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Entropically Secure Encryption (ESE) offers unconditional security
with shorter keys compared to the One-Time Pad. In this paper, we
present the first implementation of ESE for bulk encryption. The main
computational bottleneck for bulk ESE is a multiplication in a very
large finite field. This involves multiplication of polynomials followed
by modular reduction. We have implemented polynomial multiplica-
tion based on the gf2x library, with some modifications that avoid
inputs of vastly different length, thus improving speed. Additionally,
we have implemented a recently proposed efficient reduction algorithm
that works for any polynomial degree. We investigate two use cases:
X-ray images of patients and human genome data. We conduct entropy
estimation using compression methods whose results determine the key
lengths required for ESE. We report running times for all steps of the
encryption. We discuss the potential of ESE to be used in conjunc-
tion with Quantum Key Distribution (QKD), in order to achieve full
information-theoretic security of QKD-protected links for these use
cases.

Introduction: Practical encryption schemes rely on computational hard-
ness assumptions, making them potentially susceptible to advances in
cryptanalysis. The One-Time Pad (OTP) encryption scheme [1] provides
unconditional security, not depending on any assumptions; however, the
size of the key needs to equal at least the entropy of the message, mak-
ing OTP-ing impractical. OTP encryption works by XOR-ing the key
and the message. OTP provides perfect security, which means that the
ciphertext leaks no information about the message.

Entropically Secure Encryption: If one does not aim for perfect security,
it is possible to achieve unconditional security with shorter keys. The
only additional condition is to guarantee a lower bound on the entropy
of the message from the point of view of the attacker. This concept is
called entropic security and the encryption scheme is called entropically
secure encryption (ESE) [2, 3] . If the plaintext has at least C collision
entropy, then it can be encrypted using a key with a length ℓ of

ℓ = = − C + 2 log 1
Y

(1)

where = is the message length and Y is the security parameter [3, 4].
This implies that a message whose collision entropy is close to its length
(i.e. almost uniformly distributed) requires only a short key for uncon-
ditional security. The collision entropy of a random variable with prob-
ability mass function (?G )G∈X is defined as − log2 (

∑
G∈X ?2

G ) .
In ESE, a short key is expanded to a long pseudorandom string which

is then used as the key for OTP. The key expansion is accomplished
through Galois Field (GF) multiplication of a public random string and
the key. Although ESE has been well studied, there is no implemen-
tation for encrypting bulk data, possibly because of the following rea-
sons. (1) Entropy estimation of the plaintext. If the data is not generated
according to a known probability distribution, it is impossible to com-
pute the entropy precisely. A way must be found to lower bound the
entropy, which is not always straightforward. (2) Typical implementa-
tions of GF multiplication work with data sizes that are much smaller
than in bulk ESE.

Entropically Secure Encryption and QKD: QKD has the unique prop-
erty that it generates unconditionally secure keys. However, the practical
implementation of QKD often involves the subsequent use of computa-

tionally secure encryption methods such as AES to secure transmitted
data [5]. Herein lies an opportunity for further security improvement
through the integration of ESE with QKD: if the QKD system produces

key bits at a rate that is compatible with the key consumption of the ESE
(which depends on the type of data and the transmission rate of the bulk
channel) then full information-theoretic security of the communication
channel can be achieved. As the entropy condition for ESE is tricky, it is
prudent to apply a layer of computationally secure encryption as well.

Key Expansion: Key expansion consists of two steps: (1) binary poly-
nomial multiplication of the public string X and the key :; followed by
(2) modular reduction of the result with an irreducible polynomial.

Binary Polynomial Multiplication: Our goal is to achieve bulk encryp-
tion with relatively short keys. Consequently, the multiplication algo-
rithm must be suitable for highly unbalanced multiplication scenarios,
where a lengthy public string—possibly megabytes or gigabytes—is
multiplied by a much shorter key.

A number of software libraries is capable of handling operands
larger than one MB. Chen et al. [6] presented the Add-FFT algo-
rithm, which takes two inputs of equal length up to 236 bits. At the
time of this research, Add-FFT is the fastest library for balanced (equal
length) multiplication beyond 217 bits. The gf2x library [7], one of the
most common for GF operations, accepts arbitrary input lengths. Other
libraries exist for multiplication of binary polynomials, but they cannot
handle the lengths with which we want to work.

We benchmarked Add-FFT and gf2x for unbalanced input sizes.
(An example is shown in Table 1). For Add-FFT we applied zero-
padding of the short string in order to get equal lengths. Our setup was
a laptop with an Intel Core i7-9750H 2.60GHZ processor and 16GB
RAM. For many different operand sizes we observe that gf2x is much
faster than Add-FFT when the operands are unbalanced. Hence we
selected gf2x for further experiments (see Table 2). We observe a sharp
increase at key length 210. Due to this artefact the running times are
clearly too long for applications with a high data rate. A new multipli-
cation implementation becomes essential for achieving more efficient
encryption.

Table 1. Execution times (in seconds) of the binary polynomial mul-

tiplication for fixed key length 27 bits and varying message length

(in bits).

Length of X 222 224 226 228 230 232

Add-FFT 0.02 0.08 0.47 2.60 9.67 40.77
gf2x 0.0005 0.002 0.003 0.01 0.05 0.20

Table 2. Execution times of gf2x binary polynomial multiplication

at fixed message length 230 bits and varying key length (in bits).

Length of k 27 28 29 210 211 212 213

time (s) 0.05 0.10 0.23 5.31 5.28 5.27 5.34

Simplemult: In an attempt to remove the artefact, we developed
a method simplemult that performs the multiplication piecewise
using blocks that have the size of the key. Let the key be repre-
sented as the polynomial @ (G ) . Let the random seed be ? (G ) =∑#−1

8=0 ?8 (G )G
8 (1+deg@) where # =

1+deg ?

1+deg@
and the polynomials ?8 are

of degree deg(@ ) . The multiplication is computed as

? (G ) @ (G ) =

#−1∑

8=0

?8 (G )@ (G ) G
8 (1+deg@) . (2)

We use gf2x for the multiplication ?8 (G )@ (G ) . We have benchmarked
simplemult against gf2x, see Table 3. We also implemented a mul-
tithread version t_simplemult and executed it with 12 threads.

Table 3 demonstrates a significant superiority of our algorithm over
gf2x when the key length is greater than 27. This improvement reaches
more than 36-fold when the key length is 210. When the key is smaller
than 28, our algorithm is slower because of overhead. Additionally, mul-
tithreading gives a further speedup. This indicates that there is potential
for further optimisation on different platforms and with different multi-
threading options. We note that gf2x itself cannot be sped up by multi-
threading since gf2x is a sequential process.
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Table 3. Execution times (in seconds) of the binary polynomial mul-

tiplication for fixed message length 230 bits and varying key length

(in bits).

Length of k 27 28 29 210 211 212 213

gf2x 0.05 0.10 0.23 5.31 5.28 5.27 5.34
simplemult 0.12 0.08 0.07 0.14 0.19 0.28 0.40

t_simplemult 0.08 0.07 0.07 0.07 0.07 0.07 0.09

We have done further benchmarks at fixed key length 214 and varying
message length (Table 4). Again, our method is significantly faster than
gf2x, and multithreading is improving performance.

Reduction: The second step of the key expansion is modulo reduction of
the multiplication result with an irreducible polynomial. The choice of
this polynomial is specific to the message length. Lists of irreducible
polynomials are available up to degree around 214 [8]. Furthermore,
some cryptographic primitives provide irreducible polynomials of very
specific degrees [9]. However, we need a broad range of degrees. We
have implemented a class of irreducible polynomials and the reduction
algorithm proposed by Banegas et al. [10]. The polynomials have flexi-
ble degree, and the reduction algorithm is efficient. Table 4 lists running
times of our implementation redBCP.

Table 4. Execution times (in seconds) of the binary polynomial mul-

tiplication and reduction algorithms for fixed key length 214 bits and

varying message length (in bits).

Length of X 222 224 226 228 230 232

Multiplication Algorithms

gf2x 0.01 0.06 0.29 1.34 5.17 44.3
simplemult 0.002 0.009 0.04 0.15 0.58 2.30

t_simplemult 0.001 0.004 0.008 0.03 0.12 0.47

Reduction Algorithms

redBCP 0.03 0.12 0.48 1.94 8.32 34.87
t_redBCP 0.01 0.02 0.06 0.23 0.91 3.89

Our reduction takes longer than the polynomial multiplication, even
though in theory it is an easier task. The reason is that our implemen-
tation redBCP is not in any way optimised. We were aiming only for
a functional implementation of [10]. We expect that code optimisation
will yield running times below simplemult. Note that 12-thread mul-
tithreading (t_redBCP) leads to a significant speedup, up to a factor 9.

Entropy Estimation: From (1) it is clear that the key length depends on
the characteristics of the plaintext, in particular a lower bound C on the
collision entropy. On the encryption side, such a lower bound has to
be available. In practical scenarios the plaintext is not generated from a
known fixed distribution, and the entropy cannot be computed exactly.

It is well known that on average, a piece of data cannot be compressed
below its Shannon entropy [11]. We take the approach of compressing
data and then using the compressed size as an estimate for the collision
entropy. It must be noted that collision entropy is smaller than Shannon
entropy unless the distribution is entirely uniform; hence we obtain an
overestimate even if we get the Shannon entropy correct. Nonetheless,
due to lack of other methods we explore this approach. We consider
only lossless compression, since lossy compression destroys informa-
tion, which would make our task more difficult.

We looked at two use cases and gathered real-world data for these
cases. We benchmarked various compression methods suitable for the
selected data and based our entropy estimates on the methods yielding
the best compression. Then we used (1) to estimate the required key
length in a particular way: (i) The value of C follows from the above
described approach of finding the best compression; (ii) The value of =
is determined by the standard way in which the data is communicated in
the use case. For instance, this can be a non-optimally compressed form
dictated by a standard. Then the key length is essentially the size of the
badly compressed file minus the size of the optimally compressed file.

In the first scenario, we focused on chest X-ray images from the
MIMIC-IV dataset [12, 13], a widely used dataset. For the second use

case, we used a human genome dataset of the study PRJEB36890 [14]
from the 1000 Genome Project [15]. The dataset comprises human DNA
sequencing information, with an average size of 130 GB, aligning with
our aim to do bulk encryption. We selected these datasets because they
contain a type of personal data that is highly sensitive.

X-Ray Image Use Case: The X-Ray image files are in DCM format,
a standard for medical images that includes patient information [16].
DCM files follow the DICOM (Digital Imaging and Communications
in Medicine) format. For our analysis, we utilized a sample of 881 files
from the dataset, 10.7 GB, with an average file size of approximately
12.5 MB. We benchmarked various compression methods. We present
the compression ratios of the top 6 (Table 5). BZip2 and LZMA2 are
universal methods with generic applications, while the other four meth-
ods are versions of general methods implemented in the GDCM [17]
application following the DICOM format.

Table 5. Compression ratios for X-ray images. Ratio: compressed

size/uncompressed size.

Method BZIP2 LZMA2 RLE JPEG J2K JPEG-LS

Ratio 0.37 0.43 0.56 0.44 0.40 0.40

Based on the findings from Table 5, we choose BZIP2’s compression
results for our entropy estimation. On the other hand, DICOM mandates
one of the standard methods; since JPEG-LS is the best-performing stan-
dard method we use JPEG-LS compressed files as the data that needs
to be encrypted. The average JPEG-LS-compressed file size is 5 MB,
while the average estimated Shannon entropy for a file is approximately
4.62 MB. The resulting key length (1) for ESE-encrypting a JPEG-LS-
compressed X-ray file is around 0.38 MB. Compared to OTP encryption,
which needs a 5 MB key, that is a reduction of 93%.

Human DNA Use Case: We used a sample of approximately 8 TB from
the 1000 Genome Project dataset, comprising 61 files with an average
size of 132.12 GB. In Table 6 we present the four best methods. The first
three are well known general methods. Spring [18] is a tool specifically
developed for processing and compressing genome files. With Spring,
the average compressed file size is around 6.49 GB. It is worth noting
that some DNA compression methods claim to provide better ratios, but
since they are lossy [19], we do not consider them our analysis. We select
the Spring compression results as our entropy estimation.

Table 6. Compression ratios for genome files. Ratio: compressed

size/uncompressed size.

Method BZIP2 LZMA2 PPMD SPRING

Ratio 0.083 0.075 0.063 0.049

If Spring-compression were ideal, yielding a completely uniform out-
put, then the ESE key length would be 2 log 1

Y
, which is tiny compared to

the file size. However, it is too optimistic to assume that Spring produces
ideal compression. We want to quantify the gap between the compressed
size and the entropy. Unfortunately there is no obvious way to achieve
this. We present a heuristic method to estimate the gap. We notice that
not all files are compressed at the same ratio; we observe a standard
deviation of around 0.006 in the compression ratio. Handwavingly we
postulate that optimal compression occurs at the average ratio minus one
standard deviation, i.e. 0.049 − 0.006 = 0.043. For an average file size
of 132.12 GB this yields an entropy of 5.68 GB and a compressed size
of 6.47 GB. The resulting gap, and hence key length, is around 800 MB.
That is not a large relative reduction compared to the compressed file
size of 6.47 GB. Note however that our heuristic argument could be too
pessimistic; it assumes that all genome files have the same information
density, which may be false.

Complete Implementation: We have implemented the entire ESE
scheme by integrating our multiplication algorithm simplemult, the
t_redBCP reduction, and the final XOR operation of the message and
the expanded key. We ran experiments on two setups: (i) a personal lap-
top with Intel Core i7-9750H 2.60GHz(6 cores) with 16GB RAM and
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(ii) a server with Intel Xeon Silver 4214R 2.40GHz (48 cores) with 376
GB RAM. We set Y = 2−128, which gives 2 log 1

Y
= 256. (Given the

overall key sizes, the choice of Y has a negligible effect.) We present
execution times in Tables 7, 8 and 9.

In our experiment with X-ray images, files are encrypted as a whole
because this is feasible for the average compressed file size of 5MB.

In the genome use case, the average compressed file size is around
6.49 GB which makes it difficult to encrypt an entire file at one time.
Therefore, we divided the files into smaller chunks and encrypted them
separately. This increases the key length by 256 bits for every additional
chunk due to the 2 log 1

Y
term in (1), which applies to each individual

encryption .

Table 7. Average execution time (in seconds) of the sub-processes in

the encryption of one X-ray image file. The encryption rate and key

consumption rates are in MB/s.

Mult. Red. XOR Enc. Rate Key Cons.

Laptop 0.22 0.05 0.0010 18.79 1.42
Server 0.22 0.03 0.0005 19.83 1.50

In our first experiment with genome files (Table 8), we assume that
compression is optimal, yielding a key length 256 bits per chunk. This
leads to very small key consumption compared to the file size.

Table 8. Average execution times (in seconds) of the sub-processes of

the ESE scheme for one genome file with various chunk sizes (MB)

when the key length is 256 bits per chunk. The encryption rate is in

MB/s and key consumption is in bits/s.

Chunk Size Mult. Red. XOR Enc. Rate Key Cons.

Laptop

256 16.99 68.52 1.50 76.37 79.44
512 17.20 71.79 2.07 72.97 39.36

1024 21.84 74.93 2.53 66.92 18.05
Server

256 15.67 48.43 1.39 101.47 106
512 15.76 48.46 1.50 101.12 55

1024 15.85 49.47 1.67 99.20 27
2048 16.13 50.45 1.89 97.06 15
4096 17.16 52.48 2.46 92.16 7

In the second experiment (Table 9), we assume that the entropy
ratio in a genome file is 0.043, which is lower than the compres-
sion ratio 0.049. This yields a key length (per chunk) given by ≈
chunksize

0.049
(0.049 − 0.043) .

Table 9. Average execution times (in seconds) of sub-processes of the

ESE scheme on the server for one genome file with various chunk

sizes (MB) assuming entropy ratio 0.043. Key length (MB) is per

chunk. Encryption and key consumption rates are in MB/s.

Chunk

Size

Key

Length

Mult. Red. XOR Enc.

Rate

Key

Cons.

256 31.34 798 50.33 1.39 7.82 0.94
512 62.70 627 51.74 1.50 9.77 1.18
1024 125.39 792 55.12 1.67 7.82 0.94
2048 250.78 1322 53.92 1.89 4.82 0.58

While in Table 8 the encryption rate decreases with increasing chunk
size, in Table 9, the encryption rate reaches its peak with a chunk size of
512 MB. This is due to the trade-off between the lengths of the operands
and the number of chunks in simplemult. Thus for the genome use
case, the optimal chunk size to be encrypted is around 512 MB.

Conclusion: We have implemented all stages of Entropically Secure
Encryption and studied execution times for two use cases. The com-
putational bottleneck is the polynomial multiplication. We see room for
improvement by better use of parallelization. Furthermore, the imple-
mentation of the reduction can be significantly improved.

In the X-ray images use case, we get file encryption in around 0.3
seconds, with a key consumption rate of 1.5 MB/s. In the DNA use
case with a heuristic entropy estimate, which may be highly pessimistic,
we get optimal performance when we independently encrypt chunks of
512 MB, with a key consumption rate around 1 MB/s. With an opti-
mistic estimate of the compression efficiency we get much smaller keys,
leading to increased encryption speed and key consumption of less than
100 bits/s.

For the use of ESE in conjunction with QKD, the key generation rate
of QKD must exceed the speed at which key material is used up, which is
dictated by the data rate of the communication channel and the ESE key
size associated with the data type. For simplicity, we consider the case
that compressed files need to be sent at 10 MB/s which is a reasonable
rate for a hospital [20] . In the X-ray use case, this implies that there
is 0.5s available to encrypt a compressed file, which is feasible on a
laptop. Furthermore, it leads to a key consumption of 0.6 MB/s. In the
genome use case with pessimistic assumptions (Table 9) and 512MB
chunk size, the encryption rate struggles to match the data rate, and the
key consumption is 1.2 MB/s.

Whether the key consumption matches the QKD key generation rate
depends on the use case, the deployed QKD technology and the QKD
distance. Current QKD implementations achieve key rates up to approx-
imately 14 MB/s over distances of about 10 km [21, 22] and 0.4 MB/s at
around 100 km [23]. At distances up to roughly 50 km this is certainly
compatible with the key consumption in both our use cases, even under
pessimistic assumptions. Beyond that range, it is certainly compatible
with the genome use case under mildly optimistic assumptions on the
quality of the compression.

In conclusion, even an un-optimised implementation of Entropically
Secure Encryption shows that ESE should be practical in the two studied
use cases, and that integration with QKD is feasible given the matching
key rates. As topics for future work we highlight further optimization
of the finite-field multiplication, studying more use cases, and improved
entropy estimates.
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