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Abstract—With the rapid advancement of Quantum Machine
Learning (QML), the critical need to enhance security measures
against adversarial attacks and protect QML models becomes
increasingly evident. In this work, we outline the connection
between quantum noise channels and differential privacy (DP), by
constructing a family of noise channels which are inherently ϵ-DP:
(α, γ)-channels. Through this approach, we successfully replicate
the ϵ-DP bounds observed for depolarizing and random rotation
channels, thereby affirming the broad generality of our framework.
Additionally, we use a semi-definite program to construct an
optimally robust channel. In a small-scale experimental evaluation,
we demonstrate the benefits of using our optimal noise channel
over depolarizing noise, particularly in enhancing adversarial
accuracy. Moreover, we assess how the variables α and γ affect
the certifiable robustness and investigate how different encoding
methods impact the classifier’s robustness.
Index Terms—Differential Privacy, Quantum Machine Learning,
Adversarial Robustness, Quantum Computing.

I. INTRODUCTION & RELATED WORK

Quantum Machine Learning (QML) emerges as a prominent
example of the potential applications for Noisy Intermediate-
Scale Quantum (NISQ) devices [24]. Research into QML is
motivated by the anticipation that it could significantly improve
certain computational tasks, surpassing the performance of
conventional algorithms [30, 25, 5, 2, 6]. Despite these potential
benefits, QML faces its own set of challenges, especially
concerning susceptibility to adversarial attacks [21, 28, 12].
Within classical machine learning, Differential Privacy (DP) has
played a crucial role in striking a balance between data utility
and the need for privacy protection [11, 1]. Specifically, DP
has been utilized to enhance the reliability of model predictions
for specific inputs [8, 20]. This principle extends naturally into
Quantum Computing (QC) and introduces a novel approach to
safeguard the integrity and privacy of data processed by QML
models [33].

Quantum noise channels, such as depolarizing and phase
damping noise in NISQ devices, are used as sources of
stochastic noise. This noise helps achieve DP by exploiting
the natural error processes of these devices [4, 15, 33, 27, 10].
With this argumentation, Weber et al. [27] have provided a
relationship among quantum hypothesis testing and adversarial
robustness. In addition, Hirche et al. [15] has provided a
relationship between quantum DP and the quantum hockestick
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divergence. Angrisani et al. [4] is possibly one of the most
noteworthy recent publications; they have provided a more
general framework for the robustness upper bound of quantum
noise channels by defining the neighbourhood concept in terms
of the Schatten-norm and providing a more general upper bound
for noise channels in terms of a depolarizing channel as well
as a single qubit Pauli channel. This broader framework was
not included in our work as we initially focused on defining
such a family of noise channels. The linear nature of quantum
channels and their relationship to semi-definite programming
has been already considered, e.g. Guan et al. [14], to attempt
to construct an optimal noise channel that achieves epsilon-DP
using semi-definite programming. Nonetheless, the extent to
which these techniques can defend classifiers against practical
adversarial input manipulations remains uncertain.

As indicated in our earlier work [29], the effectiveness of
these approaches in providing robustness varies with the factor
of depolarization noise. This raises the question which noise
channel is the most suitable for a given classification problem.
On a pathway to answer this question, we develop a family
of noise channels, so called (α, γ)-channels, which describe
noise channels naturally facilitating DP. In addition, we offer
theoretical derivations for the bounds of depolarizing noise [33]
and random rotations [16] from our general framework of (α,
γ)-channels. This indicates that a broader set of channels can
be described in our framework. Next, we add a construction
of an optimal quantum channel as a positive semi-definite
constrained optimization problem. This construction allows the
experimental evaluation of a depolarizing channel against its
optimally constructed counterpart, providing a more definite
statement about the possible utility of quantum noise channels
for DP and adversarial robustness against evasion attacks.

In summary, the contributions of our work are:

• The introduction of (α, γ)-channels as a family of noise
channels which suffice ϵ-DP, along with formal bound
derivations for depolarizing noise and random rotations.

• Construction of an optimal (α, γ)-channel trough a
semi definite program. The maximum robustness ratio
is obtained for a quantum classifier and a given sample.

• Experimental evaluation of depolarizing noise channels
compared to optimal noise channels and evaluation be-
tween amplitude and angle encoding on three datasets.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be
accessible.
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II. PRELIMINARIES

A. Quantum Adversarial Robustness

Quantum adversarial robustness examines how specially crafted
attacks can weaken a quantum-based machine learning model,
just as traditional neural networks can be fooled by adversarial
inputs [13, 19, 22]. While there are other means of attacking a
machine learning based system, we focus on evasion attacks on
the QML model. In the context of classical machine learning,
adversarial robustness refers to the ability of a machine learning
to maintain a stable prediction when confronted with adversarial
examples. Formally, let Y denote the set of classes and ∥ · ∥
denote the euclidean norm on Rn. Let f : Rn → [0, 1]|Y| be a
classifier, x ∈ Rn and ϵ > 0.

Definition 1 (Adversarial Robustness). Consider a classifier f
that maps an input x to an output y. The adversarial robustness
at input x can be defined as the smallest amount of perturbation
δ needed to change the model’s prediction:

argmaxc∈Y fc(x+ δ) ̸= argmaxc∈Y fc(x),

where ∥δ∥ ≤ ϵ is bounded by a maximum ϵ budget and xadv =
x+ δ denotes an adversarial example.

In the context of QC, a study by Lu et al. [21] found that
Quantum Neural Networks (QNN) can fall prey to these
targeted perturbations. As part of their work, the quantum
version of the Fast Gradient Sign Method (FGSM) [13] was
introduced. Thus, let us denote x ∈ Rn as (classical) features,
L as loss function incorporating the QNN weights and ∇x as
gradient. In the context of FGSM a adversarial budget of ϵ is
assumed, which then allows to obtain an adversarial example
as follows:

xadv = Πx+S(x+ ϵ · sign(∇xL)),

where Πx+S(·) clips the value towards the space S of
adversarial perturbations around x. Typically, the space of
adversarial perturbations is defined by a norm around the
input x. The fact that QNNs are vulnerable to adversarial
perturbations motivates the discussion about specific measures
to counteract adversarial examples. In this work, we consider
robustness accuracy as the network’s ability to main stable
predictions against adversarial attacks.

Definition 2 (Robustness Accuracy). Let D = {xi, yi}i=1,...,N

be a dataset and a(·, f, ϵ) : Rn → Rn be an adversarial model
that tries to find an adversary within the perturbation budget ϵ.
Then, the robustness accuracy of the classifier f on D under
attack a(·, f, ϵ) is defined as:

1

N

N∑
i=1

1(yi = f(a(xi, f, ϵ))) (1)

Where 1 denotes the indicator function which corresponds to
1 if the argument is true, else is returning 0.

B. Quantum DP

DP, with parameters (ϵ, δ), enhances data analysis and machine
learning protection against adversaries. Lower ϵ values increase
privacy by limiting what an algorithm reveals about individual
data points, while δ represents the small chance that this privacy
might fail. Together, (ϵ, δ)-DP makes it hard for adversaries
to exploit data, safeguarding data integrity and privacy against
sophisticated attacks. In the following, we focus entirely on
ϵ-DP, which implies that δ = 0 throughout this work. 1

Formally for QC, two neighbouring Hilbert states ρ and σ are
assumed, which are bound by a distance measure. Typically,
the trace distance:

τ(σ, ρ) =
1

2
Tr |σ − ρ| = 1

2
Tr

[√
(σ − ρ)†(σ − ρ)

]
(2)

A quantum algorithm A (for instance, a classifier) is assumed
to be ϵ-DP if, for a given set of outcomes S of A(x), the
following equation holds:

Pr(A(ρ) ∈ S) ≤ eϵPr(A(σ) ∈ S). (3)

Since computations on quantum devices are dictated by a CPTP
map (a quantum channel E) and outcomes can be characterized
by a set of Positive Operator-Valued Measurements (POVMs)
{Πk}2, as alternative, one can abstract the effect of a quantum
classifier as follows:

Pr(A(σ) ∈ S) = yk(σ) = Tr [ΠkE(σ)] . (4)

This reformulation leads to the definition of quantum ϵ-DP as:

yk(ρ) ≤ eϵyk(σ), or
yk(ρ)

yk(σ)
≤ eϵ. (5)

Eq. 5 is of particular interest, since it indicates, that ϵ controls
the change of labels for two neighbouring states.

C. Bound of ϵ-DP

Recent research on quantum DP incorporates a specific noise
channel alongside the quantum channel that models the
quantum classifier to establish concrete upper bounds for ϵ.
Here, we aim to outline two particular bounds relevant to our
study: (i) depolarizing noise and (ii) random rotations.

1) Bound on Depolarizing Noise: A depolarizing noise channel
is characterized by the parameter p, defined as follows:

E(ρ) = p

N
IN + (1− p)ρ. (6)

Here N = 2n is the dimensionality of the density matrix and
IN the identity matrix of dimensionality N . Zhou and Ying
[33], initially showed that a depolarizing channel suffices ϵ-DP.
So given two input states ρ and σ, bound by a trace distance:
τ(σ, ρ) ≤ τD and a quantum classification algorithm with a

1This is justified, since typically ϵ-DP is used for classification problems.
Nevertheless as pointed out by Angrisani et al. [4] ϵ-DP cannot describe
depolarizing noise entirely.

2Set of orthogonal projectors.
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POVM, perturbed by a depolarizing noise channel, the output
probabilities of ρ and σ are ϵ-DP:

ϵ = ln

(
D(1− p)τD

p
+ 1

)
, (7)

where D is the dimension of the measurement operator used
in the POVM. Du et al. [10] expanded on this concept by
noting that the placement of the depolarizing channel within
the quantum circuit does not affect the robustness guarantee.
Additionally, they pointed out that ϵ-DP can be utilized to
enhance adversarial robustness.

2) Bound on random rotations: Huang et al. [16] provided a
bound for ϵ-DP, based on a process, where at first a layer of
random rotations parametrized by θi, with: h1 < tan(θi) < h2

are placed, further they show that for binary classification, the
following bound can be derived:

ϵ = ln
[τD
tn

+ 1
]
, (8)

where t = (h + 1) · 2(−n) is the noise level. Their bound is
of particular interest, since it is independent of the underlying
device.

D. Choi representation of noise channels

As modern quantum devices are in the NISQ era [24], they are
commonly affected by noise. This noise is often characterized
using Kraus operators:

E(ρ) =
∑
k

KkρK
†
k where

∑
k

KkK
†
k = I. (9)

In constrast, we utilize the Choi–Jamiołkowski isomorphism [7].
This formalism is able to represent an n-qubit noise channel
of dimensionality d = 2n as a complex, completely positive,
and trace preserving matrix:

JE = (E ⊗ IA)(|ϕ+⟩ ⟨ϕ+|) ∈ Cd2×d2

, (10)

where |ϕ+⟩ represents the fully entangled state and A the
auxiliary system which we assume to always have the same
dimensionality as our n-qubit system. On a further note, we
refer to the Choi matrix that describes the identity channel as
identity Choi matrix: JI = |ϕ+⟩ ⟨ϕ+|.

Next, it is necessary to ensure that JE is Completly Positive
(CP) and Trace Preserving (TP) for our resulting quantum
channel to be Completly Positive and Trace Preserving (CPTP).
This can be achieved by asserting that the Choi matrix is
positive semi-definite (JE ⪰ 0) and that tracing out the system
describing the noise channel lead to an identity matrix of the
size of the subsystem (Tr2 [JE ] = IA). Thus, we can construct
the application of a noise channel as 3 [18]:

E(ρ) = Tr1 [(ρ⊗ IA)JE ] . (11)

Consequently, a POVM is constructed as follows [18]:

ỹk(ρ) = Tr [(ρ⊗Πk)JE ] , (12)

3See [32] for a visualization using tensor networks.

where Πk is a measurement operator.

Further, a Kraus-channel can be reconstructed from a Choi
matrix by looking at its spectral decomposition: J (E) =∑

i λi |Ψi⟩ ⟨Ψi| [32]. One can then construct a matrix Ai, s.t
|Aj⟩⟩ =

∑
i,j Aij |i⟩ ⊗ |j⟩ = |Ψi⟩. 4.

The individual Kraus operators can then be recovered as:

Ki =
√
λiAi (13)

III. INTRODUCTION OF (α, γ)-CHANNELS

In this section, we introduce a family of quantum noise
channels, which allow us to derive ϵ-DP bounds and robustness
guarantees. In reviewing the proofs concerning ϵ-DP conducted
by Du et al. [10], Huang et al. [16] and Zhou and Ying [33],
we observe that their bounds share similarities, particularly in
their use of the property that trace preserving operations are
contractive with respect to the trace distance, formally:

τ(E(σ), E(ρ)) ≤ τ(σ, ρ). (14)

In addition, they typically manage to establish bounds for the
minimum probability of the noise channel, i.e:

yk(σ) > 0. (15)

Essentially, their proofs rely on the fact that quantum noise
channels are contractive, and some may offer a lower bound
on the smallest possible POVM. This reasoning inspires
the definition of a family of noise channels that can be
demonstrated to meet the requirements of ϵ-DP.

Building on this idea, we formalize the concept by introducing
(α, γ)-channels:

Definition 3 ((α, γ)-channels). We define an (α, γ)-channel
as an arbitrary quantum channel E(α,γ)(ρ) : CN → CN , with
the following properties:

1) ∀σ, ρ. τ(E(α,γ)(ρ), E(α,γ)(σ)) ≤ ατ(σ, ρ)
2) ∀Πk, σ. Tr

[
ΠkE(α,γ)(σ)

]
≥ γ

with α, γ ∈ [0; 1].

Intuitively, any (α, γ)-channel has a contraction factor of at
most α and any input σ result in at most γ after a POVM.

A. ϵ-DP of (α, γ)-channels

As already hinted in our introduction, the definition is inspired
by reviewing the process of thought used in Du et al. [10],
Zhou and Ying [33] and Huang et al. [16]. Hence, we
use the underlying assumptions we have provided for our
(α, γ)-Channels to show ϵ-DP for any channels that follow
Definition 3:

Theorem 1. For all input states ρ and σ, which are bounded by
a trace distance τ(ρ, σ) ≤ τD, any (α, γ)-channel, E(α,γ)(ρ)
suffices ϵ-DP, with:

ϵ = ln

[
1 +

ατD
γ

]
4Since we are assuming the standard basis for the construction of superop-

erators, this can simply be done by reshaping the matrix.
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Proof. We assume the noisy probabilities as ỹk(σ) =

Tr
[
ΠkẼ(σ)

]
and the clean as yk(σ) = Tr [ΠkE(σ)]. We can

note that the absolute difference between the two probabilities
is bound by their sensitivity (See Angrisani et al. [4, Section
8.1]):

|ỹk(σ)− yk(ρ)| =

|Tr
[
Πk(Ẽ(σ)− Ẽ(ρ))

]
| ≤

1

2
∥Πk∥∞∥(Ẽ(σ)− Ẽ(ρ))∥1 =

∥Πk∥∞τ(Ẽ(σ), Ẽ(ρ)) POVM norm is one
=

τ(Ẽ(σ), Ẽ(ρ))
Definition 3

≤
ατ(σ, ρ)

Secondly, we can note that for any POVM Measurement:

yk(σ) = Tr
[
ΠkE(α,γ)(σ)

]
≥ γ (16)

With those two relations, we can derive an upper bound the
DP relation:

yk(ρ)

yk(σ)
− 1 =

yk(ρ)− yk(σ)

yk(σ)
≤ |yk(ρ)− yk(σ)|

yk(σ)

≤ ατ(σ, ρ)

γ
≤ ατD

γ

Given now:
ϵ = ln

[
1 +

ατD
γ

]
(17)

We can resubstitute Eq. 17 in the last relation above, which
equates to the same term:

eϵ − 1 = eln[1+
ατD

γ ] − 1 =
ατD
γ

B. Relation of α, γ-channels to depolarizing channels

Now that we have introduced an (α, γ)-channel, it is necessary
to consider whether the bound provided for ϵ-DP is tight.
Specifically, given that the depolarizing channel is one of the
most significant sources of noise, it is logical to demonstrate
a bound that it incorporates the results of Du et al. [10]. In
addition, to outline the extendibility of our framework, we
exploit our concept of (α, γ)-channels to include the same
bound as Huang et al. [16].

1) Depolarizing Noise: One can find that the contraction of
a depolarizing noise channel with value p is defined as κ =
(1− p) Nielsen and Chuang [23, Chapter 9], from which we
directly conclude that α = (1−p). To upper bound the smallest
eigenvalue of a noise channel, we follow the line of argument of
Du et al. [10]. Essentially they argue, that the smallest possible
value of the noisy channel is given as Tr [ΠkE(σ)] = p/D.
Substituting this into our bound of ϵ-DP, it is apparent that we
arrive at the same bound as in Eq. 7:

ϵ = ln

[
1 +

(1− p)τD
p/D

]
= ln

[
1 +D

(1− p)τD
p

]
(18)

2) Random Rotation Bound: Huang et al. [16] described their
noise process as incorporating random rotations before the
operation of the quantum classifier. Given that this process still
constitutes a quantum channel, we can safely set the trivial
upper bound for α at 1. To establish a bound on γ, we consider
the scenario of a binary classifier 5. This assumption allows
us to assume that the majority class must be at least greater
or equal than (1+h)n

2 , with h the lower bound on the random
rotations in the Rx-Gates:

yC(σ) >
(1 + h)n

2
. (19)

Hence, we assume w.l.o.g.:

yC =
(1 + h)n

2
≥ 0.5.

From this, we deduce the following for the subsequent class:

yk ̸=C = 1− (1 + h)n

2
≤ (1 + h)n

2
,

and for all labels yC , yk ̸=C ≥ (1+h)n

2 .

This provides us with γ = (1+h)n

2 and by substituting t =
(h+ 1) · 21−n, we can find γ = tn.
In the end, setting α = 1 and γ = tn in Eq. 7 yield the same
bound as Huang et al. [16]:

ϵ = ln
(τD
tn

+ 1
)

C. Certifiable robustness on (α, γ)-channels

This section builds on the robustness bound from Du et al.
[10] and generalizes it to an (α, γ)-channel. We focus on the
infinite sampling case for a hypothetical noise model that can
only be simulated, not physically implemented. Refer to Du
et al. [10] for details on the finite sampling case.

Theorem 2 (Infinite sampling case). Given a binary classifier,
altered by a (α, γ)-channel: yk(σ) = Tr [ΠkEα,γ(σ)]. Suppose
that for a predicted class C, the following holds:

yC(σ) > e2ϵyk ̸=C(σ) ϵ = ln

[
1 +

ατD
γ

]
,

than for a benign state ρ with τ(σ, ρ) ≤ τD, the predicted
class label C, will not change:

argmax
k

yk(σ) = C = argmax
k

yk(ρ)

Proof. We can construct the proof similarly as in Du et al.
[10], by simply replacing the definition of ϵ. We will first note
that due to ϵ-DP:

yC(ρ) ≥ e−ϵyC(σ) (20)

Hence using yC(σ) > e2ϵyk ̸=C(σ):

yC(ρ) ≥ e−ϵyC(σ) > eϵyk ̸=C(σ) (21)

Next, we can note that:

yk ̸=C(ρ) ≤ eϵyk ̸=C(σ) (22)

5A base assumption on the robustness in Huang et al. [16]
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Which completes the relation:

yC(ρ) ≥ e−ϵyC(σ) > eϵyk ̸=C(σ) ≤ yk ̸=C(ρ) (23)

Since yC(ρ) > yk ̸=C(ρ), we can conclude that:

argmax
k

yk(σ) = C = argmax
k

yk(ρ) (24)

Based on Theorem 2, if the ratio ỹC(σ)
ỹC ̸=k(σ)

exceeds e2ϵ, we can
certify the data point against any benign sample within radius
τD. This leads to the following corollary:

Corollary 1. Given a binary quantum classifier perturbed by
a (α, γ)-channel, with:

B ≡ ỹC(σ)

ỹC ̸=k(σ)

This classifier is robust against any perturbation: σ → ρ, with
τ(σ, ρ) ≤ τD, if:

ỹC(σ)

ỹC ̸=k(σ)
= B > e2ϵ

With: ϵ = ln
[
1 + ατD

γ

]
Building on our prior analysis of depolarizing noise (III-B1),
where we established a certifiable distance for a single data
point based on network output probabilities, we can now
determine the minimum value of ϵ that bounds the fraction B.
This involves calculating:

ϵmin =
1

2
ln (yC(σ)/yC ̸=k(σ)) (25)

Next, one can simply use ϵ = ln
[
1 + ατD

γ

]
, which will lead

to:
τD = (eϵmin − 1) · γ

α
(26)

Note that for α = 0, we would get a τD = ∞, which
highlights the limitations of our approach and the necessity of
incorporating (ϵ, δ)-DP into the analysis of (α, γ)-channels.

IV. CONSTRUCTION OF OPTIMAL (α, γ)-CHANNELS

In this section, we investigate optimal noise channels for
adversarial robustness. We formulate a semidefinite program
(SDP) to find the best channel based on the certification distance
from Corollary 1.

We consider a single data point (later expanded to a set)
represented by a density matrix σ = σ(x). A pretrained
quantum classifier described by a unitary U acting on n-qubits
and measured on d qubits by 2d POVM-measurements: {Πk}.
We assume a true label C (w.l.o.g.). For brevity, we denote
σD = UσU† and abbreviate this by σ. Refer to Eq. 4 for
the POVM measurement definition: yk(σ) = Tr

[
ΠkE(α,γ)(σ)

]
,

where E(α,γ) represents the noise channel with parameters α

and γ. Given a threshold B = yC(σ)
yk ̸=C(σ) > e2ϵ, we recognize

that ϵ is fixed by the chosen noise channel. Hence, to maximize
classifier robustness, a natural approach is to maximize the

fraction B. More specifically we can formulate this as the
following optimization problem:

max yC(σ)/yk ̸=C(σ),

s.t: yk(σ) = Tr [ΠkE(σ)] ,
E(.) is a quantum channel,
∀σ, ρ τ(E(σ), E(ρ)) ≤ ατ(σ, ρ) + β,

∀k yk(σ) ≥ γ.

(27)

Unfortunately, the current problem formulation violates the
rules of convexity and might not be directly solvable using
SDPs. To address this, in the following subsections, we
introduce reformulations to make it suitable for SDPs.

1) CPTP Properties: An underlying assumption of this work
is that quantum channels can be described by Choi matrices,
which must be CPTP. As pointed out earlier, we use the
Choi–Jamiołkowski isomorphism [7], since kraus operators
do not necessarly provide a convex or linear representation
of our variables, which is a necessity in SDPs. We follow
Knee et al. [17] and encode the two properties (CP and TP)
individually as follows:

JE ⪰ 0 (28)
Trout [JE ] = IA (29)

2) α-Bound for the SDP: To constrain the α parameter, we
leverage Wolf [31, Theorem 8.17]. While the original source
includes a disclaimer about potential inaccuracies, we provide
a complete proof in Appendix A for clarity. Here, we directly
utilize Wolf [31, Theorem 8.17] to bound the contraction α =
(1− κ) within our SDP formulation, as shown below:

E − κE ′ ⪰ 0. (30)

Here E is our noise channel and E ′ describes a reference
channel. Wolf [31] suggests to set: E ′ = I/d the fully mixed
state as a reference, which will yield the following constraint
on the Choi matrix of our noise channel:

JE − κ

d
I ⪰ 0 (31)

While the current constraint provides a valid upper bound,
it has limitations. Given that the smallest eigenvalue of JE
is zero, this bound offers no advantage over the trivial case
κ = 0 =⇒ (1 − κ) = 1. Nonetheless, due to the lack of
better methods for encoding the contraction factor within SDPs,
we employ this approach, acknowledging that it restricts the
representable noise channels.

A. γ-Bound for the SDP

To enforce the constraint on γ, we refrained from solving
the SDP for all possible density matrices due to the clear in
applicability of encoding a continuous set in a discrete setting.
Henceforth, we achieve a similar behavior by encoding the
following constraint in our PSD:

∀Πk Tr2 [(Πk ⊗ I)JE ]− γI ⪰ 0 (32)
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Since any POVM measurement in the context of Choi matrices
is defined as in Eq. 12, we can follow from the constraint, that:
Tr2

[
(I ⊗ ρT )JE

]
≥ γI , which we can use to verify that all

POVM measurements are bounded by γ:

yk(σ) = Tr
[
(Πk ⊗ ρT )JE

]
= Tr

[
ΠkTr2

[
(I ⊗ σT )JE

]]
≥ Tr [ΠkγI]

= γ

B. Combination of the SDP formulation

Given the constraints above, we can formulate an SDP
to optimize for the best possible noise channel. Note that
the function yC(ρ)/yC ̸=k(ρ) is non-convex and therefore not
applicable in the context of SDP formulations. Hence, we
simply maximize yC(ρ), since for the binary case yC ̸=k(ρ) =
1− yC(ρ), hence the target optimization goal should still be
met. With the constraints established, we can now formulate
an SDP to find the optimal noise channel. However, the
original objective function involving the ratio yC(ρ)

yC ̸=k(ρ)
is

non-convex and unsuitable for SDPs. To address this, we
propose a simpler approach: maximize yC(ρ). Since in binary
classification, the probabilities for the two classes sum to 1
(yC ̸=k(ρ) = 1−yC(ρ)), than, maximizing the probability yC(ρ)
for the correct class inherently minimizes the probability for
the incorrect class.

So far we have only assumed one data sample in our line of
argument, since solving the SDP for every possible input will
correspond to label leaking, we decided to construct the noise
channel over the sum of all possible probabilities yCi

(σi) in
the test set. We have chosen the test set to ensure that the noise
channel is optimal for the samples attacked in our evaluation
and no assumption about the generality have to be made. Next,
we consider the class imbalance present on the test set by
computing the weight vector w =

∑
k Ck

|C| , which leads to the
overall optimization target:

∑
i wi · yCi

(σi).
During our evaluation, we found overall two scenarios that
can be solved using our SDP: At first, one can apply the
noise channel after the quantum classifier (post-order SDP)
and infront of the quantum classifier (pre-order SDP). Both
scenarious are outlined in the following.

1) Post order SDP: The post order SDP is rather a straight
forward application of the previously discussed concepts.

max
∑
i

wi · yCi
(σi)

s.t: ∀i yCi
(σi) = Tr

[
(UσkU

† ⊗ΠCk
)JE

]
JE ⪰ 0

Tr2 [JE ] = IA

∀Πk Tr2 [(Πk ⊗ I)JE ]− γI ⪰ 0

JE − α/DI ⪰ 0

(33)

2) Pre-order SDP: With the pre-order SDP, we can note that
the unitary will "act" on the Choi matrix upon measurements,
which will alter our measurements in the following way:

yk(σ) = Tr
[
(σ ⊗Πk)(I ⊗ U)JE(I ⊗ U†)

]
(34)

Interestingly, this also implies for our γ constraint that:

Tr2
[
(Πk ⊗ I)(I ⊗ U)JE(I ⊗ U†)

]
− γI ⪰ 0 (35)

Aside from this change, the SDP formulation will be unchanged
leading us to the formulation:

max
∑
i

wi · yCi
(σi)

s.t: ∀i yCi
(σi) = Tr

[
[(σi ⊗ΠCi

)(I ⊗ U)JE(I ⊗ U†)
]

JE ⪰ 0

Tr2 [JE ] = IA

∀Πk Tr2
[
(Πk ⊗ I)(I ⊗ U)JE(I ⊗ U†)

]
− γI ⪰ 0

JE − α/DI ⪰ 0
(36)

V. EXPERIMENTS

In our experiments, we wanted to highlight the utility and
limitations of utilizing a SDP Formulation as a bechmark
for optimally robust quantum channels. See Appendix B for
a detailed description of our data preprocessing and SDP
implementation steps. We have considered the Iris dataset
(Iris) with Angle and Amplitude embedding, the Pima Indians
Diabetes dataset (PID) and the breast cancer dataset (BC). The
latter two where only utilized using Amplitude embedding.

In our experiments, we want to highlight the performance
of depolarizing noise against our optimal (α, γ) counter part.
Further we want to analyze the effect of α and γ on the
certifiablility and at last we want to compare the effectiveness
of different encodings.

A. Classification of Depolarizing Noise against optimal noise

Providing an optimal noise channel for various values of
depolarizing noise serves as an experimental benchmark for
the optimality of specific noise channels. Here, we outline the
process. As a first step, one needs to reduce α and γ to the
parameters of the specific noise channel. Next, one can iterate
over a set of parameters and compare the adversarial accuracy
to that of the optimal noise channel, as illustrated in Fig. 1. For
depolarizing noise, we observe that in most datasets, a small
amount of depolarizing noise provides a good upper bound,
but typically the effect decays with an increase in depolarizing
noise.

B. Influence on α and γ on the certifiable robustness

Next, we want to outline the effect of α and γ on the certifiable
accuracy. Therefore, we consider Eq. 26 to compute the
certifiable distance for each datasample in terms of the trace
distance and then compute the portion of certifiable samples
on the test set given a set of distances τD ∈ {0.05, 0.10, 0.15}.
We first note that the effect of α and γ on the difference

6
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Fig. 1: Adversarial accuracy given a FGSM attack for the
various datasets used in this study. The dashed line indicates
the adversarial accuracy’s of the best case noise channel’s.
The red dashed vertical line corresponds to the smallest L∞
distance between two data samples of the opposite class. Note
that we used a single (α, γ)-channel, since they showed the
tendency to overlap (See section C).

between the class label and the follow up class (which is later
on described in the fraction B in Corollary 1) scale symetrically
with α and γ. See Fig. 2 for a visualization. Additionally one
can observe that the difference always converge to zero for
all datasets given: α = 0 and γ = 0.5. For these values the
quantum classifer is perturbed by a noise channel describing
random guessing, which yields naturally a certifiable distance
of τD = ∞. Given the limited usefulness of a random guessing
network, we decide to constrain the certifiable distance shown
by the plots in Fig. 4 by a δ on the difference among y labels.
To this end, we choose a δ of 0.05 for the Iris dataset (Angle
and Amplitude Embedding) and the BC dataset. For the PID
dataset, we pick a δ of 0.01, since the class probabilities are
closed together due to the lower accuracy.

Concerning the certifiable samples in Fig. 4, one can see that
the influence of α and γ have an effect on the amount of
certifiable distances given by the classifier. The area where
the maximum of samples can be certified clearly shrinks
in case the cut-off distance is increased from 0.05 to 0.15
and typically converges to a line like structure which is the
maximum for (α = 0.11, γ = 0.447) (PID, Iris Angle and BC),
(α = 0.16, γ = 0.421) (Iris Amplitude). Which additionally
describes the smallest allowed difference considered in our
experiments.
Interestingly, across various datasets, lower values of γ tend
to extend the range of certifiable samples. These samples
maintain their high certification level for a longer period
before experiencing a characteristic sharp drop. This drop
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Fig. 2: Difference yC − yk ̸=C for the various different datasets
used in this study.

point depends on the chosen certifiable distance, the specific
dataset, and the embedding used. In contrast, the parameter α
seems to induce a smoother transition in the certification level.
It remains an open question whether this observed behavior
is a consequence of the SDP formulation itself or an inherent
property of (α, γ)-channels.

C. Comparison of amplitude and angle embedding

In Definition 3, it is apparent, that the ϵ of the ϵ-DP mechanism
is proportional to α, β and the trace distance of the two input
states, which highlights that different encodings, might addition-
ally provide further robustness bounds on quantum classifiers.
To provide further insights, we have normalized the ϵ values
used in this study from the respective intervals of [0; 0.25]
(Amplitude embedding) and [0; 0.9] (Angle Embedding) of the
Iris dataset to the interval [0; 1]. The results can be observed
in Fig. 3. Overall it is apparent, that a better encoding shows
a higher degree of adversarial accuracy, which decays at a
similar rate with an increase in depolarizing noise and is still
bounded by the optimally constructed (α, γ)-Channel.

VI. CONCLUSION

In this work, we have defined a family of noise channels,
which are certifiable robust. We have hereby related robustness
of QNNs to the contraction of the algorithm, to the smallest
possible label assignment as well as to the encoding strategy
used by the quantum classifier. Our SDP formulation, while
theoretically useful for constructing optimal noise channels
(maximizing the fraction B), suffers from numerical scaling
limitations in practical applications. Nevertheless, the study
reveals several interesting implications and future research
directions.

Firstly, the framework could be extended to evaluate other
noise sources beyond depolarizing noise, potentially leading
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Fig. 3: Normalized adversarial accuracy’s between amplitude
and angle encoding. The adversarial attacks where done using
FGSM with a L∞-norm.

to a broader understanding of quantum noise and its impact
on ϵ-DP.
Secondly, while a small amount of depolarizing noise shows
promise as a defense against evasion attacks, it remains unclear
if noise inherent to NISQ devices can truly provide robustness.
Our findings, along with previous work, suggest that increasing
depolarization leads to decreased certifiability.
Thirdly, the concept of noise channels as a general model for
quantum computation, coupled with the existence of certifi-
able robust channels, opens exciting avenues. Constructing a
variational ansatz with inherently certifiable behavior would
be a significant advance. Such an ansatz could be easier to
optimize compared to finding the optimal noise model (a convex
optimization problem), despite the computational challenges
arising from exponentially growing Hilbert spaces. This could
pave the way for theoretically grounded adversarial robustness
in quantum classifiers. Additionally, the observed improvement
in robustness due to encoding suggests that quantum classifiers
might be inherently robust when data point separation is
effective. This combination of factors could lead to a paradigm
shift, where quantum classifiers are recognized for their inherent
robustness that scales with data separability.

APPENDIX A
PROOF OF WOLF [31, THEOREM 8.17]

In the following Wolf [31, Theorem 8.17] is outlined combined
with its proof and the accompanying references.

Theorem 3. Given E , E ′ be two trace preserving and Hermitian
preserving linear maps, where we define E ′ as:

E ′(ρ) = Tr [ρ]Y ; Tr [Y ] = 1

If E − κE ′ is positive for some κ ≥ 0, then for all density
matrices ρ, σ:

Tr|E(σ − ρ)| ≤ (1− κ)Tr|σ − ρ|

Proof. We start off by noting that 6 E ′(σ−ρ) = Tr [σ − ρ]Y =
0. We can hence reformulate the trace distance as follows:

1

2
Tr|E(σ − ρ)| =

sup
0≤P≤I

{Tr [E(σ − ρ)P ]} =

sup
0≤P≤I

{Tr [(E(σ − ρ)− κE ′(σ − ρ))P ]} =

sup
0≤P≤I

{Tr [((E − κE ′)(σ − ρ))P ]}

Next, we will define the dual map, such that:

Tr [((E − κE ′)(σ − ρ))P ] = Tr [((E − κE ′)∗(P ))(σ − ρ)]
(37)

Since E − κE ′ is defined as positive, we can conclude that
(E −κE ′)∗ is positive too [26, Proposition 2.18]. we can follow
that since P is positive and bounded by I , that P ′ = (E −
κE ′)∗(P ) is positive. Since E and E ′ are trace preserving,
the application of identity to their dual channel scales I as:
(E −κE ′)∗(I) = (1−κ)I . Given now that by definition P ≤ I ,
we can follow that

(E − κE ′)∗(I) = (1− κ)I ≥ P ′ = (E − κE ′)∗(P ) (38)

We can follow, that the resulting projection is bounded by:
0 ≤ P ′ ≤ (1− κ)I , which allows the following relation:

sup
0≤P≤I

{Tr [((E − κE ′)(σ − ρ))P ]} =

sup
0≤P≤I

{Tr [((E − κE ′)∗(P ))(σ − ρ)]} ≤

sup
0≤P ′≤(1−κ)I

{Tr [(σ − ρ)P ′]} =

(1− κ) sup
0≤P ′≤I

{Tr [(σ − ρ)P ′]} =

1− κ

2
Tr|σ − ρ|

From which we can follow, that:
1

2
Tr|E(σ − ρ)| ≤ 1− κ

2
Tr|σ − ρ| (39)

APPENDIX B
EXPERIMENTAL SETUP

A. Training of Neural networks

We trained four different QNNs, using a similar scheme as in
our previous study. Overall we used the Pima Indians Diabetes
Dataset, the Breast Cancer and the Iris dataset. We used
CategoricalCrossEntropy 7 as a loss function for all datasets
and considered the class imblanance by adding weights to the
loss. As a optimizer we used Adam.

B. Data preprocessing

As already pointed out we used overall three datasets Iris,
Pima Indians Diabetes and Breast Cancer.

6Since Tr [σ − ρ] = Tr [σ]− Tr [ρ] = 1− 1 = 0
7The standardxx
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Fig. 4: Portion of certifieable distances among the test set for different values of α and γ. The portion is computed by grouping
among the levels: {0.05, 0.10, 0.15}.
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1) Iris: For Iris we followed the approach by Du et al.
[10], dropping the petal_width feature as well as the
versicolor class. We then normalized each datapoint by
its respective ||.||2-Norm and performed a train/test split of
40 : 60. Regarding the Angle Embedding, the datapoints where
min max normalized to the interval [0;π].

2) Pima Indians Diabetes (PID): For the Pima Indians
Diabetes dataset, we first dropped all nan or duplicate features
from the dataset, next to overcome the present class imbalance,
we removed overall 232 datapoints from the majority class at
random. We used the remaining dataset with 536 datapoints
and split them into a train set consisting of 375 datapoints and
a test set of 161 datapoints. To provide a comparabilty with the
Iris dataset, we additionally normalized each datapoint with
it’s respective ||.||2-Norm.

3) Breast Cancer Wisconsin (BC): For the Breast Cancer
Wisconsin dataset we found overall 683 features, with a
dimension of 9, since this would require four qubits in the
angle embedding, we performed a PCA with eight components,
effectively rescaling the dimensionality to eight. We rescaled
the data into the interval (0; 1] and normalized each feature
vector by it’s respective ||.||2-Norm. No further preprocessing
was conducted.

C. QNN Architecture

As pointed out earlier, we used a similar scheme of dataem-
bedding plus strongly entangling layers. For embedding we
trained Iris once using angle embedding and once amplitude
embedding. Since we where only able to solve up to 3 qubits,
we refrained from using qngle embedding for the PID and
BC datasets and applied hereby amplitude embedding. For an
overview of the various hyperparameters used in this study,
refer to Table I.

TABLE I: Hyperparameters used for the various types of QNNs
for the datasets Iris, Pima Indians Diabetes (PID) and Breast
Cancer (BC).

Datset Embedding Qubits Layers Batch Learn. Rate Epochs

Iris Amplitude 2 2 30 0.05 100
Iris Angle 3 2 30 0.01 100
BC Amplitude 3 40 16 0.0005 10
PID Amplitude 3 16 16 0.005 10

At last we want to point out how the depolarizing mechanism
was constructed in our study

D. Implementation of the SDP

1) Complexity analysis: In this study, we use MOSEK in
combination with CVXpy [9] with an interior-point method,
scaling its runtime with O(v3.5) [3] to solve the SDP, where
v represents the number of variables in the SDP. In our work,
we embed a Choi matrix of size d2 × d2, where d = 2n

describes the dimensionality of the Hilbert space. This indicates
that the number of variables scales biquadratically with the
dimensionality of the Hilbert space of the used quantum

TABLE II: Adversarial Accuracies for Iris Amplitude, among
various values of α and γ parameterized by different values
of depolarizing noise. Produced by the optimal noise channel

Adversarial Budget (ϵ)

α γ 0.0 0.03 0.05 0.08 0.1 0.13 0.15 0.18 0.21 0.23

1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.9 0.5 0.17 0.05 0.03
0.9 0.05 1.0 1.0 1.0 1.0 1.0 0.9 0.5 0.17 0.05 0.03
0.7 0.15 1.0 1.0 1.0 1.0 1.0 0.9 0.5 0.17 0.05 0.03
0.5 0.25 1.0 1.0 1.0 1.0 1.0 0.9 0.5 0.17 0.05 0.03
0.1 0.45 1.0 1.0 1.0 1.0 1.0 0.9 0.5 0.17 0.05 0.03
0.05 0.48 1.0 1.0 1.0 1.0 1.0 0.9 0.5 0.17 0.05 0.03
0.0 0.5 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43

classifier, and hence exponentially in terms of the number
of qubits:

v = d4 = (2n)4 (40)

With d the dimensionality of the hilberspace and n the number
of qubits. The biquadratic scaling also indicates why, in contrast
to other methods like Guan et al. [14], we can only exhibit
our study on maximally three qubits.

2) Numerical Considerations: As already pointed out, we used
CVXpy [9] to implement the SDP in Eq. 36 combined with
MOSEK as a solver. During optimization, we resolved multiple
numerical issues. Initially, we approximated the constraint:
Tr2 [J ] = IA, by replacing it with: ∥Tr2 [J ]− IA∥F ≤ δ,
setting δ = 1× 10−10. Secondly, instead of explicitly stating
the constraint that J ⪰ 0, we asserted on the variable itself
that J is PSD, which typically guided the optimizer to feasible
solutions. Lastly, we emphasize that our optimal noise channel
was constructed on the test set, on which we further applied
the attack. The main reasoning behind this was to provide the
actual best possible noise channel when averaging over the
test set.

APPENDIX C
OVERLAPPING ROBUSTNESS IN OPTIMAL NOISE CHANNELS

During our work, we found that typically the optimally
constructed noise channels coincide in terms of their adversarial
accuracy. This provides a challenging perspective as α and γ
seemingly control the contractiveness and the minimal possible
measurement, respectively. Nevertheless, we want to emphasize
that α provides an upper bound on the contractiveness of
the noise channel by Definition 3, and γ a lower bound on
the minimal measurements. Those bounds suffice to control
ϵ-DP. Nevertheless, the optimizer might choose a different
specific values describing the contraction and smallest possible
measurement. We hence saw as outlined for Iris Amplitude
in Table II, that the adversarial accuracies typically where
overlapping. We hence simply used one value for the effect of
α and γ in the following when describing adversarial accuracy’s.
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