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Abstract

Molecular simulations have assumed a paramount role in the fields of chemistry, biology, and mate-
rial sciences, being able to capture the intricate dynamic properties of systems. Within this realm,
coarse-grained (CG) techniques have emerged as invaluable tools to sample large-scale systems and
reach extended timescales by simplifying system representation. However, CG approaches come with a
trade-off: they sacrifice atomistic details that might hold significant relevance in deciphering the inves-
tigated process. Therefore, a recommended approach is to identify key CG conformations and process
them using backmapping methods, which retrieve atomistic coordinates. Currently, rule-based meth-
ods yield subpar geometries and rely on energy relaxation, resulting in less-than-optimal outcomes.
Conversely, machine learning techniques offer higher accuracy but are either limited in transferability
between systems or tied to specific CG mappings. In this work, we introduce HEroBM, a dynamic and
scalable method that employs deep equivariant graph neural networks and a hierarchical approach
to achieve high-resolution backmapping. HEroBM handles any type of CG mapping, offering a ver-
satile and efficient protocol for reconstructing atomistic structures with high accuracy. Focused on
local principles, HEroBM spans the entire chemical space and is transferable to systems of vary-
ing sizes. We illustrate the versatility of our framework through diverse biological systems, including
a complex real-case scenario. Here, our end-to-end backmapping approach accurately generates the
atomistic coordinates of a G protein-coupled receptor bound to an organic small molecule within a
cholesterol/phospholipid bilayer.

Keywords: Coarse-grain, Backmapping, Machine Learning, Equivariant Graph Neural Network,
Transferability

1 Introduction

Computer simulations of molecular biosystems
have reached a remarkable level of accuracy in
the last two decades. The capability of repro-
ducing realistic conditions is however mitigated

by the limiting size-scale and timescale of cur-
rent simulation techniques. In the best scenario,
one can use high-performance computing (HPCs)
to study systems composed by millions of atoms,
reaching the order of µs. However, this still falls
short considering the real size and timescale of
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biologically relevant phenomena such as recep-
tor activation, ligand/protein and protein/protein
binding, as well as the environment in which these
molecular processes take place [1]. Coarse-grained
(CG) techniques provide a possible solution by
reducing system’s dimensionality, while retaining
the chemico/physical features essential to describe
the investigated process [2]. In CG approaches,
a number of atoms are grouped in one single
entity called bead, thus reducing the number of
particles in the simulation. Mapping an atom-
istic system into a smaller one with reduced
degrees of freedom enables to reach significantly
longer scales both in the spatial and temporal
domains. This comes at the cost of a lower level
of detail with respect to all-atom simulations.
As a result, key atomistic interactions in a bio-
chemical process, like H-bonds, might be lost or
badly reproduced in CG representations. It is
thus necessary at a certain point of the study
to retrieve the atomistic coordinates of the sys-
tem, in order to assess the CG simulations and

accurately investigate the system’s property. This
process consists in reconstructing the atomistic
coordinates based on the CG beads position and
is referred to as backmapping. Currently, most
popular backmapping methods rely on energy
relaxation to obtain “reasonable” atomistic struc-
tures. The procedure is usually two-folded: first
an initial guess of the atom positions is made
through different techniques, generally based on
libraries of protein fragments [3] or leveraging on
geometric rules [4]. Then, the guessed structure is
energetically optimised by means of Monte Carlo
or MD simulations that should fix any bad struc-
ture geometry. The first step of these rule-based
sampling techniques often results in poor recon-
struction, with the presence of clashes between
atoms, and energetically disfavoured values for
bonds, angles and dihedrals connecting atoms.
At this stage, the quality of the initial guessed
structure is fundamental since its energetic opti-
misation, using whatever algorithm, leads to the
closer local minimum structure that could be
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rather different from the real atomistic structure
represented by the CG system. More recently, new
methods have been proposed aimed at improv-
ing the initial guess for the atom positions. Some
of these are fragment based, like CG2AT [5],
others rely on side-chain rotamer libraries or
other empirical structural information,[6, 7] also
resorting to data-driven approaches and machine
learning (ML) techniques.[8–12] The above meth-
ods achieve efficiency and good accuracy through
generative approaches, sampling atomistic config-
urations conditioned on the CG distribution. How-
ever, they have never been tested on large systems
that are typically endowed with conformational
flexibility and high level of structural complex-
ity, which represent the real cases in biochem-
istry. Interestingly, recent research has demon-
strated promising advances in the reconstruction
of protein backbone and side-chains through the
application of SE(3)-equivariant graph neural net-
works (EGNNs). One notable study, conducted
by Yang and Bombarelli, focuses on predicting
the Z-Matrix, a collection of internal coordi-
nates representing the 3D molecular structure,
and utilizes this information to regenerate the all-
atom configuration of proteins [13]. In another
contribution, Heo and Feig achieved remarkable
precision in recovering atomistic details from vari-
ous coarse-grained representations of proteins.[14]
These studies highlight the promise of employ-
ing ML techniques for backmapping, particularly
when the ML model incorporates the symme-
tries of the system by construction. However, it
should be noted that ML methods typically tend
to yield results structurally similar to the data
used to feed the model during training, and suffer
in accurately processing structures deviating sig-
nificantly from the original ones. Moreover, even
the most advanced and adaptable methodologies
documented in literature are often designed for
specific CG mappings or restricted to specific
systems, such as proteins. Consequently, while
these approaches hold promise, their applicabil-
ity in real-case scenarios is somehow restricted.
In this work, we introduce HEroBM, or Hier-
archical Equivariant representation for optimised
BackMapping, a versatile, scalable and universal
method for backmapping CG systems to all-atom
representations. HEroBM relies on deep EGNN
and is inherently designed to accurately process
any CG system, regardless of its size or CG

mapping. In the context of biochemistry, EGNNs
were first applied for the development of inter-
atomic potentials, coming as a natural evolution
of descriptor-based approaches with shallow neu-
ral network or kernel methods [15–17]. By directly
incorporating symmetries of the Euclidean group
E(3) into the network, EGNNs have demon-
strated superiority over other models in terms of
accuracy, data efficiency, and generalization capa-
bilities across various tasks involving replicating
accuracy of quantum-level calculations [18–20].
HEroBM leverages the well-estabilished capabili-
ties of EGNNs to reconstruct atomistic structures
from CG representations. This task is achieved
by predicting the distance vectors of atoms rela-
tive to hierarchically defined anchor points, such
as CG beads or other atoms in the same bead.
HEroBM possesses universality in its architecture,
allowing it to handle any CG mapping, including
user-defined mappings, provided that the posi-
tion of the bead could be represented as a linear
combination of the constituent atom positions.
Furthermore, HEroBM is designed according to a
strict locality principle, similarly to the recently
proposed Allegro model [19]. This principle guides
the model to focus exclusively on neighboring
beads while predicting distance vectors, enabling
it to be highly parallelized and adaptable to sys-
tems of varying sizes. Our protocol is easy to use,
fast to train and achieves high fidelity reconstruc-
tion of any atomistic structure. We showcase its
versatility across various systems, ranging from
proteins to lipids and organic molecules, achiev-
ing exceptional accuracy, below 1 Å, even in
challenging cases such as intrinsically disordered
proteins. Additionally, we demonstrate its effi-
cacy in handling complex systems, such as a G
protein coupled receptor (GPCR) bound to its
small molecule antagonist within a phospholipid
membrane bilayer.

2 Results

In the following paragraphs, we first introduce the
structure and functionality of the HEroBM algo-
rithm. Then, demonstration of its applicability to
systems composed by structurally and chemically
diverse types of molecules is reported.
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Fig. 1 HEroBM Framework Overview. Beginning with a coarse-grained PDB structure (a), we encode the beads as a graph
and feed it as input into the Equivariant Graph Neural Network (b). The network’s output comprises two critical elements:
A set of 3-dimensional distance vectors for each bead and a (ϕ, ψ) pair for Cα beads (c). Next, atoms are reconstructed in
a hierarchical manner (d), refining the structure from coarse-grained representations to atomistic detail. Subsequently, we
execute an optimisation process, fine-tuning the backbones (e). This process yields the fully realized atomistic structure (f).

2.1 The HEroBM algorithm

In Figure 1, we provide an overview of the key
steps of the HEroBM protocol. First, HEroBM
requires a configuration file including the topol-
ogy information of the CG mapping for the system
under investigation and the CG structure file as
input (typically in PDB format, but any format
compatible with MDAnalysis [21] is valid) (‘a’ in
Fig. 1). A wide range of CG mappings exist within
the domain of biochemistry [22], each following
distinct philosophies and based on diverse descrip-
tors of the system. Therefore, a backmapping
algorithm necessitates flexibility. The HEroBM
model readily accommodates any CG mapping
fulfilling the simple condition that each bead posi-
tion could be expressed as a linear combination
of the constituent atom positions. This condition
is respected by the vast majority of CG map-
pings currently used in molecular simulations, like
Martini 3.0 [23], which is used in our valida-
tion experiments in the next sections. Additional
details on the CG mapping are provided in the
Supplementary Information section 3.1.

The input CG structure is used by the HEr-
oBM’s EGNN (‘b’ in Fig. 1) to predict a set of
hierarchically ordered, 3-dimensional distance vec-
tors for each bead in the system. Specifically, it
computes a distance vector for each atom consti-
tuting the bead to be reconstructed (‘c’ in Fig. 1).
An important property of the model is its abil-
ity in predicting vectorial outputs that exhibit
covariance with the action of the E(3) group, pre-
serving system’s intrinsic symmetry constraints.
We refer to the Methods section (3) for further
details on the model architecture. Subsequently,
the predicted distance vectors are employed to
retrieve the atomic resolution of the system. This
is achieved by placing atoms according to a hier-
archical ordering (‘d’ in Fig. 1). In doing so,
HEroBM defines the heavy atoms positions, with
an optional optimisation step for protein back-
bone (‘e’ in Fig. 1). Finally, the output structure
is stored as PDB file, and, in case of proteins, it
includes the hydrogen atoms added based on a
given pH (’f’ in Fig. 1). This is achieved using the
pdbfixer Python package [24]. For the subsequent
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Fig. 2 Hierarchical backmapping of Gluamate residue side
chain. Colored arrows represent the distance vectors V⃗hj
predicted by the HEroBM Equivariant Graph Neural Net-
work. Cδ atom has hierarchy level 1 (the highest), thus uses
the CG Bead position as anchor point and is positioned at
distance V⃗yellow from it. Atoms at level 2 use the atom(s)
in the lower level as anchor: OE1, OE2 and Cγ are placed
according to their predicted distance vectors (in orange),
relative to Cδ position. Finally, Cβ is positioned relative to
Cγ .

energy minimisation of the obtained backmapped
structure, user can employ the OpenMM package
[25] integrated in the workflow or opt for any other
preferred software tool. The training of the HEr-
oBM model is performed using the pdb files of
atomistic structures. They first undergo mapping
to the CG representation, then are backmapped
through HEroBM. For the purpose of training,
the optional backbone optimisation step is not
performed. Loss is finally computed over the
HEroBM-reconstructed atom positions.

2.1.1 Hierarchical backmapping

The key concept of HEroBM is retrieving the
atomistic coordinates by predicting a hierarchi-
cal series of distance vectors for each bead. More
specifically, given a system consisting ofM beads,
each bead is represented as i with i ∈ [1,M ]. We
adopt the notation Ki to refer to the bead type
of the ith bead and Ri for its position. Moreover,
each bead type K coarse grains a predefined num-
ber of atoms; we refer to the number of atoms of
a given bead i of type Ki with the notation Ni.

The backmapping task is to retrieve the position
Rj of all the j atoms of the system, with j ∈ [1, N ]

and N =
∑M

i=1Ni. To this end, HEroBM pre-

dicts the distance vector V⃗hj of atom j relative
to an anchor point h. The most natural approach
would be to select the bead position Ri as the
anchor point for all the atoms j represented by
the bead i. However, this choice leads to a poor
reconstruction due to the incorrect prediction of
distance vectors from Ri for atoms that rotate
around other atoms comprised within the same
bead. We instead define a hierarchy among the
atoms of each bead and predict the distance vec-
tor V⃗hj relative to the position Rh of atom h in the
same bead, which is higher in hierarchy and acts
as the anchor point for j (Figure 2). The hierar-
chy is defined in a configuration file, together with
the mapping, so that for every atom constituting
a bead is specified which is its anchor atom (either
the bead itself or a previously reconstructed atom
of the bead). At hierarchy level zero, the highest
level, we assign atoms corresponding to the cen-
ter of mass of the bead, such as the Cα atoms
of protein’s backbone. Atoms at hierarchy level
one utilize the bead position Ri as their anchor
point. Subsequently, the atoms at lower hierarchy
levels are reconstructed based on the position of
the Rh atom associated as anchor point. Figure 2
depicts the process of hierarchy backmapping for
the side chain of the glutamate aminoacid where
yellow, orange and red arrows are the distance vec-
tors predicted by HEroBM using as anchor points
the bead, atom Cδ and atom Cγ , respectively.

The prediction of all the distance vectors V⃗hj
is highly parallelised to enable the instantaneous
reconstruction of the atom positions. On top of
the hierarchical backmapping, HEroBM includes
an energy minimisation protocol for protein back-
bone, which is able to geometrically optimise the
protein secondary structure and whose details are
reported in the Appendix A.

2.2 Case Studies

In order to evaluate the versatility and accuracy of
HEroBM, we performed backmapping calculations
on a variety of diverse systems, comparing the
HEroBM results with those obtained using other
techniques when available. In Benchmark and
test cases section 2.2.1, HEroBM was employed
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in a set of systems for which the atomistic struc-
ture is a priori known. The benchmark procedure
aims at assessing the HEroBM accuracy in recon-
structing the atomistic structure from a CG rep-
resentation of these systems. In this evaluation,
we compared our method with two state-of-the-
art backmapping techniques: CG2AT (Vickery et
al., [5]) and cg2all (Heo and Feig, [14]). CG2AT is
a classical fragment-based approach known for its
flexibility in backmapping protein and membrane
systems. It heavily relies on energy minimisa-
tion that might affect its accuracy with respect
to other methods. On the other hand, cg2all
employs a machine learning-driven model, achiev-
ing exceptional accuracy through the utilization of
an SE(3) transformer architecture, inspired from
AlphaFold2 [26]. This makes cg2all the gold stan-
dard for protein backmapping. However, cg2all
is designed for proteins and is not applicable to
other types of molecules. We show that HEroBM
achieves the same accuracy level of cg2all, even
better for proteins’ side chains, and in addition it
was trained on up to 10 times less data (details in
section 2.2.1). We further demonstrate the HEr-
oBM scalability to large-size system by backmap-
ping proteins composed of tens thousands atoms
reported as molecular of the months (MOMs) in
the PDB databank. Beyond protein systems, we
also trained and tested HEroBM for backmapping
membrane lipids and small molecules.

After the evaluation phase, in Real case
section 2.2.2, we conducted backmapping cal-
culations on the CG simulation trajectories of
a protein-ligand complex embedded in a mem-
brane bilayer. We compared our results with those
obtained using CG2AT [5]. Our findings reveal
that HEroBM outperforms CG2AT, significantly
reducing violations in the Ramachandran and χ1,
χ2 distributions compared to CG2AT. Finally,
we performed molecular dynamics calculations on
the HEroBM-backmapped atomistic structure of
a GPCR receptor bound to an antagonist lig-
and within a membrane bilayer. The receptor
structure is stable throughout the whole simula-
tion and the residue interactions are conserved,
thus demonstrating that HEroBM generates struc-
tures energetically stable and suitable for further
investigations.

2.2.1 Benchmark and test cases:
Recovering atomistic structure

In the following we report the backmapping per-
formance of HEroBM in systems for which the
atomistic structure is known, hence represent-
ing the ground truth. In particular, we stud-
ied proteins, lipids and small molecule ligands,
demonstrating that potentially every molecule
for which a mapping is provided, could be eas-
ily and reliably reverted into the corresponding
atomistic representation. We quantitatively eval-
uate the backmapping procedure by calculating
the Root Mean Squared Distance (RMSD) value
between the reconstructed and the original struc-
tures (before CG mapping), referred as ground
truth. The RMSD represents a good metric to
assess and compare the performance of HEroBM
with that of other methods. RMSD values as low
as 1.5 Å for a medium-size protein composed of
few thousands atoms, indicate high-fidelity repro-
duction of the original structures. In case of pro-
teins, we separately calculate RMSD for Backbone
(BB) and Side chains (SC) atoms since they are
endowed with diverse conformational flexibility. In
such a way, we might assess the capabilities of
HEroBM to retrieve the correct secondary struc-
ture (BB RMSD) and side chain conformation (SC
RMSD). Furthermore, we provide a deeper anal-
ysis of the results by looking at the probability
distribution of geometrical descriptors describing
specific structural properties of the reconstructed
systems. They include the ϕ and ψ dihedral angles
for backbones and the χ1 and χ2 torsions for side
chains.

Benchmarking on experimental structures
of proteins

In the initial assessment, we benchmark HEroBM
on a set of experimentally resolved proteins, using
the Martini 3.0 CG mapping, which is widely
employed for simulating large biological systems
for long timescales. Our model is trained on a
subset of the PDB 29k dataset as introduced in
the cg2all paper ([14]). To elaborate, we randomly
select 2.9k structures from the initial training pool
of 29k entries, followed by 72 structures for valida-
tion. Subsequently, we conduct testing on an iden-
tical test set comprising 720 structures. In Table
1 our model is referred to as HEroBMPDB3k,
achieving a level of accuracy comparable to cg2all
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Dataset CG2AT CG2ALL HEroBMPED HEroBMPDB3k HEroBMA2A HEroBMA2Amin

PED00055 BB 0.88± 0.05 0.07± 0.01 0.22± 0.03 0.23± 0.03 0.64± 0.07 0.68± 0.06
SC 1.36± 0.03 1.22± 0.03 0.84± 0.04 0.88± 0.04 1.00± 0.03 1.03± 0.03

PED00090 BB 1.14± 0.06 0.09± 0.01 0.29± 0.02 0.3± 0.03 0.90± 0.09 0.92± 0.07
SC 1.47± 0.02 1.27± 0.02 0.84± 0.03 0.92± 0.04 1.01± 0.02 1.02± 0.02

PED00151 BB 0.93± 0.05 0.07± 0.01 0.22± 0.03 0.27± 0.04 0.82± 0.10 0.87± 0.09
SC 1.19± 0.05 1.06± 0.03 0.78± 0.04 0.88± 0.06 0.95± 0.04 0.96± 0.03

PED00218 BB 0.81± 0.02 0.08± 0.01 0.12± 0.02 0.17± 0.02 0.62± 0.09 0.67± 0.10
SC 1.30± 0.03 1.02± 0.03 0.81± 0.03 0.9± 0.03 1.02± 0.02 1.05± 0.02

A2A BB 0.51± 0.02 - 0.26± 0.01 0.15± 0.01 0.11± 0.02 0.16± 0.01
SC 1.34± 0.02 - 0.80± 0.01 0.43± 0.01 0.38± 0.01 0.71± 0.01

A2Amin BB - - 0.24± 0.01 0.12± 0.02 0.18± 0.02 0.08± 0.01
SC - - 0.86± 0.03 0.53± 0.02 0.60± 0.01 0.23± 0.02

PDB29k BB - 0.08± 0.02 0.32± 0.04 0.10± 0.03 0.61± 0.10 0.64± 0.09
ALL - 0.31± 0.05 0.67± 0.04 0.34± 0.04 0.81± 0.06 0.82± 0.06

Table 1 RMSD values (in Angstrom units) of reconstructed structures with respect to original atomistic structures. The
table presents the average RMSD and corresponding standard deviation computed over the test dataset for each model.
The best results are highlighted in bold.

on the PDB29k test set, despite utilizing nearly
ten times fewer data for training. It’s noteworthy
that achieving RMSD values smaller than 0.2 Å
for the backbone and 0.5 Å for all heavy atoms
is remarkable, as no method besides HEroBM or
cg2all has attained such precision previously.

In figure 3 we show an example of recon-
structed structure. More precisely, the reconstruc-
tion with highest heavy atoms RMSD from the
PDB29k test dataset is superimposed to the
ground truth structure.

Benchmarking on intrinsically disordered
proteins

For the second test case, we harnessed the PED
Dataset [27], a comprehensive repository contain-
ing ensembles of intrinsically disordered proteins
(IDPs), generated through computational meth-
ods and grounded in experimental constraints.
IDPs are a class of proteins that lack a well-defined
three-dimensional structure under physiological
conditions and exist as dynamic ensembles of
rapidly interconverting conformations. This inher-
ent flexibility poses a significant challenge when
attempting to backmap IDPs from CG repre-
sentations. Due to their dynamic nature, IDPs
can adopt unique conformations, with a consid-
erable portion of their residues located on the
protein surface. The PED dataset encompasses
88 proteins for training, 4 for validation, and 4

for testing, with each protein housing multiple
structures, resulting in a total of 3,900 frames
for training, 80 for validation and 132 for test-
ing. The test dataset comprises four proteins of
varying structural properties, which are referred
to as PED00055 (87 residues), PED00090 (92
residues), PED00151 (46 residues) and PED00128
(129 residues). Table 1 showcases the results
from our second experiment as well, featuring the
model trained on the PED dataset, labeled as
HEroBMPED. Notably, both HEroBMPED and
HEroBMPDB3k models demonstrate high accu-
racies on the PED test sets, achieving the lowest
RMSD on side-chains. While the cg2all model
excels in backbone performance due to its tailored
construction aimed at accurately reproducing pro-
tein secondary structure,HEroBM reports only a
marginal sacrifice in accuracy, striking the balance
by offering adaptability across diverse systems.

To support the RMSD results, in Figure 4 we
report the torsion angle distribution of ground
truth (in orange) and reconstructed structures
(in blue) for each of the PED test datasets. The
Ramachandran plot highlights the reconstruction
performance on the secondary structure, while
the χ1 and χ2 dihedrals give an intuition on
the quality of reconstructed side chains. HEroBM
achieves an overall high accuracy in reproduc-
ing torsion distributions, being able to correctly
recover all the most stable secondary structures
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Fig. 3 (a) Distribution of RMSD error pertaining to the backmapped structures of the PDB29k test set. To visually
represent this distribution, we have overlaid a fitted Gaussian curve. (b) Visual comparison between the backmapped result
produced by HEroBM with the highest error on the dataset (highlighted in tan) and the ground truth atomistic structure
(depicted in cyan).

(alpha helices and beta sheets). Examining the
χ distributions reveals a tendency of HEroBM to
oversample the typical regions of structured pro-
teins. However, it encounters challenges in accu-
rately identifying torsion values that deviate from
the normal distribution. One plausible rationale
for this phenomenon lies in the inherent flexibility
of χ dihedrals within IDPs, where they typically
exhibit greater freedom of rotation due to fewer
strong interactions. However, the CG representa-
tion often fails to capture this degree of freedom
accurately. Consequently, the model compensates
by prioritizing the minimisation of the average
reconstruction error, leading it to oversample the
predominant regions.

Training on a single molecule

The third model is specifically tailored for the
analysis of a single system: the A2A G protein-
coupled receptor (GPCR), a structured membrane
protein. Both the training and validation datasets
are constructed from a molecular dynamics (MD)
trajectory capturing the A2A receptor in its inac-
tive state, comprising 100 and 50 structures,

respectively. Additionally, the test set comprises
20 structures extracted from another MD trajec-
tory, depicting the A2A receptor in its active state.
This model is designated as HEroBMA2A. Addi-
tionally, we established the A2Amin dataset by
subjecting the structures from the A2A dataset,
derived from MD simulations and therefore not
necessarily at local minima, to minimisation pro-
cesses. This ensured that the structures in the
A2Amin dataset represented configurations closer
to local energy minima. Subsequently, we utilized
the same 100 frames for training and 50 frames
for validation to train theHEroBMA2Amin model.
When dealing with structured proteins like A2A,
recovering atomic-level details becomes more fea-
sible due to the stability of secondary structures
within specific ranges of ϕ and ψ torsion angles, as
well as the strong interactions among side chains,
limiting their rotational freedom. Results in Table
1 indicate that HEroBM tends to maintain the
original “energetic level” of the training dataset,
as expected. When the ground truth exists in a
higher energetic state (as in the A2A dataset), the
minimised backmapping exhibits a higher RMSD
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Fig. 4 Distribution of torsion angles for both ground truth (depicted in orange) and reconstructed structures (shown in
blue) within the PED test datasets. The Ramachandran plot provides a visual representation of the backmapped distribution,
rendered in a gradient form gray to blue, while the ground truth distribution is presented through an orange contour plot.
Each panel also includes a breakdown of the χ1 distribution in the top-right half and the χ2 distribution in the bottom-right
half.

when compared to the atomistic ground truth.
However, its RMSD error decreases when com-
pared to the minimised version of the ground truth
(A2Amin dataset). An intriguing observation is
that HEroBM consistently outperforms CG2AT
on the PED dataset, even when it is trained solely
on a single structured system.

RCSB Molecules of the Month

To assess the scalability and system size inde-
pendence of the proposed framework, we utilized
Martini 3.0 CG mappings of molecules from the
RCSB PDB database [28], feeding them into the
HEroBMPDB3k model. Specifically, we selected
the featured molecules of the month (MOMs). In
Figure 5, we present results for two of the largest
systems, along with their computed RMSD values
compared to the reference structure.

A comprehensive set of test cases is offered in
Supplementary Information section 3.4. Notwith-
standing the dimensions of some of these sys-
tems, RMSD on all heavy atoms between the

reconstructed and crystallographic structures is
consistently below 0.7 Å.

Lipid bi-layer

To demonstrate the ability of HEroBM beyond
proteins, we evaluate the method on a lipid
bilayer system, composed of 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) and choles-
terol (CHL) molecules. Our dataset comprises 100
frames, divided into 10 for training, 5 for valida-
tion, and the remaining for testing. Each frame
consists of 202 POPC and 90 CHL molecules,
resulting in 2920 and 1460 molecules for train-
ing and validation, respectively. As we did for
proteins, we follow the mapping rules of Martini
3.0 for lipids, then recover the atomistic struc-
ture using HEroBM and evaluate the RMSD on all
heavy atoms. We test on 85 frames coming from a
membrane test dataset, yielding a total of 24820
lipids (more information reported in 3.4).

The substantial number of molecules within
each frame may pose challenges in terms of mem-
ory requirements for neural networks. However,
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Fig. 5 HEroBM results for MOMs featured during March and April, 2023.

the HEroBM architecture has been designed to
overcome this issue, both during training and
inference phases. In fact, our EGNN empha-
sises local interactions, allowing the framework to
employ a chunking strategy. In doing so, HEr-
oBM seamlessly reconstructs the entire structure
piece by piece, thus ensuring scalability to sys-
tems of varying sizes. This fundamental property
of our EGNN ensures the applicability of HEroBM
to large size systems, which represent the typical
cases in biochemistry, resolving the known limi-
tation of ML algorithms in processing biological
macromolecules.

HEroBM achieves an RMSD error of 0.88 ±
0.01 Angstrom for reconstructed POPCmolecules,
and 0.51 ± 0.01 Angstrom for CHL molecules. In
figure 6 we present the radial distribution function
(RDF) for HEroBM reconstruction, comparing
it with the true atomistic RDF. Our analysis
includes RDF profiles for the polar head con-
taining glycerol (PC), the two aliphatic chains
(PA and OL), and the nitrogen heads alone. In
Figure 7, an illustrative backmapping of POPC
molecules is depicted, with CG beads represented
as colored spheres overlaid onto both the original

atomistic structure (in cyan) and the backmapped
configuration (in tan).

Fig. 6 Radial distribution function of atomistic (in black)
and backmapped (in dashed red) components of POPC
molecule.
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Fig. 7 Snapshot of a membrane slice, comparing the
atomistic structure of POPC (cyan) and HEroBM’s
backmapped version (tan). CG beads are depicted as
spheres.

Small molecule

In the assessment of HEroBM with
organic small molecules, we apply the
backmapping specifically to the ligand
4-2-[(7-amino-2-furan-2-yl[1,2,4]triazolo[1,5-
a][1,3,5]triazin-5-yl)amino]ethylphenol (ZMA).
Our dataset encompasses 1.000 entries, par-
titioned into 200 frames for training, 100 for
validation and the remaining 700 for testing.
These structural data points are derived from the
trajectory of the molecular dynamics (MD) simu-
lation performed to define the CG parameters of
ZMA following the procedure reported by Souza
et al. [29].

It is important to note that while we have
selected Martini 3.0 as our illustrative example,
any CG method adhering to the previously intro-
duced HEroBM conditions can be employed. The
CG mapping for ZMA molecule was performed
according to the protocol described in Souza et
al. [23]. Then, the CG mapping was employed to
prepare the configuration file for HEroBM that
defines the atom reconstruction hierarchy. Subse-
quently, we trained the model. Having access to
the ground truth atomistic structure, we assessed
the performance of our model using a test set
of ZMA structures, with our model achieving an
average RMSD error of 0.06± 0.01 Angstrom.

2.2.2 Real Case: Backmapping
coarse-grained simulations

Once assessed that HEroBM is able to accurately
reconstruct structures coming from a direct CG
mapping of atomistic simulations, we demonstrate
the usability of the framework in the task of
backmapping actual CG simulations made in Mar-
tini 3.0. In this case, the most daunting challenge
is that structural design and inaccuracies in the
CG mapping might sample states that have not an
unique and/or easily identifiable atomistic coun-
terpart. In such cases, ML-based backmapping
might be challenging since the CG structures used
as input to neural networks come from a distribu-
tion that is different from the one that was used for
training. ML training is performed on atomistic
simulations that are coarse-grained, as you need
the ground truth to perform supervised learning.
CG simulations instead have distributions which
are similar to the atomistic ones only locally, while
globally span a higher state space, due to relax-
ations in the constraints. To make a practical
example, we take the Martini 3.0 CG mapping.
To correctly account for bead volumes when sim-
ulating, the effect on side chains is that their
beads maintain relative distances and angles fixed
between them, but their distance from the Cα

bead is much higher than it should. These consid-
erations vary from one CG mapping to the other,
but the common effect is that CG simulations are
often out of distribution with respect to coarse-
grained atomistic ones. Traditional ML techniques
may suffer from this, especially Convolutional
Neural Networks, which incorporate by construc-
tion high receptive fields and use pseudo-global
information to perform inference. The advantage
of HEroBM is that it is strictly dependent on local-
ity to predict the atom positions, thus being able
to correctly recover local structures in side chains,
even if their distance from the backbone is slightly
changed. We however note that in any case, after
backmapping CG simulations, an energy min-
imisation phase is advisable to obtain a proper
atomistic geometry, even though the initial posi-
tions provided by the model still preserve local
topology.

GPCR

We run HEroBM over 20 frames coming from a
CG simulation of A2A GPCR receptor, sampled
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uniformly over the full activation of the GPCR
(see section 3.4), and compared qualitatively and
semi-quantitatively the backmapping with the one
done by CG2AT.

In Figure 9, we present the Ramachandran plot
illustrating reconstructed structures from all 20
frames, comparing them to the plot derived from
atomistic simulations of the same receptor tran-
sition (depicted as the orange contour plot). We
note that in such atomistic simulation, the A2A
receptor undergoes a large-scale conformational
transition that leads the receptor from the inac-
tive to the active state (see Fig. 8). Therefore, this
represents a real case that is rather challenging for
backmappins since many localities between atoms
belonging to side chains - but even to backbone -
might be lost along the receptor transition.

Fig. 8 Conformational change of A2A GPCR, from the
inactive (aqua) to the active (dark orange) state.

For both the CG2AT and HEroBM
approaches, we follow the minimisation protocol
outlined in Section B, excluding the final heating
step. This allows us to make direct compar-
isons between structures immediately following
energy minimisation. Notably, HEroBM exhibits
a unique capability in recovering regions of the
Ramachandran plot’s right half, particularly the

less frequently sampled regions corresponding to
left-handed alpha helices, a feat not achieved by
CG2AT. Furthermore, the distribution of χ1 and
χ2 torsion angles from the atomistic simulation
is accurately preserved in the CG backmapping
performed by HEroBM. This preservation is evi-
denced by the Kullback-Leibler divergence scores
of 0.254 for χ1 and 0.091 for χ2, compared to
0.825 and 0.206 obtained by CG2AT.

Fig. 9 Ramachandran plot comparing the atomistic dis-
tribution of Phi and Psi torsion angles of the A2A atomistic
simulation (in orange) with those of 20 backmapped frames
in the CG simulation, spanning the entire activation of
the GPCR. The backmapped structures undergo energetic
minimisation, but no equilibration is performed. In the
CG2AT representation (top), sinistrorse alpha helices are
completely absent, whereas in the HEroBM representation
(bottom), they are successfully recovered. Furthermore,
HEroBM retains the correct torsion distribution of χ1 and
χ2 dihedrals.

Small molecule

We investigate the HEroBM backmapping of the
ZMA small molecule. This is done in perspective
of the use of CG simulations in ligand/protein
binding studies and drug design campaigns. In
a subsequent step, we utilized HEroBM frame-
work to backmap 100 frames generated from a CG
simulation of ZMA. In figure 11, we present qual-
itative representations of the structures obtained
through the backmapping process. It is worth
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Fig. 10 Torsion angle distribution of the backmapped A2A GPCR from Martini 3.0 CG. From left to right, the sequence
includes the CG2AT backmapped and thermally equilibrated outcome, followed by HEroBM’s final result after undergoing
the same thermalisation process, and lastly, the HEroBM output following a single minimisation cycle. Light blue areas
represent the “allowed” and “marginally allowed” regions, according to MDAnalysis reference plots [30].

noting that the backmapping of ligands using
HEroBM is generally straightforward, provided
that the original parametrisation is properly done.
This ease of backmapping can be attributed to the
strong locality typically present among the small
molecules’ atoms, which is reflected by fixed dis-
tances between beads and their rotation restricted
to predefined dihedrals. If suboptimal backmap-
ping results are obtained, it may indicate either
an inadequate choice of CG strategy or an insuf-
ficient parametrisation, thus suggesting HEroBM
as useful tool for assessing the quality of the small
molecule CG procedure.

End-to-end backmapping and simulation
of real system

Finally, we conducted a comprehensive assessment
of the output structure of the A2A GPCR, which

Fig. 11 (a) Structure of ZMA molecule at atomistic reso-
lution. (b) Example of backmapped ZMA from CG simula-
tion. The corresponding CG beads have been superimposed
as gray spheres. (c) More sample structures backmapped
from CG simulation.

was backmapped from a CG simulation of the pro-
tein complexed with a POPC membrane and the
ZMA molecule. In the analysis, first we excluded
the ligand and membrane components, focusing
our attention on the torsion distribution of the
protein residues. In Figure 10, we present a com-
parative analysis of three backmapped results,
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showcasing the Ramachandran plot and the dis-
tribution of χ1 and χ2 torsions. The first plot
on the left represents the final backmapping
using CG2AT. In the middle plot, we display the
HEroBM output, which underwent an identical
minimisation process as CG2AT, including NVT
thermalisation. The plot on the right shows the
HEroBM output after a single cycle of energy min-
imisation using OpenMM’s L-BFGS algorithm,
with an energy threshold set at 500 kilojoules per
mole per nanometer. Notably, HEroBM demon-
strates the ability to recover a structurally sound
configuration, even without the need for addi-
tional MD relaxation steps, resulting in an atom-
istic system ready for subsequent simulations. In
the final stage, we initiated a MD simulation of the
refined structure generated by HEroBM, following
a single cycle of energy minimisation. After sol-
vating the system, we conducted an equilibration
process to attain a temperature of 300 K, followed
by a 50 nanoseconds simulation. The RMSD of
the A2A Cα atoms throughout the trajectory is
depicted in Figure 12, with the final frame of the
thermalization protocol serving as the reference
point.

Fig. 12 RMSD calculated on the Cα atoms of the A2A
GPCR throughout a 50 nanosecond atomistic MD sim-
ulation. The protein underwent primarily backmapping
utilizing HEroBM, alongside the membrane, originating
from a frame obtained from a CG simulation. Subsequently,
the system underwent solvation, thermalization, and simu-
lation. The final frame of the thermalization process served
as the reference structure for the RMSD analysis.

2.3 Discussion

This research introduces HEroBM, an innova-
tive Machine Learning approach designed for the
backmapping of CG simulations, applicable to a
wide range of systems and CG mappings. The
method leverages equivariant graph neural net-
works and adopts a hierarchical atom definition
within beads. Notably, our model exhibits optimal
performance in reconstructing both structured
and unstructured regions of proteins, showcas-
ing a significant enhancement in RMSD closeness
to true atomistic structures when compared to
state-of-the-art algorithms documented in the lit-
erature. Moreover, the model offered good gener-
alization properties, being able to reconstruct pro-
teins never seen during training and with different
domains and secondary structures.

We demonstrate the practical effectiveness of
HEroBM by seamlessly backmapping a complete
CG simulation of the A2A protein complexed with
a POPC membrane and a ZMA small molecule.

This study serves as a proof of concept for
our versatile backmapping technique, which oper-
ates independently of the employed CG mapping,
drawing strength from data-driven methodologies.

In our future research, we intend to expand
upon this by developing dedicated models for Mar-
tini 3.0, using a broader range of training datasets,
encompassing data derived from both simulated
and crystal structures. Furthermore, the HEr-
oBM framework is well-suited for transformation
into a webserver, which would offer a centralized
resource for the broader scientific community, sup-
porting the most commonly used CG mapping
methods and facilitating online backmapping of
CG trajectories.

We expect the proposed method will enable
researchers to conduct coarse-grained molecular
dynamics simulations of large and complex sys-
tems with the freedom to employ the most suitable
CG mapping, relying on an unified tool to recover
the atomistic details at increased accuracy.

3 Methods

3.1 Atomistic representation

Atomic systems exhibit several intrinsic symme-
tries owing to the underlying crystal structures
of solids. In materials science and biochemistry,
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predictive models rely on these symmetries to
accurately simulate physical properties such as
inter-atomic interactions [31]. Choosing a correct
representation of these systems to be used as input
to the Neural Network is of extreme importance to
achieve high accuracy. Following the best practices
found in literature, we represent the atomistic and
CG systems following the atom-centered density
correlation framework [32, 33], which only requires
two ingredients as input to the model: bead posi-
tion Ri and bead type Ki. The former input, R,
can be seen as a matrix of size (M, 3), where M
is the number of beads and the columns repre-
sent the x, y, and z coordinates of each bead.
The latter input is an array of size M , containing
an integer number that identifies the bead type.
This number is then transformed using one-hot
encoding in the pre-processing layers of the net-
work. Atomic coordinates are notoriously a poor
choice for ML applications, as they do not present
any translation or rotation invariance (or equivari-
ance). Building up on a series of related methods
that have recently been proposed [20, 34–36], we
encode atom positions using distance vectors and
leverage the symmetry-preserving properties of
tensor algebra for processing the input throughout
the NN. This allows to construct continuous func-
tions capable of encoding local chemistry while
respecting point group symmetries. The NNs with
these properties are commonly know as equivari-
ant graph neural networks (EGNN).

3.2 Equivariant Graph Neural
Networks

As already anticipated, in many applications such
as drug discovery and materials design, represent-
ing the symmetries of atomic structures accurately
plays an essential role in capturing important
physical properties and predictive power. This
issue motivated the development of novel math-
ematical frameworks which allow to efficiently
learn high-dimensional representations of atomic
environments equipped with group actions. The
Euclidean group E(3) is the one we are interested
in and encompasses three fundamental transfor-
mations - translations, rotations, and inversions
- governing atomic behavior. Related to this, the
concept of equivariance describes how functions
or operators behave under certain symmetries or
transformations of the input, due to group actions.

Specifically, a function Φ is said to be equivari-
ant if it preserves the underlying structure of the
input (no loss of information) under those trans-
formations, i.e. if the following equation holds:

Φ(ρX(g) · x) = ρY (g) · Φ(x) (1)

Here, ρX(g) is the representation of group ele-
ment g in the input vector space X (for example,
a rigid rotation of the atom coordinates around
the origin) and ρY (g) is its corresponding trans-
formation in the output space of the function.
Note that we speak of invariance when ρY (g)
is the identity matrix, or in other words when
the output of a function is independent on the
transformations undergone by the input. Most
traditional neural networks achieve invariance of
the output by feeding the network with invari-
ant inputs. However, EGNNs operate directly on
non-invariant geometric features, producing inter-
nal feature embeddings that adapt smoothly to
changes caused by the group actions. This can be
achieved by making ρX(g) take the form of a direct
sum of irreducible representations (irreps) of O(3),
resulting in the following equation:

ΦL,m(
∑
m′

DLX

m′,m(R)·x) =
∑
m′

DLY

m′,m(R)·ΦL,m′(x)

(2)
This equation indicates that features are seg-

regated into blocks according to their associated
irreps and how they react to the O(3) group
actions. Each block contains features transformed
independently from one another. The Wigner D-
matrices DLX

m′,m(R) ∈ R(2LX+1)×(2LX+1) of degree
LX (L = 0 for scalars, L = 1 for vectors and
so on...) define the transformation of the input
features under rotation. To achieve rotation equiv-
ariance, we have to guarantee that the feature
vectors of the EGNN are geometric objects that
comprise a direct sum of irreducible representa-
tions of the O(3) symmetry group, and we need
a way to combine them equivariantly. The first
requirement is achieved by constraining the fea-
tures to be products of learnable radial functions
and spherical harmonics (which are equivariant
under SO(3))

f (l)m (r⃗ij) = R(rij)Y
(l)
m (r̂ij) (3)
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where r⃗ij is the distance vector between the center
bead and a neighbouring bead for which there is
an edge in the graph. The operation for combining
feature vectors is instead the tensor product, which
is obtained via contraction with the Clebsch-
Gordan coefficients. More details are provided in
the seminal works of Thomas et al. and Batzner
et al. [18, 20].

3.3 Model architecture

HEroBM architecture follows the general frame-
work of the Allegro model [19]. This choice allows
the inference model to work only with local fea-
tures to predict the distance vectors V⃗hj , thus
requiring only the information about the posi-
tion and type of neighbouring beads within a
cutoff when backmapping a specific bead. This
key property enables scalability of the tool to
any system size, since it is easy to chunk big-
ger systems into small pieces that fit memory and
backmap one chunk at a time, without loss of
information. This same approach would not be
possible, or at least would not be easy to imple-
ment, with standard Convolutional Graph Neural
Networks, as the receptive field of the graph, i.e.
the neighbours of the center atom that have to
be taken into consideration in the model input,
increases with the number of convolutional lay-
ers of the network. The innovation we introduce
in the architecture is the efficient implementa-
tion of the atomic cluster expansion, described
in the MACE paper [37], on the node features
after each pooling. This was demonstrated by the
authors to improve the generalisation properties
of the network, while at the same time keeping
the number of layers small (hence the time and
memory requirements low). The HEroBM archi-
tecture builds a graph, induced by connecting the
nodes (beads) to all neighbouring beads inside a
sphere with a pre-defined cutoff, thus forming the
edges. Later, the EGNN learns latent represen-
tations associated with pairs of nodes for which
there exist an edge. Latent representations associ-
ated with the central bead interact at every layer,
being combined in an equivariant manner using
the tensor product operation and expanded with
the Atomic Cluster Expansion (ACE) framework
[38] in the MACE implementation [37]. The final
layer combines all the latent representations of the
bead pairs to output an array of vectors V⃗hj , which

are hierarchically used to reconstruct the position
of the atoms of the bead.

Figure 13 shows the overall architecture of
HEroBM, which can be classified as a Deep Equiv-
ariant Graph Neural Network. At its core, HEr-
oBM uses two types of embeddings - Invariant
Two-Body Multi Layer Perceptron (MLP) and
Equivariant Embedding MLP - to encode the
scalar and angular parts of pairs of neighbouring
atoms. The former embeds the scalar part (which
comes from the radial distribution of neighbouring
atoms), the latter encodes the angular part as a
linear combination of spherical harmonics. These
embeddings are then fed into multiple Interaction
Blocks, which form the deep component of the net-
work. Each interaction block enables interactions
between the latent spaces while preserving equiv-
ariance using tensor product operations. Residual
connections update the latent spaces after every
block, and a linear readout block generates out-
put edge features for both scalar and higher-order
tensors. A final pooling layer aggregates informa-
tion across all atomic pairs (or edges), resulting in
scalar and tensorial output predictions.

3.4 Loss functions

The EGNN model is trained to minimise the error
on the reconstruction of the atomistic structure.
To correctly learn the geometry and ensure the
validity of the generated structures, we superin-
tend on the backmapped topology, together with
atoms placement. In particular, we measure the
error on 3D-space position of atoms by the means
of a Mean Squared Error (MSE) term in the loss
function (LMSE) and include two terms on invari-
ant descriptors, namely a loss on bond length
(LBONDS) and one on angle values (LANGLES).
The MSE term takes the following expression:

LMSE =
1

N

N∑
i=1

∥−→r i −−→ri0∥2 (4)

where −→r i is the predicted position of the ith

atom and −→r i0 is its true position. However, using
this term alone creates some artifacts in the recon-
struction of side chains with forked terminals that
are free to rotate, since the CG representation
cannot incorporate rotational information in the
absence of atomic interactions, and the model
”works around” the problem by predicting all the
atoms of the forked terminal in their center of
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Fig. 13 HEroBM architecture overview.

mass, thus creating clashes. Introducing a stronger
loss term on invariants forces the prediction to
backmap feasible structures, which respect the
topological constraints. More precisely, the loss
term on bonds has the following form:

Lbonds =
1

Nb

Nb∑
ij

max((rij − rij0)
2 − ηb, 0) (5)

Here, rij represents the distance between atom
i and atom j, ηb is a tolerance value for the error
on bonds and Nb is the number of bonded pairs
in the atomistic structure. Introducing tolerance
on invariants helps the EGNN to avoid overfitting
and generalize better on unseen data. Finally, the
angular loss term has the form of

Langles =
1

Na

Na∑
ijk

max(Aijk − ηa, 0) (6)

Aijk = 2

+ cos(α̂ijk − α̂ijk0 − π)

+ sin(α̂ijk − α̂ijk0 −
π

2
)

(7)

with α̂ijk being the value of the angle between
atoms i, j and k (in radiants), Na the number
of angles and ηa the tolerance value for the error
on angles. The total loss is then computed by
performing the weighted sum of the loss func-
tions described above, according to the following
equation:

L = λMSELMSE

+ λbLbonds

+ λaLangles

(8)

The values of λMSE , λb and λa are, respec-
tively, 1, 5 and 5, in order to force the NN to prefer
a correct reconstruction of invariants (bonds and
angles) over a minimised overall MSE on atom
positions.
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Computational details

Detailed information for creation and preparation
of the atomistic apo A2A system can be found in
the work of D’Amore [39] Production runs were
carried out using the thermalised starting struc-
ture from the work of D’Amore and the molecu-
lar engine GROMACS 2020.6. [40] In detail, we
employed a cutoff for short-range interactions of
12 Å, while electrostatic long-range interactions
where taken into account using the Particle Mesh
Ewald (PME) algorithm with a 1.0 Å grid spac-
ing in semisotropic periodic boundary conditions.
[41] Constraints were applied on all bonds using
the LINCS algorithm. [42] Isothermal-isobaric
ensemble (NpT) was enforced using the Parrinello-
Rahman barostat, with reference pressure at 1
bar, and the velocity rescale (V-rescale) algorithm
for the thermostat, with reference temperature of
300 K. [43] Timestep for the simulation was set at
2 fs, using the leap-frog integrator “md”.

Code availability

An open-source software implementation of HEr-
oBM is available on GitHub. A forked version
of NequIP repository was used for building and
training the model, openly accessible at this link.
In addition, the e3nn library [44, 45] was used
under version 0.5.1, PyTorch under version 1.13.0,
Openmm under version 8.0.0, pdbfixer under ver-
sion 1.9, MDAnalysis under version 2.6.0 and
Python under version 3.10.12.
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Appendix A Backbone
optimisation

HEroBM is a dynamic framework that can be
used to backmap any kind of system, from cell
membrane to ligands, however most of the appli-
cations of CG target proteins and are interested
in studying their conformational changes. For this
reason, we included in the protocol an optimi-
sation procedure specific for protein backbones.
This procedure is optional and improves the recon-
struction of secondary structures of proteins. Its
implementation relies on the (admittedly quite
strong) assumption that the backbone of each
residue is mapped on a single bead. Even if it
is quite restrictive, usually the CG mapping of
backbones in proteins adheres to this requirement,
often centering the bead position on the Cα car-
bon. Given this mapping for backbones, figure
A1 outlines the steps necessary for the optimisa-
tion. The algorithm unfolds in two distinct phases:
initially, it fine-tunes backbone bond lengths,
angle values, and the ω torsion angle, ensuring
their confinement within permissible ranges. Sub-
sequently, it leverages the HEroBM’s EGNN to
forecast the ϕ and ψ dihedrals for each residue.
These predicted dihedrals then guide a rotational
adjustment, steering the structure towards the
forecasted values. Throughout this process, the
algorithm meticulously upholds stringent geomet-
ric constraints.

The algorithm’s implementation employs an
energy minimisation strategy utilizing the steep-
est descent method. The energy function considers
contributions from bonds, angles, and dihedrals,
as expressed by the following equations:

Ebonds = Kb

Nb∑
ij

max(

(rij − req)
2 − (ηeq)

2, 0)

(A1)

Here, Kb represents the force constant, req
is the equilibrium bond length (expressed in Å),
and ηeq is the allowed tolerance on bond length.
For a bonded atom pair (i, j), rmin and rmax

define the minimum and maximum permissible
bond lengths. The equilibrium value req and tol-
erance ηeq are calculated as 1

2 (rmin + rmax) and
rmax − rmin, respectively.
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Eangles = Ka

Na∑
ijk

max(

(α̂ijk − α̂eq)
2 − (η̂eq)

2, 0)

(A2)

In the case of angles, α̂eq and η̂eq are com-
puted similarly as the mean and difference of
the maximum and minimum allowed angle values
(expressed in radians).

Etorsion =

Nt∑
ijkl

(2

+ cos(τ̂ijkl − τ̂eq − π)

+ sin(τ̂ijkl − τ̂eq −
π

2
))

(A3)

For torsions, τ̂eq represents the equilibrium
value. Specifically, it is set to π for ω dihedrals
and is assigned to HEroBM’s predicted values for
ϕ and ψ torsion angles.

During the initial phase, the energy func-
tion encompasses contributions from bonds and
angles, along with the torsion contribution from
the ω dihedral exclusively. Following this initial
refinement, the C and N atoms undergo rotation
around the axis defined by their two enclosing
Cα carbons. This rotation seeks to identify the
orientation that minimises the torsion energy con-
tribution from the predicted ϕ and ψ dihedrals.
Subsequently, a second minimisation step is exe-
cuted, encompassing all energy contributions from
the first phase and incorporating that of the fore-
casted dihedrals. This two-step process ensures a
comprehensive refinement of the molecular struc-
ture, iteratively optimising both local bond and
angle geometry as well as the global orientation
dictated by the predicted dihedrals.

Throughout this optimisation process, the Cα

carbons are held fixed. Upon completion of the
optimisation, a distinctive orientation is imparted
to the oxygen atoms, directing them along the vec-
tor cross product of Cα,i+1−Cα,i and Cα,i+2−Cα,i

in accordance with the methodology introduced in
[46].

The whole procedure ensures the production of
structurally sound proteins, consistently achieving
a high level of accuracy in restoring the original

backbone secondary structure across all experi-
ments with available ground truth data. While
this entails a trade-off with computational time,
the associated time overhead is limited to a span
of seconds to a few minutes per frame, depending
on the system’s size.

Appendix B Energy
minimisation

In the Results section, as outlined in Section2.2.2,
we performed energy minimisation in the con-
text of backmapping CG simulations. This process
posed unique challenges that necessitated a thor-
ough review of the minimisation protocol. Dur-
ing our comparative analysis with CG2AT, we
strictly followed their recommended procedures
for minimisation, integration, and equilibration
unless explicitly stated otherwise. The only devi-
ation was the initial starting point, which varied
between their fragment-based reconstruction or
the HEroBM output. Moreover, we broadened the
scope of our comparison by introducing a spe-
cialized, streamlined protocol for minimising the
HEroBM output structures, using the OpenMM
Python package [25]. Specifically, we employed the
amber14-all force field along with the L-BFGS
algorithm, utilizing a lower threshold set at 500
kilojoules per mole per nanometer. The choice of
this relatively loose threshold was deliberate; it
aimed to fine-tune the highest energy components
of the reconstructed structure while preserving the
molecule’s overall conformation in a force field-
independent manner. This decision was grounded
in the understanding that the minimised struc-
ture’s fidelity heavily relies on the selected force
field. Our work demonstrated that, even with
elevated thresholds, the resulting molecule exhib-
ited low deviations from the original atomistic
structure, as evidenced by RMSD. Incorporat-
ing OpenMM into our workflow was a strategic
choice, providing a comprehensive framework. It’s
important to note that the minimisation pro-
cess operates independently of HEroBM and can
be executed using alternative software tools if
desired.
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3 Supplementary Information

3.1 CG mapping implementation
details

Within the HEroBM framework, the CG mapping
definition is implemented with a collection of con-
figuration files, each specifying the set of atoms
that comprise each bead. Each atom is uniquely
identified with its residue name (resname) and
atom name; similarly, each bead has a unique
resname-beadname pair as label. Moreover, the
position of the bead could be the center of mass
of the atoms comprising the bead or, if specified,
the position of an atom among their constituent
ones. We report an example CG mapping file, used
to map the phenylalanine residue following the
Martini 3.0 model:

−−− ! Phenyla lan ine . amber −−−

molecule : PHE

atoms :
N: BB P1AA
H: BB
CA: BB P0A CM
HA: BB !
CB: SC1 P1A
HB2: SC1
HB3: SC1
CG: SC1 P1B
CD1: SC2 P1A
HD1: SC2
CE1 : SC2 P1B
HE1: SC2
CZ: SC2 , SC3 P2BA,P2BA 1/2 ,1/2
HZ: SC2
CD2: SC3 P1A
HD2: SC3
CE2 : SC3 P1B
HE2: SC3
C: BB P1AB
O: BB P2BA

In the provided YAML code, the molecule field
signifies that this mapping applies to all atoms
with the ‘PHE’ resname. The atoms field follows
the format:

ATOMNAME: BEADNAME [BMAPRULE] [WEIGHT]
BMAPRULE: P{HIERARCHY}{ANCHOR ATOM ID}{ATOM ID}

This configuration defines the atom map-
pings for various elements in the phenylalanine
molecule. Specifically, the backbone atoms – N,
H, CA, HA, C and O – are mapped onto the
‘BB’ bead. The center of mass of this bead is con-
strained to the CA atom, denoted by the ‘CM’
flag. The backmapping hierarchy is established in
the following manner:

1. Hierarchy Level 0 (CA Atom):
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• Place the CA at the center of mass of the
bead.

• Assign the ATOM ID ‘A’ to the CA atom.

2. Hierarchy Level 1 (N and C Atoms):

• Retrieve the positions of the N and C atoms,
with the CA atom as the anchor point.
The anchor point is the atom at the lower
hierarchy level which has ATOM ID ‘A’, as
specified in the ‘P1A’ initial part of N and C
atoms.

• Assign ATOM ID ‘A’ to the N atom and ‘B’
to the C atom.

3. Hierarchy Level 2 (O Atom):

• Retrieve the position of the O atom relative
to its anchor point, which is the C atom.

HEroBM facilitates the sharing of a single
atom among multiple beads, each assigned a spe-
cific weight. In our example, this functionality is
applied to the CZ atom, which is shared by the
‘SC2’ and ‘SC3’ beads, with an equal weight distri-
bution of 0.5 for each bead. Ordinarily, hydrogen
atoms are not backmapped by HEroBM, thus
lacking hierarchy and anchor point information.
However, they still possess the capability to influ-
ence the bead’s center of mass. Specifically, all
atoms contribute to the bead’s center of mass
unless the ! flag is indicated. In the preceding
example, only the ’HA’ hydrogen does not con-
tribute to the ’BB’ center of mass. However, in this
instance, this detail becomes redundant since the
center of mass is already designated to the ’CA’
atom by the CM flag.

3.2 Datasets

The initial dataset, called PDB 29k, was derived
from the original Top8000 [47] and the PISCES
[48] sets, consisting of a single chain per Pro-
tein DataBank (PDB) entry. Specifically, we built
the PDB 3k dataset by filtering 2.9k structures
from the PDB 29k, which was created by the
authors of the cg2all work [14] and is available
on their zenodo. For the second test case, we
adopted the PED Dataset [27]. To ensure con-
sistency and comparability with previous studies,
we deliberately selected identical entries as those
highlighted in the GenZProt paper [13] for train-
ing, validation and testing purposes. Access to the

dataset is available through their Github page,
where instructions for downloading can be found.

Table C1 summarises the specifics of each
dataset together with the EGNN parameters
employed for training and inference.

3.3 PED dataset using only C-alpha

We compared the performance of HEroBM with
that of GenZProt [13], using their same CG map-
ping and datasets. The CG input is comprised
by only the Cα atoms of each residue, which is
a common choice when dealing with ML method-
ologies, as it greatly reduces the amount of data
to process and at the same time challenges the
model to learn the correlation between secondary
structures and side chain orientation in a low
information regime. Table C2 shows the perfor-
mance of the GenZProt model and our PEDCα

model. The values represent the average RMSD
(expressed in Angstrom units) and the standard
deviation, computed across all the sample struc-
tures in the dataset. For the sake of comparison,
we run the GenZProt sampling method using the
currently available GitHub implementation and
sampling 100 structures for each frame, consid-
ering in the results only the one with minimum
RMSD from the ground truth. From the compar-
ison, we can conclude that the models perform
equivalently on this experiment, being able to
obtain low RMSD values on the task of recon-
structing the backbone, and thus recovering the
secondary structure at a high resolution (RMSD <
1 Angstrom). As for the the RMSD metric on side
chains, intrinsically disordered proteins form tran-
sient interactions between side chains that do not
allow stabilization of a specific secondary struc-
ture. For this reason, analysis of the side chain
provide more of a qualitative measurement, having
most of the residues free to move and thus impos-
sible to correctly recover from just the information
of the Cα position.

3.4 RCSB molecules of the month

To demonstrate the generalisation capabilities of
HEroBM beyond proteins similar to those that
were used for training, we picked the featured
molecules of the month on the RCSB Protein
Data Bank [28] for testing. We evaluated the
HEroBMPDB3k model on those proteins, which
cover a wide range in terms of structure and
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Model Train samples Valid samples CG mapping Cutoff radius [Å] Atoms per Bead

PDB3k 2900 72 Martini 3.0 7.0 5
PED 3900 80 Martini 3.0 7.0 5
A2A 100 50 Martini 3.0 7.0 5
POPC 2920 1460 Martini 3.0 10.0 6
ZMA 200 100 Custom 7.0 4
PEDCα 3900 80 CA Only 10.0 14

Table C1 Datasets used to train models for our experiments. The cutoff radius needs to be increased for PEDCα and
POPC to account for the higher sparsity and inter-bead distance. Atoms per Bead column refers to the maximum number
of atoms that comprise a bead in that CG mapping, and it is related with the degree of coarseness of the system.

Dataset GenZProt PEDCα

PED55 BB 0.72± 0.05 0.62± 0.06
SC 2.42± 0.31 2.61± 0.13

PED90 BB 0.88± 0.03 0.81± 0.05
SC 2.78± 0.11 2.50± 0.12

PED151 BB 0.73± 0.08 0.63± 0.09
SC 2.10± 0.14 2.07± 0.08

PED218 BB 0.56± 0.03 0.52± 0.03
SC 2.32± 0.04 2.50± 0.08

Table C2 RMSD values (in Angstrom units)
of atomistic structures reconstructed from CG
compared to original structures (before
coarse-graining). The CG mapping retains only
the Cα atom of each residue. ‘BB’ denotes
RMSD computed exclusively on heavy atoms
of the reconstructed protein backbones, while
‘SC’ denotes RMSD computed solely on heavy
atoms of the reconstructed protein side chains.

dimensions. Figures C2 and C3 summarise the
results obtained.
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Fig. C2 Results of HEroBM backmapping over RCSB molecules of the month (MOM) which were featured on RCSB
Webserver going from January 2023 to June 2023. MOMs vary in size, shape and function. We adopted both C alpha only
and Martini 3.0 CG mappings to allow a broader comparison of HEroBM results.
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Fig. C3 HEroBM results for MOMs going from July to October 2023.

27


	Introduction
	Results
	The HEroBM algorithm
	Hierarchical backmapping

	Case Studies
	Benchmark and test cases: Recovering atomistic structure
	Benchmarking on experimental structures of proteins
	Benchmarking on intrinsically disordered proteins
	Training on a single molecule
	RCSB Molecules of the Month
	Lipid bi-layer
	Small molecule

	Real Case: Backmapping coarse-grained simulations
	GPCR
	Small molecule
	End-to-end backmapping and simulation of real system


	Discussion

	Methods
	Atomistic representation
	Equivariant Graph Neural Networks
	Model architecture
	Loss functions

	Backbone optimisation
	Energy minimisation
	Supplementary Information
	CG mapping implementation details
	Datasets
	PED dataset using only C-alpha
	RCSB molecules of the month


