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ABSTRACT

In the field of medical image analysis, the scarcity of Chinese chest X-ray report datasets has
hindered the development of technology for generating Chinese chest X-ray reports. On one hand,
the construction of a Chinese chest X-ray report dataset is limited by the time-consuming and costly
process of accurate expert disease annotation. On the other hand, a single natural language generation
metric is commonly used to evaluate the similarity between generated and ground-truth reports, while
the clinical accuracy and effectiveness of the generated reports rely on an accurate disease labeler
(classifier). To address the issues, this study proposes a disease labeler tailored for the generation of
Chinese chest X-ray reports. This labeler leverages a dual BERT architecture to handle diagnostic
reports and clinical information separately and constructs a hierarchical label learning algorithm
based on the affiliation between diseases and body parts to enhance text classification performance.
Utilizing this disease labeler, a Chinese chest X-ray report dataset comprising 51,262 report samples
was established. Finally, experiments and analyses were conducted on a subset of expert-annotated
Chinese chest X-ray reports, validating the effectiveness of the proposed disease labeler.

1 Introduction

In the modern healthcare system, efficient and precise medical imaging reports play a crucial role in patient diagnosis
and treatment planning. With the rapid increase in medical imaging data, traditional manual interpretation methods,
which are time-consuming and limited by the personal experience of physicians, struggle to meet the demands of the
rapidly evolving medical field. Therefore, there is an urgent need to leverage deep learning technology to automate the
generation of medical imaging reports[1]. The task of generating medical imaging reports driven by deep learning relies
on large volumes of high-quality datasets. However, annotated medical data are extremely scarce, and for researchers
working on automated report generation, these data are as precious as rare minerals. Most studies rely on publicly
available datasets to develop and test models. Among various medical imaging modalities, chest X-ray are not only
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the most common but also have a vast amount of data; hence, existing public datasets primarily consist of chest X-ray
reports[2, 3]. Moreover, these datasets are mostly in English, and there is a significant lack of Chinese chest X-ray
report datasets, which limits the research on Chinese chest X-ray report generation algorithms.

The main challenge in constructing a Chinese chest X-ray report dataset is the accurate annotation of disease labels.
Generally, a dataset comprises three parts: reports, images, and labels. Reports and images can be obtained through a
hospital’s Radiology Information System (RIS) and Picture Archiving and Communication System (PACS), but the
process of annotating disease labels is both complex and time-consuming. Although crowdsourcing methods can be used
for large-scale dataset annotation in other fields, in the medical domain, this approach is both costly and impractical due
to the need for specialized knowledge. Researchers have found that medical images usually come with corresponding
medical reports, which implicitly contain the disease diagnostic labels of the images. Therefore, it is possible to extract
disease labels for images from medical diagnostic reports. To this end, numerous natural language processing systems
have been developed to utilize medical domain knowledge and construct complex feature engineering to annotate
reports, thereby assisting in the disease annotation work of medical images[4]. With the advancement of artificial
intelligence technology, deep learning methods have also been applied to the disease annotation of chest X-ray datasets,
showing significant effects[5, 6]. However, existing methods are primarily designed for English datasets, and there is a
lack of disease labelers suitable for Chinese medical reports.

On the other hand, when evaluating the generation model of chest X-ray reports, natural language generation (NLG)
evaluation metrics are commonly used, which can only measure the similarity between the generated text and the
reference text but cannot evaluate the accuracy of disease prediction in the generated report. To assess the disease
prediction accuracy of automated chest X-ray report generation models, Liu et al.[7] proposed the Clinical Efficacy (CE)
evaluation metric, which evaluates the disease prediction effect by calculating the F1 score, precision, and recall rate of
the diseases included in the generated report, offering greater clinical practical value. However, calculating the CE
metric requires a disease labeler to annotate the disease labels in the generated report. While there are standard disease
annotation tools in the English domain, the Chinese domain lacks corresponding tools, which hinders the evaluation of
Chinese chest X-ray report generation models and, consequently, the research on Chinese chest X-ray report generation
algorithms.

To address the aforementioned issues, this paper proposes a disease labeler with a dual BERT architecture and
hierarchical label learning, and constructs a Chinese chest X-ray report dataset based on this labeler. The main
contributions of this paper can be summarized as follows:

1) A Chinese disease labeler combining a dual BERT architecture with hierarchical label learning algorithms has been
designed and developed. The labeler encodes diagnostic reports and clinical information through the dual BERT
architecture and leverages the hierarchical relationship between diseases and body parts to create a hierarchical label
learning algorithm, enhancing the labeler’s disease prediction accuracy.

2) Based on this disease labeler, a method for constructing a Chinese chest X-ray report dataset has been proposed,
and a Chinese chest X-ray report dataset (CCXRD) has been constructed, providing a standardized process for the
construction of related datasets.

3) Experiments conducted on a subset of Chinese data annotated by experts show that the disease labeler proposed in
this study exhibits superior annotation performance compared to existing models. As a general-purpose tool, it can
not only be used for the construction of Chinese datasets but also for evaluating the disease prediction accuracy of
Chinese chest X-ray report generation models.

2 Related Word

2.1 Chest X-Ray Report Disease Labeler

In radiological examinations, chest X-ray is a routine and widely used procedure. Disease labels are often obtained
through rule-based methods applied to chest X-ray reports to construct some publicly available large-scale datasets[3].
These rule-based methods typically rely on features such as controlled lexicons and syntactic rules for engineering,
in order to identify and categorize radiological findings. NegEx[8] is a widely used rule component that identifies
negations in reports through simple regular expressions and is often applied in conjunction with ontologies such
as the Unified Medical Language System (UMLS). NegBio[9] is an extension of NegEx, which not only detects
negations in chest X-ray reports but also identifies uncertainties in various pathological states by defining general
dependency patterns and subgraph matching for graph search traversal. NegBio has been applied to generate labels
for the ChestX-Ray14 dataset[10]. The CheXpert labeler[5] improves performance in disease annotation of chest
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X-ray reports through more refined mention extraction, an improved natural language processing (NLP) pipeline, and
rules for uncertainty and negation extraction. It played a significant role in creating the CheXpert dataset[5] and the
MIMIC-CXR dataset[3] labels, which are among the largest publicly available chest X-ray datasets. Despite the notable
progress of these rule-based methods, they have not fully captured the complexity, ambiguity, and subtlety of natural
language in radiology reports.

With the continuous advancement of artificial intelligence technology, deep learning methods have also achieved
significant results in annotating radiology report datasets[11]. For instance, Bustos et al.[12] trained an ensemble of
attention-augmented recurrent neural networks (RNNs) and convolutional neural networks (CNNs) on 27,593 reports
annotated by physicians and generated labels accordingly. Recently, Transformer-based models have also been applied
to the annotation tasks of radiology reports. Drozdov et al.[13] trained classifiers with BERT and XLNet on 3,856
radiologist-annotated reports to distinguish between normal and abnormal labels. McDermott et al.[14] proposed
CheXpert++, an improved version of CheXpert[5], trained on a BERT model and fine-tuned on expert-annotated reports
based on the output of the rule-based CheXpert labeler, demonstrating higher performance, speed, differentiability, and
probabilistic output. Smit et al.[6] combined the strengths of existing radiology report labelers and expert annotations
to create CheXbert, a highly accurate chest X-ray report labeler.

However, the aforementioned research primarily targets disease labelers designed for English chest X-ray reports. This
paper takes into account the characteristics of Chinese chest X-ray reports and designs a Chinese chest X-ray report
disease labeler with a dual BERT architecture and hierarchical label learning algorithm.

2.2 Chest X-Ray Report Generation Datasets

The performance of deep learning-based medical imaging report generation algorithms is greatly influenced by the
quality of the training data. High-quality datasets are the cornerstone of training these algorithms, and the availability
of public datasets has greatly facilitated progress in the field of medical imaging report generation. Currently, public
datasets are mostly sourced from the United States and Europe, focusing on chest X-ray (CXR) images and their
corresponding reports. Table 1 details these typical chest X-ray datasets, including Indiana University Chest X-ray (IU
X-Ray)[2], ChestX-ray[10], CX-CHR[15], CheXpert[5], MIMIC-CXR[3], PadChest[12], and CC-CXRI[16], among
others.

Table 1: Common Chest X-ray Image Report Datasets
Dataset Year Number of Images Language

IU X-Ray[2] 2015 7,470 English
ChestX-ray[10] 2017 112,120 English
CX-CHR[15] 2018 45,598 Chinese
CheXpert[5] 2019 224,316 English

MIMIC-CXR[3] 2019 377,110 English
PadChest[12] 2019 160,868 English
CC-CXRI[16] 2021 161,398 Chinese

Specifically, IU X-Ray[2] is an open-access, large-scale CXR dataset maintained by the United States National Library
of Medicine, containing 7,470 images of lateral and frontal views of CXRs along with 3,955 corresponding radiological
reports. These images have a resolution of 512×512 pixels and are provided in PNG format. The ChestX-ray dataset[10],
maintained by the National Institutes of Health Clinical Center, is divided into two versions: ChestX-ray8 and ChestX-
ray14. ChestX-ray8 includes 108,948 frontal view CXR images of 32,717 unique patients and annotates eight disease
types from radiological reports. ChestX-ray14 adds six more categories of chest diseases and encompasses a total of
112,120 frontal view CXR images. These two versions of the dataset are commonly used for classification tasks of
chest X-ray, as well as for pre-training visual models in chest X-ray report generation tasks. CX-CHR[15] is a private
internal dataset consisting of 45,598 chest X-ray images and corresponding Chinese reports from 35,609 patients, but
the specifics of its dataset construction method and process are not elaborated in detail in the literature[15], and it is only
used within that publication. CheXpert[5] is a public dataset collected by Stanford Hospital, covering 22,431 frontal
and lateral view CXRs from 65,240 patients, annotated as positive, negative, or uncertain for 14 common chest diseases
using the rule-based CheXpert labeler[5]. MIMIC-CXR[3] is the largest public radiology dataset to date, provided by
the Beth Israel Deaconess Medical Center in Boston, comprising 377,110 CXR images and 227,835 corresponding
radiological reports. PadChest[12] comes from the Hospital San Juan in Spain, a large public dataset containing over
160,000 CXR images from 67,000 patients. CC-CXRI[16] was constructed by the Chinese Chest X-ray Image Research
Consortium, a vast CXR dataset whose disease labels were extracted from related radiological reports using a rule-based
Natural Language Processing (NLP) labeler.
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The aforementioned work primarily involves English chest X-ray report datasets and Chinese chest X-ray datasets that
only include chest X-ray and disease labels. However, this study, based on the proposed disease labeler, designs a
construction process for a Chinese chest X-ray report dataset and completes the construction of a dataset. It also lays
the foundation for the construction of large-scale publicly available datasets.

3 Chinese Chest X-Ray Report Disease Labeler

3.1 Dual BERT Network Architecture

The objective of chest X-ray report annotation tasks is to extract disease labels from the free text of chest X-ray reports,
such as "肺纹理增多" or "肺间质性病变". Specifically, the labeler receives paragraphs from radiological reports as
input and outputs the determination results for each predefined disease category, classifying them as either positive
or negative. It is noteworthy that the category "未见明显异常" is mutually exclusive with other disease categories,
meaning that if any disease is detected, "未见明显异常" is classified as negative, and vice versa if no disease is
detected.

The overall architecture of the proposed Chinese chest X-ray report disease label labeler is depicted in Figure 1.
Initially, BERT-A is tasked with encoding the medical report to obtain feature vectors vA, while BERT-B encodes
clinical information to acquire corresponding features vB . Subsequently, the feature vectors from both are concatenated
to obtain a comprehensive textual feature vAB . Finally, these features are fed into classifier A and classifier B for
supervised training or for the annotation of disease labels.

BERT-A

BERT-B

concat

未见明显异常

肺纹理增多

肺间质性病变

…

classifier A

无异常

肺部异常

心脏异常

…

classifier B

positive

negative

征象描述: 双肺纹理增多，
可见少许索条影、斑点
影，…

诊断结论: 双肺纹理增多。
双肺纤维硬结灶。…

病人性别: 女性。
年龄: 80岁。
临床描述: 主诉：咽痛，流
涕，咳嗽7天， …

临床诊断: 呼吸道感染。

Av

Bv

ABvChest X-Ray Report

Clinical Information

positive

negative

positive

negative

positive

negative

positive

negative

positive

negative

Figure 1: Overall Architecture for the Chinese Chest X-ray Report Disease Labeler

The introduction of the dual BERT encoders stems from previous research that typically only used medical reports as
model input, neglecting related clinical information. In this paper, separate dual BERT architecture are employed to
encode medical reports and clinical information independently. Due to the significant content differences between the
two, a weight-sharing mechanism is not adopted. Instead, each BERT is allowed to have its own weight parameters,
enabling better handling of their respective textual data.
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3.2 Hierarchical Label Learning

The design of the hierarchical label learning algorithm takes into account that patients may suffer from multiple diseases
simultaneously, and these diseases often exhibit correlations, with the location of the disease serving as a connection
point for such correlations. Based on this, this paper has designed a hierarchical labels relationship graph to reflect
the affiliation between diseases and body parts, as shown in Figure 2. For example, if a patient is annotated with the
secondary disease label "肺结节", then accordingly, the primary disease label "肺部异常" should also be marked as
positive. Similarly, if a patient is labeled with the secondary disease tag "阴影增大", then the primary label "心脏
异常" should also be marked as positive. If a patient is not annotated with any primary disease label, they should
be classified as "正常". During the training phase of the labeler, Classifier A uses secondary labels for supervised
training, while Classifier B uses primary labels. In the inference phase, only the output results of Classifier A are
needed. According to the design of the hierarchical labels, Classifier A consists of 14 linear output heads, with 12
corresponding to various medical diseases, one corresponding to "PICC," and another corresponding to "未见明显异
常". Classifier B consists of 7 linear output heads, with 5 corresponding to abnormal locations, one corresponding to
"正常", and another corresponding to "设备".

设备正常 主动脉异常胸膜异常心脏异常肺部异常 脊柱异常

未见
明显
异常

脊柱
侧弯、

脊柱
后凸

主动
脉迂
曲、
硬化

PICC
胸腔
积液

胸膜
粘连

胸膜
增厚

肺纹
理增
多

心影
增大

肺间
质性
病变

肺内
病变

肺结
节

肺硬
结灶

肺纤
维索
条影

Figure 2: Hierarchical Labels Relationship Diagram

4 Construction of a Chinese Chest X-ray Report Dataset

4.1 Chest X-ray Image Preprocessing

During the preprocessing stage of constructing a Chinese chest X-ray image report dataset, the collection of chest X-ray
images originated from the Image Archiving and Communication System (PACS) of the Third Hospital of Peking
University. These images encompass various scenarios, including inpatient, outpatient, and health examination settings.
The original images were in the Digital Imaging and Communications in Medicine (DICOM) standard format, which
contained patient personal information and detailed examination-related information. In the image selection process,
chest X-ray from patients under 18 years old, occupational pneumoconiosis chest X-ray, bedside chest X-ray (due
to poor imaging quality), reports with irregular descriptions or overly brief content, and rib series chest X-ray were
excluded. To protect patient privacy, de-identification was performed when exporting images from the system, and the
hospital’s radiology information system was used to associate the images with corresponding radiological reports. This
study only included chest X-ray in the posteroanterior (PA) and lateral (LA) projection directions.

After obtaining the de-identified DICOM original images, a format conversion was carried out to enable display on
standard devices, with PNG format selected over JPEG because PNG can preserve more medical image details without
loss. The first step in the conversion process was to read the DICOM images using the pydicom library1. Subsequent
to that, the Window Width and Window Center attribute values of the images were obtained. The concept of window
width and window level arises because medical images typically use 16 bits to represent the information of each pixel,
whereas standard monitors can only display 8-bit data, i.e., grayscale values from 0 to 255. Thus, window width and
window level are used to determine the range of grayscale of interest for appropriate display on monitors. The window
level specifies the grayscale center, and the window width determines the display range from darkest to brightest. A
larger window width results in a smoother transition from black to white in the image but may make it more difficult to
discern details; conversely, a smaller window width increases image contrast, making certain details more prominent
but potentially causing the loss of other details. Therefore, when converting from DICOM to PNG format, a pixel value

1https://zenodo.org/records/4248192
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mapping transformation is required, mapping the values within window level ± window width/2 to the 0-255 grayscale
range. The specific formula for the mapping is as follows:

GV =


0, if PV < WC − WW

2
255∗(PV−(WC−WW

2 ))
WW , if WC − WW

2 ≤ PV ≤ WC + WW
2

255, if PV > WC + WW
2

(1)

wherein, GV ∈ [0, 255] represents the grayscale value after mapping, PV is the original pixel value, WC stands for
Window Center value, and WW stands for Window Width value. This study directly utilized the dcmj2pnm tool from
the DCMTK toolkit2 to complete the pixel value mapping according to the formula above. The corresponding terminal
command format is: "dcmj2pnm +Ww [window center value] [window width value] +on [original file path] [save file
path]".

It should be noted that for DICOM images with multiple sets of window width and window level values, this study by
default chooses the first set of parameters for the image format conversion.

4.2 Chest X-ray Report Preprocessing

In the process of constructing Chinese chest X-ray report dataset, the preprocessing of chest X-ray reports is crucial.
These reports are structured, with the radiologists’ diagnoses and relevant patient information stored in specific fields. A
typical radiological report, as shown in Table 2, contains multiple fields: the ACC field serves as a unique identifier for
the patient’s current examination; the findings field records the radiologist’s observational descriptions of the images;
the impression field contains the doctor’s diagnosis based on the radiological observations; the clinical diagnosis field
records the clinical doctor’s diagnosis; and the clinical description field provides relevant information about the patient.

Table 2: Examples of Content for Each Field in Chest X-ray Reports
Field Name Content

ACC 01220110301300

征象描述

对比2021-03-23日片：双肺纹理增多、紊乱，见多发网格影，
左下肺新发条片样密度增高模糊影，双肺下野见点状高密度影，
肺门影不大，纵隔不宽，心影饱满，两膈光滑，肋膈角锐利。

双侧顶部胸膜增厚。余大致同前。左肾可见插管影。

诊断结论

双肺间质性病变伴左下肺感染？较前进展，随诊
双肺结节，随诊

双下肺纤维硬结灶可能
双侧顶部胸膜增厚

临床诊断 肾造瘘术后，左
病人性别 男
年龄 082Y00M20D

临床描述
放射科号:/身高(cm):/体重(kg):/是否肝肾功能不全:

/是否碘剂过敏://入院检查

In this study, the preprocessing of report data is divided into two parts: text preprocessing and annotation of medical
report disease labels. Text preprocessing is mainly achieved through Python programming and regular expressions,
with the relevant regular expressions shown in Table 3. For example, items 1, 2, and 6 involve comparative information
between the current chest X-ray and previous examinations. Since only the current chest X-ray is input during model
training, and previous chest X-ray information is not available, it was decided to remove this comparative information
to avoid generating errors. Items 3, 4, and 5 contain subjective opinions of radiologists, which may vary from doctor
to doctor and result in different descriptions for the same chest X-ray. Therefore, to reduce data noise, these contents
were removed. Item 7 aims to clear noise information from the clinical description field. Additionally, all English
punctuation marks have been replaced with Chinese punctuation.

Regarding the processing of specific fields, each disease diagnosis in the diagnostic conclusion field is treated as a
phrase and connected with periods. The age field extracts only the first three characters and converts them to an integer
type.

2https://github.com/DCMTK/dcmtk
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Table 3: Regular Expressions Used for Text Preprocessing
Item No. Regular Expression Matched Text

1 (，|。)*(余大致同前|大致同前|似大致同前|
余所见大致同前|所见大致同前|范围大致同前) ，大致同前

2

(对比|与|结合)(上片|前片)?
\d{3,4}(-|.)\d{1,2}(-|.)\d{1,2}(日|\s)?

(\d{1,2}(：|:)\d{1,2})?
(片对比|片|胸片|床旁片|床旁平片|床旁胸片|CT)?

(：|:|。|，|；|;)?

对比2021-03-23日片：

3 (，|。)?(余|建议|请|清|位置)?结合.*?(。|，) ，请结合CT检查。
4 (，|。|、)?随诊.*?(。|，|、) ，随诊复查。
5 ，请?注意心功能 ，请注意心功能

6
(，|、)?(范围|左肺|右肺|左侧|右侧|右肺野|左肺野)?
较前(明显|稍|略|有所)?(好转|吸收|减轻|进展|增大|

减少|减小|缩小|增多|改善|复张|增多|加重|增加|好转|清晰)
，较前稍减轻

7 放射科号:/身高(cm):/体重(kg):/是否肝肾功能不全:
是否碘剂过敏:/*

放射科号:/身高(cm):/体重(kg):
/是否肝肾功能不全:/是否碘剂过敏://

Subsequently, the disease label annotation of the radiological reports is completed using the labeler proposed in
Section 3 "Chinese Chest X-Ray Report Disease labeler" of this paper. The model’s input includes image descriptions,
diagnostic conclusions, patient gender, age, clinical descriptions, and clinical diagnoses, while the output of the model
has selected 14 disease labels based on the number of disease samples and their degree of importance. These labels
include "未见明显异常", "肺纹理增多", "肺纤维索条影", "心影增大", "肺硬结灶", "胸膜增厚", "主动脉迂曲、
硬化", "PICC," "肺结节", "肺内病变", "胸膜粘连", "脊柱侧弯、脊柱后凸", "胸腔积液", and "肺间质性病变".
Through the steps mentioned above, the preprocessing of the radiological reports and the generation of disease labels
were completed.

4.3 Overview of the Constructed CCXRD Dataset

The Chinese chest X-ray report dataset constructed in this paper is named CCXRD (Chinese Chest X-ray Report
Dataset). The dataset is randomly divided according to an 8:1:1 ratio of data to form training, validation, and test sets.
As shown in Table 4, it includes detailed statistical information on the medical imaging of the three datasets. PA images
refer to chest X-ray taken in the anteroposterior projection, while LA images are taken in the lateral projection. The
data division is based on the number of PA images, as each sample has only one PA image and one medical text report,
while LA images are not mandatory. Accordingly, the Chinese chest X-ray image report dataset constructed in this
study contains a total of 47,886 samples, with a total of 51,262 images. Among these 51,262 images, 33,172 images
show at least one disease, and 18,060 images are normal chest X-ray.

Table 4: Overview of Image Distribution Across Training, Validation, and Test Sets
Dataset Training set Validation set Test set total

Number of images 40,968 5,156 5,138 51,262
Number of PA images 38,308 4,789 4,789 47,886
Number of LA images 2,660 367 349 3,376

A statistical analysis of the medical report disease labels in the dataset has been conducted, with the results presented in
Table 5. The positive ratio is calculated by dividing the number of positive samples by the total number of samples in
the dataset; therefore, the sum of positive ratios may exceed 100%, which is due to the presence of samples annotated
with multiple disease labels. In the dataset, "未见明显异常" and "肺纹理增多" are the most numerous, accounting
for 34.9% and 48.93% of the samples, respectively, a figure that results from a reduced proportion of normal samples.
In the actual distribution of medical data, the proportion of normal chest X-ray might be higher. Moreover, common
clinical diagnoses such as "肺纤维索条影", "心影增大", "肺硬结灶", and "胸膜增厚", while lower in proportion
compared to normal samples, are still relatively common in clinical practice. The proportions of other diseases are
smaller, which poses a significant challenge in the training of related models and also reflects a distinctive feature of
this dataset.
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Table 5: Statistics of Disease Label Counts and Their Frequencies in the Dataset
Disease Name Positive Quantity Positive Ratio
未见明显异常 16,714 34.90%
肺纹理增多 23,429 48.93%
肺纤维索条影 7,792 16.27%
心影增大 5,722 11.95%
肺硬结灶 6,181 12.91%
胸膜增厚 4,164 8.70%

主动脉迂曲、硬化 1,502 3.14%
PICC 1,077 2.25%
肺结节 1,634 3.41%
肺内病变 1,208 2.52%
胸膜黏连 909 1.90%

脊柱侧弯、脊柱后凸 688 1.44%
胸腔积液 1,373 2.87%

肺间质性病变 1,384 2.89%

In summary, the CCXRD dataset proposed in this paper encompasses a total of 51,262 chest X-ray, including both
frontal and lateral views, and is accompanied by 47,886 radiological reports. Each report contains fields such as "ACC,"
"征象描述", "诊断结论", "临床诊断", "病人性别", "年龄", "临床描述", and "疾病标签", and has been divided into
training, validation, and test sets in an 8:1:1 ratio.

5 Experimental Results and Analysis

5.1 Validation dataset

To validate the effectiveness of the Chinese chest X-ray report disease labeler proposed in this paper and to construct
a large-scale Chinese chest X-ray report dataset based on this labeler, this study collaborated with the Radiology
Department of Peking University Third Hospital to manually annotate a data subset, which includes a total of 24,035
samples divided into a training set (19,228 samples), a validation set (2,403 samples), and a test set (2,404 samples)
in an 8:1:1 ratio. The medical text data items included in the dataset cover "征象描述", "诊断结论", "患者性别",
"患者年龄", "临床描述", and "临床诊断". All disease labels were personally annotated by professional diagnostic
physicians, involving a total of 53 disease categories. Based on the number of samples and the clinical significance of
the diseases, this study selected 14 primary disease labels for in-depth analysis.

5.2 Evaluation Metrics

To comprehensively evaluate the performance of the Chinese disease labeler, this study employed multiple evaluation
metrics, including F1 score, Kappa statistic[17], weighted F1 score, and weighted Kappa statistic. Both the F1 score
and Kappa statistic are key performance indicators for classification tasks, but they emphasize different aspects.

The F1 score is defined for binary classification problems and is the harmonic mean of precision and recall. Precision
represents the proportion of actual positive cases among the samples predicted as positive by the classifier, while recall
indicates the proportion of actual positive cases that the classifier correctly predicted as positive. The F1 score can be
calculated using the following formula: F1 = 2 × (precision × recall) / (precision + recall). The closer the F1 score is to
1, the better the model’s performance. The F1 score is an important indicator for evaluating model performance on
imbalanced datasets because it considers both precision and recall.

The Kappa statistic, also known as Cohen’s Kappa, is another metric for assessing classifier performance, particularly
suitable for multi-class problems. Unlike the F1 score, which focuses on the accuracy of classifier predictions, the Kappa
statistic measures the difference between the accuracy of classifier predictions and the accuracy of random predictions,
providing a corrected assessment of classifier performance. A Kappa value of 1 indicates perfect agreement between
predictions and reality, a value of 0 indicates that the consistency of predictions is the same as random predictions, and
a negative Kappa value suggests that the consistency of predictions is below the level of random chance.
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The weighted F1 score and weighted Kappa statistic introduce the frequency of occurrence of each disease label as a
weight in the calculation process, resulting in a weighted evaluation. This weighting mechanism takes into account the
distribution of different disease labels in the dataset, thus providing a more precise assessment of model performance.

5.3 Experimental Setup

The dual BERT encoder used in this study is based on the BERT-Base architecture, with initial weights inherited from
MedBERT-kd[18], and all layers were fine-tuned. In this architecture, the feature dimension of the [CLS] token output
by the BERT model is 768. For the classification task, two linear classification heads were designed; classifier A
has 14 output nodes, while classifier B has 7 output nodes. To prevent overfitting, the Dropout rate was set to 0.1.
Regarding the loss function, Focal Loss was adopted to address the issue of severe imbalance between positive and
negative samples during training. The model’s optimizer was Adam, with a learning rate set to 2e-5, and the rest of the
parameters remained at their default values.

To thoroughly assess the performance of the Chinese disease labeler, comparative experiments were designed, including
the widely used CheXbert model[6] in the English medical domain, as well as the recently popular ChatGPT 3.53 and
ChatGPT 44 models. Specifically, the version for GPT-3.5 was gpt-3.5-turbo-1106, and for GPT-4 it was gpt-4-1106-
preview. In the experimental setup, both GPT-3.5 and GPT-4 used the same prompts, the content of which is shown
in Figure 3. The example part of the prompts covered samples from all disease categories, with at least two samples
included for each disease. The experimental process began by replacing the "placeholder" with the diagnostic report to
be classified, and then inputting it into the ChatGPT model to obtain the model’s classification results for the diseases.

You are now a high-performance multi-label medical disease classifier. The input is the "Findings + Impression" section

of a chest X-ray report, and the output is a 14-class multi-label classification based on the information in that section.

The 14 multi-label classification tags include [未见明显异常,肺纹理增多,肺纤维索条影,心影增大,肺硬结灶,胸膜增
厚,主动脉迂曲、硬化,PICC,肺结节,肺内病变,胸膜黏连,脊柱侧弯、脊柱后凸,胸腔积液,肺间质性病变].

Note that the "未见明显异常" label is mutually exclusive with all other disease labels.

Please perform the multi-label classification according to the example format provided below, combining your own

medical information knowledge. Please strictly follow the output format.

The examples are as follows:

Example 1，
Input：”中心静脉置管术后，末端位于T7椎体水平。双肺纹理增多，双肺见网格、索条影，肺门影不大，纵隔
不宽，心影大小形态未见异常，两膈光滑，肋膈角锐利。双侧顶胸膜肥厚。右侧第2肋骨骨质不规整。扫及多发

骨质密度不均匀减低。中心静脉置管术后改变。双肺纹理增多，双肺间质性病变。双肺纤维索条。双侧顶胸膜
肥厚。多发骨质改变，请结合临床。”

Output：[肺纹理增多,肺纤维索条影,心影增大,胸膜增厚,肺间质性病变]

…

Example 23，
Input：”双肺纹理增多，双下肺见多发网格影，边缘模糊，右肺可见散在索条、结节影，右肺中带外野见一结节
状密度增高影，边缘较光滑，2.9*2.4cm，肺门影不大，纵隔不宽，心影轻度增大，左膈光滑，左侧肋膈角稍变

钝，右膈欠光滑、可见膈面局部隆起、呈尖幕状，右侧肋膈角模糊。双肺间质性改变。右肺结节，良性？建议
CT进一步检查。心脏轻度增大。双侧胸膜增厚、右侧胸膜粘连。”

Output：[肺纹理增多,心影增大,胸膜增厚,肺结节,胸膜黏连,肺间质性病变]

Now let's proceed with the classification. I will provide the input, and you only need to give the output in the example

format, with no need to output explanatory information or any other irrelevant information. Just provide the [Tags...].

PICC置管术后，管末位于颈部。双肺纹理增多，双下肺见网格影，散在小结节、斑片影。双肺门影无增大。
纵隔不宽，心影大小形态未见异常。双膈面光滑，双肋膈角锐利。PICC置管术后改变，位置请结合临床。双
下肺间质性改变。双肺小结节影，必要时CT。

[PICC,肺纹理增多,肺结节,肺间质性病变]

Input：“{{{placeholder}}}”

Output：

1

2

Figure 3: ChatGPT Prompts and the Corresponding Application Workflow

5.4 Experimental Results

The results of the comparative experiments are shown in Table 6, where the method proposed in this study achieved the
best performance across all evaluation metrics. Although the model in this paper is similar to CheXbert in terms of
network architecture and training methodology, the proposed dual BERT architecture and hierarchical labels algorithm

3https://chat.openai.com
4https://openai.com/gpt-4
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have led to superior performance. The experimental results indicate that, while the general-purpose GPT-3.5 and GPT-4
models demonstrated unexpectedly good performance, with GPT-4 showing a significant improvement in inference
capability over GPT-3.5, there is still a gap compared to the method of this study. This is mainly because only one-shot
learning was performed in the prompts of GPT-4. If further fine-tuning of the model were possible, a significant
performance improvement could be expected, potentially even surpassing the current specialized models. However,
GPT-4’s fine-tuning API is not yet available.

Table 6: Performance Comparison of Disease Labelers
Models F1 Score weighted F1 score Kappa weighted Kappa

CheXbert 0.9182 0.9767 0.9157 0.9730
ChatGPT 3.5 0.8278 0.9047 0.7897 0.8724
ChatGPT 4 0.9008 0.9260 0.8775 0.9059
Our Method 0.9430 0.9809 0.9408 0.9774

In addition, to quantitatively evaluate the contribution of each proposed algorithm to model performance, this study also
conducted a series of ablation experiments, the results of which are summarized in Table 7. Here, w/o indicates the
removal of the corresponding component. The results show that the removal of either the hierarchical labels algorithm
or the dual BERT encoder led to a significant decrease in F1 score and Kappa statistic. Moreover, compared to the
hierarchical labels algorithm, the architecture of the dual BERT encoder had a slightly weaker impact on performance,
which may be due to the scarcity of effective information and the abundance of interfering information in clinical texts.

Table 7: Ablation Study Results for the Chinese Disease Labeler
Models F1 Score weighted F1 score Kappa weighted Kappa

Our method 0.9430 0.9809 0.9408 0.9774
w/o hierarchical labels 0.9254 0.9767 0.9228 0.9737

w/o dual BERT 0.9312 0.9774 0.9288 0.9735

Finally, to find the best Chinese pre-trained BERT model for initialization weights, this paper also conducted an in-depth
exploratory experiment on various Chinese BERT models released over the past three years, as shown in Table 8. The
experiment was divided into two groups: the first group of models obtained initialization weights trained on Chinese
general text, while the second group was trained on Chinese medical text. The results show that for medical domain
tasks, weights trained directly on medical texts are significantly superior to those trained on general texts. Although
MedBERT-kd was released in 2021, and the general text-trained m3e-base and LEALLA-base were released in 2023,
the performance of the latter two still did not match the former, emphasizing that sometimes the suitability of the
training data can be more crucial than the training method and model architecture.

Table 8: Comparative Performance of Chinese Pre-trained BERT Models in Disease Classification of Medical Reports
Models F1 Score weighted F1 score Kappa weighted Kappa

chinese-macbert-base[19] 0.9337 0.9808 0.9318 0.9793
RoBERTa-wwm-ext[20] 0.9378 0.9804 0.9357 0.9774

chinese-lert-base[21] 0.9381 0.9812 0.9362 0.9778
m3e-base[22] 0.9387 0.9812 0.9367 0.9782

LEALLA-base[23] 0.9169 0.9782 0.9146 0.9745
FT-BERT[24] 0.9274 0.9795 0.9253 0.9762

MedBERT-kd[18] 0.9430 0.9809 0.9408 0.9774

6 Conclusion

This study addresses the lack of Chinese chest X-ray report disease labelers by constructing a Chinese chest X-ray report
disease labeler based on a dual BERT architecture and hierarchical label learning algorithm. This labeler effectively
encodes diagnostic reports and clinical information independently and leverages the hierarchical relationship between
diseases and body parts to build a hierarchical label learning algorithm, significantly enhancing the accuracy of disease
annotation. Subsequently, a Chinese chest X-ray report dataset (CCXRD) containing 51,262 chest X-ray samples was
constructed based on this labeler. Experimental analysis conducted on a Chinese data subset built by experts verified
the effectiveness of the proposed disease labeler.
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Future work will concentrate on improving the performance of the disease labeler and building a larger-scale Chinese
dataset using this labeler. Amidst the growing popularity of large models, a more extensive dataset is anticipated to
advance the research on automatic chest X-ray report generation, allowing it to play a vital role in clinical practice.
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