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Abstract

We investigate nonclassical properties of a state generated by the interaction of a three-level atom with a quantized cavity
field and an external classical driving field. In this study, the fields being degenerate in frequency, are highly detuned
from the atom. The atom interacts with the quantized field in a dispersive manner. The experimental set-up involves a
three-level atom passing through a cavity and interacting dispersively with the cavity field mode. Simultaneously, the
atom interacts with an external classical field that is in resonance with the cavity field. The three-level atom can enter
the cavity in one of the bare states |e〉, |f〉 or |g〉 or in a superposition of two of these states. In this paper, we consider
superposition of |e〉 and |f〉. In our analysis, we focus on the statistical properties of the cavity field after interacting with
the atom. The state vector |ψ(t)〉 describes the entire atom-field system but we analyze the properties of the cavity field
independently neglecting the atomic component of the system. For this the atom part is traced out from |ψ(t)〉 to acquire
the cavity field state only, denoted by |ψf (t)〉. We evaluate different nonclassical measures including photon number
distribution, Mandel’s QM parameter, squeezing properties Sx and Sp, Wigner distribution, Qf function, second-order
correlation function g2(0) etc. for the obtained cavity field state.

1. Introduction

The well-known Jaynes-Cummings model (JCM) [1] is
a theoretical framework that describes the interaction be-
tween a two-level atom and a single-mode quantized cavity
electromagnetic field [2] with the rotating-wave approxi-
mation. The JCM is considered to be the most funda-
mental model for studying the interaction between matter
and field in the field of quantum optics. Moreover, this
model has nonperturbative solutions that are exactly in-
tegrable. A large number of multi-level and multi-mode
extensions of the original JCM have been studied over the
years [3]. The driven Jaynes-Cummings model while the
cavity and the external driving field are close to or on reso-
nance with the atom, has been studied by several authors.
For example, Alsing et. al. [4] studied the Stark splitting
in the quasienergies of the dressed states resulting from
the presence of the driving field subject to the condition
that both driving and cavity fields are resonant with the
atom. Jyotsna and Agarwal [5] studied the effect of the
external field on the Rabi oscillations in a situation where
the cavity field is resonant with the atom and where the
external field is both resonant and non-resonant. Dutra
et. al. [6] studied a similar model but where the external
field was taken to be quantized. Chough and Carmichael
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[7] have studied the JCM with an external resonant driv-
ing field and have shown that the collapses and revivals of
the mean photon number occur over a much longer time
scale than the revival time of the Rabi oscillations for the
atomic inversion. Joshi [8], in a similar way, studied the
driven two-photon JCM when Nha et. al. [9] studied the
preparation of a temporally stable single-photon state in
an atom-cavity field system with a driving classical field.
To the best of our knowledge, the dispersive interaction
with an external driving field has not considered substan-
tially despite that it is a logical extension of the previous
work in this field.

In the context of original JCM, if the interaction oc-
curs in limit of a large (but not too large) detuning be-
tween the cavity field and the relevant atomic transition
frequency, then it is called dispersive which is proved to
be of great importance in various proposals and experi-
ments for producing superposition of macroscopically (or
at least mesoscopically) distinguishable quantum states,
the so-called Schrödinger cat states in cavity QED system.
Dispersive atom-field interactions are utilized in quantum
sensors, such as atomic magnetometers and atomic clocks.
These interactions enhance the precision of measurements
with reference to quantum metrology. They are used to de-
sign and develop quantum-enhanced measurement devices
with applications in navigation, geophysics, and precision
spectroscopy. Dispersive interactions can be utilized to
create quantum amplifiers, devices that amplify quantum
signals with minimal noise. These amplifiers are valuable
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in quantum communication and quantum measurement.
These interactions can lead to interesting nonlinear optical
effects in quantum systems which have applications in the
generation of nonclassical light states and quantum non-
linear optical devices. In a nutshell, dispersive atom-field
interactions are central to a wide range of quantum tech-
nologies which primarily motivated us to start this work.
They enable precise control over atomic systems and have
applications in quantum computing, sensing, optics, and
the study of fundamental physics. In this article, we con-
sider a situation wherein a strong external coherent field
(microwave or laser, depending on the type of the cavity
QED experiment) resonant with a cavity mode, interacts
non resonantly, i.e., dispersively, with a three-level atom
passing through the cavity.

The study of nonclassical light continues to be an ac-
tive and exciting field of research in quantum optics with
the potentiality for significant technological advancements
in the future. These states have numerous applications
in different regimes. For example, quantum cryptogra-
phy, quantum metrology, quantum computing, quantum
imaging, and quantum sensing are many areas where non-
classical states have been applied with great success. In
quantum cryptography [10], nonclassical light sources such
as single-photon sources [11] are crucial for implementing
quantum key distribution protocols [12]. These protocols
enable secure communication by allowing the exchange of
cryptographic keys between two parties that cannot be in-
tercepted without being detected. Squeezed states can be
used to improve the precision of measurements beyond the
standard quantum limit [13], which can be in fields such as
gravitational wave detection and atomic clocks. Nonclas-
sical states can be used as qubits in quantum computing
[14, 15, 16, 17, 18, 19], where they enable faster and more
efficient processing of quantum information [20] as com-
pared to classical bits.

In this paper, we propose an extended driven Jaynes-
Cummings model where the cavity and external driving
field are close to or on resonance with the atom. The ex-
ternal field, resonant with the cavity mode, interacts with
an appropriately prepared atom as it passes through the
cavity. The resulting interaction is conditional on the state
of the atom and effectively converts the classical external
field into a quantized cavity field with the same frequency.
It can be seen that when the injected atom is prepared in a
superposition of its bare atomic states, it becomes possible
to generate various types of Schrödinger cat states [21].

This paper is organized as follows. In Sect. 2, we dis-
cuss the driven Jaynes-Cummings model in the regime
where the atom is detuned with both the quantized cavity
field and driving external classical field such that the atom-
cavity field coupling is dispersive. We study nonclassical
properties of the cavity field state via a set of nonclassi-
cality witnesses, namely zeros of Qf function, Mandel’s
QM parameter, negativity of Wigner function, squeezing
properties, second-order correlation function (g2(0) < 1)
in Sect. 4.

2. State of interest

We consider an atom with three levels |e〉, |f〉, and
|g〉 configured as in Fig. 1. We assume that only dipole
type transitions can occur consecutively: |e〉 ↔ |f〉 ↔ |g〉.
ω0 is the atomic transition frequency between the levels
|e〉 and |f〉 and it is near resonance with a single-mode
cavity field of frequency ωc. We further assume that the
transition |f〉 ↔ |g〉 is far out of resonance with the specific
cavity mode of interest or any other cavity mode. A strong,
classical driving field of frequency ωex interacts directly
with the atom while passing through the cavity.

Figure 1: The system under consideration involves an atom inter-
acting with both a cavity field and an external driving field. The
energy-level configuration of the atom consists of three distinct lev-
els denoted as |e〉, |f〉, and |g〉. The transition frequency between
levels |e〉 and |f〉 is represented by ω0. In addition, there are two
distinct frequencies involved: ωc corresponds to the cavity field while
ωex represents the frequency of the external driving field. The cavity
and external fields are positioned close to resonance but not exactly
with the atomic transition frequency ω0. This arrangement allows
for a dispersive interaction between the fields and the atom. It is
assumed that the condition ωc = ωex holds true. Furthermore, the
level |g〉 is significantly detuned from all the frequencies involved in
the system.

The Hamiltonian for a system of a three-level atom
(represented by Pauli matrices σ̂i) interacting with a quan-
tized electromagnetic field mode (represented by the anni-
hilation and creation operators a and a†, respectively) is
given by [21]

H =
1

2
~ω0σ̂3 + ~ωca

†a+ ~g(aσ̂+ + a†σ̂−)

+ ~(Ee−iωextσ̂+ + E∗eiωextσ̂−) (1)

Here 1
2~ω0σ̂3 is the energy of the atom in absence of any ex-

ternal fields where σ̂3 is the third Pauli matrix representing
the difference in population between the two considered
levels, ~ωca

†a is the energy of the electromagnetic field
mode in absence of any atom, a† and a are the creation and
annihilation operators for the field mode, ~g(aσ̂++a

†σ̂−) is
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the interaction Hamiltonian between the atom and the cav-
ity field, where ~g is the coupling strength of the interac-
tion and σ̂+ and σ̂− are the raising and lowering operators
for the atom, respectively, ~(Ee−iωextσ̂+ + E∗e−iωextσ̂−)
is the external driving field that is applied to the atom,
where E is proportional to the coupling constant between
the atom and the amplitude of the external classical field of
frequency ωex. This term can be used to drive transitions
between the two levels of the atom.

We are currently assuming that ω0, ωc and ωex are dis-
tinct. To remove the time dependence in the Hamiltonian
H , the system is rotating at the frequency ωex. The mod-
ified Hamiltonian in the rotating frame is obtained as

HR = i~Ṙ(t)R†(t) +R(t)H(t)R†(t)

=
1

2
~∆σ̂3 + ~(wc − wex)a

†a

+ ~g
(

e−i∆t (a+ λ) σ̂+ + ei∆t
(

a† + λ∗
)

σ̂−
)

where R(t) = exp
{

−iωext(σ̂3 + a†a)
}

is the rotation op-

erator, λ = E
g
, ∆ = ω0 − ωex is the detuning between the

atomic transition frequency and the external cavity field
frequency. Assuming the resonance condition between the
external field and the cavity field and introducing new aux-
iliary Bose operators b = a + λ and b† = a† + λ∗ which
satisfy [b, b†] = 1, the Hamiltonian can be written as

HR =
1

2
~∆σ̂3 + ~g

(

e−i∆tbσ̂+ + ei∆tb†σ̂−
)

(2)

which superficially looks like the interaction picture Hamil-
tonian of the usual detuned JCM.

If the detuning between the atom and the fields is suf-
ficiently large, one can use the standard techniques [22] to
derive the effective atom-field interaction Hamiltonian as

∫ t

0

HR(t
′)dt′

∫ t′

0

HR(t
′′)dt′′ ≈ ih2

∆
[b†bσ̂3 +

1

2
[b, b†] (σ̂3 + I)]t

While performing the above integration, the second-order
terms in 1/∆ arriving from the exponential of ∆ and an ad-
ditional factor of ∆ in the denominator are neglected. Here
σ̂3 = σ̂+σ̂− − σ̂−σ̂+ = |e〉 〈e| − |f〉 〈f |, I = |e〉 〈e|+ |f〉 〈f |.
Hence using σ̂+σ̂− = 1

2 (σ̂3 + I), the effective Hamiltonian
arrives at

Heff = hχ[σ̂+σ̂− + b†bσ̂3]

= hχ[σ̂+σ̂− +D†(λ)a†aD(λ)σ̂3]

= hχ[σ̂+σ̂− + (a†a+ λa† + λ∗a+ |λ|2)σ̂3] (3)

where χ = g2

∆ . In the limit λ → 0 (in case of no exter-
nal driving field), the usual dispersive interaction Hamil-
tonian Heff = hχ[σ̂+σ̂− + a†aσ̂3] can be recovered. But
with λ 6= 0, the interaction is no longer purely dispersive
as it contains terms of the form that creates or destroys
photons in the cavity conditional on the state of the atom.

If the atom is prepared in the far off-resonance state |g〉,
the cavity field remains unaffected because there is no in-
teraction between the atom and the field. But when the
atom is prepared in either the excited state |e〉 or the in-
termediate state |f〉, and if the cavity field is initially in
a vacuum state |0〉, the external classical driving field can
generate a coherent state of the quantized field.

Assuming that the atom is initially prepared in state
|f〉 and is injected through a cavity in the vacuum state
|0〉, the atom-field system inside the cavity evolves as

|ψf (t)〉 = exp[−iHefft/~] |0〉 |f〉
= exp

[

iχt(a†a+ λa† + λ∗a+ |λ|2)
]

|0〉 |f〉
= exp

[

i|λ|2 sin(χt)
] ∣

∣−λ(1− eiχt)
〉

|f〉

where
∣

∣−λ(1− eiχt)
〉

is a coherent state of the cavity field.
Again if the atom is initially in the state |e〉, the state
vector while the atom is inside the cavity becomes

|ψe(t)〉 = exp[−iHefft/~] |0〉 |e〉]
= exp

[

−iχt− iχt(a†a+ λa† + λ∗a+ |λ|2)
]

|0〉 |e〉
= e−iχt exp

[

−i|λ|2 sin(χt)
] ∣

∣−λ(1− e−iχt)
〉

|e〉

where
∣

∣−λ(1− e−iχt)
〉

is a coherent state of the cavity
field. If the atom is prepared in the general superposition
state sin θ |e〉+ eiφ cos θ |f〉 and the cavity field in the vac-
uum state, then at time t ≥ 0, the following entangled
state is obtained

|ψ(t)〉 = sin(θ) |ψe(t)〉 |e〉+ eiφ cos(θ) |ψf (t)〉 |f〉
For the simple most case θ = π/4 and φ = 0, the state
vector becomes

|ψ(t)〉 = 1√
2
(|ψe(t)〉 |e〉+ |ψf (t)〉 |f〉) (4)

The state vector for the cavity field after the atom-field
interaction is obtained by tracing out the atom part from
|ψ(t)〉 〈ψ(t)| as following:

Tratom(|ψ〉 〈ψ|) = |ψfield〉 〈ψfield|
|ψfield〉 is the state of interest in rest of the article.

3. Generalised expectation

The generalised expectation value with respect to the
cavity field is obtained as

〈ψfield| a†paq |ψfield〉 =
1

2

∞
∑

n=0

λnλ∗(p+n−q)

(n− q)!

×
[

exp
{

−2|λ|2(1 − cos(χt)
}

(1− e(iχt))p+n−q(1− e(−iχt))n

+ exp(iχt) exp
{

−2|λ|2(1 − e(iχt))
}

(1− e(iχt))p+2n−q

+ exp(−iχt) exp
{

−2|λ|2(1− e(−iχt))
}

(1 − e(−iχt))p+2n−q

+ exp
{

−2|λ|2(1− cos(χt)
}

(1− e(iχt))n(1− e(−iχt))p+n−q

]

(5)

3



4. Nonclassical Properties

In this section, we derive some criteria to witness the
nonclassicality of the considered quantum state.

4.1. Photon number distribution

Photon number distribution is the probability distri-
bution for finding l photons in a given cavity field state
and it can be obtained as the expectation of the density
field in Fock state basis as

P (l) = 〈l| ρ |l〉

=
1

2

∞
∑

n=0

λnλ∗m√
n!m!

×
[

exp
{

−2|λ|2(1− cos(χt)
}

(1− e(−iχt))n(1 − e(iχt))m

+ exp
{

−2|λ|2(1− cos(χt)
}

(1− e(iχt))n(1− e(−iχt))m
]

× 〈l|n〉 〈m|l〉

For m = n = l, the photon number distribution for the
cavity field is obtained as

P (l) =
|λ|n
n!

[

exp
{

−|λ|2(2− 2 cos(χt)
}

(2− 2 cos(χt))l
]

(6)

(6) provides the probability of observing l number of pho-
tons in a given cavity field state. The simplified form of
the photon number distribution is illustrated in Fig. 2.
It is clear that P (l) behaves in a wave-like manner as a
function of λ and χt. Initially P (l) increases with λ and
then decreases. P (l) attains a maximum value of 0.5 for λ,
and 1.08 for χt. When plotting P (l) for different photon
numbers, the highest value of P (l) is 0.83 for l = 2.

Here the shape of the photon number distribution pro-
vides insights into nonclassical behaviour of the considered
quantum state as a consequence that nonclassical states
may have unique features in their photon number distribu-
tions, such as multiple peaks or oscillatory behaviour. Ex-
perimental techniques and tools, such as photon-number-
resolving detectors and homodyne or heterodyne detectors
that measure photon number distributions with high pre-
cision are used in various experiments in quantum optics
and quantum information science to verify the nonclassical
nature of the quantum states.

4.2. Mandel’s QM parameter

Next to determine the photon statistics of a single-
mode radiation field, we consider the Mandel’s QM pa-
rameter defined by [23]

QM =
〈a†2a2〉
〈a†a〉 − 〈a†a〉 (7)

The parameter QM is used to quantify the deviation of
the variance of the photon number distribution for a given
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Figure 2: Variation of photon number distribution P (l) as a function
of (a) λ with χt = 2, l = 2, (b) χt with λ = 2, l = 2, (c) l with λ = 1
and χt = 4.

state from the Poissonian distribution associated with a co-
herent state. When QM = 0, it indicates a Poissonian dis-
tribution, whereas for −1 ≤ QM < 0 (QM > 0), the field
follows sub- (super-) Poissonian photon statistics. How-
ever, it is important to note that the negativity of QM is
not a necessary criterion to differentiate quantum states
into classical and nonclassical regimes. It is merely a suffi-
cient condition. There are cases where a state can exhibit
nonclassical behaviour even if QM is positive [24]. The
expectation values can be found as following:

〈a†2a2〉 = 〈ψfield|a†
2

a2|ψfield〉
〈a†a〉 = 〈ψfield|a†a|ψfield〉

Substituting these in (7), the expression for Mandel’s QM

parameter for the given cavity field is obtained and plot-
ted as a function of λ and χt in Fig. 3. Here we can see
that QM exhibits wave nature with varying amplitudes.
The negativity of QM ascertains nonclassical nature of
the considered cavity field state. Also the nonclassical-
ity decreases while λ increases. The state portrays sub-
Poissonian light (QM < 0) for 1.8 < λ < 3.5 and for
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specific values of χt ranging from 0.70 to 11.7. Mandel’s
QM parameter can be used in a variety of applications, in-
cluding the characterization of nonclassical states of light,
the measurement of photon number correlations in quan-
tum states, and the implementation of quantum commu-
nication protocols. It is a useful tool for quantifying the
degree of photon number correlations in a quantum state,
and has played an important role in the development of
quantum optics and quantum information science.
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Figure 3: Variation of Mandel’s QM parameter as a function of (a)
λ with χt = 0.2, (b) χt with λ = 0.35.

4.3. Squeezing properties

To analyze the quantum fluctuations of the field quadra-
tures, we consider two Hermitian operators which are com-
binations of photon creation and annihilation operators as
following:

x̂ =
a+ a†

2
, p̂ =

a− a†

2i

with the commutation relation [x̂, p̂] = i/2. They obey the
Heisenberg uncertainty principle of the form 〈(∆x̂)2〉〈(∆p̂)2〉 ≥
1/16, and thus the quadrature squeezing occurs whenever
〈(∆x̂)2〉 < 1

4 or 〈(∆p̂)2〉 < 1
4 . It is convenient to introduce

the squeezing parameters as [25]

Sx = 2〈a†a〉+ 〈a2〉+ 〈a†2〉 − 〈a〉2 − 〈a†〉2 − 2〈a〉〈a†〉
Sp = 2〈a†a〉 − 〈a2〉 − 〈a†2〉+ 〈a〉2 + 〈a†〉2 − 2〈a〉〈a†〉

Squeezing occurs in the x or p quadrature when−1 < Sx <
0 or −1 < Sp < 0, respectively. The negativity of squeez-
ing serves as a sufficient condition rather than a necessary

one. The expectations can be computed using (5). We
have plotted the squeezing values S = (Sx, Sp) as a func-
tion of λ and χt in Fig. 4. Here Sx becomes negative as a
function of λ as well as χt, indicating the nonclassical na-
ture of the given cavity field state. Squeezed states of light

0 1 2 3 4
-10
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40
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-40

-20
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20

40

Figure 4: Variation of squeezing parameters S = (Sx, Sp) as a func-
tion of (a) λ with χt = 1, (b) χt with λ = 1.

has the potential to enhance the capabilities of quantum
devices. They are crucial in the generation of entangled
photon pairs, which are essential for various quantum tech-
nologies, including quantum teleportation and quantum
cryptography. This light is proposed to improve the sensi-
tivity of gravitational wave detectors in today’s most ref-
erenced LIGO (Laser Interferometer Gravitational-Wave
Observatory) experiments. It can enhance the precision
of interferometric measurements of space-time distortions
caused by gravitational waves.

4.4. Wigner distribution

The nonclassical characteristic of a quantum state can
be detected by examining its phase-space distribution, namely
the Wigner function. This function establishes a connec-
tion between the density operator and a distribution in
phase space. It contains comprehensive information about
the state of a particular physical system [26]. This distri-
bution is often referred to as a quasiprobability distribu-
tion because it has the ability to take on negative values.
These negative values serve as indicators of the system’s
departure from classical behavior.

Given a quantum state ρ̂, the Wigner function of the
system is defined using the coherent state basis as follows
[13, 27, 28]

W (β, β∗) =
2

π2
e2|β|

2

∫

d2γ〈−γ|ρ̂|γ〉e−2(β∗γ−βγ∗),

5



where |γ〉 = exp
(

−|γ|2/2 + γâ†
)

|0〉 is a coherent state. By
using the relation [29]

∞
∑

n=k

nCk
yn−k = (1 − y)−k−1,

the Wigner function can be expressed in a series form as
follows [30],

W (β, β∗) =
2

π

∞
∑

k=0

(−1)k〈β, k|ρ̂|β, k〉, (8)

where |β, k〉 is the standard displaced number state. The
presence of negativity in the Wigner function indicates
that the associated state is nonclassical [31]. But observing
positive values for the entire Wigner function cannot lead
to the conclusion that the state is classical. For example,
squeezed state owning a Gaussian Wigner function that
is positive everywhere, is a widely recognized nonclassical
state. In the case of a nonclassical state, the negativity of
the Wigner function is a necessary condition. Therefore,
a state exhibiting a negative region in its phase-space dis-
tribution is inherently nonclassical. The displaced number
state |β, k〉 can be alternatively represented in the number
state basis as follows,

|β, k〉 = D(β)|k〉

= e−
|β|2

2

k
∑

l=0

β∗l

l!

√

k!

(k − l)!

×
∞
∑

p=0

βp

p!

√

(k − l + p)!

(k − l)!
|k − l + p〉 (9)

Thus

〈β, k|n〉 = e−
|β|2

2

k
∑

l=0

(−β)l
l!

√

k!

(k − l)!

×
∞
∑

p=0

β∗p

p!

√

(k − l + p)!

(k − l)!
〈k − l+ p|n〉

= e−
|β|2

2

k
∑

l=0

(−β)l
l!

√

k!

n!

(β∗)n−k+ln!

(k − l)!(n− k + l)!

= e−
|β|2

2

√

k!

n!
(β∗)n−k

k
∑

l=0

(−|β|2)ln!
(k − l)!l!(n− k + l)!

= e−
|β|2

2

√

k!

n!
(β∗)n−kL

(n−k)
k

(

|β|2
)

, (10)

where L
(k)
l (x) =

∑l
n=0

(−x)n(l+k)!
(l−n)!n!(l+n)! is the associated La-

guerre polynomial [32]. Now

〈β, k|ρ̂|β, k〉 = 1

2

∞
∑

m,n=0

λnλ∗m√
m!n!

×
[

exp
{

−2|λ|2(1− cos(χt)
}

(1 − e(−iχt))n(1− e(iχt))m

+ exp
{

−2|λ|2(− cos(χt)
}

(1− e(iχt))n(1 − e(−iχt))m
]

× 〈β, k |n〉 〈m|β, k〉 (11)

Substituting (11) into (8), we get the final expression of
the Wigner function. The surface plot of the Wigner func-
tion W with respect to λ and β is given in Fig. 5. It is
evident that W exhibits negative regions as well as peaks,
indicating the nonclassical and non-Gaussian characteris-
tics of the cavity field. In addition, the Wigner function
demonstrates wavy nature and goes negative with respect
to the parameter χt. It is important to note that the iden-
tification of negative values within the Wigner function is
a clear indicator of non-Gaussian and nonclassical charac-
ters. These type of states hold great significance in the
field of quantum information applications, mainly due to
their resistance to effective simulation by classical comput-
ers [33, 34].
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0
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0.4

Figure 5: Variation of Wigner function W with respect to (a) λ

with χt = 2 and β = 1, (b) β with χt = 1 and λ = 1, (c) χt with
β = λ = 1.

4.5. Qf Function

The uncertainty principle imposes limitation on directly
describing a quantum mechanical system in phase-space.
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Consequently, quasiprobability distributions have been in-
troduced, which are highly valuable in quantum mechanics
as they establish a correspondence between the quantum
and classical realms. They also facilitate the calculation of
quantum mechanical averages in a manner similar to clas-
sical phase-space averages [35]. One notable quasiproba-
bility distribution is the Qf function, where the presence
of zeros serves as an indicator of nonclassical behavior [36].
The Qf function can be computed using the following ex-
pression

Qf = 〈α| ρ̂ |α〉 (12)

where |α〉 is the usual coherent state. Substituting |α〉 =
e−

|α|2

2

∑∞
p=0

αp

√
p!
|p〉 in (12), we obtain

Qf =
1

2

∞
∑

m,n=0

λnλ∗m√
m!n!

×
[

exp
{

−|λ|2(2− 2 cos(χt)
}

(1− e(−iχt))n(1− e(iχt))m

+ exp
{

−|λ|2(2− 2 cos(χt)
}

(1− e(iχt))n(1 − e(−iχt))m
]

× 〈α|n〉 〈m|α〉

where

〈α|n〉 〈m|α〉 =
∞
∑

p=0

α∗p
√
p!
e−

|α|2

2

∞
∑

q=0

αq

√
q!
e−

|α|2

2 〈p|n〉 〈m|q〉

= e−|α|2 α
∗n

√
n!

αm

√
m!

Qf is a complex-valued function that can be plotted in the
complex plane, and it provides a complete description of
the quantum state of a system. The surface plot of Qf as
a function of λ and α is shown in Fig. 6. It is clearly seen
that Qf almost overlaps with zero for certain values of the
parameters, which indicates the nonclassical behaviour of
the cavity field state. This function has a number of impor-
tant applications in quantum optics, quantum information
processing, and quantum computing. For example, it can
be used to calculate the probability of detecting a photon
in a particular mode of a quantum field, or to describe the
entanglement of two or more quantum systems.

4.6. Second-order correlation

The second-order correlation function g2(0) at zero time
delay for a single-mode radiation field is defined as [37]

g2(0) =
〈ψfield|a†2a2 |ψfield〉
〈ψfield| a†a |ψfield〉2

(13)

If for a field state g2(0) > 1, the field is said to be bunched
with super-Poissonian field statistics, whereas if g2(0) < 1,
the field is said to be antibunched with sub-Poissonian field
statistics. We have seen from Fig. 7 that g2(0) is less then
one for some particular values of λ as well as χt which
imparts that the cavity field state is antibunched.

0 5 10 15 20

0

2

4

6

8
10

-155

Figure 6: Variation of Qf function with respect to (a) λ with χt = 1
and α = 1, (b) α with χt = 1 and λ = 1, (c) χt with α = 1 and
λ = 1.

4.7. Lower order antibunching

The theory of majorization by [38] and [39] gives us
the expression of antibunching as

d1 = 〈a†2a2〉 − 〈a†a〉2

For a quantum state to be nonclassical, d1 should be neg-
ative. The negativity of d1 implies that the probability of
independent photons is more than the clustered photons.
Here d1 can simply be calculated by substituting the ex-
pectations 〈a†2a2〉 and 〈a†a〉 from (5). Fig. 8 clearly shows
that d1 becomes negative with respect to λ and χt, indi-
cating that the cavity field state is antibunched. We have
observed that the cavity QED field exhibits antibunching
behaviour for a short period of time that means the system
presents signature of temporary antibunching. In many
experiments, it is important to stabilize the antibunching
effect over time to ensure that the nonclassical properties
of the light source are maintained. Temporary antibunch-
ing can also be used to generate entangled photon pairs
in a random sequence which is necessary for the success
of teleportation protocol. Thus temporary antibunching
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Figure 7: Variation of second-order correlation g2(0) as a function
of (a) λ with χt = 1, (b) χt with λ = 2.

present for a limited time period is expected to play an
important role in the study of cavity QED system.

5. Conclusion

In this paper, we have investigated the generation of a
state by the interaction of an atom with both a quantized
cavity field and an external classical driving field. In this
study, we have considered an atom with three levels |e〉, |f〉
and |g〉 passes through a cavity and interacts dispersively
with the cavity field mode. At the same time it interacts
with an external classical field tuned into resonant with the
cavity field. We have further assumed that the transition
|f〉 ↔ |g〉 is significantly far from being in resonance and
the transition frequency for |e〉 ↔ |f〉 is in close proxim-
ity to resonance with the frequency of a single-mode cav-
ity field. A coherent state of quantized field is generated,
when the atom prepared in either states |e〉 or |f〉, and the
cavity field is initially in vacuum state |0〉 .We have consid-
ered that the atom is initially in the superposition of these
two states and the cavity is in vacuum state. After the
atom-cavity interaction, the cavity field state is obtained
by tracing out the atom part from the generalized state
vector. Different statistical properties like photon number
distribution, Wigner function, Mandel’s QM parameter,
squeezing properties Sx and Sp, Qf function, second-order
correlation g2(0) etc. are investigated. It is observed that
Wigner function W , Mandel’s QM , squeezing (Sx, Sp) are
negative for some specific parametric values that admits
the nonclassical nature of the cavity field state. Also the
zeroes of Qf function suggests that the behaviour of the
cavity state is nonclassical. The second-order correlation
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Figure 8: The variation of the lower order antibunching d1 as a
function of (a) λ with χt = 1, (b) χt with λ = 2.

function g2(0) with respect to λ is less than 1 that also
imparts the nonclassical behaviour of the cavity field.

In particular, we have investigated photon number dis-
tribution, quadrature squeezing, Mandel’s Qf etc. and
provided analytical expressions for these in dependence on
different state parameters. Furthermore, the Wigner func-
tion of the cavity-mode is calculated and we could infer the
state’s nonclassical character from its negativities. For
the preparation of states with different nonclassical fea-
tures optimal parameter regions are identified. Summing
up, the presented approach can easily be implemented in
current cavity QED experiments and provides a versatile
method for the engineering of nonclassical states of cavity
fields. Dispersive interactions can be used to create quan-
tum networks where information is stored and processed
using atoms trapped in optical cavities. Future research
may focus on scaling up these networks and improving
their efficiency for secure quantum communication.
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