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In the context of the measurement problem, we propose to model the interaction between a quantum particle
and an “apparatus” through a non-Hermitian Hamiltonian term. We simulate the time evolution of a normalized
quantum state split into two spin components (via a Stern-Gerlach experiment) and that undergoes a wave-
function collapse driven by a non-Hermitian Hatano-Nelson Hamiltonian. We further analyze how the strength
and other parameters of the non-Hermitian perturbation influence the time-to-collapse of the wave function ob-
tained under a Schödinger-type evolution. We finally discuss a thought experiment where manipulation of the
apparatus could challenge standard quantum mechanics predictions.

Introduction. A long-standing mystery of quantum me-
chanics foundations is related to the ultimate nature of the
state vector and the mechanism driving the transition of the
particle state from the quantum to classical world, material-
ized by the measurement event, and giving rise to the “mea-
surement problem”. It is a cornerstone puzzle which roots all
debates and multiple views concerning the interpretation of
quantum mechanics and the ultimate access to some unfath-
omable reality [1–10].

For a closed system, the time-dependent Schrödinger equa-
tion describes the deterministic evolution of the state vector,
which by the superposition principle, can be driven by multi-
ple components (and their interference) expressed in a given
orthogonal basis set. As long as the evolution remains unitary,
the state vector maintains its quantum coherence and in gen-
eral will be a superposition state. The access to some of the
state vector properties (position, momentum, spin, etc) how-
ever requires a true measurement, which is introduced through
a different dynamical process requiring the collapse of the
state vector to a probabilistically selected outcome. This is
the collapse (“projection”) postulate of quantum mechanics
and, introduces an irreversible process where information is
lost, thereby adding to the cut with the unitary Schödinger
evolution in absence of a measurement. Some fundamental
questions arise such as (i) how to properly model the effect
of the interaction of the system with an external environment
during the measurement process? (ii) can we theoretically ac-
cess the dynamical transient regime between the deterministic
evolution of the quantum state vector towards the final state
(after measurement/projection) which appears as a reduction
of the initial wave-packet? (iii) can the measured final out-
comes be in any sense dependent on the interaction with the
environment/apparatus’ properties?

In absence of a formalism that can follow the time-
evolution of any quantum states during the measurement pro-
cess, those questions have so far remained debated but un-
settled. The search for an underlying physical reality of the
wavefunction collapse and its relation with the quantum mea-
surement problem belongs to the quest for a deeper under-
standing of the foundations of quantum mechanics. The main
proposals include the Ghirardi-Rimini-Weber (GRW) model

[11–13] and the continuous spontaneous localization [14], that
establish the knowledgeable frontier on this issue [15] [16].
These two models are mainly aimed at taking out the mea-
surement as something that is being carried out solely by a
macroscopic measurement apparatus, but: (i) they add differ-
ent (stochastic) ingredients to the Schrödinger dynamics, (ii)
the collapse itself is assumed to happen as an automatic phe-
nomenon driven by ad-hoc dynamical equations, while there
is no insight on the underlying physical mechanism that would
induce the collapse itself during the time-evolution of the
quantum state. Differently, the so-called Diósi-Penrose col-
lapse framework proposes that gravity acts as a driving force
to the wavepacket reduction [17–21], a scenario that has been
challenged by experiments searching for its radiative signa-
ture [22–24].

Here, we put forward how the collapse of the wavefunction
can emerge by introducing a non-Hermitian perturbation to an
otherwise Hermitian Hamiltonian. In this model, the quantum
dynamics is fully governed by the Schrödinger equation. We
illustrate this idea using the Hatano model [25–28] as a non-
Hermitian perturbation, we follow numerically how the wave-
function collapses into one of its initial up or down spin state,
an event captured in space and time. The initial wavefunction
is built from entangled spin-orbital components, as generated
typically in a Stern-Gerlach experiment, while the local dis-
turbance introduced by the non-Hermitian term breaks non-
locality and force the wavefunction to be reduced into one
of the two possible outcomes. The time-to-collapse is driven
by the asymmetry and strength of non-Hermitian Hamiltonian
parts and related to an energy scale dictated by the local in-
teraction between the “apparatus” and the incoming quantum
particle trajectories. The collapse mechanism is thus a natural
consequence of a local interaction which aids the wavepacket
reduction under a Schrödinger-type evolution. Although there
are still mysteries under the carpet, this path may provide in-
sights which could be experimentally tested, besides the nat-
ural access to a physical scale usually missing in the standard
formulation of a quantum measurement: the time-to-collapse.

Non Hermitian Hamiltonian. As a starting point, we
choose a square lattice with nearest neighbours hopping term.
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Figure 1. Scheme of the initial state, equation 3, jointly with the
real space structure. The orange and red highlighted regions corre-
spond to the non-Hermitian Hamiltonian with g1 and g2 respectively.
The non-coloured region corresponds to a square lattice tight-binding
Hamiltonian.

It is Hermitian Ĥ0 =
∑

i γ0

(
c†jcj+1 + c†j+1cj

)
in most

part of the real space except in some defined region (see
Fig.1) where a breaking of hermiticity is introduced through
changing hopping amplitude according to the Hatano-Nelson
model [25–30], which become asymmetric (non-reciprocal),
and whose asymmetry strength is piloted by a parameter g, as
follows:

ĤnH =
∑
i

γ0

(
e−gc†jcj+1 + egc†j+1cj

)
(1)

and which creates a real-space asymmetric hopping, modu-
lated by g. This model is here limited to an alteration of hop-
ping amplitude along one direction, but the lattice model is
two-dimensional. We design the special arrangement as de-
picted in Fig 1, where two parts of the lattice (mimicking the
interaction zone between incoming quantum and the “mea-
surement apparatus”) has different non-Hermitian magnitude,
g1 for the upper part and g2 for the lower. In addition, a “lo-
calized” non-Hermitian form of gains is also studied, defining

ĤnH =
∑
j

z ϕ(xj ,x0)n̂j , (2)

where ϕ(xj ,x0) are exponential localized weights in x0, and
the z is a pure imaginary coefficient that indicates the strength
of the gains in the centre of the Gaussian function.

At initial time, a quantum state is prepared with a Gaus-
sian shape in real space and is an equal superposition of up
and down spin components (as for instance formed during
a Stern-Gerlach experiment). The wavepacket starts in the

space region where the Hamiltonian is Hermitian, with each
spin part having different momenta, one propagating to x > 0
and y > 0 while the other propagates to x > 0 and y < 0.
This reproduces the splitting effect of a Stern-Gerlach appara-
tus, where an inhomogeneous magnetic field entangles orbital
and spin degrees of freedom and splits apart the two compo-
nents. The total wavefunction at initial time |Ψ(0)⟩ reads:

|Ψ(r1, r2;k1,k2⟩ =
1√
2
[ψ(r1,k1)⊗ |↑⟩+ ψ(r2,k2)⊗ |↓⟩] .

(3)
where spatial components are defined as:

ψ(r) =
1√
2πσr

exp

(
−|r− r0|

4σ2
r

)
exp (−ik0 · r), (4)

defining σr as the uncertainty in position and r0 is the ini-
tial position where the wave packet is centred. The state
is then evolved under the action of the evolution operator
(|Ψ(t)⟩ = e−i(Ĥ0+ĤnH)t/ℏ |Ψ(0)⟩), depending on the to-
tal Hamiltonian (composed by the Hermitian and the non-
Hermitian part). At each time step, after applying the non-
Hermitian Hamiltonian the wave packet is renormalized. We
then compute the average value of the out-of-plane spin polar-
ization as ⟨Sz(t)⟩ = ⟨Ψ(t)| Ŝz |Ψ(t)⟩ which is zero at initial
time.

Wavefunction collapse. The dynamics of wavefunction
collapse for varying degree of non-Hermitian disturbance are
shown in Fig 2. We simulate the collapse dynamics (equiv-
alently, the increase of ⟨Sz(t)⟩) as a function of the dif-
ference between the non-Hermitian perturbations acting on
the two different spatial locations (see Fig.1), quantified by
G = g1 − g2. It clearly appears that if the initial spin polar-
ization ⟨Sz(t = 0)⟩ is zero (with equal weight of upspin and
downspin components), as time evolves, a nonzero ⟨Sz(t)⟩
emerges (main panel) as the wavefunction is spatially enter-
ing into the interaction zone (upper panel), with a progressive
collapse of the superposition to one of the outcomes (either
upspin or downspin polarization). The collapse is fully real-
ized once ⟨Sz(t)⟩ = 1.

Due to the presence of complex eigenvalues with negative
imaginary part introduced by the non-Hermitian perturbation,
the respective eigenvectors will be amplified in each time step
leading to an amplification of the part of the state that is en-
tering the non-Hermitian part with higher g. This effectively
shows a collapse in both the spin and spatial components. The
time of collapse is tunable by changing the difference between
both regions as shown in Fig.2 when decreasing G. When
G = 0 both parts have equal non-Hermitian strengths and
therefore the spin component does not collapse to any region,
although the spatial distribution is altered.

Further ahead, we can fit the behavior of the polarization
dynamics showed in Fig.2 to a logistic function of the form,

f(t) =
a

1 + e−b(t+t0)/ℏ
+ c, (5)

where a and c are dimensionless and b has units of energy.
We can define the collapse time as τ = ℏ/b. We expect the
behavior of the collapse to follow this function as it is mainly
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Figure 2. Top figures: in blue/red the out-of-plane spin polarization projected in real space, ⟨Ŝz(r)⟩. The two shaded regions are the two
non-Hermitian parts with g1 and g2 In this case they correspond to G = 0.5. From left to right they correspond to different times in the
simulation, t/ℏ: 0, 1.5 and 3. Bottom figure: mean value of the out-of-plane spin polarization, ⟨Ŝz⟩ as a function of t/ℏ for different values of
the difference in the non-Hermitian magnitude of the top and bottom regions, G = g1 − g2.
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Figure 3. Main frame: Collapse time in femtoseconds as a function
of the non-Hermitian strength jointly with the inverse function fit
h(G) =

α

β +G
+ γ. In this case α = 0.07 fs, β = 0.35 and

γ = 0.07 fs. Inset: Maximum value of the imaginary part of the 2D
Hatano-Nelson model as a function of the non-Hermitian strength g.

driven by the amplification of the different eigenstates, with
eigenvalues a, b, c, .., due to the non-Hermitian time evolution
plus the required normalization in each time step. As the out-
of-plane spin polarization adds a minus sign to the spin-down
part, this leads to the division of the subtraction of exponen-
tials by the sum of exponentials, ⟨Sz⟩ = (e−a↑t − ea↓t +
e−b↑t − eb↓t + ...)/

(
e−a↑t + ea↓t + e−b↑t + eb↓t + ...

)
. In

the end the largest eigenvalue, say ϵ, will dominate over the

rest gathered in coefficients C1 and C2, so leading to a domi-
nant term of logistic type form, plus other subdominant terms,
⟨Sz⟩ = (eϵt + C1) / (e

ϵt + C2) = 1/ (1 + e−ϵtC1) + ... This
collapse time is plotted as a function of G, jointly with its
exponential fit in Fig. 3 (main frame). As expected, the col-
lapse time decreases as G increases and increases when G ap-
proaches zero. This behaviour is expected as G measures the
non-Hermitian perturbation acting on the incoming quantum
states. One can relate this collapse time to an energy scale
which should be related to the energy exchange during the
“measurement process” and which will depend on the micro-
scopic energy fluctuation profile dictating the apparatus inter-
action with the quantum state. Microscopically, the scaling
of τ with G is directly linked to the increase of the imagi-
nary part of the eigenvalues of ĤnH (Fig. 3 (inset)), of which
magnitude dictates the value of τ during the dynamics. Given
that the wavefunction is normalized during the time evolution,
the quantum particle will be subjected to this effective energy
exchange with the external source at the origin of the non-
Hermitian part, breaking unitarity.

Finally Fig.4 shows the case of a spatially localized non-
Hermitian part in the upper region of the system. In contrast
with Fig. 2 the effective collapse of the spin part is the same
while the spatial part varies due to the different spatial dis-
tribution of the non-Hermitian Hamiltonian. This situation
could represent the interaction between an incoming trajec-
tory of a spin-split state with a local STM tip. As soon as the
interaction takes place, the collapse of the wavefunction oc-
curs in a timescale which is determined by the model parame-
ters. In both Figures 2 and 4, we have taken into account both
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Figure 4. In red/blue is shown the out-of-plane spin polarization projected in real space, ⟨Ŝz(r)⟩ for different times of the simulation, t/ℏ: 0,
1.5 and 3. In green it is shown the strength of a localized non-Hermitian part of z = 5 · i.

g1 and g2 equal or greater than zero. Therefore here we only
present an amplification effect. Allowing the coefficients to be
negative, leads to a loose mechanism in the opposite region. If
only one region is negative, the spin polarization won’t change
enough to lead to an effective collapse. On the other hand,
combining negative values with positive values will lead to
the effective collapse in the region with larger positive non-
Hermitian strength. These simulations illustrate the effect of
a spatially localized source of non-Hermitian disturbance on
the time evolution of a multi-components wavefunction. It ap-
pears clearly that the time-to-collapse is driven by the relative
inhomogeneous perturbation in real space which enforces the
outcome of the wavefunction at the location where maximum
disturbance is created.

Discussion and final remarks. We have proposed the
use of a non-Hermitian perturbation as a means of mod-
elling a quantum measurement and the subsequent state vec-
tor collapse [31]. The perturbation is meant as a poor-man’s
model of the interaction with the measuring apparatus and al-
lows for a description under a single dynamic equation, the
Schrödinger equation. To illustrate this, we used a simple
model for a Stern-Gerlach type of experiment where the me-
ter can influence either both spatially separated spin parts or a
single one. In this particular case, the mechanism for collapse
is simple amplification of the selected state, which depends on
the parameters of the perturbation Hamiltonian.

The exploits of such scheme for a quantum measurement
are two-fold:

• the split in the description of the dynamics (Schrödinger
dynamics/irreversible collapse) is substituted by a
change in the Hamiltonian when it is perturbed by the
measurement (whatever its origin) under a single dy-
namical equation;

• the measurement process acquires a different status as
one has to incorporate details or parameters describing
the interaction associated to the measurement.

As a byproduct, there is a natural physical scale that enters the
game, the time-to-collapse. In this simple setup shifting the
amplification from one part of the beam or the other changes
the final outcome. The frequency of each result should satisfy

Born’s rule if all the predictions of quantum mechanics are to
be kept. This seems to indicate that the initial state (just be-
fore the measurement) must influence the apparatus. But, can
we eventually tune the measurement parameters/apparatus to
challenge the usual rules? This would be akin to start playing
with loaded dice or even to stop playing dice at all. The ex-
istence of such “hidden physical reality” driving the collapse
could be tested by adjusting the interaction degree between the
two incoming trajectories so as to start to see deviations from
Born’s rule or even obtain one result with certainty. We could
imagine placing some identical trapped ultracold atoms (or
qubits) in their ground states or tuned to some excited states
to weakly differentiate the energy environment placed onto
the multiple quantum particle trajectories, so providing a dif-
ferent source of energy to exchange with (see the discussion in
the context of continuous spontaneous localization [32]). This
type of “thought experiment” could be materialized thanks to
recent developments in Stern-Gerlach interferometry [33–36].

The collapse scheme described here could equally apply to
two entangled particles split apart and whose spin-spin cor-
relations would be measured independently, satisfying the vi-
olation of the Bell´s inequality [3, 6, 37, 38]. The same lo-
cal physical mechanism (through non-Hermitian perturbation)
could just enforce the projection/collapse of the two-particle
wavefunction.

Finally, we have to point out that this is just a starting step
in the use of non-Hermitian Hamiltonians for the dynamical
modelling of quantum measurements as there are many issues
that are worth of further investigation. The mechanism de-
scribed here seems to be the simplest possible one, but it is
probably not the one bringing more insights onto the process
and the nature of Heisenberg’s cut. One could, for example,
envision mechanisms using more actively truly non-Hermitian
properties such as defectiveness [39–41], the lack of a full set
of eigenstates. We therefore see a clear need for more work
along this line which may bring a revived interest into this key
issue at the foundations of quantum physics.
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[5] F. Laloë, “Do we really understand quantum mechanics?
Strange correlations, paradoxes, and theorems,” American Jour-
nal of Physics 69, 655 (2001).

[6] J. S. Bell and A. Aspect, Speakable and Unspeakable in Quan-
tum Mechanics: Collected Papers on Quantum Philosophy, 2nd
ed. (Cambridge University Press, 2004).

[7] J. Bell, “Against ‘measurement’,” Physics World 3, 33 (1990).
[8] N. D. Mermin, “Hidden variables and the two theorems of john

bell,” Rev. Mod. Phys. 65, 803 (1993).
[9] J. R. Hance and S. Hossenfelder, “What does it take to solve the

measurement problem?” Journal of Physics Communications 6,
102001 (2022).

[10] N. Ormrod, V. Vilasini, and J. Barrett, “Which theories have
a measurement problem?” (2023), arXiv:2303.03353 [quant-
ph].

[11] G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics
for microscopic and macroscopic systems,” Physical Review D
34, 470 (1986).

[12] G. C. Ghirardi, P. Pearle, and A. Rimini, “Markov processes in
hilbert space and continuous spontaneous localization of sys-
tems of identical particles,” Phys. Rev. A 42, 78 (1990).

[13] A. Bassi and G. Ghirardi, “Dynamical reduction models,”
Physics Reports 379, 257 (2003).

[14] P. Pearle, “Combining stochastic dynamical state-vector reduc-
tion with spontaneous localization,” Physical Review A 39,
2277 (1989).

[15] F. Laloë, “Quantum collapse dynamics with attractive densi-
ties,” Physical Review A 99, 052111 (2019).

[16] Related to the GRW scheme, we also mention the so-called
quantum-drift approach, which uses a stochastic Schrödinger
equation and which is inspired by earlier works in the field of
quantum transport by Pastawski and collaborators, see [42] and
references therein.
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