
i=m

(a1i , b
1
i ), A2 =

N⋃
j=n

(a2j , b
2
j ).

Because Iϵ1 is an interval, the intersections (ack, b
c
k) ∩ Iϵ1 , (bck, a

c
k+1) ∩ Iϵ1 are intervals

for c = 1, k ∈ [m,M ] and c = 2, k ∈ [n,N ]. If the interval (a1i , b
1
i ) ∩ Iϵ1 intersects both

the intervals (a2j , b
2
j ) ∩ Iϵ1 and (a2j+1, b

2
j+1) ∩ Iϵ1 for some j, then (a1i , b

1
i ) ∩ Iϵ1 must contain

some (b2j , a
2
j+1) ∩ Iϵ1 for some j, which contradicts Lemma 6.6. Thus there is at most one

interval (a2j , b
2
j ) ∩ Iϵ1 for each interval (a1i , b

1
i ) ∩ Iϵ1 , which implies that comp(A1 ∩ Iϵ1) ≥

comp(A2 ∩ Iϵ1) = comp(A1 ∩ Iϵ2).

Appendix K. Computational Details of Examples in section 4. The following lemma is
helpful for verifying the second order necessary conditions for gaussian mixtures.

Lemma K.1. Let g(x) = t√
2πσ

e−
(x−µ)2

2σ2 . Then g′(x) = −x−µ
σ2 g(x).

Proof. The chain rule implies that

g′(x) = −x− µ

σ2
· t√

2πσ
e−

(x−µ)2

2σ2 = −x− µ

σ2
g(x)

K.1. Further details from Example 4.1. It remains to verify two of the claims made
in Example 4.1— namely, 1) that b(ϵ) does not satisfy the second order necessary condition
(3.1b), and 2) Comparing the adversarial risks of R, ∅, (a(ϵ),+∞) to prove that (a(ϵ),+∞)
is an adversarial Bayes classifier iff ϵ ≤ µ1−µ0

2 and R, ∅ are adversarial Bayes classifiers iff
ϵ ≥ µ1−µ0

2 .

1) Showing b(ϵ) doesn’t satisfy the second order necessary condition (3.1b). Due to
Lemma K.1 the equation (3.1b) reduces to

p′0(b(ϵ) + ϵ)− p′1(b(ϵ)− ϵ) = −b(ϵ) + ϵ− µ0

σ2
p0(b(ϵ)− ϵ) +

b(ϵ)− ϵ− µ1

σ2
p1(b(ϵ) + ϵ)

Furthermore, the first order necessary condition p0(b(ϵ)− ϵ)− p1(b(ϵ) + ϵ) = 0 implies that

p′0(b(ϵ)+ϵ)−p′1(b(ϵ)−ϵ) =
p1(b+ ϵ)

σ2
(−(b(ϵ) + ϵ− µ0) + (b(ϵ)− ϵ− µ1)) =

p1(b+ ϵ)

σ2
(µ0−µ1−2ϵ)

This quantity is negative due to the assumption µ1 > µ0.

2) Comparing the adversarial risks of R, ∅, and (a(ϵ),+∞). First, notice that Rϵ(∅) =
Rϵ(R) = 1

2 .
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Thus it suffices to compare the risks of (a(ϵ),+∞) and R. Let

Φ(x) =

∫ x

−∞

1√
2π

e−
t2

2 dt

be the cdf of a standard gaussian. Then Rϵ((a(ϵ),+∞)) ≤ Rϵ(R) iff

∫ a(ϵ)+ϵ

−∞
p1(x)dx+

∫ +∞

a(ϵ)−ϵ
p0(x)dx ≤

∫ +∞

−∞
p0(x)dx.

Furthermore, because p0 and p1 are strictly positive the equation above is equivalent to∫ a(ϵ)+ϵ

−∞

1√
2πσ

e−
(x−µ1)

2

2σ2 dx ≤
∫ a(ϵ)−ϵ

−∞
e−

(x−µ0)
2

2σ2

which is also equivalent to Φ
(
a(ϵ)+ϵ−µ1

σ

)
≤ Φ

(
a(ϵ)−ϵ−µ0

σ

)
. As the function Φ is strictly

increasing, this relation is equivalent to the inequality

a(ϵ) + ϵ− µ1

σ
≤ a(ϵ)− ϵ− µ0

σ

which simplifies as ϵ ≤ µ1−µ0

2 . Therefore, (−∞, a(ϵ)) is an adversarial Bayes classifier iff
ϵ ≤ µ1−µ0

2 and R, ∅ are adversarial Bayes classifiers iff ϵ ≥ µ1−µ0

2 .

K.2. Further details of Example 4.2. The constant k = ln (1−λ)σ1

λσ0
will feature promi-

nently in subsequent calculations, notice that the assumption λ
σ1

> 1−λ
σ0

implies that k < 0.

The equation (2.8b) requires solving 1−λ
σ0

e−(b+ϵ)2/2σ2
0 = λ

σ1
e−(b−ϵ)2/2σ2

1 , with solutions (4.1)
and

y(ϵ) =

ϵ
(

1
σ2
1
+ 1

σ2
0

)
−
√

4ϵ2

σ4
0σ

4
1
− 2

(
1
σ2
1
− 1

σ2
0

)
k

1
σ2
1
− 1

σ2
0

.

The discriminant is positive as k < 0 and σ0 > σ1. However, one can show that y(ϵ) does not
satisfy the second order necessary condition (3.1b) (see Appendix K.2). Similarly, the only
solution to the necessary conditions (2.8a) and (3.1a) is a(ϵ) = −b(ϵ).

Thus there are five candidate sets for the adversarial Bayes classifier: ∅, R, (−∞, b(ϵ)),
(a(ϵ),+∞) and (a(ϵ), b(ϵ)). Theorem 3.8 implies that none of these sets could be equiva-
lent up to degeneracy. By comparing the adversarial classification risks, one can show that
(a(ϵ), b(ϵ)) has the strictly smallest adversarial classification risk from these five options (see
Appendix K.2). Therefore, (a(ϵ), b(ϵ)) is the adversarial Bayes classifier for all ϵ.

It remains to verify two of the claims above— namely, 1) that y(ϵ) does not satisfy the sec-
ond order necessary condition (3.1b), and 2) Proving that (a(ϵ), b(ϵ)) is always the adversarial
Bayes classifier by comparing the risks of (a(ϵ), b(ϵ), R, ∅, (a(ϵ),∞), and (−∞, b(ϵ)).
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1) The point y(ϵ) does not satisfy the second order necessary condition (3.1b). First,
notice that

(K.1) y(ϵ) ≤
ϵ
(

1
σ2
1
+ 1

σ2
0

)
−
√

4ϵ2

σ4
0σ

4
1

1
σ2
1
− 1

σ2
0

=
ϵ
(

1
σ2
1
+ 1

σ2
0

)
− 2ϵ

σ0σ1

1
σ2
1
− 1

σ2
0

This bound shows that y(ϵ) fails to satisfy the second order necessary condition (3.1b). One
can compute the derivative p′i in terms of pi using Lemma K.1. Specifically, p′i(x) =

−x
σ2
i
pi(x)

and therefore

p′0(y(ϵ) + ϵ)− p′1(y(ϵ)− ϵ) = −y(ϵ) + ϵ

σ2
0

p0(y(ϵ) + ϵ) +
y(ϵ)− ϵ

σ2
1

p1(y(ϵ)− ϵ)

The first order condition p0(y(ϵ) + ϵ)− p1(y(ϵ)− ϵ) = 0 together implies

p′0(y(ϵ) + ϵ)− p′1(y(ϵ)− ϵ) =
p0(y(ϵ) + ϵ)√

2π

(
y(ϵ)

(
1

σ2
1

− 1

σ2
0

)
− ϵ

(
1

σ2
1

+
1

σ2
0

))
However, (K.1) implies that

p0(y(ϵ) + ϵ)√
2π

(
y(ϵ)

(
1

σ2
1

− 1

σ2
0

)
− ϵ

(
1

σ2
1

+
1

σ2
0

))
≤ p0(y(ϵ) + ϵ)√

2π
· −2ϵ

σ0σ1
< 0

Thus, the only solution to first (2.8b) and (3.1b) is b(ϵ).

2) Comparing the risks of (a(ϵ), b(ϵ), R, ∅, (a(ϵ),∞), and (−∞, b(ϵ)). First, we argue
that Rϵ((∞, b(ϵ)) > Rϵ((a(ϵ), b(ϵ)):

(K.2) Rϵ((a(ϵ),∞))−Rϵ((a(ϵ), b(ϵ))) =

∫ b(ϵ)+ϵ

b(ϵ)−ϵ
p1(x) + p0(x)dx+

∫ +∞

b(ϵ)+ϵ
p0(x)− p1(x)dx

First, notice that the first integral is always positive. Next, because b(ϵ)+ϵ > b(0) and p0(x) >
p1(x) whenever x > b(0), the second integral must always be positive as well. Therefore,
Rϵ((−∞, b(ϵ)) > Rϵ((a(ϵ), b(ϵ)).

Additionally, Rϵ((a(ϵ),+∞)) = Rϵ((−∞, b(ϵ))) because a(ϵ) = −b(ϵ) and p0, p1 are sym-
metric around zero. Furthermore, by writing out the integrals as in (K.2) one can show that
Rϵ(R)−Rϵ((a(ϵ),+∞)) = Rϵ((−∞, b(ϵ)))−Rϵ((a(ϵ), b(ϵ))). Thus

Rϵ(R)−Rϵ((a(ϵ), b(ϵ))) = 2(Rϵ((a(ϵ),∞))−Rϵ(a(ϵ), b(ϵ))) > 0

and hence one can conclude thatRϵ((a(ϵ), b(ϵ))) < Rϵ(R) andRϵ((a(ϵ), b(ϵ))) < Rϵ((−∞, b(ϵ))).
Similarly, one can show that

Rϵ(∅)−Rϵ((a(ϵ), b(ϵ))) = 2(Rϵ((a(ϵ),∞))−Rϵ(a(ϵ), b(ϵ))) > 0

and thus Rϵ(∅) > Rϵ((a(ϵ), b(ϵ))).



44 N.S. FRANK

K.3. Proof of Lemma 4.3. Lemma I.1 of Appendix I.1 is helpful in proving Lemma 4.3.

Proof of Lemma 4.3. There is nothing to show if suppP = R.
We now consider smaller support— for concreteness, we will assume that suppP = [ℓ,∞),

the cases suppP = [ℓ, r], suppP = (−∞, r] have analogous reasoning.
Let

i∗ = argmin
ai≥ℓ

ai − ℓ

j∗ = argmin
bi≥ℓ

bi − ℓ

We will now consider two cases:
A) |ℓ − ai∗ | ≤ |ℓ − bj∗ |, in which case we will show A′ = (−∞, ai∗) ∪ A is the desired

adversarial Bayes classifier
B) |ℓ − ai∗ | > |ℓ − bj∗ |, in which case we will show A′ = (−∞, bj∗)

C ∩ A is the desired
adversarial Bayes classifier

We will show Item A), the argument for Item B) is analogous.
First, Lemma I.1 implies that A and A′ are equivalent up to degeneracy.
Next, we show that A′ := A ∪ (−∞, ai∗ ] is a regular set. Because A is regular, the

point ai∗ is more than 2ϵ from any other boundary point of ∂A. As ∂(A ∪ (−∞, ai∗ ]) ⊂
∂A∪ ∂(−∞, ai∗) = ∂A, the point a∗i must be more than 2ϵ from any other boundary point of
(−∞, ai∗ ] ∪A. Therefore, A′ is regular.

Lastly, to show that ∂A′ ⊂ int suppP−ϵ, we argue that A′ has no boundary points in
(−∞, ℓ+ ϵ] = (int suppP−ϵ)C . First, as (−∞, bi∗) ⊂ A′, the set A′ has no boundary points in
(−∞, bi∗ ]. However, the interval (−∞, bi∗ ] contains (−∞, ℓ+ ϵ] as bi∗ − ai∗ > 2ϵ because A is
regular.

K.4. Example 4.5 details. Theorem 3.7 implies that when ϵ < 1/2 the candidate solutions
for the ai, bi are [−ϵ, ϵ] ∪ {−1− ϵ,−1 + ϵ, 1− ϵ,1 + ϵ}. However, Lemma 4.3 implies that one
only needs to consider points ai, bi in [−ϵ, ϵ] when identifying adversarial Bayes classifiers
under equivalence up to degeneracy. However, Rϵ((y,∞)) < Rϵ((−∞, y)) for any y ∈ [−ϵ, ϵ]
because p1(x) > p0(x) for x > ϵ while p1(x)− p0(x) < 0 for any x < −ϵ. Thus, the candidate
sets for the adversarial Bayes classifier are R, ∅, and (y,∞) for any y ∈ [−ϵ, ϵ]. Next, any
point y ∈ [−ϵ, ϵ] achieves the same risk: Rϵ((y,∞)) = ϵ+ 1

4(1− ϵ) while Rϵ(R) = Rϵ(∅) = 1/2.
Thus ∅,R are adversarial Bayes classifiers when ϵ ∈ [1/3, 1/2). Thus Theorem 3.9 implies that
(y,∞) is an adversarial Bayes classifier for any y ∈ [−ϵ, ϵ] iff ϵ ≤ 1/3 while R, ∅ are adversarial
Bayes classifiers iff ϵ ≥ 1/3.

K.5. Example 4.6 details. It remains to compare the adversarial risks of all sets whose
boundary is included in {−1/4± ϵ, 1/4±} for all ϵ > 0. As points in the boundary of a regular
adversarial Bayes classifier must be more than 2ϵ apart, the boundary of a regular adversarial
Bayes classifier can include at most one of {−1

4 − ϵ,−1
4 + ϵ} and at most one of {1

4 − ϵ, 14 + ϵ}.
Let S be the set of open sets with at most one boundary point in {−1

4 − ϵ,−1
4 + ϵ}, at most

one boundary point in {1
4 − ϵ, 14 + ϵ}, and no other boundary points.

Instead of explicitly computing the adversarial risk of each set in S, we will rule out most
combinations by understanding properties of such sets, and then comparing to the adversarial
risk of R, for which Rϵ(R) = 1/10 for all possible ϵ. We consider three separate cases:
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When ϵ > 1/4: If a set A includes at least one endpoint in int suppP−ϵ, then

Rϵ(A) ≥ 2ϵ

5
>

1

10
= Rϵ(R)

The only two sets in S that have no endpoints in int suppP−ϵ are R and ∅, but Rϵ(∅) = 9/10.
Thus if ϵ > 1/4, then R is an adversarial Bayes classifier, and this classifier is unique up to
degeneracy.

When 1/8 ≤ ϵ ≤ 1/4: If either 1/4 + ϵ,−1/4− ϵ are in the boundary of a set A, then

Rϵ(A) ≥ 3

5
· 2ϵ ≥ 3

20
> Rϵ(R).

Consequently, for these values of ϵ, only sets in S with at most one endpoint in {−1/4 + ϵ}
and at most one endpoint in {1/4− ϵ} can be adversarial Bayes classifiers.

Next, if a set A in S excludes either (−∞,−1/4) or (1/4,∞), then

Rϵ(A) ≥ 3

5
· 3
4
> Rϵ(R).

As a result, such a set cannot be an adversarial Bayes classifier.
However, R and (−∞,−1/4 + ϵ) ∪ (1/4 − ϵ,∞) are the only two sets in S with at most

one endpoint in {−1/4+ ϵ} and at most one endpoint in {1/4− ϵ}, but include (−∞,−1/4)∪
(1/4,∞). The set (−∞,−1/4+ϵ)∪(1/4−ϵ,∞) is not a regular set when ϵ > 1/8. Consequently,
When ϵ ∈ (1/8, 1/4], the set R is an adversarial Bayes classifier, and this classifier is unique
up to degeneracy.

When ϵ < 1/8 : First, if A excludes [−1− ϵ,−1/4− ϵ) or (1/4 + ϵ, 1 + ϵ], then

Rϵ(A) ≥ 3

5
· (3
4
− ϵ) ≥ 3

5
· (3
4
− 1

8
) =

3

8
> Rϵ(R).

There are only five sets in S that satisfy this requirement: A1 = (−∞,−1/4+ϵ)∪(1/4−ϵ,∞),
A2 = (−∞,−1/4− ϵ)∪ (1/4− ϵ,∞), A3 = (−∞,−1/4+ ϵ)∪ (1/4+ ϵ,∞), A4 = (−∞,−1/4−
ϵ) ∪ (1/4 + ϵ,∞), and A5 = R. All of these sets are regular when ϵ < 1/8. One can compute:

Rϵ(A1) =
4ϵ

5
, Rϵ(A2) = Rϵ(A3) =

8ϵ

5
, and Rϵ(A4) =

6

5
ϵ

Of these five alternatives, the set A1 has the strictly smallest risk when ϵ ∈ (0, 1/8). Conse-
quently, when ϵ ∈ (0, 1/8), the set A1 is the adversarial Bayes classifier and is unique up to
degeneracy.

K.6. Proof of Proposition 4.9.

Proof of Proposition 4.9. Due to Theorem 3.5 and Lemma 4.3, any adversarial Bayes clas-
sifier is equivalent up to degeneracy to an adversarial Bayes classifier A =

⋃M
i=m(ai, bi) for

which all the finite ai and bi are contained in int suppP−ϵ. Consequently, if there is some ai
or bi in int suppP−ϵ, then ϵ < | suppP|/2.

For every point x in int suppP−ϵ, the densities p0 and p1 are both continuous at x− ϵ and
x+ ϵ. Consequently, the necessary conditions (2.8) reduce to
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(K.3a) η(a+ ϵ) = 1− η(a− ϵ) and (K.3b) η(b− ϵ) = 1− η(b+ ϵ)
on this set. If a is more than ϵ away from a point z satisfying η(z) = 1/2, the continuity of η
implies that η(a+ ϵ), η(a− ϵ) are either both strictly larger than 1/2 or strictly smaller than
1/2, and thus a would not satisfy (K.3a). As a result, every ai must be within ϵ of a solution
to η(z) = 1/2. An analogous argument shows that the same holds for solutions to (K.3b).

K.7. Proof of Proposition 4.10.

Proof of Proposition 4.10. Due to Theorem 3.5 and Lemma 4.3, any adversarial Bayes
classifier is equivalent up to degeneracy to an adversarial Bayes classifier A =

⋃M
i=m(ai, bi) for

which all the finite ai and bi are contained in int suppP−ϵ. Consequently, if there is some ai
or bi in int suppPϵ, then ϵ < | suppP|/2.

For contradiction, assume that ai is not within ϵ of any point in ∂{η = 1}. Then for
some r > 0, η is either identically 1 or identically 0 on (a(ϵ) − ϵ − r, a(ϵ) + ϵ + r) and thus
p1 = pη is continuous on this set. Furthermore, because ai ∈ int suppP−ϵ but ϵ < | suppP|/2,
p1(ai+ ϵ) is strictly positive. Consequently, a(ϵ) cannot satisfy the necessary condition (2.8a),
thus contradicting Theorem 3.7.

K.8. Example 6.5 details. It remains to compare the risks of all regular sets with end-
points in {−4ϵ,−3ϵ,−2ϵ,−ϵ, 0, ϵ, 2ϵ, 3ϵ, 4ϵ}, and show that R is indeed an adversarial Bayes
classifier. Rather than explicitly writing out all such sets and computing their adversarial
risks, we show that one need not consider certain sets in S because if they were adversarial
Bayes classifiers, they would be equivalent up to degeneracy to other sets in S.

First, Lemma I.1 (of Appendix I.1) implies that if A is a regular adversarial Bayes classifier
and y ∈ {−4ϵ,−3ϵ,−2ϵ} is in ∂A, then [−4ϵ, y] is a degenerate set. Thus there is no need to
consider classifiers with endpoints in {−4ϵ,−3ϵ,−2ϵ} when identifying all possible adversarial
Bayes classifiers under equivalence up to degeneracy. Similarly, Lemma I.1 also implies that
there is no need to consider {2ϵ, 3ϵ, 4ϵ} as possible values of the ais or bis. Thus it remains
to compare the risks of regular sets whose boundary is contained in {−ϵ, 0, ϵ}. As points in
the boundary of a regular set are at most 2ϵ apart, one can rule out sets with more than one
boundary point in {−ϵ, 0, ϵ}.

At the same time, if ∂A includes exactly one of {−ϵ, 0, ϵ}, then A fails to include either
(−∞,−ϵ) or (ϵ,∞). Furthermore, the classifier pays a penalty of p0+p1 on (AC)ϵ∩Aϵ, which
must include either (−ϵ, 0) or (0, ϵ). Then

Rϵ(A) ≥ 1

4
+

(
1

12
+

1

18

)
=

1

3
+

1

18

while Rϵ(R) = 11/36 < 1/3. Thus any set A for which ∂A includes exactly one of {−ϵ, 0, ϵ}
cannot be an adversarial Bayes classifier. It remains to compare Rϵ(R) = 11/36 and Rϵ(∅) =
20/36. Thus R is an adversarial Bayes classifier, and is unique up to degeneracy.
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