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Measurements and feedback have emerged as a powerful resource for creating quantum states.
However, a detailed understanding is restricted to fixed-point representatives of phases of matter.
Here, we go beyond this and ask which types of many-body entanglement can be created from
measurement. Focusing on one spatial dimension, a framework is developed for the case where a
single round of measurements are the only entangling operations. We show this creates matrix prod-
uct states and identify necessary and sufficient tensor conditions for preparability, which uniquely
determine the preparation protocol. These conditions are then used to characterize the physical
constraints on preparable quantum states. First, we find a trade-off between the richness of the
preparable entanglement spectrum and correlation functions, which moreover leads to a powerful
no-go theorem. Second, in a subset of cases, where undesired measurement outcomes can be inde-
pendently paired up and corrected, we are able to provide a complete classification for preparable
quantum states. Finally, we connect properties of the preparation protocol to the resulting phase of
matter, including trivial, symmetry-breaking, and symmetry-protected topological phases—for both
uniform and modulated symmetries. This work offers a resource-theoretic perspective on preparable
quantum entanglement and shows how to systematically create states of matter, away from their
fixed points, in quantum devices.
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I. INTRODUCTION

Emergence in many-body quantum states can give rise
to remarkable physical properties [1, 2]. Indeed, decades
of exploration have revealed a plethora of possible phases
of matter, including symmetry-breaking states and more
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exotic ‘topological’ states [3, 4]. In one spatial dimen-
sion, a complete classification has even been achieved for
ground states of local gapped Hamiltonians, including
symmetry-protected topological (SPT) states with inter-
esting edge mode properties [5–17]. However, knowing
the physical properties of a many-body quantum state is
quite different from knowing how to create it. This has
become of increasing importance due to the rapid devel-
opment of quantum technologies [18, 19] and raises the
question: which states of matter can be created with the
capabilities of a given platform? This question is even of
fundamental importance, since from a resource-theoretic
perspective, we learn something new about a state if we
know what it takes to create it.

A conceptual and practical development in the efficient
preparation of many-body quantum states is the use of
measurements. Although this is a rather novel ingredi-
ent in the context of condensed matter physics—where
one has typically focused on the unitary aspects of quan-
tum physics—the use of measurement has a rich history
in quantum information theory [20, 21]. In particular,
the idea of error correction [22] naturally suggests that
certain ‘stabilizer states’ (including the famed GHZ and
toric code states [23]) can be prepared via measurement-
and-feedback [24–27]. In stark contrast to the case with
only unitary circuits [28, 29], measurements allow one to
achieve these tasks in a time (or ‘circuit depth’) which is
independent of system size1.
Recent years have seen rapid progress in develop-

ing new ways of preparing many-body states using
measurement, both at the theory level [30–49] as well
as experimental implementations [50–54]. However,
most measurement-based works consider the determin-
istic preparation of fixed-point states: while these can
represent exotic states of matter, such fixed-point states
have rather featureless correlation functions and entan-
glement spectra. Two notable exceptions are the deter-
ministic constant-depth preparation of the spin-1 AKLT
state [38] and of certain wavefunction deformations of the
trivial and GHZ states (Appendix G of Ref. 37). These
constitute examples of states with non-trivial correlation
length 0 < ξ <∞ which can nevertheless be determinis-
tically prepared in finite time using measurement. The
existence of such examples is a priori surprising since it
means that all measurement outcomes must give states
which are exactly related by a finite-depth unitary op-
eration; this property seems in tension with non-trivial
correlations.

Emboldened by these limited examples, we explore the
question: what types of many-body entanglement and cor-
relation functions can possibly arise from a measurement-

1 More precisely, the ‘quantum time’ is finite, by which we mean
the depth of the quantum operations in the circuit; classical
information-gathering and -processing still has a linear overhead,
but such ingredients tend to be cheap and are only limited by
the speed of light.

based protocol? In addition to the immediate practi-
cal relevance, an answer to this type of question can
give insight into the nature of phases of matter and
entanglement—similar to knowing how the inability of
preparing the toric code using finite-depth unitary cir-
cuits [28] captures part of the essence of the toric code
itself. If we hope to provide a crisp answer, we must pro-
vide a crisp list of ingredients of what we do (not) allow.
To single out the power of measurement, we will explore
a measurement-only protocol: measurement will be the
only entangling operation. Moreover, in this work we will
allow only a single layer of measurement. Despite this re-
strictive setting, we will see that the resulting landscape
is remarkably rich and structured, even in one spatial
dimension.
While we provide a detailed description of our set-up

in Sec. III, let us give a brief taste of what we consider:

Ingredients (Informal) We explore and characterize
one-dimensional quantum states which are deterministi-
cally preparable with the following ingredients:

(1) An initial product state of disentangled clusters
(shown in blue)

(2) Finite-range complete-basis measurements on a
subset of sites (white)

(3) On-site (i.e., non-entangling) unitary feedback con-
ditioned on measurement outcomes (orange).

Schematically:

These ingredients are in part inspired by those used in
Ref. 38 for preparing the AKLT state, although we have
minimized our assumptions (e.g., we do not presume that
the measurement basis is fully-entangled, also called a
fusion measurement [55]). Let us also stress that we de-
mand deterministic state-preparation, which means we
can correct for any possible measurement outcome. This
is in contrast to works which consider approximate, prob-
abilistic or partial preparation, whereby one prepares,
e.g., mixed states [33, 35, 37, 42] or (arbitrarily-good)
approximations to the target state [30, 43].
In this work, we detail the physical properties of states

which can result from the above set of ingredients. A
general insight that emerges is that such states can have
very rich entanglement spectra and very rich correlation
functions—but not at the same time. Indeed, we find a
trade-off between the two. This is crystallized by proving
a no-go theorem for states which cannot be prepared in
this way.
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These and other results follow from a general frame-
work we develop. This is built on the observation that
any state obtained from these ingredients must be a ma-
trix product state (MPS) [56, 57]. Using the MPS for-
malism, we are then able to convert the above list of in-
gredients into necessary and sufficient conditions on the
MPS tensors which guarantee preparability of the state.
Remarkably, if an MPS tensor satisfies these conditions,
it also essentially specifies the preparation protocol.

The advantage of this approach is that once we have
encoded these ingredients into conditions on the local
MPS tensor, we can study what physical properties are
implied by these conditions. This leads to a series of re-
sults, such as general connections between the feedback-
protocol and the resulting phase of matter, and even to
classifications of preparable states in a subset of cases. To
make these results broadly accessible, Sec. II introduces
key ideas through examples and informally states some of
our key results without requiring MPS-based language.

After the overview section (Sec. II), we go over the ba-
sic ingredients in Sec. III. We show how this implies an
MPS description of the state, along with the local charac-
terization which guarantees preparability. In Sec. IV we
explore the case where feedback requires non-local clas-
sical communication. We relate this to various physical
quantities, such as a degenerate entanglement spectrum,
and we even present full classifications in certain cases.
This is followed by Sec. V, which also studies the case
with local error correction. The latter culminates in the
aforementioned no-go theorem.

II. MOTIVATING EXAMPLES AND PRELUDE
OF RESULTS

Before delving into a general formalism for characteriz-
ing states preparable using the ingredients above, we be-
gin with an informal prelude of our results. Specifically,
we discuss three examples of deterministically prepara-
ble states, each of which elucidates aspects of the gen-
eral problem. We subsequently highlight the essential
features of these examples that generalize, stating infor-
mally and without proof the key physical ideas and re-
sults of this work with formal statements postponed to
later sections. Readers seeking a sense of what can be
prepared with the ingredients above and a conceptual
précis of what constraints preparability places on quan-
tum states can choose only to read this section. Alterna-
tively, those interested in the general formalism and not
requiring motivating examples are encouraged to read
only Sec. IID of this section, before going to the next
section.

A. Example 1: Deformed GHZ State

For our first motivating example, we describe the
preparation protocol for a parameterized class of long-

range entangled wavefunctions, which spontaneously
break a Z2 spin-flip symmetry. The wavefunctions are
given by

|Ψ(β)⟩ ∝ exp

(
β

N−1∑
x=2

Xx

)
|GHZN ⟩ (1)

=
GHZN

(2)

that are deformed versions of the standard GHZ state
beyond its fixed point (where boundary perturbations
are omitted to simplify the discussion2). Here, the white
circles are the non-unitary time-evolution eβX (β ∈ R)
and |GHZN ⟩ ∝ (|0 · · · 0⟩+ |1 · · · 1⟩) is the standard GHZ
state defined on a one-dimensional chain of N qubits
and X,Y, Z are the Pauli matrices. One can straight-
forwardly confirm this state retains its ‘cat state’ nature
for all β <∞:

N∏
x=1

Xx|Ψ(β)⟩ = |Ψ(β)⟩, ⟨Ψ(β)|ZxZy ̸=x|Ψ(β)⟩ = sech(2β)2.

(3)

However, for 0 ̸= β <∞ this state has non-trivial corre-
lation lengths3. Our preparation protocol will generalize
the one in Ref. [38], which considered β = 0.
In line with the ingredients presented in the introduc-

tion, we prepare this state by starting with a product
state of (N − 2) decoupled three-qubit states4:

|Ψ0(β)⟩ ∝
N−1⊗
x=2

eβXcx |GHZ3⟩lx,cx,rx (4)

= · · · GHZ3 GHZ3 GHZ3 · · · (5)

where lx, cx, rx label the center, left, and right qubit
of the three qubit cluster. Subsequently, we perform
nearest-neighbor measurements between qubits rx and
lx+1 on the above cluster in the Bell basis:

|1⟩ = 1√
2
(|00⟩+ |11⟩) |X⟩ = 1√

2
(|01⟩+ |10⟩) (6)

|Z⟩ = 1√
2
(|00⟩ − |11⟩) |ZX⟩ = 1√

2
(|10⟩ − |01⟩)

which satisfy |V ⟩12 = V2 |1⟩12 = V †
1 |1⟩12. To understand

the result of this, let us consider the case where each of
the measurement outcomes yield the |1⟩ Bell state. In

2 This guarantees deterministic state-preparation. Boundary per-
turbations still allow for statistical state-preparation, with a suc-
cess probability independent of system size.

3 This is evidenced by its symmetry string correlator
∏b<N

x=a>1 Xx

decaying as e−|b−a|/ξ with ξ = −1/ ln tanh(2β).
4 Each state can be unitarily obtained from |GHZ3⟩ as
e−itZlxYcx |GHZ3⟩ with tan t = tanhβ.
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FIG. 1. Preparation of Beyond Fixed Point GHZ State. Entangling measurements between disentangled clusters and
tensor product unitary feedback can deterministially create quantum states away from their fixed points. This is exemplified

in the above where, to create a deformed GHZ state eβ
∑N−1

x=2 Xx |GHZN ⟩ (shown on right), one first prepares disentangled
three-qubit clusters eβX |GHZ3⟩ (left). Such clusters can be prepared unitarily by first creating the three-qubit GHZ state and
then time evolving with a particular Hamiltonian: e−itYlZc |GHZ3⟩ with l and c labeling the left and center qubits respectively
and tan(t) = tanh(β). Subsequently, one measures nearest-neighbor qubits of adjacent clusters in the Bell basis. This “glues”
the clusters together and, in the ideal case of every measurement outcome yielding |1⟩ = |00⟩+ |11⟩ /

√
2, prepares the deformed

GHZ exactly. When the measurements outcomes are different, “errors” will exist atop the desired deformed GHZ state, which
we show can be corrected with a tensor product of unitaries conditioned on the measurement outcomes.

.

this case, the post-measurement state on the unmeasured
qubits is:(

N−3⊗
x=1

⟨1|rxlx+1

)
|Ψ0(β)⟩ ∝ · · ·

GHZ3 GHZ3

⟨1|
· · · (7)

where the white circles indicate the eβX operator ap-
pearing in the initial cluster and time runs downwards.
Note that, the projector onto the |1⟩ state will “glue”
the neighboring GHZ3’s together to a many-body wave-
function. Specifically, since the projector ⟨1| enforces the
qubits rx and lx+1 to be in the same computational state
and the |GHZ3⟩x state has the property that each of its
three qubits are in the same computational state, the
result of this “gluing” will be to produce a many-body
GHZ state on the N unmeasured qubits. Further taking
into account the eβX gates, we conclude that, in the case
where all measurement outcomes yield |1⟩, the resulting
wavefunction is the desired target state |Ψ(β)⟩ with no
unitary feedback necessary.

Now, let us consider what happens for an arbitrary
measurement outcome. For example, the circuit diagram
for such an outcome may look like:

GHZ3 GHZ3 GHZ3

⟨X| ⟨1|
=

GHZ3 GHZ3 GHZ3

⟨1| ⟨1|
X

(8)
Here, a measurement outcome of anything other than |1⟩
will be referred to as an error, that needs to be corrected
by acting a tensor product unitary at the physical level.
To see how a |X⟩ measurement error is to be corrected,
we remark upon a convenient property of the GHZ state.
Namely, Xlx |GHZ3⟩x = XcxXrx |GHZ3⟩. Consequently,
we have that:

GHZ3 GHZ3 GHZ3

⟨1| ⟨1|
X =

GHZ3 GHZ3 GHZ3

⟨1| ⟨1|
X

X

= ⟨X|

(9)

where we used the fact that X commutes through eβX .
The above can be iterated and shows that measure-
ment outcomes that result in an |X⟩ can be corrected by
“sweeping” the measurement error to the right by acting
with a physical unitary string of X’s from the location of
the error to the boundary. Similarly, the GHZ state has
the property that and Zlx |GHZ3⟩x = 1cxZrx |GHZ3⟩x
implying that |Z⟩ measurement outcomes can be simi-
larly swept to the right, with no required action at the
physical level except for a local Z correction applied at
the boundary. Finally, corrections of |ZX⟩ proceed simi-
larly by using a combination of the techniques for X and
Z. This demonstrates that the quantum state in Eq. (1)
can be prepared deterministically using the ingredients
referenced in the introduction.

Let us take stock of the qualitative features of the mea-
surement protocol and the physical properties of the re-
sulting state. We saw that correcting a measurement
error involved “sweeping” it off to the boundary. This
means that a single error is corrected by a physical uni-
tary action which was spatially delocalized from the loca-
tion of the error. We call such errors topological (indeed
as we discuss later, they correspond to defects in either
long-range entangled phases or in symmetry-protected
topological phases). Equivalently, the feedback-unitary
applied at a given physical site was non-locally condi-
tioned on the classical data of every measurement out-
come to the left of it.

The fact that all errors are non-locally corrected re-
quires that the post-measurement state has the ability to
‘teleport’ information across the system. In Sec. III we
will prove quite generally that this necessitates the post-
measurement state to have a flat entanglement spectrum,
congruent with intuition gained from measurement-based
quantum computation [58–60]. Indeed, |Ψ(β)⟩ has a bi-
partite entanglement spectrum given by Λ2 = (1/2, 1/2),
similar to the GHZ state. Furthermore, the state has the
seemingly unrelated property that it has no observables
with zero correlation length (which we define in Sec. V).
We will later show that this is no accident. By con-
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sidering two more examples, we will phenomenologically
motivate a key result of our work that these properties
of the state are direct consequences of the fact that each
measurement error is non-locally corrected.

B. Example 2: Deformed Cluster SPT State

Our next motivating example is a class of wavefunc-
tions in the non-trivial symmetry-protected topological
(SPT) phase protected by a Z2×Z2 symmetry generated
by spin-flips on even and odd sublattices. The wavefunc-
tions are given by:

|Ψ(β)⟩ ∝ exp

(
β

N−1∑
x=2

Xx

)
|clusterN ⟩ (10)

which are now deformed versions of the N -qubit “clus-
ter” state, defined as the state stabilized by ZxXx+1Zx+2

in the bulk and X1Z2 and ZN−1XN at the bound-
ary [14, 24, 61, 62]. Physically, such states are short-
range entangled but share many features in common with
the deformed GHZ state. In particular, they similarly
have a flat bipartite entanglement spectrum given by
Λ2 = (1/2, 1/2) and also have the property that every
connected correlation function that is not identically zero
has exponentially decaying tails (see Appendix A). We
now show that these shared physical properties between
the GHZ are accompanied by a similarity in the correc-
tion of measurement errors in the preparation of |Ψ(β)⟩.

To see this, we note that this state is prepared by first
preparing the same product state of (N − 2) decoupled
clusters as in the first example [c.f. Eq. (4)] but instead
of measuring in the Bell basis, we measure in a basis
related to it by a Hadamard gate H, acting on the first
qubit, e.g. our basis is |V ′⟩ = Hrx |V ⟩ = HrxVlx+1

|1⟩.
The claim is then when all the measurement outcomes
are Hrx |1⟩:(

N−3⊗
x=1

⟨1|rxlx+1
Hrx

)
|Ψ0(β)⟩ ∝ · · ·

GHZ3 GHZ3

⟨1|
· · ·

(11)

=
clusterN

(12)

where the orange circle is the Hadamard matrix. The
above can be easily verified by showing that, when β = 0,
the state is stabilized by ZxXx+1Zx+2 in the bulk and
X1Z2 and ZN−1XN at the boundary (see Appendix A).

For an arbitrary measurement outcome, we see that the
correction indeed proceeds similarly to the first example,
with:

GHZ3 GHZ3 GHZ3

⟨X| ⟨1|
=

GHZ3 GHZ3 GHZ3

⟨1| ⟨1|X X

(13)

following from the GHZ identities we have regularly used.
The above implies that measurement outcomes that re-
sult in an |X⟩ at location x can be corrected by “sweep-
ing” the measurement error to the right by acting with
the string

∏
y≥0Xx+2y from the location of the error to

the boundary. A similar analysis shows that measure-
ment outcomes that result in an |Z⟩ or |ZX⟩ at location
x can be corrected by “sweeping” the measurement er-
ror to the right by acting with strings

∏
y≥0Xx+2y+1 or∏

y≥0Xx+y from the location of the error to the bound-

ary. Consequently, the quantum state in Eq. (10) can
also be prepared deterministically using the ingredients
referenced in the introduction. Moreover, similar to the
GHZ, each type of measurement error was non-locally
corrected. We note that this preparation protocol re-
sembles the one introduced in Ref. 38 for preparing the
AKLT state [7], although here we have a tunable cor-
relation length. Crucially, we now turn to an example
whose preparation and physical properties are radically
distinct.

C. Example 3: Deformed Trivial State

We conclude by discussing one final representative
class of examples, which have both qualitatively differ-
ent physical properties accompanied by a qualitatively
different preparation protocol. The examples are given
by5:

|Ψ(β)⟩ ∝ exp

(
β

N−1∑
x=2

ZxZx+1

)
|+⟩⊗N

(14)

which are short-range entangled wavefunctions in the
trivial phase for all β < ∞ that asymptote to the GHZ
state exactly at β = ∞. In this case, the state is prepara-
ble by first preparing the following entangled clusters:

|Ψ0(β)⟩ ∝
N⊗

x=1

eαXrx |GHZ3⟩lx,cx,rx (15)

with α = arctanh(e−2β). Crucially, while this looks sim-
ilar to Eq. (4), note that the imaginary time-evolution is
now on the right rather than the central qubit of each
cluster.
Subsequently, we again measure in the familiar Bell

basis (6). We show in Appendix A (using tensor net-
work state methods) that in the case where each of the
measurement outcome yields the |1⟩ Bell state, the post-
meaurement state is exactly |Ψ(β)⟩. We turn to dis-
cussing the correctability properties of the state.

5 One can also include the term for x = 1 at the expense of apply-
ing an additional eαXl1 factor on the first cluster in Eq. (15).
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Similar to the GHZ and cluster state case we find that:

GHZ3 GHZ3 GHZ3

⟨X| ⟨1|
=

GHZ3 GHZ3 GHZ3

⟨1| ⟨1|X X X

(16)
which is to say that |X⟩ at location x can be corrected by
“sweeping” the measurement error to the right by acting
with the string

∏
y≥0Xx+y from the location of the error

to the boundary. However, unlike the other two cases, a
|Z⟩ error is corrected as:

GHZ3 GHZ3 GHZ3

⟨Z| ⟨1|
=

GHZ3 GHZ3 GHZ3

⟨1| ⟨1|Z

(17)
which is entirely local (i.e. no need for infinite strings or
correction at the boundary). We call this a local error.
As stated earlier, the difference in the correction prop-

erties of the errors in this example are accompanied by
different physical properties. Unlike the other two exam-
ples, here the entanglement spectrum is not flat : one can
calculate that Λ2 =

(
1
2 + δ, 12 − δ

)
with δ−1 = e2β+e−2β .

Indeed, now there is no longer a need for being able to
teleport arbitrary Pauli matrices. Moreover, we prove in
Appendix A that, unlike the other two examples, there
exists an operator with a strictly finite range of corre-
lations that does not exponentially decay (i.e. its cor-
relation length is zero)6, although other operators have
nonzero correlation length ξ ∼ 1/| ln tanhβ|.

D. Informal Prelude of Results

With these motivating examples in hand, our results
fall into two categories which we summarize below. In
these cases we refer to states as ‘gluable’ if they can
be prepared with the above ingredients: decoupled clus-
ters which are ‘glued’ together with a single-round of
complete-basis measurements. In the above examples,
we saw errors could be swept in a single direction. We
will generally require that measurement errors can be
corrected by conditioning only on gates to the left. For a
detailed discussion of the ingredients, we refer to Sec. III.

1. Interplay Between Preparability, Entanglement,
Correlations, and Order

A key physical result of our work is a relationship be-
tween how a state is prepared using measurement, and
the physical properties of the resulting state (in particu-
lar, its correlation lengths, entanglement spectrum, and

6 In particular, if we define OL
n = Zn+1Xn+1e

−2βZnZn+1 and
OR

n = XnZne−2βZnZn+1 then ⟨OL
2mOR

2n⟩ equals tanh(2β) if n =
m+ 1 but vanishes for n > m+ 1.

phase of matter). To give a taste of these general re-
sults, we highlight five informally stated theorems, whose
precise statements are in the parenthetically referenced
sections below:

I. Theorem (Non-Local Correction Constrains En-
tanglement Spectrum) If a wavefunction is prepara-
ble by gluing and all measurement errors re-
quire non-local correction, then its bipartite en-
tanglement spectrum Λ2 is constrained to be flat
(Sec. IVA).

II. Theorem (Local Correction Constrains Correla-
tions) If a wavefunction is preparable by gluing and
there exists a measurement error that can be locally
corrected, then there exists an operator with zero
correlation length (Sec. V).

A corollary of the above theorems is a powerful no-go
theorem:

III. Theorem (No-Go Theorem) Suppose |Ψ⟩ is a
wavefunction whose entanglement spectrum Λ2 is
not flat. If there does not exist an operator whose
connected correlation function in |Ψ⟩ has a zero cor-
relation length, then |Ψ⟩ is not preparable with the
ingredients listed in the introduction (Sec. V).

Despite this powerful restriction on the class of
preparable many-body wavefunctions, we prove that the
landscape of preparable states are rich. This is exempli-
fied by the following “go theorem”

IV. Theorem (Go Theorem) Let |Ψ⟩ be in a non-trivial
SPT phase for abelian on-site symmetries. If it has
minimal entanglement (i.e., the bipartition of an
infinite chain has the smallest Schmidt rank allowed
by the non-trivial SPT phase), then it is gluable
with the above ingredients.

Note that our second example (Sec. II B) is a special case
of this general theorem, for the abelian group Z2×Z2 and
Schmidt spectrum Λ2 =

(
1
2 ,

1
2

)
.

We also have a converse for this theorem, which arises
as a special case of a classification of gluable states:

V. Theorem (Classification) We have a full classifica-
tion of gluable states (shown in Eq. (53)) if: (i) all
errors are non-locally corrected; (ii) all errors com-
mute up to phase (which means that correcting one
error does not affect other errors); (iii) and the er-
rors satisfy a technical homogeneity condition.

In the special case of short-range entangled cases,
this classification tells us the state must be a mini-
mally entangled state for a non-trivial abelian SPT
phase (Sec. IVC).

Such a classification highlights that precise answers can
be found to the question of which states can be pre-
pared with certain measurement-based resources. Once
one is in possession of this closed-form solution of gluable
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states, their physical properties can be gleaned. In fact,
one can use this to even engineer preparable states with
certain desired properties; the latter is illustrated in our
companion work [63].

2. Connection to Matrix Product States and Required
Resources for Preparability

Our second class of results connects preparable states
to matrix product states (MPSs) [56, 57] and further con-
strains the possible ways in which one could create inter-
esting correlated states. These class of results inform one
“where to look” if one wants to prepare a given quantum
many-body state from the ingredients above.

I. Theorem Every gluable quantum state is a matrix
product state.

II. Theorem (Requirements on Initial Clusters) The
initial entangled clusters are guaranteed to be the
matrix product state tensors in right-canonical
form up to a local unitary acting individually on
the “physical” qudit of the cluster and each “vir-
tual” qudit of the cluster.

III. Theorem (Requirements on Measurements) The
measurement basis used for preparation are guar-
anteed to be maximally entangled.

The above are all formally stated in Sec. III. In ad-
dition, we note that we identify necessary and sufficient
conditions on the local matrix product state tensor to
guarantee that a given quantum state is gluable with our
ingredients (Eq. (28)). Having provided an informal pre-
lude of our results, we now introduce the formalism from
which we can prove these and other results.

III. GENERAL SETUP AND FORMALISM

In this section, we begin our more formal treatment of
determining which quantum states are preparable using
the ingredients present in the introduction. To do so, we
start by stating the assumed ingredients in the introduc-
tion more formally, defining the notion of gluable quan-
tum states. We subsequently show that such states are
necessarily matrix product states and then state a theo-
rem that the clusters used to prepare them are necessarily
the tensors of the matrix product state in canonical form
(up to local unitary actions on the qudits making up the
cluster). These tensors will be shown to satisfy a strict
set of criteria, that will pave the way to a general math-
ematical formalism that enables proving the remaining
results of this work.

A. Formalizing Setup and Reduction to Matrix
Product States

Let us start by defining the notion of a ‘right-gluable’
many-body quantum state (with a corresponding notion
of ‘left-gluable’ after making the appropriate changes):

Definition (Right-Gluable Quantum States) We say
that a many-body quantum state is right-gluable if it can
be prepared deterministically with:

(1) an initial product state of clusters of qudits ar-
ranged in a one-dimensional geometry;

(2) a single round of finite-range, complete basis mea-
surements with non-overlapping qudit support;

(3) left-conditioned tensor product unitary feedback on
unmeasured qubits. Here, the tensor product struc-
ture is defined relative to the clusters, i.e. unitaries
can act arbitrarily within clusters but not between
them. Moreover, left-conditioning is a technical re-
striction we impose, requiring the correction uni-
tary at a given unmeasured qubit only depends on
measurements between clusters to the left of it. We
thus only need to propagate classical information
from left to right.

We will also assume a minimality condition, which
physically means that we do not use more measurements
than necessary. Mathematically, this means that for any
bipartition between the clusters, the Schmidt rank of the
target state equals the Schmidt rank of the measurement
projectors. See the discussion below Eq. (18) for a sim-
pler rephrasing.

The above ingredients appear rather general and could
enable measurement patterns of the form shown in Fig. 2
(a, top row), which look rather different than the mea-
surements in the examples in Sec. II that were nearest-
neighbor and had non-overlapping geometric support.
Nevertheless, we show in Appendix B 1 that more elabo-
rate measurement schemes such as the one shown in the
figure are, in fact, equivalent to the restrictive scheme
used in the examples and shown in Fig. 2(b). The tech-
nique for demonstrating equivalence is depicted for the
readers benefit in Fig. 2(a). We will henceforth, without
loss of generality, work with a nearest-neighbor protocol.
Moreover, since we only consider right-gluable quantum
states in this work, we will sometimes refer to them as
gluable states for brevity.
A further convenient observation is that we can always

presume that at least one of the measurement outcomes
gives the desired state—without requiring correction. In-
deed, consider any particular choice of measurement out-
comes {αi} where i labels the location and αi the out-
come: by virtue of the state being gluable, we know
there exists a tensor product unitary U{αi} which corrects
the post-measurement state and produces the desired
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FIG. 2. Setup and Reduction to Matrix Product States. We address the question of which quantum states can be
prepared with an initial product state of entangled clusters in a one-dimensional geometry, a single round of finite-range
complete basis measurement with non-overlapping support, and left-conditioned tensor product unitary feedback. (a) While
a generic protocol allowed within these set of ingredients may look unwieldy [top row], we first show that it can always be
viewed as nearest neighbor measurements between disentangled clusters. To do so, we use a set of three moves: grouping
clusters together [top to second row], re-ordering measured qudits [second to third row], and grouping measurements together
[third to last row]. A detailed discussion of this is provided in Appendix B 1. A consequence is that the generic case is
the setup shown in panel (b). Here, we remark that classical feedback for the measurement outcomes is shown using dotted
lines coming from the measurements and informing the unitary action provided on the qudit clusters. The requirement of
left-conditioned measurement is shown graphically with arrows moving to the left amongst the unitaries, depicting the flow of
classical information used to create the feedback. (c) By reshaping the elements of panel (b), we are naturally led to an MPS
representation of the state, with the clusters, measurement basis states, and unitaries forming the MPS tensors. We show in
Theorem 1 that the unentangled clusters ψ required to prepare the MPS are always the MPS tensors—up to a unitary basis
change on each qudit of the cluster.

state. This means if we had simply applied this (non-
entangling) unitary U{αi} to the initial clusters, then this
particular measurement outcome would immediately give
the desired result.

While the above are conventions which do not restrict
the generality of our results, we will introduce a physi-
cal restriction for convenience: we consider translation-
invariant set-ups, although many of our results hold more
generally. More concretely, the initial clusters will be
taken to be identical, and the measurement bases will
be invariant under translation by one cluster. Of course
we will not presume the measurement outcomes to be
translation-invariant, nor the feedback step.

1. Entangled Clusters and Minimality Condition

We now relate the outcomes of such measurement pro-
tocols (shown in Fig. 2(b)) to tensor network states
(shown in Fig. 2(c)). Let us observe that each cluster
can be re-expressed graphically in a manner that looks

more like a matrix product state tensor:

ψ

ℓx x rx
−→

ψℓx

x

rx
(18)

where the ‘virtual’ legs labeled ℓx and rx are assumed
to have local Hilbert space dimension χ and the ‘physi-
cal’ leg labeled x has dimension d. The aforementioned
“minimality” condition is then equivalent to requiring
that χ = rank(Λ), where Λ is the bipartite entanglement
spectrum of the state. I.e., the resulting matrix product
state has no zeros in the entanglement spectrum.

2. Measurements and Error Bases

Similar to the clusters, it will also be useful to adopt
a graphical notation for the different measurement out-
comes. In particular, let us suppose that we are measur-
ing in a basis V of states {|Vα⟩} with α = 1, · · · , χ2. The
projection operator onto each state can be graphically
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depicted as:

⟨Vα| −→ 1
√
χ

Vα (19)

where the factor of χ−1/2 is chosen for later convenience.
In this language, the states in the measurement out-
come are re-interpreted as operators Vα, which means
that the usual orthonormality of the measurement basis
(i.e., ⟨Vα|Vβ⟩ = δab) is equivalent to the following trace-
orthonormality condition:

tr(V †
αVβ) = χ δαβ . (20)

I.e., the basis V can be re-interpreted as an orthonormal
basis for the space of χ×χ matrices. In the error correc-
tion literature, such operators have been called an error
basis [64–66]. In fact, such literature tends to study the
more restrictive notion of a unitary error basis, where
each Vα is a unitary operator. This is equivalent to the
measurement basis being maximally entangled. We em-
phasize that we do not impose this condition (since it
is a priori not essential for preparing states); however,
we will soon prove that unitarity is a consequence of our
protocol. As an example, in Sec. II we considered the
case χ = 2, where the Pauli matrices defined an error
basis {1, X, Z, ZX}; since these operators are all unitary
(equivalently, the basis of Bell states (6) is maximally
entangled), it is indeed a unitary error basis.

Finally, as a technical remark, it will often be useful in
proofs to use the following graphical notation for the full
error basis:

Vα =
Vχ χ

χ2
(21)

where the leg labels indicate dimensionality of the leg
and the downwards facing leg is the “α” leg. Note that
the trace orthonormality of the basis is equivalent to:

tr(V †
αVβ) =

α

β

V̄

V
= χ = χ δαβ . (22)

Moreover, we remark that the graphical notation here
reveals an intriguing fact: V†, when viewed as a χ2 × χ2

matrix in the vertical direction of the above diagram, is
the inverse of V and is hence unitary. Therefore, we also
obtain the following relation:

1

χ

V

V̄

= (23)

which will be invaluable in several proofs.

3. Connection to Matrix Product States

The result of using this graphical notation is summa-
rized in Fig. 2(c), which manifestly reveals the connec-
tion to matrix product states. We make this connection
stronger by showing that the resulting state actually has
a very particular and useful form:

Theorem 1 (Resources for Gluable Quantum States)
Suppose that |Ψ⟩ is a translation-invariant right-gluable
quantum state. Then the following are true:

(1) |Ψ⟩ has an exact matrix product state description

(2) the unentangled clusters in the state preparation
protocol |ψ⟩ are its matrix product state tensors in
canonical form (labeled A) up to a tensor product
of unitaries acting on each qudit of the cluster. In
other words,

ψ

=
AuL uR

uP

(24)

where A is the MPS in right-canonical form and
uL, uR, and uP are unitaries (which are determined
by the feedback protocol and measurement basis).

(3) The measurement basis V used for the preparation
is maximally entangled. Equivalently, viewed as
operators, the measurement basis is a unitary error
basis.

Let us first remark two technical points. In the above
theorem, by right-canonical form, we mean that the Kro-
necker delta is a dominant right-eigenvector of the trans-
fer matrix[57, 67–69]. In tensor network notation, this
becomes:

A

Ā

= (25)

Such a form is highly convenient, as it allows to reduce
many physical quantities of the state to local expressions.
In addition, this form has the property that the remain-
ing ‘gauge’ degree of freedom Ai → WAiW

† (where W
is unitary) can be used to also make the dominant left
eigenvector diagonal, which has the physical interpreta-
tion of the Schmidt spectrum Λ2 of a bipartition of the
state. Next, we remark that the proof of the above the-
orem is provided in detail in Appendix B and logically
relies on first proving Theorem 2, which we will state
momentarily.
Finally, at a physical level, we remark that the above is

powerful in that it heavily constrains “where to look” if
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one wants to prepare a given quantum state with purely
measurement. Indeed, the target state essentially fully
specifies the clusters that can be used for the prepara-
tion protocol, and the measurement basis required for
preparation is constrained to be maximally entangled
(these are also called fusion measurements [55]). In other
words, the ingredients we utilize tell us it can never help
to attempt to create a state by gluing with, e.g., non-
maximally-entangled measurement bases. To highlight
the non-triviality of this theorem, we point out that if
we had dropped the left-conditioning requirement, there
do exist non-maximally-entangled bases for gluing cer-
tain quantum states, as shown in Sec. III C. We thus see
that the deceptively simple ingredient of left-conditioning
(i.e., classical information only travels to the right) helps
to build a remarkably structured framework, which we
will use to uncover the physical properties (not) prepara-
ble via measurement.

The above theorem leads to a very useful corollary:

Corollary 1 If |Ψ⟩ is a right-gluable quantum state,
then initial clusters of its preparation protocol can al-
ways be chosen to be the matrix product state tensors
in canonical form and one of the measurement outcomes
V1 ∈ V can be chosen to be the identity.

The last claim follows from Theorem 1 stating that Vα
is unitary. That means we can always use Ṽα = VαV

†
1 as

an alternative error basis, which will still be correctable
and a unitary error basis, which now satisfies Ṽ1 = 1.
Another corollary of Theorem 1 is that all measure-

ment outcomes are equally likely (see Appendix B 4 for
a proof). This is not important for chains with open
boundary conditions (such as the examples in Sec. II),
since the state is deterministically preparable, i.e., we
can correct any possible measurement outcome. How-
ever, it can be used to infer that the state is efficiently
probabilistically prepaparable even with periodic bound-
ary conditions. For instance, in Sec. IVB we explore
additional conditions on the Vα operators which ensure
that classical post-processing is very simple, and in such
cases we can infer that the probability of successfully
preparing the state on periodic boundary conditions is
lower bounded by 1

χ2 (in particular, it is independent of

system size).
With these results in mind, the remaining task is to

find an appropriate condition on the MPS tensor and
the measurement basis that enables correctability.

B. Local Tensor Criteria for Gluable States

We now discuss the properties of both the matrix prod-
uct state tensor and the measurement basis that are re-
quired for the state to be gluable. To do so, we start by
recognizing that the corollary above implies that mea-
surement outcomes Vα ̸= V1 ∈ V can be viewed as virtual

errors in the target matrix product state. Correctabil-
ity then reduces to asking the question as to when such
virtual errors “push through to unitaries”. Recall that
by definition of gluable states we know that each wrong
measurement outcome can be corrected by some physical
unitary operator to the right of the location of the error:

Vα · · ·A A A

=

· · ·A

U
[0]
α

A

U
[1]
α

A

U
[2]
α

(26)
This suggests that we should be able to push the error
through each matrix product state tensor individually. In
order to make this notion precise, let us first introduce
the general concept of pushable operators of a matrix
product state:

Definition (Pushable Operators) Let A be a
translationally-invariant matrix product state tensor.
We say that an operator V [0] is right-pushable with
respect to A if there exists a sequence of operators
V [n∈N], U [n∈N] such that:

AV [n]

=

A V [n+1]

U [n]

(27)

where U [n] is unitary. A similar definition can be applied
for left-pushable operators.

The notion of pushable operators provides the bedrock
of a formalism for understanding which matrix product
states can be created deterministically from measure-
ments and provides a condition on the matrix product
state tensor required for gluability. Indeed, by formal-
izing the above intuition, we prove in the Appendix B 2
that the errors in gluable states are pushable operators.
More generally:

Theorem 2 (Tensor Characterization for Gluable
States) A translation-invariant state |Ψ⟩ is right-gluable
if and only if its matrix product state representation A
admits an error basis of right-pushable operators.
This condition is equivalent to the existence of χ2

trace-orthonormal operators {Vα} such that

A

Ā

V
[n]
α

V̄
[n]
α

=

V
[n+1]
α

V̄
[n+1]
α

A

Ā

(28)

where χ is the bond dimension of the MPS tensor, n is

any non-negative integer, and V
[0]
α = Vα.

This local condition on the MPS tensor is crucial to
proving Theorem 1. To give a taste of this, let us note
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that Eq. (28) gives us a local condition on the transfer
matrix. This is rather powerful, since the transfer matrix
contains physical properties of interest; in particular its
spectrum encodes correlation lengths and its eigenvectors
encode entanglement properties. If we combine this lo-
cal criterion with Eq. (23) (trace-orthonormality of the
basis), we obtain

A

Ā

= χ
∑
α

V
[1]
α

V̄
[1]
α

A

Ā

(29)

Here we see the Kronecker delta appear. By further ma-
nipulating this local condition, one can in fact prove that
the Kronecker delta is a dominant right eigenvector of the
MPS transfer matrix, thereby proving we are in canonical
form (property (2) in Theorem 1). While the details are
in the Appendix, we refer the reader to Sec. IVA where
we use the same ingredients in a somewhat simpler set-
ting.

Finally, we note that having proven that we are in
canonical form also allows us to deduce the last property
in Theorem 1, namely that the error basis is unitary.
This is because an MPS in canonical form has a more
natural relationship between ‘virtual’ and ‘physical’ legs,
such that Vα pushing through to a physical unitary op-
erator can be used to prove that, indeed, Vα itself must
be unitary; we again refer to the Appendix for a proof.

The above push-through condition motivates us to
characterize gluable quantum states by the manner by
which measurement errors push through the matrix prod-
uct state. Indeed, inspired by the examples in Sec. II, we
distinguish two types of pushable operators.

Definition (Topological and Local Errors) Let V be
a right-pushable operator with respect to A associated
with a sequence V [n∈N] (where V = V [0]). We can define
two types of these operators:

• We say that V is a local error, and equivalently
can be locally corrected, if the sequence of opera-
tors (V [n], U [n]) can be chosen to trivialize at some
n (i.e. there exists m such that V [n>m], U [n>m] =
1).

• Conversely, we say that V is a topological error
if the sequence can be chosen to never trivialize. In
such a case, V requires non-local correction, where
one using string operators to pair up and annihi-
lates topological errors (see below for examples).

Let us remark that local errors and topological errors are
not mutually distinct. In other words, some errors could
be both topological or local7.

7 We already saw an example of this in Sec. II: the GHZ state

Given these two types of errors, the remainder of the
manuscript will be devoted to deriving physical proper-
ties of gluable quantum states from the properties of their
measurement errors. However, before this, we show our
results in action concretely via the motivating examples
introduced in Sec. II.

C. Illustration of Results with Previous Examples

Deformed GHZ. We start by illustrating our ab-
stract results for the case of the deformed GHZ state
which we encountered in Sec. IIA. Note that the de-
formed GHZ state Eq. (1) is an exact bond dimension
two tensor network, whose tensors in right canonical form
are given by:

A
= = eβX (30)

where the T -junction tensor above is the three-leg Kro-
necker delta tensor δijk. Note that the tensor above,
when viewed as a state via the reshaping of Eq. (18),
is precisely initial cluster in the preparation protocol for
the deformed GHZ. Explicitly:

∝ GHZ3 (31)

In other words, we have that Eq. (24) holds with uL =
uR = uP = 1.
Moreover, the measurements that we performed were

in a maximally entangled basis—consistent with Theo-
rem 1—and, in the operator language, they correspond
to the Pauli matrices, which are unitary as predicted.
In particular, the Bell state projector ⟨V | (with V ∈
{1, X, Z, ZX}) is given by:

⟨V | −→ 1√
2

Vα (32)

where for the particular case of getting the identity, we
have that:

1 = (33)

where the straight line is the two-leg Kronecker delta δij .
Notice that then the perfect outcome of Fig. 1 becomes:

A A A
(34)

which is precisely the matrix product state for the de-
formed GHZ. Finally, we remark that the measurement

appeared as the β = 0 limit in Sec. IIA, where the Z error was
topological, but it also appears as the β = ∞ limit in Sec. II C,
where Z was a local error.
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errors are pushable and topological, which follows from
the deformed GHZ tensors satisfying:

AX

=
A X

X

(35)

AZ

=
A Z

(36)

which we interpret as an instantiation of Theorem 2.
Deformed Cluster State. The deformed cluster

state (Sec. II B) is similarly a bond-dimension two matrix
product state whose tensors in canonical form are given
by:

A
= (37)

where the orange circle is once again the Hadamard and
the white circle eβX . Note that in this case, we have
that:

ψ = GHZ3 ∝ A (38)

which means that uR = H in Eq. (24), with uL, uP =
1. Similarly, here the measurement basis is given by
V = {H,HX,HZ,HZX}, which is maximally entan-
gled when viewed as quantum states and unitary when
viewed as operators, thereby again providing an exam-
ple of Theorem 1. Consequently, one can check that the
resulting tensor network will precisely be the deformed
cluster state when all measurement outcomes yield H.
Finally, note that, once again, all measurement errors
are pushable and topological, satisfying:

AX

=
A Z

X

(39)

AZ

=
A X

(40)

In this example we glued using an error basis which did
not contain the identity operator; relatedly, the initial |ψ⟩
state is not simply the MPS tensor of the target state
(see Eq. (37)). However, a crucial observation is that
we can prepare the same state by using the MPS tensor
as a starting ingredient and measuring in the Bell basis
(by simply moving the Hadamard matrix from the error
basis into |ψ⟩). This illustrates our general result stated
in Corollary 1. The fact that we can always restrict to
such a simpler scenario without loss of generality is a
consequence of Theorem 1 ensuring that the error basis

of a right-gluable state is always unitary. This additional
structure is key to proving the general results in the next
sections.
Deformed Trivial. Finally, the deformed trivial state

we considered (Sec. II C) also has an exact tensor network
description, with tensors in right-canonical form given
by:

A
= (41)

where the white circle is eαX with tanhα = e−2β .
In this case, the clusters used for preparation:

∝ GHZ3 (42)

are precisely the matrix product state tensors with
uL, uR, uP = 1 in the parlance of Eq. (24). Similar to the
GHZ example, the measurement basis is the Bell basis,
which now makes manifest why a perfect measurement
|1⟩ produces the target state with no need for correction.
Note that X errors and Z errors are both pushable, but
now only X is topological, with Z being local. In partic-
ular:

AX

=
A X

X

(43)

AZ

=
A

Z

(44)

Deformed Trivial as a Non-Example. Instead of
Eq. (41) we could consider the MPS tensor

A
= (45)

where the white circle is now eαX/2 with tanhα = e−2β .
This clearly generates the same deformed trivial state.
However, this MPS is not in canonical form. Hence, ac-
cording to our resource theorem (Theorem 1), we can-
not use this as a wavefunction for our decoupled clus-
ters. However, if we give up on our requirement that
feedback is only left-conditioned, we can also glue these
clusters. Remarkably, the error basis used for gluing will
now be non-unitary : {1, X, ZeαX , eαXY }. This basis is
now no longer maximally entangled, but we can still cor-
rect the errors: e.g., while X pushes through to the right
as in Eq. (43), but ZeαX can only be corrected by (lo-
cally) pushing to the left. This example highlights that
a considerable amount of structure can be lost as soon
as classical information needs to propagate both left and
right. It remains to be seen whether a similarly complete
framework can be worked out for such cases; however,
it is equally unclear whether such bi-directional classical
propagation provides a distinct advantage over simply
using left-conditioning.
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IV. TOPOLOGICAL ERRORS: CONSTRAINTS
ON ENTANGLEMENT AND ORDER

Having set up the basic formalism for understanding
the structure of gluable quantum states in the previ-
ous section, here we consider constraints on the physi-
cal properties of such states when all measurement errors
are topological or, equivalently, are non-locally corrected.
More precisely, we call a state topologically gluable if
the unitary error basis V = {Vα} used for gluing remains

an error basis8 upon pushing through to V [n] = {V [n]
α } in

Eq. (27); this is in fact automatically a unitary error ba-
sis similar to the proof of Theorem 1. This is in contrast
to states where we use local feedback, where necessarily

V
[n]
α must trivialize for certain α.
The section is organized by first proving a basic but

powerful constraint on the entanglement structure for
gluable matrix product states of this form. After this,
we explore the connection between topologically gluable
matrix product states and symmetry, enabling us to pro-
vide a complete classification of such states in a particular
setting. We conclude by discussing the relationship be-
tween short-range entangled topologically gluable quan-
tum states and symmetry protected topological phases
with both uniform and modulated symmetries.

A. Generalities of Topologically Gluable States

Let us start by providing the most basic constraint on
topologically gluable matrix product states. This arises
from the ability of pushing each error operator to a far-
away region without losing its information (in particular,
in finite chains this means the error gets pushed to the
edge, as in the examples in Sec. II A and Sec. II B). This
is reminiscent of measurement-based quantum computa-
tion [58–60], where a flat (i.e., fully degenerate) entan-
glement spectrum is necessary to be able to ‘teleport’ op-
erators in this way. We show that this intuition indeed
generalizes to our set-up:

Theorem 3 (Exclusively Topological Errors Constrain
Entanglement) Any topologically gluable matrix product
state has a flat bipartite entanglement spectrum, i.e. the
Schmidt spectrum Λ2 is χ-fold degenerate where χ is the

bond dimension, i.e., Λ2 =
(

1
χ ,

1
χ , · · · ,

1
χ

)
.

Proof. To prove the claim, we first recall that Theorem
1 guarantees we are in canonical form. More precisely,

8 We note that this condition is automatically implied if {V [0]
α }

are all topological errors and, e.g., the transfer matrix T has
full rank (see Appendix D for a proof) or the state is uniformly
gluable (Sec. IVB).

the Kronecker delta (i.e., the Choi state for the identity
operator) is a dominant right eigenvector. Since its cor-
responding left eigenvector is the Schmidt spectrum Λ2,
it now suffices to prove that its left eigenvector is also
the Kronecker delta. To do so, let us denote the transfer
matrix of the matrix product state as:

A

Ā

= T (46)

and note that for topologically gluable states, we have
that:

Tn

V
[0]
α

V̄
[0]
α

= Tn

V
[n]
α

V̄
[n]
α

(47)

for all α, with V [n] = {V [n]
α } forming an error basis for

all n. At this point, we can sum over alpha and use the
diagrammatic identity introduced in Eq. (23) to show
that, for all n:

Tn = Tn (48)

Now, we can formally take the limit as n→ ∞ and using
the fact that we are in canonical form, we have that:

∑
β

LβRβ =
∑
γ

Rγ Lγ (49)

where the sums over β and γ are over the dominant
eigenspace of the transfer matrix (that is 1-dimension
for short-range entangled states) but higher dimensional
for long-range entangled states. Now, dotting on the left
of both diagrams with the identity, yields:

∑
β

χ tr(Rβ) Lβ =

(∑
γ

tr(Rγ)tr(Lγ)

)
(50)

Since the transfer matrix is gaurenteed to have at
least one positive right eigenvector (since we are in right
canonical form, that eigenvector is just the identity), the
left hand side of the above equation is non-zero and hence
the term in parenthesis on the right hand side is not zero.
As a direct consequence, the identity is in the span of the
left eigenspace. Finally, since this has nonzero overlap
with the Kronecker delta, it is the left eigenvector asso-
ciated to the aforementioned dominant right eigenvector,
proving that the entanglement spectrum of the transfer
matrix is flat.

■
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As a remark, we use a similar style of reasoning to
prove canonical form in the first place (claimed in Theo-
rem 1) as shown in Appendix B.

The flatness of the entanglement spectrum already sug-
gests possible connections between topologically gluable
quantum states and order. Indeed, constraints on de-
generacy of the entanglement spectrum regularly appear
for non-trivial one-dimensional quantum states, ranging
from long-range entangled states to symmetry-protected
topological phases. In what follows, we make this con-
nection more precise by first formalizing the connection
between topological errors and symmetry, which will then
reveal how topological errors can constrain the order of
gluable quantum states. This reflects the two examples
we saw in Sec. IIA and IIB, which consider deformed
long-range entanglement and SPT order respectively.

B. Topological Errors and Symmetry

In discussing the relationship between topological er-
rors and symmetry, it is convenient to distinguish be-
tween two types of topologically gluable matrix product
states. In particular, we will say that a matrix product
state is uniform topologically gluable if the elements
of its error basis V satisfy a uniform push-through rule:

AVα

=
A Vα

Uα

(51)

for all Vα ∈ V, i.e. V [n∈N]
α = Vα in Eq. (27) (in principle

this only needs to hold up to a phase factor, which we
omit for presentation purposes). An example of such uni-
form states include our deformed GHZ state (Sec. II A),
but also the deformed SPT example (Sec. II B) if we block
into a unit cell of two sites. Conversely, in the case where
a topologically gluable matrix product state is not uni-
form, we will call it modulated, an example of which
is the deformed SPT without blocking (Sec. II B). As we
will discuss in Sec. IVD, such cases are related to the
notion of modulated symmetries, which are just starting
to be explored in many-body quantum systems [70–78].

Uniform topologically gluable states are associated
with uniform symmetries, where the symmetry action
does not vary from site to site of the chain. This is clear
from rewriting Eq. (51) as:

AVα V †
α

=
A

Uα

(52)

This is the usual symmetry condition for a matrix prod-
uct state [57], indeed, it implies

∏
n(Uα)n leaves the state

invariant. Hence, in the case where Uα is non-trivial op-
erator, it gives a physical uniform symmetry of the ma-
trix product state. Conversely, when Uα = 1, we have

that Vα forms a virtual symmetry of the matrix product
state, whose presence indicates that the state is long-
range entangled9. This is exemplified by the Z errors in
the deformed GHZ state.
The relationship between pushable measurement errors

and symmetry naturally inspires taking an algebraic lens
on measurement errors. In particular, one can consider
the case where the measurement errors commute up to
a phase, which we wil call abelian errors (indeed they
give rise to abelian symmetries). Cases with abelian er-
rors have the useful property that correcting a measure-
ment error does not affect other errors, since pushing one
error along the matrix product will not transform the er-
rors it passes along the way. This property places rather
strong constraints on the gluable quantum state and in-
deed, it is possible to fully classify matrix product states
in these circumstances:

Theorem 4 (Classification of Uniform Topologically
Gluable Matrix Product States with Abelian Errors) Sup-
pose that A is a uniform topologically gluable matrix
product state tensor with an error basis V = {Vα}, whose
elements all commute up to a phase. Without loss of gen-
erality, we can choose one of them to contain the iden-
tity10. Then, up to an isometry acting at the physical
level, A is a is a matrix product state tensor with a phys-
ical dimension of χ2 and virtual dimension of χ given
by:

A

α

= tα
Vα

(53)

where tα=1,2,··· ,χ2 are arbitrary complex numbers such
that

∑
α |tα|2 = 1 to ensure normalization.

Proof (abridged). Since {Vα}α is a unitary error basis,
we know {Vα ⊗ V̄β}α,β is a basis for χ2 ×χ2-dimensional
matrices. Hence, we can write the transfer matrix as:

A

Ā

=

χ∑
α,β=1

λα,β

Vα

V̄β

(54)

for certain coefficients λα,β ∈ C. The local character-
ization of gluability (Eq. (28)) in the case of uniform

9 This follows from the fact that for each eigenvector of the transfer
matrix, Vα can be used to construct a second eigenvector with the
same eigenvalue. We thus have a degenerate largest eigenvalue,
which together with our minimality condition implies a physical
diverging correlation length.

10 One can always update the error basis as Ṽα = VαV
†
1 , which has

the property Ṽ1 = 1.
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symmetries tells us that for any γ = 1, 2, · · · , χ we have

A

Ā

=

AVγ V †
γ

V̄γ V T
γĀ

(55)

So far, these equations hold for any right-gluable MPS.
However, we will now argue that for the case of abelian
errors, only diagonal terms (i.e., where α = β) can sur-
vive in Eq. (54). Since the errors are abelian, we can
write VγVδ = χγ,δVδVγ for χγ,δ ∈ U(1). Then Eq. (55)
tells us

λα,β =
χγ,α

χγ,β
λα,β . (56)

Hence, λα,β ̸= 0 implies that χγ,α = χγ,β for all γ. One
can argue from the completeness of the unitary error ba-
sis that this implies α = β. From this one can deduce
Eq. (53); we refer to Appendix C 1 for details.

■
It turns out that uniform topologically gluable states

with abelian errors have additional properties which can
be very convenient. In particular, in Appendix C 1 we
show that abelian errors automatically have a group-like
stucture. For instance, VαVβ and V †

α are automatically
part of the unitary error basis. Such structure can help
with the classical post-processing step. For instance, it
means that instead of correcting for a single Vα error
with a semi-infinite string, one can pair up Vα with other
nearby elements (such as V †

α ) with finite string operators.
Algebraically, this structure is known as a nice error
basis, and these have been classified for small degrees
[66]. It is thus promising that such mathematical physics
results can be applied to the many-body physics prob-
lem of deterministically preparing quantum states with
measurement.

We can give an even stronger classification result for
the case of bond dimension χ = 2. This is because the
Pauli matrices are essentially the only unitary error basis
for 2× 2 matrices [65]. We thus have:

Corollary 2 Suppose that A is a uniform topologically
gluable matrix product state tensor with bond dimension
χ = 2. Then, up to an isometry acting at the physical
level, A is a is a matrix product state tensor with a phys-
ical dimension of 4 and is given by:

A

α

= tα
σα

(57)

where σα are the Pauli matrices {1, X, Y, Z}. Here
tα=1,2,3,4 are arbitrary complex numbers such that∑

α |tα|2 = 1.

As a particular example, the deformed GHZ state

(Sec. II A) corresponds to t1 = eβ√
e2β+e−2β

, t2 = t3 = 0,

and t4 =
√

1− t21, after a Hadamard transformation on
the physical qubit. Similarly, the deformed cluster state
(Sec. II B) corresponds to tα ∝ (e2β , 1, ie−2β , 1) after
blocking two physical qubits into one four-state qudit.
Finally, let us remark that the spin-1 AKLT state [7]
is also preparable with measurement [38] and in fact is
uniform topologically gluable in our framework, corre-
sponding to t1 = 0 and t2 = t3 = t4 = 1√

3
.

The above classifications reveal a rich landscape of ma-
trix product states that are deterministically preparable
using one round of measurements and given a specific
measurement basis. Indeed, in a companion paper [63],
we explore some of the phenomenological landscape that
arises as a consequence of the above classification (in-
cluding how tα relates to entanglement and correlation
properties). Below, we now formally present the “go”
theorems mentioned in Sec. IID, making physical com-
ments on the types of order present in the short-range
entangled case of the above.

C. Uniform, Short-Range Entangled Case

In the case of short-range entangled states, there are
no virtual symmetries of the matrix product state and
consequently the correction unitaries in Eq. (52) are now
all non-trivial and generate a group GU , which we term
index group of the state11. From our example of the
deformed cluster state (Sec. II B), we may naturally won-
der if the gluable state is then required to be a non-trivial
SPT. This is indeed the case! Specifically, we prove in
Appendix C 2 that for the abelian case, the measure-
ment errors Vα must generate a non-trivial faithful ir-
reducible projective representation of the above symme-
try group. This naturally connects uniform topologically
gluable quantum states to SPT phases and results in the
following theorem:

Theorem 5 Every short-range entangled, uniform
topologically gluable matrix product state with abelian
errors is a non-trivial SPT phase protected by the sym-
metry group GU .

A natural question is then whether the converse also
holds. In particular, does there exists a class of repre-
sentatives in any abelian SPT phase that are required
to be gluable? This, in fact, is also true and the repre-
sentatives in question are so-called minimally entangled
quantum states in the SPT phase.
Such quantum states are required to have a bipartite

Schmidt rank that is the minimal rank permissible by
the entanglement degeneracy of the SPT phase, but we

11 We borrow this terminology from the error correction literature
[64].
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remark this does not constrain the nature of the cor-
relations of the state. As an example, for all values
of β, the deformed cluster states considered (Sec. II B)
are all minimally entangled SPTs—there Schmidt rank
is rank(Λ) = χ = 2 as minimally required by the two-
fold entanglement degeneracy required by the Z2 × Z2

SPT order—but their correlation lengths for different val-
ues are drastically different and can even diverge. The
equivalence between minimally entangled abelian SPTs
and uniform topologically gluable quantum states is es-
tablished via the following theorem:

Theorem 6 Any minimally-entangled translation-
invariant SPT phase protected by a uniform abelian in-
ternal symmetry is topologically gluable.

We remark that, at a high level, this theorem shows
that measurement-based preparability can go hand-in-
hand with certain exotic classes of 1D orders. The start-
ing point for proving the above theorem is rather natural:
the state being in a non-trivial SPT phase for a symmetry
group G naturally gives virtual operators Vα which de-
fine a non-trivial projective representation of G [10, 13].
In the abelian case, there is a unique bond dimension
associated to such a projective representation, and our
above minimal-entanglement condition can then be used
to prove that {Vα} indeed defines a unitary error basis.
The full proof is provided in Appendix C 2. Here we
want to highlight an interesting subtlety. In particular,
one may wonder if the group G which defined the initial
SPT phases necessarily coincides with the index group
GU of the resulting gluable state. Surprisingly this is not
the case! In fact, GU need not even be a subgroup12 of
G. Indeed, we share a corollary for the proof of the above
theorem, which may be of independent interest:

Corollary 3 Suppose |Ψ⟩ is a minimally entangled
SPT state protected by a uniform abelian internal sym-
metry G and labeled by a factor set ω. If Zω = {g ∈
G|ω(g, h) = ω(h, g),∀h ∈ G} is the projective center of
the group associated with ω, then |ψ⟩ is also a non-trivial
SPT pase protected by an abelian symmetry G′ ≃ G/Zω,
whose factor set ω′ is maximally non-commuting, i.e., its
projective center is trivial Zω′ = {1}.

We refer to Refs. 79 and 80 for a discussion of the
notion of maximally non-commuting SPT phases.

12 However, it must be a quotient group. The simplest non-trivial
example arises from the χ = 2 SPT phase protected by G =
Z4×Z4 symmetry; the resulting index group of this gluable state
will be GU = Z2 × Z2 which turns out to be identified with a
quotient group of G but not a subgroup.

D. Modulated Case: Dipole SPTs

Having addressed the uniform case in detail, we now
turn to the comparatively more exotic modulated case for
the case of short-range entangled states. In such a case,
the modulation of the measurement errors as they are
swept through virtual bonds of the tensors is accompa-
nied by a modulated site-to-site action of the correction
unitary at the physical level. Moreover, if the measure-
ment error operator is inserted at the boundary (with
suitable boundary conditions), the resulting correction
symmetry string will generate a modulated symmetry of
the system.
For arbitrary modulated symmetries, the structure

of the resulting symmetry could be system-size depen-
dent. This sort of “UV/IR mixing” is a regular fea-
ture of systems with modulated symmetries and makes a
completely general analysis of the modulated case chal-
lenging. Indeed, a full theory of short-range entan-
gled states is still lacking, though there has been recent
progress in understanding several examples for certain
modulated symmetries [74] and a general classification
in one-dimension for dipole modulated symmetries [75].
As such, below we address a few examples of preparable
modulated topologically gluable SPT states. In all cases,
it is in some sense the SPT properties of the state that
enable the gluing of these states. This suggests a more
general connection between topologically gluable states
to modulated SPTs that we leave for future work to ad-
dress in generality.

1. Review of Ref. 74: Deformed Cluster State as Dipole
SPT

We start by recognizing that the deformed cluster state
in our motivating examples (Sec. II B) can already be in-
terpreted as the simplest (albeit contrived) example of a
dipole SPT phase. In particular, traditionally the cluster
state, and its deformed analogs, are viewed as being pro-
tected by a Zeven

2 ×Zodd
2 symmetry (corresponding to spin

flips on even and odd sites). These can be viewed as two
distinct uniform symmetries if one forgets the one-site
translation invariance of the cluster state and blocks two
adjacent sites on the cluster state together. Alternatively,
if one demands the single-site translation symmetry of

the state, it can instead be viewed as a ZQ
2 × ZD

2 dipole

SPT, where the former ZQ
2 is the uniform “Z2-charge”

symmetry of the state generated by
∏

xXx and the lat-
ter is a modulated “Z2-dipole” symmetry generated by∏

x evenXx. Phrased in a more tensor network-based lan-
guage, the existence of a uniform symmetry of the matrix
product state guarantees that:

A A

X

=
A AX X

(58)
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and similarly,

A A

X

=
A AZ Z

(59)

In contrast, the presence of the ZQ
2 × ZD

2 symmetries
guarantees that:

A

X

= −
A YY

(60)

AY
=

A XX
(61)

which can be checked is equivalent to Eq. (39). Both
schemes are sufficient for guaranteeing that the deformed
cluster state is gluable.

2. Gluing ZQ
N × ZD

N Dipole SPTs

Following our discussion of the deformed cluster state,
we now discuss the gluing of a deformed variant of the

ZQ
N × ZD

N dipole SPTs introduced in Ref. 74. To do so,
it will be convenient to define the ZN Pauli matrices
(or clock and shift matrices) X and Z. These opera-
tors act on a local Hilbert space of dimension N , labeled
|g ∈ ZN ⟩, and they satisfy the following algebraic rela-
tions:

ZN = XN = 1 XZ = ωZX XZ† = ω̄Z†X (62)

where ω = e2πi/N . In terms of these, the two internal
symmetry groups of these SPTs are given by

∏
x Xx and∏

x X x
x , which generate the charge and dipole symmetry

respectively.

There are N distinct variants of the dipole SPT labeled
by η ∈ ZN . In all such cases, a deformed variant of the
fixed point wavefunction can be labeled by:

A
=

Hη

(63)

where the white circle is eβ(X+X †) and the orange circle
denotes a dipolar “Hadamard”-esque matrix:

Hη =

N∑
g,h=1

ωηg(h−g) |g⟩ ⟨h| (64)

These tensors are in right canonical form and satisfy the

following dipolar SPT rules, which can be expressed as:

A

X †
=

A(Z†)ηX X †Zη

(65)

A(Z†)ηX
= ω−η

A X †X
(66)

The rules above are rather generic and apply, in some
form, to any minimally entangled representative of the
ZN × ZD

N dipole SPT phase. Rules in hand, we now
discuss how to prepare these states with measurement.
As always, we envision preparing the tensors above as

quantum states. Subsequently, we measure the virtual
qudits in the maximally entangled unitary error basis
defined by the ZN Pauli matrices: V = ⟨X ,Z⟩. Note
that the dipole SPT rules of Eq. (65), can be rearranged
to provide push through rules for (Z†)ηX † and (Z†)η.
To ensure correctability, we consider the the case where
dη = gcd(η,N) = 1 (i.e. η and N are co-prime). In
such a case, the aforementioned operators generate the
ZN Paulis and we are guarantees that we can correct
any virtual insertions just using the SPT property. This

demonstrates the preparability of the deformed ZQ
N ×ZD

N
dipole SPT. The same argument applies to any minimally

entangled representative of the ZQ
N × ZD

N dipole SPT for
dη = 1.

V. LOCAL AND TOPOLOGICAL ERRORS:
CORRELATION VERSUS ENTANGLEMENT

Having provided a detailed analysis of the constraints
imposed on gluable quantum states with exclusively
topological errors, in this section, we will now consider
the case where there exist both topological and local er-
rors in the system. In particular, we first show that the
presence of even one local error in the system forces there
to exist zero correlation length operators in the state (a
statement, which we will make more precise in the matrix
product state language shortly). Subsequently, we will
provide some extended physical intuition on the above
result before stating the main result of this section: a no-
go theorem demonstrating that certain quantum many-
body states are not gluable, or equivalently cannot be
prepared using the ingredients informally laid out in the
introduction.

A. Local Errors Constrain Correlations

As stated above, here we will consider a scenario
where a subset of the measurement errors are locally cor-
rectable. In this case, we will prove a simple, but power-
ful constraint on the correlations of the state. To do so,
let us first recall that correlation functions in a matrix
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product state are controlled by the spectrum of the trans-
fer matrix [57, 67–69]. Indeed, the correlation function
of a generic operator O (either point-like or string-like)
is a sum of exponential decays given by:

⟨O(x)O(y)⟩ =
∑

λ∈spec(T )

cλOe
−|x−y|/ξλ (67)

where ξλ = 1/ log(1/λ) and cλO are coefficients that de-
pend on the choice of operator. As a consequence, we
will refer to the spectrum of the transfer matrix more
physically as the correlation spectrum.

Let us remark that, by the requirement of normaliza-
tion of the state, the largest transfer matrix eigenvalue
is required to be 1 and degeneracies in this eigenvalue
always signify long-range entanglement13. Zeros in the
transfer matrix spectrum are associated with operators
whose correlation length is exactly zero 14. Consequently,
seeing such zeros in the correlation spectrum indicates
the presence of operators whose connected correlation
functions, while not identically zero, are zero beyond a
certain distance. With an understanding of the corre-
lations in the matrix product state, we are prepared to
state and prove the following theorem:

Theorem 7 (Local Errors Constrain Correlations)
Suppose that A is a matrix product state tensor and V
is a (non-identity) measurement error that can be cor-
rected at the physical level using a unitary with finite
local support. Then, the correlation spectrum of A has
a zero.

Proof. Let us suppose that V is an operator that
that can be locally corrected. Then, this means that
the measurement-error pushes through the matrix prod-
uct state onto a unitary with a support on a bounded
number of continguous sites n. Consequently, we have
that:

Tn

V

V̄

= Tn (68)

The above naturally implies that (V ⊗ V̄ − 1 ⊗ 1)T =
0. Now, by assumption, V ̸= 1 and hence the above
operator is non-zero. Thus, for any vector ⟨ϕ| ∈ Cχ⊗Cχ

13 Indeed, degeneracies in the largest transfer matrix eigenvalue im-
ply that there exists an operator that fails to satisfy cluster de-
composition: ⟨O(x)O(y)⟩ → ⟨O(x)⟩⟨O(y)⟩ for large separations
|x − y|. Consequently, the resulting state cannot even approxi-
mately be connected to a product state with a finite-depth local
unitary and is hence long-range entangled.

14 For fixed point states, aside from degeneracies in the largest
transfer matrix eigenvalue, the remaining eigenvalues are always
zero.

such that ⟨ϕ| (V ⊗ V̄ − 1 ⊗ 1) = ⟨ψ| ≠ 0, we have that
⟨ψ|T = 0 15. This completes the proof.

■
The above theorem shows that states with local errors

are “closer to their fixed points”, at least at the level of
their correlations.

B. Local Errors and Their Correction from Local
Unitaries

To provide some more intuition for the previous theo-
rem, we show that in certain cases, matrix product states
with local errors can be “partially glued” using a finite-
depth local unitary circuit. Since such unitaries cannot
increase the correlation length of a state (as they have fi-
nite light cones), this provides heuristic intuition for why
the correlations of such states are more limited.
The aforementioned cases correspond to when each el-

ement of the error basis V can be decomposed into a
product of two sets of operators vαVβ , with i = 1, · · · , χ′

and j = 1, · · ·χ2/χ′, where the v’s are local errors and
V ’s are topological errors. In other words, they satisfy:

AVα

=

A V
[1]
α

U
[0]
α

(69)

Avα

=
A

uα

(70)

where V
[1]
α can be iteratively pushed off to infinity and

U
[0]
α and uα are unitary. Such a structure arises, for ex-

ample, in the deformed trivial state (Sec. II C) whose
errors basis—the Pauli’s—satisfy similar push-through
conditions, with Z being a local error and X being topo-
logical. We now demonstrate how this product structure
of the errors allows to replace some of the measurements-
and-feedback by conventional unitaries. For maximal
clarity we here demonstrate the key ideas using the exam-
ple of the deformed trivial state, but the manipulations
generalize to the more general product case structure.
The essential idea is to replace measurement and local

classical post-processing with quantum processing. To
see this idea in action, let us recall that for the deformed
trivial state, Bell measurement between two clusters (see
Eq. (42) for a tensor network depiction of the clusters)

15 Indeed, this same line of reasoning shows that if there is a subset
ν ⊂ V that is locally correctable, then the number of zeros in the
transfer matrix ζ is bounded from below by

ζ ≥ χ2 − dim

(⋂
v∈ν

ker(v ⊗ v̄ − 1)

)
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are used to glue the clusters together. Operationally, one
could perform this Bell measurement by first performing
a control-NOT gate between the clusters visualized as:

⊕ (71)

and subsequently, perform a Z-basis measurement on the
target and a X-basis measurement on the control. Note
that if the outcome is |0⟩ |+⟩, then the result will be to
insert a projector onto the Bell state |1⟩. This constitutes
the ideal measurement outcome. In the case, where we
get either the |1⟩ or |0⟩ state, note that:

⊕
⟨1| ⟨+|

=
⊕X
⟨0| ⟨+|

(72)

and

⊕
⟨0| ⟨−|

=
⊕ Z

⟨0| ⟨+|
(73)

The above means that, errors on the left measurement
insert an X measurement error between the clusters and
errors on the right measurement insert a Z measurement
error. While correcting the topological X error requires
a non-local string as explored extensively in the previous
sections, correcting the local Z error only requires a local
action of Za on the physical qubit immediately to the
right of the measurement, classically conditioned on the
measurement outcome of the right qubit above (a = 0
for |+⟩ and a = 1 for |−⟩). This local classical post-
processing can be replaced with the following quantum
processing:

⊕
(74)

where the orange circles are once again Hadamard gates,
the conditional gate is a control-Z gate, and the purpose
of the gate in the red box is effectively to check whether
the left qubit is in the |+⟩ or |−⟩ state and use a quantum
conditional gate to correct it on the right. Note that the
red box is simply just a control-NOT, but we have em-
phasized its internal structure for didactic reasons, since
it can be interpreted as (quantum) feedback which checks
the state of the to-be-measured ancilla. Indeed, one can
show that:

⊕
⟨0|

= ⟨+| (75)

What this means is that by turning our classically-
conditioned on-site feedback into a quantum gate, the
corresponding ancilla qubit is automatically disentangled
and we thus do not need to measure it anymore. We
have thus reduced the necessary measurements to a sin-
gle qubit for “gluing” the two clusters together, with a
topological error which can be corrected by a non-local
string.
Since local unitary gates cannot change the correlation

length of the state they are acting on, the above provides
some intuition as to why local errors lead to zeros in
the correlation spectrum. Furthermore, we remark that,
while unitary gates cannot change correlation lengths,
they can affect the entanglement spectrum, further mo-
tivating why states with local errors can have non-flat
entanglement spectrum.

C. No-Go Theorem

Given the above theorem on local errors and zeros in
the correlation spectrum and intuition for this result, we
are now prepared to prove our final main result of this
manuscript: a powerful no-go theorem on the prepara-
bility of quantum states with a single round of measure-
ments and left-conditioned feedback.

Theorem 8 (No-Go Theorem) Suppose |Ψ⟩ is a
translation-invariant quantum state with a non-flat en-
tanglement spectrum upon bipartitioning the infinite
chain in two halves, and with no zeros in its correlation
spectrum (i.e., its transfer matix has full rank). Then
|Ψ⟩ is not right-gluable, i.e., it cannot be prepared with
the ingredients listed in Sec. III.

Proof. The proof follows by establishing a contradic-
tion. Let us suppose that |Ψ⟩ was gluable with an error
basis V. Further, suppose that the transfer matrix of
the matrix product state representation of |Ψ⟩ had no
zero eigenvalues in its spectrum and consequently was
full rank. Then, by Theorem 7, we know that |Ψ⟩ has no
locally correctable errors and its errors are exclusively
topological. Consequently, per Theorem 3 16, the en-
tanglement spectrum is flat. However, this is in con-
tradiction with the assumption that |Ψ⟩ had a non-flat
entanglement spectrum. Hence, |Ψ⟩ is not gluable.

■
As an example of a state with the aforemen-

tioned properties, we can consider a combination of

16 We remark upon a subtlety that is glossed over in this proof.
Namely, the errors all being topological was not strictly sufficient
for showing a flat entanglement spectrum. It was also necessary
to show that each V [n] in Eq. (27) was a unitary error basis. We
show in Appendix D that, when a quantum state has no zeros in
its correlation spectrum, all errors being topological implies each
V [n] is a unitary error basis.
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the examples seen in Sec. II. For instance, |Ψ⟩ =

eβ
∑

n Xneβ
′ ∑

n ZnZn+1 |+⟩ is a translation-invariant state
which admits an exact χ = 2 MPS representation, and
one can straightforwardly check that for β ̸= 0 ̸= β′, its
entanglement spectrum is not flat and its transfer ma-
trix has full rank. Thus, this state cannot be prepared
with the ingredients explored in the present work. This
highlights it is in principle possible to highlight concrete
boundaries between what is and what is not possible us-
ing measurement-based state preparation.

VI. CONCLUSIONS AND OUTLOOK

In this work, we sought to isolate the power of mea-
surement for creating one-dimensional quantum entan-
glement by characterizing states accessible with a single
round of measurement and left-conditioned tensor prod-
uct unitary feedback. We showed that such states are re-
quired to have an exact matrix product state description
and then uncovered local criteria on the matrix product
state tensors that are necessary and sufficient conditions
for preparability. These local criteria not only directly in-
formed the preparation procedure of such states but also
placed strong constraints on their physical properties—
dictating which states could or could not be prepared in
different settings.

In the general case, we were able to uncover an in-
triguing trade-off in the power of measurement for creat-
ing interesting entanglement structure and correlations.
Namely, if the correlations of the state were rich (i.e., no
zero-correlation length operators present in the state),
the entanglement structure was heavily constrained (i.e.,
forced to be flat). Conversely, in order to have a more ex-
pressive entanglement structure, the state was required
to have zero correlation length operators. This tradeoff
then naturally led to the no-go theorem in the previous
section.

Moreover, in more specialized settings (i.e. for uniform
topologically gluable quantum states with abelian er-
rors), we were even able to provide a full classification for
the space of preparable states, whose phenomenology will
be explored as part of a companion work [63]. Finally, we
revealed connections between preparable quantum states
and order, finding that the manner in which a state was
corrected, often directly informed its order. This connec-
tion was made sharpest in the context of abelian symme-
try protected topological phases where we found that all
minimally entangled representatives of these phases were
preparable, with the converse also holding under suitable
conditions.

Our work also opens up many exciting opportunities
for future research. On the more practical side, our work
opens the door to a large class of quantum many-body
states that can be prepared with few quantum operations
in contemporary quantum devices. Such quantum states
could be useful as initial states in quantum simulation
experiments. In such a case, they could be the start-

ing point of some quench dynamics protocol or could be
non-trivial inputs to more elaborate simulation schemes.
Moreover, they could also serve as inputs to benchmark
contemporary quantum algorithms. Such constant-depth
preparation protocols are especially timely since a vari-
ety of platforms have recently demonstrated mid-circuit
measurement capabilities in tuneable many-body quan-
tum systems [54, 81–89].
On the more theoretical side, our work contributes to

the recent push to develop a more refined organization
and understanding of the complexity of quantum entan-
glement and correlations. Indeed, the states we show
are non-gluable in the main text are “more complex”
in a precise sense than those that are gluable. Along
this direction, it would be interesting to study several
immediate generalizations of this work. Can our most
complete classification results (Sec. IVB) be extended to
other scenarios, such as the case with local erorrs, modu-
lated symmetries or non-abelian errors? A more invasive
change would be to incorporate feedback that is both left-
and right-conditioned; we saw that in such cases, many
basic properties (such as the measurement basis being
maximally entangled) are no longer guaranteed, and it is
unclear whether a rigid framework can exist.
More broadly, what states become accessible with mul-

tiple rounds of measurements17? What if one gives
up on the ‘measurement-only’ condition and incorpo-
rates unitarily evolution as part of the ingredients (ei-
ther Hamiltonian- or gate-based)? Moreover, what can
be said generally in higher dimensions? Finally, if one
relaxes the condition of deterministic preparation [43] or
exact preparation [30], what can be achieved? A more
complete understanding of any of these questions would
help further foliate and organize the landscape of quan-
tum states and provide deeper insights into the structure
of accessible (i.e., physically occurring) quantum entan-
glement.

Note added: The posting of this preprint to the
arXiv was coordinated with simultaneous postings by
Smith et al. [90] and Stephen et al. [91]. Both discuss
the measurement-based preparation of matrix product
states, and were developed independently from this work.
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Appendix A: Additional Details for Motivating Examples

In this appendix, we provide some additional details regarding the motivating examples provided in the main text.
Specifically, we provide derivations for the tensor networks of both the deformed cluster state and the deformed trivial
state. Furthemore, by computing the correlation spectrum of each state as a function of β, we justify claims made
regarding their correlations in the main text.

1. Additional Details for Deformed GHZ State

In the main text we mentioned that this state has a full correlation spectrum (for β ̸= 0). To be more precise, we
calculate its correlation spectrum (i.e., eigenvalues of the transfer matrix) to be:

λ(T ) = {1, 1, tanh(2β), tanh(2β)}. (A1)

The degeneracy highlights that the state is long-range entangled. The subleading values give rise to a correlation
length ξ = 1/| ln tanh(2β)|. This is picked up, e.g., by the string correlation function of the

∏
nXn symmetry.

2. Additional Details for Deformed SPT State

To see that the protocol in Sec. II B leads to eβ
∑

n Xn |cluster⟩N if all measurement outcomes are the ideal Bell
state, let us first note that at β = 0, the state satisfies:

GHZ3 GHZ3 GHZ3

⟨1| ⟨1|XZ Z

=
GHZ3 GHZ3 GHZ3

⟨X| ⟨Z|Z Z

(A2)

which followed from using the property of the GHZ that Xcx |GHZ3⟩ = XlxXrx |GHZ3⟩ and the property of the
Hadamard that XH = HZ. By using the property of the GHZ that Zcx |GHZ3⟩x = Zrx/lx |GHZ3⟩x, we can thus
derive that:

GHZ3 GHZ3 GHZ3

⟨X| ⟨Z|Z Z

=
GHZ3 GHZ3 GHZ3

⟨1| ⟨1|
(A3)

Hence Eq. (4) is the cluster state at β = 0, and hence is the desired wavefunction for general β.
Moreover, we determine its correlation spectrum (i.e., eigenvalues of the transfer matrix) to be:

λ(T ) = {1,
√
tanh(2β),−

√
tanh(2β),− tanh 2β}. (A4)

This state hence has several non-trivial correlation lengths, the largest of which is ξ = 2/| ln tanh(2β)|.

3. Additional Details for Deformed Trivial State

Now for a simple non-SPT example, we remark that we can prepare the state eβZZ |+⟩⊗N
. Such a state is strictly

in the trivial phase for all values of β <∞. To see the tensor network representation of this state, we remark that:

eβZZ = (A5)
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where the red circle is the matrix: (
eβ e−β

e−β eβ

)
= eβ + e−βX ∝ eαX (A6)

where α = arctanh
(
e−2β

)
. With this in mind, note that the full tensor network will look like:

|Ψ⟩ = (A7)

Moreover, we determine its correlation spectrum (i.e., eigenvalues of the transfer matrix) to be:

λ(T ) = {1, tanh(2β), 0, 0}. (A8)

Unlike the other two examples, this state has non-trivial observables with zero correlation length. As discussed in
the main text, this is intimately related to the fact that this state can be prepared where some errors are local rather
than topological.

Appendix B: Proof of Resource Theorem and Local Tensor Characterization

This appendix is devoted to proving the resource and local tensor characterizations theorems of Sec. III (Theorems
1 and 2). Specifically, for the readers convenience, we restate the two theorems:

Theorem 1 (Resources for Gluable Quantum States) Suppose that |Ψ⟩ is a translation-invariant right-gluable
quantum state. Then the following are true:

(1) |Ψ⟩ has an exact matrix product state description

(2) the unentangled clusters in the state preparation protocol |ψ⟩ are its matrix product state tensors in canonical
form (labeled A) up to a tensor product of unitaries acting on each qudit of the cluster. In other words,

ψ

=
AuL uR

uP

(B1)

where A is the MPS in right-canonical form and uL, uR, and uP are unitaries (which are determined by the
feedback protocol and measurement basis).

(3) The measurement basis V used for the preparation is maximally entangled. Equivalently, viewed as operators,
the measurement basis is a unitary error basis.

Theorem 2 (Tensor Characterization for Gluable States) A translation-invariant state |Ψ⟩ is right-gluable if and
only if its matrix product state representation A admits an error basis of right-pushable operators.
This condition is equivalent to the existence of χ2 trace-orthonormal operators {Vα} such that

A

Ā

V
[n]
α

V̄
[n]
α

=

V
[n+1]
α

V̄
[n+1]
α

A

Ā

(B2)

where χ is the bond dimension of the MPS tensor, n is any non-negative integer, and V
[0]
α = Vα.

Since the proof is rather lengthy, we organize the following logical sections

Subsection 1: We start by providing a proof of claim (1) of Theorem 1—every gluable quantum state is a matrix
product state.
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Subsection 2: Subsequently, it will be necessary to prove Theorem 2, which shows that gluable is equivalent to a
local criteria on the MPS tensors.

Subsection 3: We conclude by claims (2) and then (3), given the ingredients in the previous subsections.

1. Every Gluable Quantum State is a Matrix Product State

The proof of claim (1) of Theorem 1 proceeds in two stages. First, we prove that if a state is gluable, then its
measurement preparation protocol can be viewed as performing nearest-neighbor measurements between disentangled
clusters. We subsequently show that this setting naturally produces matrix product states.

a. Reduction to Nearest-Neighbor Measurements

To reduce a more general measurement scheme to a nearest-neighbor measurement scheme, let us recall that
definition, measurements between clusters can only occur with some maximal range R, measured in units of the
distance between clusters (e.g. in Fig. 2 (a, top row), R = 2). By then blocking R clusters together, we can convert
this to a protocol with at most nearest-neighbor measurements [in units of the new clusters, cf. Fig. 2(a, second
row)]. However, at this stage, recognize that there will be measurements that occur within clusters, unlike the setting
considered in our examples. To mitigate this, we can perform two tricks.

(1) First, we re-order the measured qudits such that all inter-cluster and right-neighbor measured qudits are to the
right of all the unmeasured qudits, which are to the right of all left-neighbor measured qudits [ as shown in
Fig. 2(a, third row)]. Note that this inter-cluster re-ordering of the measured qudits has no physical effect on
the resulting state as we discard the measured qudits in our measurement protocol.

(2) Second, we can “group” measurements together to eliminate all inter-cluster measurements [shown in the last
panel of Fig. 2(a)].

The result is a set of disentangled clusters with nearest-neighbor measurements with non-overlapping geometric
support, identical to all the examples that we considered [shown in Fig. 2(b)]. With this simplification, left conditioning
is equivalent to saying that the correction unitary for a given unmeasured qudit, depends on the measurement outcome
for qudits states to the left of it.

b. Gluable Quantum States are Matrix Product States

Given the reduction to nearest neighbor measurements, we are prepared to prove claim (1) of Theorem 1.

Theorem B.1 [Claim (1) of Theorem 1] Any gluable quantum state |Ψ⟩ has an exact matrix product state
description.

Proof. Suppose that a global state |Ψ⟩ is gluable. Then this means that there exists a measurement basis |Ṽ⟩ =
{|Ṽα⟩} and an associated set of correction unitaries Um

x (with m = {αx = 1, · · ·χ2} denoting the measurement record)
that enable deterministically preparing |Ψ⟩. As a remark, for notational convenience, we take x ∈ Z, i.e. the chain is
infinite, though the analysis below is identical for the open boundary condition case. To set notation, let us denote
the initial state as:

|Ψ0⟩ =
⊗
x∈Z

|ψ⟩(xL)x(xR) = · · · ψ0 ψ1 ψ2 · · · (B3)

Here, xL and xR label the qubits to be measured to the left and the right respectively. Note that the clusters |ψx⟩
can in principle depend on position x. Once again, for sake of notation we choose to drop this label but it can be
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restored easily. With the above, we have that for every measurement outcome m, we have that:

|Ψ⟩ =
⊗
x∈Z

(Um
x )†⟨Ṽ αx |(x−1)R xL

[⊗
x∈Z

|ψ⟩(xL) x (xR)

]
=
∑
s

∏
x∈Z

[(Um
x )†]sxs′x Ṽ

αx
i(x−1)R

ixL
ψ
s′x
ixL

ixR
|s⟩ (B4)

=
ψ ψ ψṼ α Ṽ β Ṽ γ· · ·

Um
0 Um

1 Um
2

† † †

· · ·
(B5)

where in the last line, we implicitly sum over repeated indices and s = {sx} labels the local Hilbert space dimension
of the unmeasured qubits, with sx = 0, · · · d− 1 and the use of upper and lower indices having no meaning. Note that
the above automatically implies a matrix product state representation of the state. In particular, let the tensor at
location x be equal to

[Am
x ]sxixL

i(x+1)L
= [Um

x ]†sxs′x Ṽ
αx
i(x−1)R

ixL
ψ
s′x
ixL

ixR
=

ψṼ α

Um
x

† (B6)

Note that, in the above representation, the tensor may depend on m but, by design, the global state is not.
■

As explained in Sec. III A of the main text, we can always presume that there exists a measurement outcome m0

such the post-measurement state is the desired state, i.e., there is no need for correction in that particular case.
Indeed, Eq. (B6) confirms this point, since one can perform a basis transformation on our initial |ψ⟩ to absorb the
correcting unitary for a given outcome. Without loss of generality, we can take this ‘ideal’ measurement outcome to
be m0 = 1 = (· · · , 1, 1, 1, · · · ). The MPS tensor is thus equal to

[A]sxi(x−1)R
ixR

= Ṽ 1
i(x−1)R

ixL
(ψx)

s′x
ixL

ixR
=

ψṼ 1

(B7)

Let us further remark that Ṽ 1 must be invertible because if it were not, we could find smaller dimensional “virtual
qudits”, with which to create our initial product state clusters, contradicting the minimality condition in Sec. III.

Then, without loss of generality, we will write the measurement basis as Ṽ = VB = {VαB} with the property that

V1 = 1 (achieved by setting B = Ṽ1). In summary, we have

A =
ψB (B8)

with measurement outcomes leading to random insertions of Vα on the bonds of the matrix product state.
Finally, we remind the reader that in Sec. III we presume translation-invariance for convenience. More precisely,

this means we will take A in Eq. (B8) to be site-independent. However, many of our proofs can be extended beyond
this.

2. Proof of Theorem 2: Local Criteria on Matrix Product State Tensors

We now turn to proving our local criteria for matrix product states. To do so, our strategy will be to first prove
that:

Vα · · ·A A A

=

· · ·A

U
[0]
α

A

U
[1]
α

A

U
[2]
α

(B9)

for a single Vα. While the above might seem manifestly true given the assumption of left-conditioning, there is an
important subtlety. In particular, any measurement error with a zero probability, need not push through to a unitary
(since we will never be required to correct such an error). As such, we first prove that a single measurement error Vα
has a non-zero probability (on an open chain geometry with generic boundary conditions) before proving the condition
on the local tensor criteria.
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Lemma B.1. For any translationally invariant gluable wavefunction |Ψ⟩ defined on a finite system of length L
(assumed to be much larger than the correlation length18) with particular open boundary conditions, the probability
of measuring a single virtual error is non-zero.

Proof. Let us start by showing that, on a finite chain with open boundary conditions, the measurement outcome
corresponding to a single virtual insertion VαB in the center of the chain has a non-zero probability density of being
measured. Since we are predominantly interested in bulk properties, we let our target wavefunction have the following
boundary conditions:

|Ψ⟩ = 1

N
A A A A

v
1/2
L v

1/2
R

(B10)

where vL and vR define vectors with non-zero overlap on the largest positive right and left eigenvectors of the transfer
matrix, R and L and with no overlap on any other potential dominant eigenvectors. Note that this is generic in the
case of short-range entangled phases, since they have a unique dominant eigenvector of the transfer matrix. There
is thus only a non-trivial condition in the case of long-range entangled phases, in which case it exactly corresponds
to the physical requirement that we obtain the appropriate bulk state in the thermodynamic limit. For simplicity,
we proceed by taking vL = L and vR = R, though the proof carries through more generally under these conditions.
With this target state in mind, the post-measurement state with a single bulk measurement error is:

pα =
1

χNN

A

Ā

A

Ā

A

Ā

A

Ā

· · ·· · · Vα

· · ·· · · V̄α

(B11)

where N is the normalization for the initial state of decoupled clusters and χ arose from the normalization in Eq. (19).
Now, provided that system size N is sufficiently large, we have, by the power method:

pα =
1

χNN

Vα

V̄α

RL =
1

(χN )N
tr
{
[M−1VαM ][M†V †

α (M
−1)†]Λ2

}
=

1

(χN )N
tr(W †

αWαΛ
2) ̸= 0. (B12)

Here, we used our assumption that rank(Λ) = χ and the subsequent existence of the canonical form to set L =
M−1Λ2(M−1)† and R = MM†, for some non-singular matrix M . Note that in the last step, we used the fact that
W †

αWαΛ
2 is positive semi-definite and non-zero. Hence the probability density of the outcome above is non-zero.

■
Given this proof on the probabilities, we now prove Theorem 2: our local tensor criteria for gluable quantum states.

Theorem B.2 (First Part of Theorem 2 of Main Text) A translationally invariant matrix product state is gluable
if and only if there exists an error basis of pushable operators.

Proof. Let us remark that if there existed an error basis of pushable operators, then it is clear why the matrix
product state is gluable. As such, the only non-trivial direction is the “only if” direction. If |Ψ⟩ is preparable with
left conditioned feedback, then we know that the unitaries used for correction Um

x = Um<x
x , where m<x = {αy<x}.

Note that this naturally implies that U1<x = 1 (i.e. if there are only 119 outcomes appearing to the left of x, then the
correction unitary at x is the identity). With this in mind, let us consider the measurement outcome m = 1<xα1>x

(that is we measured 1 everywhere except for at x where we measured α), which we know can happen according to
the above lemma. Then, we have that:

A A A A · · ·· · · Vα
=

A A A A · · ·· · ·

U0(α) U1(α)

(B13)

18 To be precise, by correlation length here, ξλ = 1/ log(1/λ) where
λ is the largest non-identity eigenvalue of the transfer matrix.

19 Recall that “1” was the measurement outcome that we took,
without loss of generality, to be the identity.
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where we have emphasized that Un(α) is a function of α and a function of n, the distance away from where the first
virtual defect occurred. Now, note that, by the minimality assumption of gluable quantum states, the bonds of the
matrix product state are full-rank. In other words, the following map (which takes into account the boundary):

Γx
L : HL

phys → HL
virtual Γx

L =
A A A A

(B14)

is surjective for all x. 20. A similar condition holds for ΓR. Consequently, we have that:

Vα · · ·A A A

=

· · ·A

U
[0]
α

A

U
[1]
α

A

U
[2]
α

(B15)

Now, note that because ΓR (the right analog of Eq. (B14)) is surjective, there exists a map (Γx
R)

+ such that
(Γx

R)(Γ
x
R)

+ = 1HR
virtual

(i.e. it is a right-inverse of Γx
R). This map is the so-called Moore-Penrose pseudoinverse

of Γx
R

21. Now, we apply (Γx+1
R )+ to both sides of the above equation to get:

AVα

=

Vα A A A

(Γx+1
R )+

=

A

U
[0]
α

A

U
[1]
α

A

U
[2]
α

(Γx+1
R )+

= V
[1]
α

(B16)

Hence, we have that:

AVα

=

A V
[1]
α

U
[0]
α

(B17)

The above argument can be repeated arbitrarily and hence, we have shown that Vα is pushable for all α, proving the
claim.

■

Corollary B.1 [Second Part of Theorem 2] A matrix product state having χ2 trace-orthonormal pushable operators
is equivalent to it having χ2 such operators that satisfy:

A

Ā

V
[n]
α

V̄
[n]
α

=

V
[n+1]
α

V̄
[n+1]
α

A

Ā

(B18)

Proof. We remark that if a matrix product state has a pushable operator, then Eq. (B18) automatically holds. It
suffices to show therefore that the converse is true. Note that the transfer matrix of a matrix product state uniquely

determines its tensors up to isometries acting at the physical level22. Since Eq. (B18) implies that (V
[n]
α ⊗V̄ [n]

α )T (V
[n]
α ⊗

V̄
[n]
α )−1 = T ,we have that:

AV
[n]
α (V

[n+1]
α )−1

=

A

U
[n]
α

(B19)

20 Note that, if it was not, we could insert a projector into the
virtual bond without affecting the state. Consequently, its bond
dimension χ ≥ rank(Λ) violating the minimality assumption.
Further note this is completely distinct from the concept of MPS
injectivity, which we are not assuming.

21 In canonical form, the Moore-Penrose inverse of ΓR
x is simply

(ΓR
x )†. Since we are not assuming canonical form (indeed, we

later derive it), we work with the more general object.
22 This follows from the fact that the transfer matrix defines a

complete positive channel whose Kraus operators are the matrix
product state tensors [57].
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where U
[n]
α is a square isometric matrix, which implies that it is unitary. This completes the proof.

■
Theorem 2 in hand, we can move onto proving the rest of Theorem 1.

3. Proof of Claims (2) and (3) in Theorem 1

We now aim to prove claims (2) and (3). We do so in parallel, first showing that A (as defined in Eq. (B8)) is in
canonical form, then proving that Vα (which appear in the error basis VαB [See discussion above Eq. (B8)]) is unitary,
and then finally proving that B is unitary. These three facts together simultaneously prove the two claims.

Theorem B.3 Suppose that |Ψ⟩ is a translation-invariant gluable quantum state. Then the matrix product state
representation of |Ψ⟩, as given by the tensor in Eq. (B8), is in right canonical form up to a unitary gauge transformation.

Proof. To show that we are in right canonical form, it suffices to show that the identity is in the dominant right
eigenspace of the transfer matrix. To do so, recall that since |Ψ⟩ is a gluable matrix product state, for all α in the
error basis, we have from Theorem 2, that:

ψ

ψ̄

VαB

V̄αB̄

=

V
[1]
α

V̄
[1]
α

A

Ā

(B20)

In other words, Vα pushes through A. Now, since VαB is an error basis, we can sum both sides of the equation by α
yielding (using Eq. (23)):

χ

ψ

ψ̄

= χ

A

Ā

B−1

B̄−1

=
∑
α

V
[1]
α

V̄
[1]
α

A

Ā

(B21)

Now, since V
[1]
α is pushable, we know that we can iterate the action of the transfer matrix above to get:

χ

B−1

B̄−1

Tn = Tn

V [n]

V̄ [n]

(B22)

Now, we take n to be arbitrarily large yielding:

∑
β

tr(B−1Rβ(B
−1)†) Lβ

 =
1

χ

∑
γ

Rγ Lγ

V [n]

V̄ [n]

(B23)

=⇒ tr(B−1Rβ(B
−1)†) =

1

χ

∑
γ

Rγ Lγ Rβ

V [n]

V̄ [n]

(B24)

Note that there exists a β for which Rβ is full rank and positive [57] and hence the left-hand side is non-zero. Conse-
quently, the above naturally implies that |1⟩ lives in the span of dominant right eigenvector |Rγ⟩. As a consequence,
the matrix product state is in canonical form up to a unitary gauge transformation (to make the corresponding left
eigenvector diagonal).

■
We now prove Claim (3).
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Theorem B.4 Let A be a translation-invariant gluable matrix product state. Then, the Vα operators that appear
in the measurement basis VB are unitary.

Proof. To prove this, let us note that by Theorem B.2 and B.3, we have that A is in right canonical form. As a
consequence, the Moore-Penrose pseudoinverse of the map ΓR

x defined near Eq. (B14), (ΓR
x )

+ = (ΓR
x )

†. Consequently,
using methods similar to Eq. (B16) we have that:

Vα = ΓR
x

∏
n

Uα(Γ
R
x )

† (B25)

Now, because

V −1
α · · ·A A A

=

· · ·A

(U
[0]
α )†

A

(U
[1]
α )†

A

(U
[2]
α )†

(B26)

Therefore, we also have that: V −1
α = ΓR

x

∏
n U

†
α(Γ

R
x )

†. Finally, note that V †
α = ΓR

x

∏
n U

†
α(Γ

R
x )

†. But then, this implies
that V †

α = V −1
α . This completes the proof.

■
As an important remark, the same argument shows that any V

[n]
α that Vα pushes through to, is required to be

unitary. We now turn to proving the main theorem of this subsection.

Theorem B.5 [Claims (1) and (2) of Theorem 1] Suppose that |Ψ⟩ is a translation-invariant gluable quantum
state. Then, the unentangled clusters in the state preparation protocol |ψ⟩ are the matrix product state tensor in
canonical form up to a tensor product of unitaries acting on each qudit of the cluster. In other words,

ψ
=

AuL uR

uP

(B27)

where A is the MPS in right canonical form and uL, uR, and uP are unitaries. Moreover, the measurement basis is
maximally entangled or, when viewed as operators, form a unitary error basis.

Proof. If |Ψ⟩ is right gluable, then we know that |Ψ⟩ can be prepared from clusters |ψ⟩ along with entangling
measurements in an error basis VB with V unitary (Theorem B.4). Furthermore, we know from Eq. (B8) that the
matrix product state tensor associated with |Ψ⟩ is:

[A]sxi(x−1)R
ixR

= Bi(x−1)R
ixL

ψ
s′x
ixL

ixR
[uP ]s′xsx (B28)

which is in right canonical form up to conjugating unitaries acting at the virtual level. Therefore, it suffices to show
that B is unitary. To do so, let us start by noting that since VB is an error basis, a nice graphical notation for this
error basis is:

VαB =
VBχ χ

χ2

(B29)

where the leg labels indicate dimensionality of the leg and the downwards facing leg is the “α” leg. Note that trace
orthonormality implies that:

VB

VB
= χ

VB

VB

= χ (B30)
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Now, note that the second equality automatically implies that:

VB

VB

=
∑
α

BVαV
†
αB

† =
∑
α

BB† = χ21, (B31)

where we used our earlier result that Vα is unitary. Thus, we have that BB† = 1, implying that B is unitary.
Consequently, ψ is related to the matrix product state tensor in canonical form up to a tensor product of unitaries
acting on each qudit of the cluster. Moreover, VB is a unitary error basis (or equivalently, the measurement basis is
maximally entangled).

■

4. An Aside on Measurement Probabilities

Theorem B.6 For any gluable wavefunction |Ψ⟩ defined on a finite-size system with particular open boundary
conditions, every measurement outcome is equally likely.

Proof. We do this by computing the probability explicitly. Once again, we work with open boundary conditions and
since we are predominantly interested in bulk properties, we let our target wavefunction have the following boundaries:

|Ψ⟩ =
A A A A

v
1/2
L v

1/2
R

(B32)

where vL and vR define vectors with non-zero overlap on the largest positive right and left eigenvectors of the transfer
matrix, R and L (with no overlap on any other potential dominant eigenvectors). For convenience, we choose vL = L
and vR = R. We have that:

pm =
1

χNN

A

Ā

A

Ā

A

Ā

A

Ā

· · ·· · · Vαx
Vαx+1

Vαx−1

· · ·· · · V̄αx
V̄αx+1

V̄αx−1

(B33)

Now, from the above theorem, each of these are pushable operators, indicating that the can be swept to the right to
unitaries. Consequently, we have that the overlap above is equal to 1. Hence,

pm =
1

χNN
(B34)

for all measurement outcomes.
■

Appendix C: Proof of Classification and Go Theorems

This appendix is devoted to providing proofs for the classification and “go” theorems in the main text (Theorems
4 and 5, 6 respectively), which were proved in the context of uniform topological gluable quantum states. To do
so, we start by providing a more formal treatise on the relationship between uniform topological errors and sym-
metry. This will rely heavily on the concept of an index group, introduced in Ref. 64. We will then show that
the measurement errors form a faithful irreducible projective representation of this group and will rely heavily on
the theory of abelian projective representations to prove our classification theorem. Moreover, the connection with
projective representations will make the connection with SPT phases rather natural. This will enable proving our two
go theorems.
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1. Uniform Topologically Gluable, Symmetry, and Classification

Let us suppose that we have a uniform topologically gluable matrix product state A, with error basis V. Then it
is useful to have a name for the group generated by V ⊗ V∗:

Definition (Index Group) Suppose A is a uniform topologically gluable matrix product state tensor with an error
basis V = {Vα}. We call the group GU ≃ ⟨{Vα ⊗ V̄α}⟩ the index group of the matrix product state.

Several useful lemmas immediately follow from this definition. In particular:

Lemma C.1 If A is a short-range entangled uniformly topologically gluable matrix product state tensor, then the
index group is a symmetry group of the state.

Proof. To prove this, it suffices to show that the index group is a symmetry group of the matrix product state.
Suppose that A is uniform topologically gluable with error basis V and index group GU ≃ ⟨{Vα ⊗ V̄α}⟩, then:

AVα V †
α

=
A

Uα

(C1)

Hence, the global matrix product state is symmetric under Uα. Let us further note that the matrix product state tensor
A, viewed as a map from virtual degrees of freedom to physical degrees of freedom, defines a group homomorphism
from ⟨{Vα ⊗ V̄α}⟩ to ⟨{Uα}⟩. Consequently, the Uα’s define a linear representation of the index group GU and the
matrix product state is symmetric under ⟨{Uα}⟩. Finally, since A is injective after blocking [57], this representation
is faithful and hence ⟨{Uα}⟩ ≃ GU . Hence, the matrix product state is symmetric under GU .

■

Lemma C.2. Suppose A is a topologically gluable matrix product state with an error basis V = {Vα}. Then, the
canonical isomorphism between GU and ⟨{Vα ⊗ V̄α}⟩ defines a faithful linear representation of GU . Moreover, the
canonical map between the generating set of GU and {Vα} induces a faithful irreducible projective representation of
GU .

Proof. Let us note that, by definition, GU ≃ ⟨{Vα ⊗ V̄α}⟩ and denote the isomorphism by ρ : G → ⟨{Vα ⊗ V̄α}⟩ ⊆
GLC(Cχ ⊗ Cχ). It immediately follows that this defines a faithful linear representation of GU because the map is
injective, proving the first part of the theorem.

We now prove that there exists a map between GU and ⟨{Vα}⟩ that defines a faithful and irreducible projective
representation of GU . Note that for any element g ∈ GU :

ρ(g) =
∏
α∈Sg

Vα ⊗
∏
α∈Sg

V̄α = ν(g)⊗ ν̄(g) where ν(g) ≡
∏
α∈Sg

Vα (C2)

for some list Sg of numbers between 1, · · · , χ2 where ν : G → ⟨{Vα}⟩ ⊆ GLC(Cχ) Note that since ρ(g)ρ(h) = ρ(gh),
we have that ν(g)ν(h) = ω(g, h)ν(gh) where ω(g, h) : G × G → U(1). Thus, there exists a map between GU and
⟨{Vα}⟩ that defines a projective representation of GU .

We now show that this representation is faithful and irreducible. To show that the representation is irreducible, let
us remark that, by assumption that {Vα} are trace orthonormal and span the set of χ×χ matrices. As a consequence,
any subspace of Cχ that is invariant under the action of all the Vα’s must be invariant under any χ×χ matrix. Hence,
the only invariant subspaces for the ⟨{Vα}⟩ are {0} and Cχ and hence the representation is irreducible. We now show
that the representation is faithful. We do so by contradiction. Suppose there existed a g ̸= 1 (the identity) such that
ν(g) = eiθ1. Then,

ρ(g) = ν(g)⊗ ν̄(g) = 1⊗ 1 (C3)

But since ρ(g) = ρ(1) and g ̸= 1 this contradicts the fact that ρ is a faithful representation. Hence, if ν(g) = eiθ1,
g = 1 implying that it is faithful.

■
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a. A Technical Foray Into Nice Error Bases

Having built up some of the technology for understanding the interplay between topological errors and symmetry, it
will be helpful to introduce the concept of nice error basis and a convenient result on these error bases from literature.
This section can largely be skipped if one is only interested in proving the classification. However, the results here are
invaluable for demonstrating the connection with SPT. In particular, we start by defining nice error basis as [64, 66]:

Definition (Nice Error Basis) Let G be a group of order χ2. A nice error basis in χ dimensions is given by a set
{ρ(g) ∈ U(n)|g ∈ G} of unitary matrices that satisfy:

(i) ρ(1) = 1

(ii) ρ(g)ρ(h) = ω(g, h)ρ(gh) for all g, h ∈ G, where ω : G×G→ U(1)

(iii) tr(ρ(g)) = 0 for all g ̸= 1.

In the following Lemma, we will show that these are in fact unitary error bases with index groups given by G.

Conditions (i) and (ii) above gaurentee that nice error bases form some projective representation of a group. We
also quote a result by Knill [64] that shows that nice error bases are unitary error bases.

Lemma C.3 Nice error bases are unitary error bases

Finally, we remark upon one more useful lemma and then a theorem from literature (Theorem 1 of Ref. [66]):

Lemma C.4 A nice error basis is necessarily a non-trivial projective representation of the group G.

Proof. This proof follows from the theory of characters. Suppose that one has a group of order |G| = χ2 and ρ be a
regular (i.e. trivial projective) representation of the group. Then, χ(g) = Tr(ρ(g)) is traditionally called the character
function of the group representation. Now, note that if χ(g) = 0 for all g ̸= 1, then χ(1) must be an integer multiple
of |G| [92]. This immediately implies that nice error bases form a non-trivial projective representation. In particular,
note that, by property (i) of nice error basis, ρ(1) = 1 and hence χ(1) = χ. But this is not an integer multiple of χ2

for any χ > 1. Therefore, ρ cannot be a linear representation of G.
■

Theorem C.1 Let {ρ(g)} be a set of unitary matrices parameterized by the elements of a finite group G. The set
is a nice error basis with index group G if and only if ρ is a unitary faithful irreducible projective representation of G
of degree |G|1/2.

With these results about nice error bases, we can prove a set of results that will naturally lead to our classification.
First,

Theorem C.2 Let GU be the index group associated to the unitary error basis V. If GU is abelian, then the degree
of the projective representation defined by {Vα} is

√
|GU |. Equivalently, any unitary error basis with abelian index

group is equivalent to a nice error basis.

Proof. From the corollary above, we know that the canonical map between the generating set of GU and {Vα}
defines a faithful and irreducible projective representation of GU :

ν(g) ≡
∏
α∈Sg

Vα such that ν(g)ν(h) = ω(g, h)ν(gh) (C4)

for some list Sg of numbers between 1, · · · , χ2. We start by proving that Zω = {g ∈ GU |ω(g, h) = ω(h, g),∀h ∈
GU} = {1} (i.e. the projective center of the group is trivial). To do so, suppose that g ∈ Zω. Then, for all h ∈ GU ,
particularly those h associated with ν(h) = Vα, we have that:

ν(g)ν(h) = ω(g, h)ν(gh) = ω(h, g)ν(hg) = ν(h)ν(g) (C5)
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But since the Vα’s form a complete basis for the set of all χ×χ matrices by assumption, ν(g) commutes with all χ×χ
matrices. Hence, ν(g) = eiθ1. Since ν(g) is a faithful representation, g = 1. Thus, Zω = {1}. Now, by Ref. [93, 94],
we have that:

deg(ν) =
√
|GU |/|Zω| =

√
|GU | (C6)

proving the first claim of the theorem. Finally, since the projective representation defined by {Vα} is an irreducible

and faithful projective representation of degree
√

|GU |, {Vα} is equivalent to a nice error basis by Theorem C.1.
■

Corollary C.1 The error basis V of every topologically gluable matrix product state with an abelian index group
is equivalent to a nice error basis.

Proof. The error basis V of a topologically gluable matrix product state is a unitary error basis. Since by assumption,
the index group is abelian, the error basis is then nice.

■

b. Proof of Classification Theorem

We are now prepared to prove our classification.

Theorem C.3 (Theorem 4 of the Main Text) Suppose that A is a uniform topologically gluable matrix product
state tensor with error basis V = {Vg} and an abelian index group GU . Then, the transfer matrix associated with
matrix product state tensor can be written as:

A

Ā

=
∑

g∈GU

|tg|2
Vg

V̄g

(C7)

where tg are arbitrary complex numbers such that
∑

g∈GU
|tg|2 = 1. Since the transfer matrix uniquely determines

the matrix product state tensors up to a local isometry, this classifies all topologically gluable matrix product state
tensors with abelian index groups.

Proof. Since V = {Vg} forms a complete basis of χ× χ matrices, {Vg ⊗ V̄h} forms a complete basis for all χ2 × χ2

matrices. Hence,

A

Ā

=
∑

g,h∈GU

tg,h

Vg

V̄h

(C8)

Now, since A is topologically gluable, for all a ∈ GU

A

Ā

=

AVa V †
a

V̄a V T
aĀ

=
∑

g,h∈GU

tg,h

Vg

V̄h

Va V †
a

V̄a V T
a

(C9)

Now, since {Vα} forms a projective representation of GU (Lemma C.2):

VaVgV
†
a =

ω(a, g)ω(ag, a−1)

ω(a, a−1)
Vaga−1 ≡ χg,aVaga−1 = χg,aVg (C10)
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where in the last step we used that GU was abelian. Then:

∑
g,h∈GU

tg,h

Vg

V̄h

Va V †
a

V̄a V T
a

=
∑

g,h∈GU

tg,hχg,a

χh,a

Vg

V̄h

=⇒ tg,hχg,a

χh,a
= tg,h (C11)

Thus, for all non-zero tg,h, χg,a/χh,a = 1. As a consequence of this, note that, for all Va ∈ V

VaV
†
hVgV

†
a =

χg,a

χh,a
V †
hVg = V †

hVg =⇒ [Va, V
†
hVg] = 0 ∀ Va ∈ V (C12)

But because V forms a complete basis of all χ×χ matrices, the above implies that V †
hVg = eiθ1. Hence, Vh = e−iθVg.

Since tr(V †
g Vh) = χδg,h, we have that θ = 0 and g = h for non-zero tg,h. Hence:

A

Ā

=
∑

g∈GU

tg,g

Vg

V̄g

(C13)

What is left is to show that tg,g are real, positive, and sum to 1. The fact that
∑

g∈GU
tg,g = 1 follows from the fact

that the identity is the dominant right (and left) eigenvector of the transfer matrix with eigenvalue 1. The real and
positive condition follows from the fact that the transfer matrix, when viewed in the vertical direction, is a density
matrix. In this language, tg,g are the eigenvalues of the density matrix and thus must be real and positive. As such:

A

Ā

=
∑

g∈GU

|tg|2
Vg

V̄g

(C14)

where |tg|2 = tg,g are arbitrary numbers such that
∑

g∈GU
|tg|2 = 1.

■
Note that in the main text, we phrase the statement in terms of the MPS tensor directly. As stated in the theorem

above, this is equivalent to the transfer matrix statement above because the transfer matrix uniquely determines the
MPS tensor up to an isometry at the physical level [57, 67].

2. Connection Between Uniform Topologically Gluable and SPT Phases

Having provided a proof for the classification theorem, we now discuss the connection between such states and
symmetry-protected topological phases. In particular, we start with Theorem 5:

Theorem C.4 (Theorem 5 of the Main Text) Every short-range entangled, uniform topologically gluable matrix
product state with abelian errors is a non-trivial SPT phase protected by the symmetry group GU .

Proof. Recall that if the matrix product state is short-range entangled and has abelian errors, let us note a couple of
facts. First, its index group GU is abelian and a symmetry of the state (Lemma C.1). Moreover, its errors V = {Vg}
form a nice error basis and necessarily form a non-trivial projective representation of the group (Theorem C.2).
Consequently, we have from the uniform topologically gluable condition that:

A

Ug

=

AVg V †
g

(C15)

This implies that physical symmetries fractionalize into virtual operators that form a non-trivial projective represen-
tation of GU labeled by some 2-cocyle ω. Since this co-cycle defines a discrete invariant of the state, robust provided
that the G-symmetry remains unbroken, the matrix product state is in a non-trivial SPT phase.

■
Finally, we provide a proof for Theorem 6.
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Theorem C.5 Any minimally entangled, translation-invariant, SPT protected by an abelian internal symmetry is
topologically gluable.

Proof. Suppose that |ψ⟩ is an infinite translationally-invariant SPT wavefunction protected by an abelian group
G = {

∏
x Ug,x}. From Ref. [10], it is known that semi-infinite string operators of the symmetry

∏
x<x0

Ug,x act on
the Schmidt vectors to the left and right of their endpoints as a projective representation of the group G with factor
set ω ∈ H2(G,U(1)), which uniquely characterizes the SPT phase. Consequently, the Schmidt spectrum Λ across any
cut of the state can be organized into degenerate blocks, each labeled by an irreducible projective representation of
the group G with factor set ω.

Since G is abelian, it follows that the degree of these irreducible projective representations are all the same and are
given by deg(ν) =

√
|G|/|Zω|, where Zω is the projective center of the factor set (see Theorem 2.21 of Ref. [95]). Thus,

an SPT has minimal entanglement if its Schmidt spectrum is only non-zero for a single block with the entanglement

across a cut being: S = log
(√

|G|/|Zω|
)
. Consequently, translationally-invariant minimal entanglement SPT’s are

(1) captured by translationally-invariant matrix product states with bond dimension χ =
√
|G|/|Zω|, (2) have flat

entanglement spectrum, and (3) have virtual symmetry operators ν(g) satisfying:

A

Ug

= eiθg
Aν(g) ν†(g)

(C16)

and which form an irreducible projective representation of G with factor set ω.

We now wish to show that such states are topologically gluable by showing that some subset of the virtual symmetry
operators form a nice error basis for this matrix product state. To do so, let us note that, from the proof of Theorem
2.21 in Ref. [95], if ν(g) ∈ Zω, then ν(g) = eiφg1. With this in mind, let us consider the map ρ : G → GLC(Cχ)
such that ρ(g) = ν(g) ⊗ ν̄(g) with ker(ρ) = Zω. Note that ρ forms a linear representation of G but is also a group

homomorphism from G to GU = ⟨{ν(g)⊗ ν̄(g)}⟩ ≃ G/Zω with size |GU | =
√
|G|/|Zω|. By picking representatives g

of the cosets [g] ∈ G/Zω, we can define a closely related map ρ′ : GU → GLC(Cχ) with ρ′([g]) = ν(g) ⊗ ν̄(g), which
defines a faithful linear representation of GU .
The map ν′([g]) = ν(g) then defines a faithful projective representation of GU with factor set ω′ : GU ×GU → U(1)

with ω([g], [h]) = ω(g, h). The representation is further irreducible since the set of matrices {ν′([g])} consist of all
elements of {ν(g)|g ∈ G} that are distinct up to phases. Thus, since the former has no invariant subspaces, the latter

also has no invariant subspaces. Thus, ν([g]) is a faithful irreducible projective representation of degree
√
|GU | = χ.

It follows from Theorem C.1 that it forms a nice error basis. This, with the property in Eq. (C16), cements |ψ⟩ as
topologically gluable.

■
An independently interesting results follows from this.

Corollary Suppose |Ψ⟩ is a minimally entangled SPT state protected by an abelian internal symmetry G and
labeled by a factor set ω. Then |ψ⟩ is also an SPT protected by abelian symmetry G′ ≃ G/Zω labeled by a maximally
non-commuting factor set ω′.

Proof. The proof of this immediately follows from the proof of the theorem above.

Appendix D: Some Additional Details on No-Go Theorem Proof

In the main text, we proved a no-go theorem demonstrating that a state with no zeros in its correlation spectrum
and a non-flat entanglement spectrum cannot be right-gluable. We proved this by contradiction: if the state was
gluable and had no zeros in its correlation spectrum, it could not have any locally correctable errors. Consequently,
all of its errors were topological. To show indeed that this implies that the entanglement spectrum is flat (hence,
deriving the contradiction required), we need the following Lemma.
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Lemma D.1 Suppose that |Ψ⟩ is a gluable matrix product state with an error basis V of (exclusively) topological
errors that push through to V [n]. If |Ψ⟩ has a full correlation spectrum, then V [n] is a unitary error basis for all n.

Proof. We proceed inductively. First, let us note that V [0] ≡ V is a unitary error basis. Now, assume that V [n] is a
unitary error basis. Subsequently, if |Ψ⟩ is gluable, then the transfer matrix satisfies:

A

Ā

=

A(V
[n]
α ) (V

[n+1]
α )†

(V̄
[n]
α ) (V

[n+1]
α )TĀ

(D1)

where V
[n]
α is unitary (see remark below the Theorem B.4) for all n and α. To show that V

[n]
α is in fact an error basis,

first write the above equation as T = VαTW†
α where Vα = V

[n]
α ⊗ V̄ [n]

α and Wα = V
[n+1]
α ⊗ V̄ [n+1]

α . Now, if we perform
a singular value decomposition on T , we have that:

T = XSY † = VαXSY
†Wα =⇒ S = (X†VαX)S(Y †W†

αY ) (D2)

where X and Y are unitary. But note that both the left and right hand side of the implied equation defines a
valid singular value decompositon for S. Since |Ψ⟩ has a full correlation spectrum, S is non-singular. Hence, since
the singular vectors are unique up to unitary transformations U in degenerate singular subspaces, we have that
(X†VαX) = U and (Y †WαY ) = U . Consequently,

(X†VαX) = (Y †WαY ) =⇒ Wα = Y X†Vα(Y X
†)† (D3)

Thus, Wα is related to Vα by unitary conjugation. Thus, we have that:∣∣∣tr [(V [n+1]
α )†V

[n+1]
β

]∣∣∣2 = tr(W†
αWβ) = tr(V†

αVβ) =
∣∣∣tr [(V [n]

α )†V
[n]
β

]∣∣∣2 = χ2δαβ (D4)

Thus, tr
[
(V

[n+1]
α )†V

[n+1]
β

]
= χδαβ (note that when α = β, the argument of the trace is positive semi-definite picking

out the phase). Hence, it is a unitary error basis. This proves the above assertion.
■
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