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Abstract—In this paper, we consider two critical aspects of
security in the distributed computing (DC) model: secure data
shuffling and secure coded computing. It is imperative that any
external entity overhearing the transmissions does not gain any
information about the intermediate values (IVs) exchanged during
the shuffling phase of the DC model. Our approach ensures IV
confidentiality during data shuffling. Moreover, each node in the
system must be able to recover the IVs necessary for computing
its output functions but must also remain oblivious to the IVs
associated with output functions not assigned to it. We design
secure DC methods and establish achievable limits on the tradeoffs

between the communication and computation loads to contribute to
the advancement of secure data processing in distributed systems.

Index Terms—Coded distributed computing, MapReduce frame-
work, information-theoretic security, secure computing.

I. INTRODUCTION

In the realm of mobile applications demanding low-latency

responsiveness, edge computing has emerged as a scorching

topic due to its capability to provide high computation speeds

and low latency. Distributed computing (DC) models, mainly

focusing on Hadoop MapReduce, provide a framework for

edge computing designs in the literature. In the MapReduce

framework, the computing task undergoes three phases. In the

Map phase, input files are distributed to edge nodes for local

processing, outputting intermediate values (IVs). During the

Shuffle phase, IVs are exchanged among edge nodes. Once an

edge node accumulates enough IVs, it proceeds to compute the

output function in the Reduce phase. However, data shuffling in

the Shuffle phase significantly impacts the latency of the output

function computation. In [1], the authors used a methodology,

called coded distributed computing (CDC), to exploit coding in

data shuffling to reduce the communication load by a factor of

the computation load in the MapReduce framework. In [2], the

authors employed placement delivery array (PDA) designs to

create a coded computing scheme. Originally introduced as a

solution for the coded caching problem, the concept of PDA has

gained prominence in the literature, along with several studies

exploring CDC and rate-limited communications [3]–[6].

Beyond the need for reducing the communication load during

the data shuffling process, security emerges as a pivotal chal-

lenge in the realm of edge computing. In the context of linear

network coding based content delivery, there are primarily two

levels of security for data confidentiality: weak security (WS)

and information-theoretic security (ITS). The studies in [7], [8]

focused on WS in the context of data shuffling. Specifically,

when an attacker cannot receive a sufficient number of coded

packets from the data shuffling process, it becomes unable

to decode and acquire any IVs. In contrast, our investigation

centers around ITS, ensuring that no information related to the

IVs of data shuffling is leaked to potential attackers.

In this paper, we consider two aspects of security in the

MapReduce framework: secure data shuffling and secure coded

computing, inspired from the secretive coded caching problem

studied in [9]–[12]. For secure data shuffling, any external

entity that overhears the transmissions during the shuffling

phase must not get any information about the IVs. For secure

coded computing, each node should be able to recover the

IVs required for computing its output functions but must not

gain any information about the IVs of the output functions it

is not assigned. We establish achievable communication and

computation tradeoffs for these security problems.

II. BACKGROUND AND PRELIMINARIES

A. MapReduce Framework

We consider the DC model with MapReduce framework [1].

In this model, there are K nodes indexed by [K], representing

the set {1, 2, . . . ,K}. The task is to compute K output functions

{φq : q ∈ [K]} from N distinct input files W = {Wn :
n ∈ [N ]}, for some positive integer N . Each function φq, for

q ∈ [K], maps all N input files, where each file has w bits, into

a stream of b bits, i.e., we have φq : FN
2w → F2b . Suppose, for

every q ∈ [K], there is a linear map function gq : F2w → F2t .

Assume that gq(.) maps the input file Wn into an intermediate

value (IV) vq,n = gq(Wn) ∈ F2t of t bits, for each n ∈ [N ].
Similarly, for every q ∈ [K], assume that there is a reduce func-

tion hq : F
N
2t → F2b which maps all IVs into the output function

φq = hq(vq,1, . . . , vq,N ) ∈ F2b of b bits. With that, the output

function φq , for each q ∈ [K], can be equivalently described as

φq(W) = hq(vq,1, . . . , vq,N ) = hq(gq(W1), . . . , gq(WN )). The

function computation is carried out in three phases:

1. Map Phase: Each node k ∈ [K] stores a subset of files

Mk ⊆ W , and computes its IVs {vq,n : q ∈ [K],Wn ∈
Mk, n∈ [N ]}.

2. Shuffle Phase: Each node k ∈ [K] is assigned to compute

an output function φk . The set of all IVs which each node k

does not have access to and needs to recover for computing

the assigned output function is given by {vk,n : Wn ∈
W\Mk, n ∈ [N ]}. Each node k creates a bit sequence

Xk ∈ {0, 1}lk using the IVs it has access to and sends it

through a broadcast link to all other nodes.

http://arxiv.org/abs/2404.16431v2


3. Reduce Phase: Receiving the sequence {Xj}j∈[K]\k,

each node k ∈ [K] decodes all the IVs required

to compute its output function, i.e., we have

H
(

{vk,n}n∈[N ]|Mk, {Xj}j∈[K]\k

)

= 0.

We next define the computation and communication loads for

the DC problem. In [1], the computation load is defined as the

total number of files mapped across K nodes normalized by the

total number of files. We generalize the definition as follows.

Definition 1. (Computation Load): Computation load r is

defined as the total number of bits associated with the files

mapped across K nodes normalized by the total size of the

files.

Definition 2. (Communication Load [1]): The communication

load L is defined as the total number of bits transmitted by the

K nodes over the broadcast channel during the Shuffle phase

normalized by the number of bits of all IVs.

B. Placement Delivery Array

Yan et al. [3] introduced the concept of PDA to repre-

sent coded caching schemes with the goal of reducing sub-

packetization levels. Since then, several coded caching schemes

based on the PDA concept have been reported.

Definition 3. (Placement Delivery Array [3]): For positive

integers K,F, Z, and S, an F × K array P = [pf,k] with

f ∈ [F ], and k ∈ [K] composed of a specific symbol ∗ and S

positive integers [S], is called a (K,F, Z, S) placement delivery

array (PDA) if it satisfies the following conditions:

• A1: The symbol ∗ appears Z times in each column;

• A2: Each integer occurs at least once in the array;

• A3: For any two distinct entries pf1,k1
and pf2,k2

, s =
pf1,k1

= pf2,k2
is an integer only if

1) f1 6= f2 and k1 6= k2, i.e., they lie in distinct rows and

distinct columns; and

2) pf1,k2
= pf2,k1

= ∗, i.e., the corresponding 2 × 2 sub-

array formed by rows f1, f2 and columns k1, k2 must be

either of the following forms

(

s ∗
∗ s

)

or

(

∗ s

s ∗

)

.

Example 1. Consider an 4 × 5 array P1 as given below. It

satisfies conditions A1, A2 and A3. There are 2 stars in each

column and a total of 4 integers in the array. Hence, P1 is a

(5, 4, 2, 4) PDA.

P1 =









∗ ∗ ∗ 1 2
∗ 1 2 ∗ ∗
1 ∗ 3 ∗ 4
2 3 ∗ 4 ∗

. (1)

III. MAIN RESULTS

We first define secure data shuffling and secure coded com-

puting in Definitions 4 and 5, respectively. A secure data

shuffling scheme is provided in Theorem 1, where we are

interested in the secure delivery requirement as in Definition 4.

In Theorem 2, we obtain a secure coded computing scheme,

where we require that each node must be able to decode only

the IVs corresponding to its assigned output functions and not

be able to obtain any information about the remaining IVs. The

proofs of Theorems 1 and 2 are provided in Sections IV and

V, respectively.

Definition 4. (Secure Data Shuffling) Any eavesdropper that

overhears the transmitted symbols during the shuffling phase

must not obtain any information about the contents of the IVs.

Therefore, we have I
(

{vq,n}q∈[K],n∈[N ]; {Xj}j∈[K]

)

= 0.

Definition 5. (Secure Coded Computing) For each k ∈ [K], we

require I
(

{vq,n}q∈[K]\k,n∈[N ];Mk, {Xj}j∈[K]\k

)

= 0.

Theorem 1. Suppose that we are given a (K,F, Z, S) PDA

P = [pf,k] for f ∈ [F ], k ∈ [K], and for some integers K,F, Z,

and S, such that each integer appears more than once in the

PDA P . There exists a secure data shuffling scheme for a DC

model which consists of K nodes, and ηF number of files,

for some positive integer η. For the corresponding DC model,

the computation load is r = Z
F

and the communication load

achievable is given by

L =
S

KF
+

K
∑

g=2

Sg

KF (g − 1)
(2)

where Sg is the number of integers in [S] which appear exactly

g times in the PDA P .

Remark 1. Without employing secure data shuffling, as in [4],

the computation and communication loads achievable for a

given PDA are the same as in Theorem 1. However, imple-

menting secure data shuffling incurs an additional overhead in

terms of storing secret keys at the nodes (as discussed in Section

IV).

Theorem 2. Suppose that we have a (K,F, Z, S) PDA P =
[pf,k] for f ∈ [F ], k ∈ [K], and for some integers K,F, Z,

and S, such that each integer appears more than once in the

PDA P . A secure coded computing scheme for a DC model

which consists of K nodes, and η(F − Z) files, for some

positive integer η can be derived from this PDA. For the

corresponding DC model, the computation load is given by

r = Z
F−Z

. Furthermore, the communication load achievable

is given by

L =
S

K(F − Z)
+

K
∑

g=2

Sg

K(F − Z)(g − 1)
(3)

where Sg is the number of integers in [S] which appear exactly

g times in the PDA P .

Remark 2. When considering a given PDA for secure coded

computation, the computation and communication loads in-

crease by a factor of F
F−Z

as compared to the non-secure

scenario, as in [4]. Moreover, as for secure data shuffling,

an overhead arises from storing secret keys at the nodes (as

discussed in Section V).

Now, we illustrate Theorem 2 with the help of an example.



Example 2. Consider the (5, 4, 2, 4) PDA P1 of Example 1.

Consider a DC model where there are N = 4 input files

{W 1
1 ,W

2
1 ,W

1
2 ,W

2
2 }, each of size 3 bits and Q = 5 output func-

tions {φ1, φ2, φ3, φ4, φ5} to be computed. The files are divided

into 2 batches {B1, B2} such that each batch Bm, for m ∈ [2],
has two files, Bm = {Wm

1 ,Wm
2 }. They form the secret vector

[Wm
1 ,Wm

2 ]T . Also, select two random variables V m
1 , V m

2 for

m ∈ [2], uniformly and independently from the finite field F23 .

We form a key vector [V m
1 , Vm

2 ]T for each m ∈ [2]. Consider the

following Cauchy matrix: D =





1 6 2 4

6 1 4 2

2 4 1 6

4 2 6 1



. We multiply this

with the concatenation of the secret and key vectors to generate

the shares corresponding to the batch Bm, for m ∈ [2], i.e.,

we have [Am
1 , Am

2 , Am
3 , Am

4 ]T = D.[Wm
1 ,Wm

2 , V m
1 , V m

2 ]T .

The row index f ∈ [4] in the PDA P1 represents the share

Am
f , ∀m ∈ [2], and the column index k ∈ [5] represents the

node k. There exists a ∗ in a row indexed by f and column

indexed by k if and only if the node k has access to the shares

{Am
f : m ∈ [2]}, for each f ∈ [4] and k ∈ [5].

Assign the output function φk to the node k ∈ [5]. Let Sk

denote the set of all integers present in column k, for k ∈ [5].
For each k ∈ [5], s ∈ Sk and m ∈ [2], a secret key Tm

k,s of

size t
gs−1 bits is generated uniformly and independently from

F
2

t
gs−1

, where gs is the number of occurrences of the integer

s in the PDA P1. The shares and secret keys assigned to the

nodes are:

M1 = {Am
1 , A

m
2 , T

m
1,1, T

m
2,1, T

m
4,1, T

m
1,2, T

m
3,2, T

m
5,2 : m ∈ [2]},

M2 = {Am
1 , A

m
3 , T

m
1,1, T

m
2,1, T

m
4,1, T

m
2,3, T

m
3,3 : m ∈ [2]},

M3 = {Am
1 , A

m
4 , T

m
1,2, T

m
3,2, T

m
5,2, T

m
2,3, T

m
3,3 : m ∈ [2]},

M4 = {Am
2 , A

m
3 , T

m
1,1, T

m
2,1, T

m
4,1, T

m
4,4, T

m
5,4 : m ∈ [2]},

M5 = {Am
2 , A

m
4 , T

m
1,2, T

m
3,2, T

m
5,2, T

m
4,4, T

m
5,4 : m ∈ [2]}. (4)

Each node k computes the linear map functions referred as

coded IVs in the set {cmq,f = gq(A
m
f ) : q ∈ [5], Am

f ∈ Mk, f ∈
[4],m ∈ [2]}. Consider the first column, i.e. column with index

1 of P1. The set of all integers present in this column is S1 =
{1, 2}. Consider the entry s = 1 in S1. The other entries which

are 1 are in the columns indexed by 2 and 4. Hence, we partition

the symbols in cm1,3 into 2 packets, each of equal size, i.e., cm1,3 =

{cm,2
1,3 , c

m,4
1,3 }, for each m ∈ [2]. Next for the entry s = 2 in S1,

we partition cm1,4 into 2 packets, since the other entries which

are 2 correspond to the columns 3, and 5 i.e., we have cm1,4 =

{cm,3
1,4 , c

m,5
1,4 }. Similarly, for each column indexed by k ∈ [5], for

entries corresponding to 1 and 2 we partition the corresponding

symbols into 2 packets of equal sizes, while for entries 3 and

4, we partition the symbols into 1 packet (which is the symbol

itself), as shown below.

c
m
2,2 = {cm,1

2,2 , c
m,4
2,2 }, cm2,4 = {cm,3

2,4 }, cm3,2 = {cm,1
3,2 , c

m,5
3,2 }, cm3,3 = {cm,2

3,3 },

c
m
4,1 = {cm,1

4,1 , c
m,2
4,1 }, cm4,4 = {cm,5

4,4 }, cm5,1 = {cm,1
5,1 , c

m,3
5,1 }, cm5,3 = {cm,4

5,3 }.

Since |Sk| = 2, ∀k ∈ [5], each node k transmits two coded
symbols Xm

k,s, s ∈ Sk for each m ∈ [2]. The following are the

coded symbols transmitted by the nodes:

X
m
1,1 = c

m,1
2,2 ⊕ c

m,1
4,1 ⊕ T

m
1,1, X

m
1,2 = c

m,1
3,2 ⊕ c

m,1
5,1 ⊕ T

m
1,2,

X
m
2,1 = c

m,2
1,3 ⊕ c

m,2
4,1 ⊕ T

m
2,1, X

m
2,3 = c

m,2
3,3 ⊕ T

m
2,3, X

m
3,3 = c

m,3
2,4 ⊕ T

m
3,3,

X
m
3,2 = c

m,3
1,4 ⊕ c

m,3
5,1 ⊕ T

m
3,2, X

m
4,1 = c

m,4
1,3 ⊕ c

m,4
2,2 ⊕ T

m
4,1,

X
m
4,4 = c

m,4
5,3 ⊕ T

m
4,4, X

m
5,1 = c

m,5
1,4 ⊕ c

m,5
3,2 ⊕ T

m
5,1, X

m
5,3 = c

m,4
4,4 ⊕ T

m
5,3.

The node 1 can retrieve c
m,2
1,3 from the coded symbol Xm

2,1

transmitted by node 2, since it can compute c
m,2
4,1 from the

shares in M1 and cancel out Tm
2,1. Similarly, it can retrieve

c
m,4
1,3 , c

m,3
1,4 and c

m,5
1,4 as well. Hence, node 1 can compute

D−1[cm1,1, c
m
1,2, c

m
1,3, c

m
1,4]

T for each m ∈ [2] and retrieve the

IVs required for computing the output function φk. Also, it

does not obtain any additional coded IVs not related to output

function φk. Given the access structure of the (2, 4) non-

perfect secret-sharing scheme, having 2 shares related to other

output functions (hence, two coded IVs related to other output

functions) maintains the secrecy.

Each node k stores 4 shares {Am
f :m∈ [2], pf,k = ∗, f ∈ [4]},

as in (12). Thus, the computation load is 4∗w
4∗w = 1. In total 10

coded symbols are transmitted across the nodes. The symbols

corresponding to the entries 1 and 2 in the PDA P1 are of

size t
2 bits, whereas symbols corresponding to the entries 3

and 4 are of size t bits. Thus, the communication load is L =
( t
2
∗6+t∗4)∗2

5∗4∗t = 0.7. For non-secure computing, the computation

and communication loads are 0.5 and 0.35, respectively [4].

IV. PROOF OF THEOREM 1

We present the proof of Theorem 1 in this section. First, we

assume that there are ηF number of files, {Wm
f : f ∈ [F ],m ∈

[η]}, for some positive integer η. The ηF files are divided by

grouping the files into F disjoint batches {B1, B2, . . . , BF }
each containing η files such that Bf = {Wm

f : m ∈ [η]}, for

f ∈ [F ].

A. Map Phase of Theorem 1

We define Sk as the set of all integers present in the column

indexed by k ∈ [K] and gs as the number of occurrences of the

integer s ∈ [S] in the PDA. The nodes are filled as follows:

• Node k ∈ [K] stores all the files from the f th batch if

the entry corresponding to the row indexed by f and the

column indexed by k in the PDA P is the symbol “ ∗ ”,

i.e., if pf,k = ∗, for f ∈ [F ].
• For each k ∈ [K], s ∈ Sk and m ∈ [η], a random variable

Tm
k,s of size t

gs−1 bits, referred to as a secret key, is

generated uniformly from F
2

t
gs−1

such that the keys are

independent of each other and the map functions.

• If s appears in the column indexed by k of P , i.e., if pf,k =
s for some f ∈ [F ], then the secret key Tm

k̂,s
, ∀m ∈ [η], is

stored at node k, if p
f̂ ,k̂

= s for some f̂ ∈ [F ], k̂ ∈ [K].



The subscript s indicates the transmission instance during which

the corresponding key is utilized to encrypt messages during the

shuffling phase. The content stored at node k ∈ [K] is:

Mk =

{

⋃

f∈[F ]:
pf,k=∗,m∈[η]

W
m
f

}

⋃

{

⋃

k̂∈[K],f̂∈[F ]:
s∈Sk,pf̂ ,k̂

=s,m∈[η]

T
m
k̂,s

}

. (5)

Each node k computes all the map functions for the files in the

set Mk, i.e., it computes vmq,f = gq(W
m
f ), for q ∈ [K], and

Wm
f ∈ Mk, where f ∈ [F ], and m ∈ [η].

B. Shuffle Phase of Theorem 1

Each node k ∈ [K] is responsible for computing an output

function φk. The set of all IVs related to the output function φk

it can compute using the accessible files is {vmk,f : pf,k=∗, f ∈
[F ],m ∈ [η]}. To complete the computation, node k need the

remaining IVs, represented by the set {vmk,f : pf,k 6= ∗, f ∈
[F ],m ∈ [η]}. These IVs are necessary for computing φk .

Consider each pair (f, k) where f ∈ [F ] and k ∈ [K].
Suppose pf,k = s for some s ∈ [S]. Let gs denote the total

number of occurrences of s. Assume that the remaining gs − 1
occurrences of s are distributed across {(fi, ki) : i ∈ [gs − 1]}
such that pf1,k1

= pf2,k2
= . . . = pfgs−1,kgs−1

= s.

Importantly, for each ki ∈ {k1, k2, . . . , kgs−1} we know that

pf,ki
= ∗ (since f 6= fi), as indicated by condition A3-2). We

partition the symbols in vmk,f into gs − 1 packets each of equal

size, for each m ∈ [η], i.e.,

v
m
k,f = {vm,k1

k,f , v
m,k2

k,f , . . . , v
m,kgs−1

k,f }, ∀m ∈ [η]. (6)

The shuffling phase consists of S transmission instances, where

each transmission instance is denoted by s ∈ [S]. During the

transmission instance s ∈ S, we consider a set of nodes Us =
{k : pf,k = s, k ∈ [K], f ∈ [F ]}. For each k ∈ Us, node k

multicasts the following messages of length t
gs−1 bits each.

X
m
k,s =

(

⊕

(u,e)∈[F ]×([K]/k):
pu,e=s

v
m,k
e,u

)

⊕

T
m
k,s, ∀m ∈ [η]. (7)

Thus, the messages transmitted by node k can be expressed as

Xk = ∪s∈[S]:pf,k=s,f∈[F ],m∈[η]X
m
k,s. The security of message

delivery is ensured by XOR-ing each message with a secret key.

Thus, external eavesdroppers attempting to wiretap the shared

link are thwarted. These eavesdroppers remain uninformed

about the IVs since they lack access to the uniformly distributed

keys. The node k can create the message Xm
k,s from the IVs

accessible to it. In fact, for each (u, e) in the sum (7), there

exists a corresponding f ∈ [F ] such that pu,e = pf,k = s.

Since e 6= k, we deduce that u 6= f and pu,k = ∗ according

to condition A3-2). Consequently, the node k can compute the

IVs within the set {vme,u : m ∈ [η]}.

C. Reduce Phase of Theorem 1

During the reduce phase, the node k computes the output

function φk . Upon receiving the messages {Xj}j∈[K]\k, each

node k decodes the IVs {vmk,f : f ∈ [F ],m ∈ [η]}, with

the help of the secret keys and the IVs it can compute.

Specifically, it needs to determine the set of IVs {vmk,f : Wm
f ∈

W\Mk, f ∈ [F ],m ∈ [η]}. Without loss of generality, assume

that pf,k = s ∈ Sk. For each ki ∈ {k1, k2, . . . , kgs−1}, as

defined in (6), node k retrieves the symbol v
m,ki

k,f from the

message Xm
ki,s

transmitted by the node ki for each m ∈ [η]
i.e., we have

X
m
ki,s =

(

⊕

(u,e)∈[F ]×([K]/ki):
pu,e=s

v
m,ki
e,u

)

⊕

T
m
ki,s. (8)

The node k stores secret keys denoted as Tm
ki,s

, where m ∈ [η].
Hence, it can cancel out Tm

ki,s
from (8). In (8), for e 6= k,

pu,e = pf,k = s implies that pu,k = ∗ by A3-2). Hence, node

k can compute vm,ki
e,u . For e = k, pu,e = pf,k = s implies

u = f by A3-1. Therefore, the node k can retrieve the symbol

v
m,ki

k,f from the message in (8) by canceling out the rest of the

symbols. By collecting all the symbols v
m,ki

k,f in (6), node k can

compute φk.

Now, we evaluate the computation and communication load

for this scheme. Each node stores ηZw bits corresponding to

the files {Wm
f : pf,k = ∗, f ∈ [F ],m ∈ [η]} in (5). Hence, the

computation load is r = ηZw
ηFw

=Z
F

. For each s ∈ [S] occurring

gs times, there are ηgs associated messages sent, each of size
t

(gs−1) bits by (7). Let Sg denote the number of integers which

appear exactly g times in the array. The communication load is

given by

L =
1

KηFt

S
∑

s=1

gsηt

(gs − 1)
=

1

KF

K
∑

g=2

gSg

(g − 1)

=

∑K
g=2 Sg

KF
+

K
∑

g=2

Sg

KF (g − 1)
=

S

KF
+

K
∑

g=2

Sg

KF (g − 1)
. (9)

V. PROOF OF THEOREM 2

Assume that there are η(F −Z) number of files, {Wm
n : n ∈

[F − Z],m ∈ [η]}, for some positive integer η. The η(F − Z)
files are divided by grouping the files into η disjoint batches

{B1, B2, . . . , Bη} each containing (F−Z) files such that Bm =
{Wm

n : n ∈ [F − Z]}.

We employ non-perfect secret sharing schemes [13] to encode

the files in each batch. These schemes are designed such

that accessing a subset of shares does not provide significant

information about the secret, which in this case is the files in

a batch. Only if all shares are combined can the original files

be reconstructed. The non-perfect secret sharing scheme is next

defined.

Definition 6. For each batch Bm,m ∈ [η], with size w(F −Z)
bits, a (Z, F ) non-perfect secret sharing scheme generates F

shares, Am
1 , Am

2 , . . . , Am
F , such that accessing any Z shares

does not reveal any information about the batch Bm, i.e.,

I(Bm;A) = 0, ∀A ⊆ {Am
1 , Am

2 , . . . , Am
F }, |A| ≤ Z. Further-



more, the knowledge of F shares is sufficient to reconstruct the

secret (batch), i.e., H(Bm|Am
1 , Am

2 , . . . , Am
F ) = 0.

In our scenario, a (Z, F ) non-perfect secret sharing scheme

has been identified, where shares are of size 1
F−Z

times the size

of the secret (w bits) [13]. In contrast to perfect secret sharing

schemes [14], which allocate shares of size equal to the secret

size (w(F −Z) bits), non-perfect schemes are more efficient in

terms of computation and communication load. An example of

non-perfect secret sharing schemes mentioned in the literature

are ramp threshold secret sharing schemes, as described in [13].

For each batch Bm,m ∈ [η], the (F −Z) files corresponding

to Bm arranged in a column forms the secret vector, which is a

(F−Z)×1 column vector Wm := [Wm
1 ,Wm

2 , . . . ,Wm
(F−Z)]

T ,

each element of which belongs to F2w . We also select Z

random variables uniformly and independently from the finite

field F2w to form the key vector Vm := [Vm
1 , Vm

2 , . . . , V m
Z ]T

of dimension Z × 1. Let the share vector, corresponding to

Bm be a F × 1 column vector Am = [Am
1 , Am

2 , . . . , Am
F ]T ,

where Am
f ∈ F2w , ∀f ∈ [F ]. Define the linear mapping

Π as the transformation that maps the secret vector Wm

to the share vector Am corresponding to batch Bm. This

mapping is represented as Π : F
F−Z
2w × F

Z
2w → F

F
2w such

that Am = Π(Wm,Vm) satisfies the following conditions:

(i) H(Wm|Am) = 0 (Correctness) and (ii) H(Wm|A) =
H(Wm),A ⊂ {Am

1 , Am
2 , . . . , Am

F }; |A| ≤ Z (secrecy). To

implement the linear mapping as described above, an F × F

Cauchy matrix D [16] is utilized, operating in the finite field

F2z , where z ≥ 1 + log2 F . See [15] for a similar scheme.

Using a Cauchy matrix facilitates the generation of the share

vectors Am from the secret vectors Wm in a manner consistent

with the conditions of the non-perfect secret sharing scheme.

Condition (i) stipulates that F shares are adequate for the

recovery of the secret vector Wm, while (ii) ensures that any

subset of Z or fewer shares does not disclose any information

about the batch. For each batch Bm, the key vector Vm is

concatenated below Wm to form the vector Ym = [Wm;Vm]
of dimension F × 1. Then, the Cauchy matrix D is multiplied

with Ym over F2z to obtain the share vector Am, expressed as

Am
F×1 = DF×F .Y

m
F×1. Therefore, for each f ∈ [F ], a share

Am
f is computed as

A
m
f =

∑

j∈[F ]

df,jY
m
j =

F−Z
∑

j=1

df,jW
m
j +

F
∑

j=F−Z+1

df,jV
m
j−(F−Z). (10)

Here, each share Am
f is a linear combination of the secret

vector and key vector, with coefficients derived from the Cauchy

matrix. Let vmq,j = gq(W
m
j ) be the IV obtained by mapping

the input file Wm
j using the linear map function gq(.), for q ∈

[K], j ∈ [F−Z], and m ∈ [η]. Also, let cmq,f = gq(A
m
f ) be linear

map function values referred as coded IV, for each q ∈ [K] and

Am
f , where f ∈ [F ], and m ∈ [η]. Then, we have

c
m
q,f = gq(A

m
f )=

F−Z
∑

j=1

df,jv
m
q,j+

F
∑

j=F−Z+1

df,jgq(V
m
j−(F−Z)). (11)

In other words, each coded IV cmq,f is computed based on

the corresponding share Am
f , utilizing the mapping function

gq(.). For each q ∈ [K] and m ∈ [η], F coded IVs

corresponding to {cmq,f : f ∈ [F ]} arranged in a column

forms the coded IV vector, which is a F × 1 column vector,

Cm
q := [cmq,1, c

m
q,2, . . . , c

m
q,F ]

T , where each element of which

belongs to F2t . Similarly, the map function values {vmq,f : f ∈
[F − Z]} ∪ {gq(V

m
f ) : f ∈ [Z]} forms a F × 1 column vector,

gm
q := [vmq,1, . . . , v

m
q,F−Z , gq(V

m
1 ), . . . , gq(V

m
Z )]T , where each

element of which belongs to F2t . Hence, we have Cm
q = D.gm

q .

Once the coded IV vector is available, node k can compute

D−1Cm
k for each m ∈ [η]. Notably, D is known to all nodes,

and since a Cauchy matrix is full rank, D−1 always exists.

Consequently, node k can retrieve {vmk,f : f ∈ [F −Z]}, where

the first F − Z elements correspond to these IVs. With these

IVs, node k can then proceed to compute the output function.

A. Map, Shuffle and Reduce Phases of Theorem 2

The map phase is similar to that in Section IV-A except that

each node k stores a subset of shares instead of files as follows:

Mk =

{

⋃

f∈[F ]:
pf,k=∗,m∈[η]

A
m
f

}

⋃

{

⋃

k̂∈[K],f̂∈[F ]:
s∈Sk,pf̂,k̂

=s,m∈[η]

T
m
k̂,s

}

. (12)

Each node k computes the map functions of the shares stored

in Mk, specifically, it calculates the coded IV cmq,f = gq(A
m
f )

for each q ∈ [K], and Am
f ∈ Mk, where f ∈ [F ] and m ∈ [η].

The shuffling phase is also similar to that in Section IV-B

except that instead of exchanging IVs, coded IVs are exchanged.

As each message is XOR’ed with a secret key, the delivery is

secure against external eavesdroppers wiretapping on the shared

link. Thus, eavesdroppers do not obtain any information about

the coded IVs as they do not have access to the secret keys.

In the reduce phase, each node k first retrieves all the coded

IVs {cmk,f : f ∈ [F ],m ∈ [η]} using the secret keys and the

coded IVs it can compute. From these coded IVs, it decodes

the set of IVs {vmk,f : f ∈ [F − Z],m ∈ [η]} using the Cauchy

matrix D, and finally computes the output function assigned

to it. Each node stores ηZw bits corresponding to the shares

{Am
f : pf,k = ∗, f ∈ [F ],m ∈ [η]} in (12). Hence, the

computation load is r = ηZw
η(F−Z)w = Z

F−Z
. The communication

load is calculated similar to (9) and is given by

L=
1

Kη(F − Z)t

S−1
∑

s=0

gsηt

(gs − 1)
=

1

K(F − Z)

(

S+
K
∑

g=2

Sg

(g − 1)

)

where Sg denotes the number of integers which appear exactly

g times in the array.

B. Proof of Secrecy of Theorem 2

To demonstrate that nodes gain no information about the

content of any IVs corresponding to the output functions not



assigned to them, we first establish that node k, for k ∈ [K],
cannot obtain any information about {vmq,f : q ∈ [K]\k, f ∈
[F − Z],m ∈ [η]} from the coded IVs it can compute. Denote

an arbitrary Z-sized subset of Cm
q as cmq,i1 , c

m
q,i2

, . . . , cmq,iZ . We

have:








cmq,i1
cmq,i2

...
cmq,iZ









=









di1,1 di1,2 . . . di1,F
di2,1 di2,2 . . . di2,F

...
...

. . .
...

diZ ,1 diZ ,2 . . . diZ ,F









.g
m
q . (13)

RHS of Eq. (13) can be written as D1.[v
m
q,1, . . . , v

m
q,F−Z ]

T+

D2.[gq(V
m
1 ), . . . , gq(V

m
Z )]T = D1v

m
q +D2ĝ

m
q , where D1 and

D2 are submatrices of D of dimensions Z×(F−Z) and Z×Z .

For the subset of shares to leak information, the key vector

ĝm
q must be decoupled from the corresponding secret IV vector

vm
q , i.e., D1v

m
q 6= 0 and D2ĝ

m
q = 0. As all submatrices of

a Cauchy matrix are full rank, the columns of D2 are linearly

independent. Hence, such ĝm
q does not exist. This implies that

a linear combination involving only vm
q cannot be obtained,

resulting in zero information leakage from the mapping. More-

over, to demonstrate that an arbitrary node k cannot obtain any

information about {vmq,f : q ∈ [K]\k, f ∈ [F − Z],m ∈ [η]}
from the transmitted messages, observe that each message is

encrypted with a key available only to the nodes for which the

message is useful. For a transmission Xm

k̂,s
made by some node

k̂ ∈ [K], another node k cannot decode any information if s

does not appear in the kth column of the PDA. This follows

since node k does not have any knowledge of Tm

k̂,s
. Thus, node

k cannot obtain any information about the linear combination

of shares encrypted by this key.

REFERENCES

[1] S. Li, M. A. Maddah-Ali, Q. Yu and A. S. Avestimehr, “A Fundamental
Tradeoff Between Computation and Communication in Distributed Com-
puting," in IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109-128, Jan. 2018.

[2] Q. Yan, S. Yang and M. Wigger, “Storage computation and communication:
A fundamental tradeoff in distributed computing", in Proc. IEEE Inf. Theory

Workshop, pp. 1-5, Guangzhou, China, Sept. 2018.
[3] Q. Yan, M. Cheng, X. Tang and Q. Chen, “On the Placement Delivery

Array Design in Centralized Coded Caching Scheme,” in IEEE Trans. Inf.

Theory, vol. 63, no. 9, pp. 5821-5833, Sep. 2017.
[4] Q. Yan, X. Tang and Q. Chen, “Placement delivery array and its applica-

tions", in Proc. IEEE Inf. Theory Workshop, pp. 1-5, Guangzhou, China,
Nov. 2018.

[5] S. Sasi, O. Günlü, and B. S. Rajan. “Multi-access Distributed Computing
Models from Map-Reduce Arrays." available [Online]: arXiv:2402.16140,
2024.

[6] S. Sasi and O. Günlü. “Rate-limited Shuffling for Distributed Computing,”
available [Online]: arXiv:2403.01296, 2024.

[7] R. Zhao, J. Wang, K. Lu, J. Wang, X. Wang, J. Zhou, and C. Cao,
“Weakly secure coded distributed computing,” Proc. of International Conf.

Ubiquitous Intelligence Comput., pp. 603- 610, 2018.
[8] J. Chen and C. W. Sung, “Weakly Secure Coded Distributed Computing

with Group-based Function Assignment,” IEEE Inf. Theory Workshop,
Mumbai, India, 2022, pp. 31-36.

[9] V. Ravindrakumar, P. Panda, N. Karamchandani, and V. Prabhakaran,
“Private Coded Caching,” in IEEE Trans. Inf. Forensics Security, vol. 13,
no. 3, pp. 685-694, March 2018.

[10] A. Sengupta, R. Tandon and T. C. Clancy, “Fundamental limits of caching
with secure delivery,” in IEEE Trans. Inf. Forensics Security, vol. 10, no.
2, pp. 355-370, 2015.

[11] A. A. Zewail and A. Yener, “Device-to-device secure coded caching,”
IEEE Trans. Inf. Forensics Security, vol. 15, pp. 1513-1524, 2020.

[12] S. S. Meel and B. S. Rajan, “Secretive Coded Caching from PDAs,”
IEEE 32nd Annual Int. Symp. on Personal, Indoor Mobile Radio Commun.,
Helsinki, Finland, 2021, pp. 373-379.

[13] H. Yamamoto, “Secret sharing system using (k, L, n) threshold scheme,”
Electron. Commun. Jpn. (Part I: Commun.), vol. 69, no. 9, pp. 46-54, 1986.

[14] A. Shamir, “How to share a secret,” ACM Commun., vol. 22, no. 11, pp.
612-613, Nov. 1979.

[15] K. Ma, S. Shao and J. Shao, “Secure Coded Caching with Colluding
Users," Comput., Commun. IoT Applications, China, 2021, pp. 329-334.

[16] J. S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon Codes for
Fault-Tolerant Network Storage Applications,” in IEEE Int. Symp. Net.

Comput. Applications, pp. 173-180, 2006.

http://arxiv.org/abs/2402.16140
http://arxiv.org/abs/2403.01296

	Introduction
	Background and Preliminaries
	MapReduce Framework
	Placement Delivery Array

	Main Results
	Proof of Theorem 1
	Map Phase of Theorem 1
	Shuffle Phase of Theorem 1
	Reduce Phase of Theorem 1

	Proof of Theorem 2
	Map, Shuffle and Reduce Phases of Theorem 2
	Proof of Secrecy of Theorem 2

	References

