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Abstract

This study introduces a computational approach leveraging Physics-Informed Neural
Networks (PINNs) for the efficient computation of arterial blood flows, particularly
focusing on solving the incompressible Navier-Stokes equations by using the domain
decomposition technique. Unlike conventional computational fluid dynamics methods,
PINNs offer advantages by eliminating the need for discretized meshes and enabling the
direct solution of partial differential equations (PDEs). In this paper, we propose the
weighted Extended Physics-Informed Neural Networks (WXPINNs) and weighted Con-
servative Physics-Informed Neural Networks (WCPINNs), tailored for detailed hemody-
namic simulations based on generalized space-time domain decomposition techniques.
The inclusion of multiple neural networks enhances the representation capacity of the
weighted PINN methods. Furthermore, the weighted PINNs can be efficiently trained
in parallel computing frameworks by employing separate neural networks for each sub-
domain. We show that PINNs simulation results circumvent backflow instabilities,
underscoring a notable advantage of employing PINNs over traditional numerical meth-
ods to solve such complex blood flow models. They naturally address such challenges
within their formulations. The presented numerical results demonstrate that the pro-
posed weighted PINNs outperform traditional PINNs settings, where sub-PINNs are
applied to each subdomain separately. This study contributes to the integration of
deep learning methodologies with fluid mechanics, paving the way for accurate and
efficient high-fidelity simulations in biomedical applications, particularly in modeling
arterial blood flow.

Keywords: Physics-Informed Neural Networks, Hemodynamic Simulations,
Incompressible Navier-Stokes, Domain decomposition, weighted XPINNs and
weighted CPINNs.

1. Introduction

The study of arterial blood flow occupies a pivotal junction in cardiovascular re-
search, bridging advanced theoretical fluid dynamics with pivotal clinical applications.
This interdisciplinary research is fundamental for deciphering the complex dynamics
governing blood movement through arterial pathways, contributing significantly to our
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comprehension of the cardiovascular system. The precise simulation of arterial blood
flow is not only critical for advancing theoretical understanding but also instrumental
in improving diagnostic and therapeutic strategies in cardiovascular medicine [1, 2, 3].

Central to the simulation of arterial blood flow is the incompressible Navier-Stokes
equations, which present formidable challenges due to their nonlinear nature and the
complexity of arterial geometries. In recent decades, researchers have extensively uti-
lized various computational techniques to simulate and analyze blood flow, aiming to
comprehend the correlation between vascular diseases and hemodynamics [4]. Tokuda
et al. [5] employed the finite element method to numerically simulate blood flow, with a
focus on understanding stroke mechanisms during cardio-pulmonary bypass. However,
such numerical simulations of hemodynamics pose significant computational challenges
in terms of time and memory requirements. To address this issue, numerous approaches
have been explored to expedite the resolution of these problems [6, 7, 8, 9, 10]. Such nu-
merical methods for solving these equations fall short for numerous medical applications,
like swiftly calculating hemodynamics for emergency cases and providing real-time sur-
gical guidance. Moreover, in clinical practice, employing computational fluid dynamics
necessitates repetitive simulations for varying patients, adding to the physician’s work-
load. Given these challenges, there’s a growing need to seek non-invasive, precise,
cost-effective, and computationally efficient methods for capturing cardiovascular flow
dynamics. Data-driven deep learning algorithms offer a promising avenue to address
these issues. This necessitates the exploration of novel computational methodologies
that can offer both accuracy and efficiency.

In this context, Physics-Informed Neural Networks (PINNs) emerge as a ground-
breaking approach, melding the predictive power of machine learning with the foun-
dational principles of physics [11, 12, 13, 14]. PINNs leverage the universal approxi-
mation capabilities of neural networks, constrained by the governing physical laws, to
solve differential equations efficiently [15, 16, 17, 18, 19]. This research innovates by
applying PINNs to the domain of arterial blood flow, tackling the Navier-Stokes equa-
tions across varied geometries with unprecedented computational efficiency and model
robustness. Many investigations have investigated employing deep learning for predict-
ing hemodynamics. These studies encompass forecasting hemodynamic parameters or
clinical metrics, local blood flow velocity, vessel cross-sectional area, and blood pres-
sure [20, 21, 17]. Until now, most of the literature concerning DL-driven flow modeling
predominantly utilizes fully-connected neural network architectures [21, 17, 22]. Only
a handful of publications explore the application of more intricate network structures,
such as convolutional neural networks [23, 24, 25]. In computational fluid dynamics
(CFD) simulations, encountering backflow at open boundaries poses a frequent chal-
lenge, often resulting in unphysical oscillations and instability issues, even at moderate
Reynolds numbers, see [26, 27] and referenced therein. Traditional numerical methods
require stabilization terms to address these backflow instabilities. Conversely, PINNs
offer a different approach. They don’t rely on stabilization terms to mitigate backflow
instabilities and inherently tackle such challenges within their formulations.

The primary objective of this work is to demonstrate the efficacy of PINNs in
simulating arterial blood flow, overcoming existing computational barriers while en-
suring high fidelity in the simulations. For extensive simulations of Partial Differential
Equations (PDEs), the high training cost associated with Physics-Informed Neural Net-
works (PINNs) makes tackling large-scale PDEs inherently expensive, impacting their

2



efficiency compared to traditional numerical methods. Thus, there’s a critical need to
expedite the convergence of these models without compromising performance. Domain
decomposition techniques, widely utilized in conventional numerical methods like finite
difference, finite volume, and finite element methods, offer a promising solution. Here,
the computational domain is subdivided into multiple subdomains, with interactions
occurring solely at shared boundaries where continuity conditions are enforced. Within
the realm of deep learning frameworks, the application of domain decomposition ap-
proaches in PINN is explored, notably in the conservative PINN (cPINN) method [28]
for conservation laws. Beyond cPINN, other strategies within the Scientific Machine
Learning (SciML) domain include employing local neural networks on partitioned sub-
domains, as demonstrated by Li et al.[29], who leveraged the variational principle. Simi-
larly, Kharazmi et al. [30] proposed a variational PINN framework. Moreover, eXtended
PINNs (XPINNs) [31] offer a comprehensive solution for solving various PDEs, exhibit-
ing advantages akin to cPINN, such as employing separate neural networks in each
subdomain, efficient hyper-parameter adjustment, facile parallelization, and substan-
tial representation capacity. Further refining of the simulation accuracy and efficiency
was studied in [32]. In this study, we introduce weighted XPINN and CPINN method-
ologies to tackle hemodynamics model equations, aiming to enhance computational
efficiency through domain decomposition strategies. By leveraging a finite number
of subdomains, massively parallel computation becomes feasible, empowering effective
handling of large-scale problems through domain decomposition. These weighted PINN
approaches are more generalizations of the cPINNs [28] and XPINNs[31]. Through a
meticulous application of ADAM [33] and L-BFGS [34] optimization techniques and
domain decomposition strategies, this research enhances the scalability and robustness
of PINNs. These contributions mark significant advancements in integrating machine
learning with fluid mechanics, offering a new paradigm for high-fidelity simulations in
biomedical engineering and beyond.

The subsequent sections of this paper are structured as follows: Section 2 presents
mathematical models concerning blood dynamics, encompassing the Navier-Stokes equa-
tions. Section 3 elaborates on computational methodologies, with particular emphasis
on Physics-Informed Neural Networks (PINNs) and their diverse iterations. The appli-
cation and refinement of these models in simulating blood flow dynamics are presented
in Section 4. Following that, Section 5 unveils the outcomes and evaluations of the sim-
ulation performance. Lastly, Section 6 encapsulates the findings, addresses limitations,
and delineates potential avenues for future research, highlighting the fusion of machine
learning with fluid mechanics.

2. Mathematical Formulation

Blood displays viscoelastic properties and non-Newtonian behavior primarily at low
shear rates due to the aggregation and alignment of erythrocytes, which enhance appar-
ent viscosity and induce shear-thinning properties. Despite these complex behaviors,
blood can be effectively modeled as a Newtonian fluid within arterial flow regimes,
where shear rates are substantially higher. This model simplifies due to the uniform
alignment of erythrocytes under high shear conditions, thereby simplifying the com-
putational model without significantly sacrificing the accuracy of flow predictions in
arterial geometries.
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The dynamics of blood flow within the arterial system are governed by the incom-
pressible Navier-Stokes equations, formulated within the computational domain Ω ⊂ R2

and expressed over the simulation interval (0, T ]. These equations capture the physio-
logical nuances of arterial blood flow [35]:

ρ (ut + u · ∇u) +∇p− µ∇2u = 0 in (0, T ]× Ω, (1)

∇ · u = 0 in (0, T ]× Ω, (2)

where u is the velocity field, p is the pressure field, ρ = 1060 kg/m3 is the blood
density, and µ = 3.5× 10−3 Pa · s is the dynamic viscosity, assuming a Newtonian fluid
approximation. T denotes the terminal simulation time.

Incorporating the Cauchy stress tensor σ, the equations can be alternatively formu-
lated as:

ut + u · ∇u =
1

ρ
∇ · σ, (3)

with σ = −pI+ µ(∇u+ (∇u)T ), and the pressure p derived from:

p = −1

2
tr(σ). (4)

For a two-dimensional flow, where velocity components are u and v, the stress tensor
σ is given by:

σ =

(
−p+ 2µux µ(uy + vx)
µ(vx + uy) −p+ 2µvy

)
, (5)

Initial and boundary conditions: To initiate the simulations, the velocity field
throughout the computational domain is set to a quiescent state:

u(x, y, 0) =

(
0
0

)
, ∀(x, y) ∈ Ω.

This simplifies the analysis of fluid dynamics as the simulation progresses from a state
of rest.

Boundary conditions are designed to mimic physiological conditions realistically and
are adapted to the specific geometry and expected flow characteristics of each test case:

Inlet conditions: At all inlet boundaries, the velocity is defined by a function that
incorporates both the geometric specifics of the domain and the time-dependent aspects
of physiological flow, often modulating according to a function that mimics cardiac
pulsatility:

u(xin, y, t) = Umaxf(y, t)

(
1
0

)
,

where xin represents the inlet boundary coordinate, Umax is a scaling factor for maximum
velocity, and f(y, t) is a profile function tailored to the specific domain geometry and
flow conditions.

Outlet and wall conditions: At the outlet, a condition is set to simulate a specific
pressure condition depending on the study’s need:

p(xout, y) = pout,
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where xout is the outlet boundary coordinate, and pout is typically set to zero or another
value reflecting ambient or downstream pressure conditions. No-slip boundary condi-
tions are enforced along the walls of the domain to reflect the physical reality that the
fluid velocity at a solid boundary is zero due to viscosity:

u(x, ywall) =

(
0
0

)
,

where ywall denotes the coordinates of the wall boundary, applicable to both straight
and curved segments in any domain shape.

These boundary conditions are crafted to ensure that the flow dynamics within the
simulation accurately reflect the complex interactions expected in real-world fluid flow
scenarios, especially within physiological contexts. They provide a robust framework
that can adapt to both the specific details in the test cases developed in Section 4.

3. Computational Methodology

Physics-Informed Neural Networks (PINNs) [11, 12, 13, 14] are designed to predict
solutions u(x, t) for a set of partial differential equations (PDEs) across a specified
domain Ω and time interval [0, T ], where x represents spatial coordinates and t total
simulation time. The neural network, denoted by Nθ(x, t), with parameters θ, is tasked
with approximating the solution to the PDEs subject to initial and boundary conditions.

Given a differential operator D, a function f representing source terms, boundary
conditions described by a function g, and initial conditions defined by h, the problem
can be formally expressed as:

D[u](x, t) = f(x, t), x ∈ Ω, t ∈ [0, T ],

B[u](x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0, T ],

u(x, 0) = h(x), x ∈ Ω.

The core of the PINN methodology lies in the formulation of a physics-informed loss
function, which quantifies the network’s deviation not only from empirical data but also
from the physical laws encapsulated by the governing differential equations. This loss
function is constructed by evaluating the residuals associated with the governing PDEs
(Rg), boundary conditions (Rbc), and initial conditions (Ric) across the domain and its
boundaries. These residuals are defined as follows:

Rg(x, t;θ) = D[Nθ](x, t)− f(x, t),

Rbc(x, t;θ) = B[Nθ](x, t)− g(x, t),

Ric(x;θ) = Nθ(x, 0)− h(x).

The aggregated loss function for the weighted PINN, combining these residuals, is
given by:

LWPINN(θ) =
1

Ng

Ng∑
j=1

∥Rg(xj, tj;θ)∥2 ,+β(
1

Nbc

Nbc∑
k=1

∥Rbc(xk, tk;θ)∥2+
1

Nic

Nic∑
l=1

∥Ric(xl;θ)∥2)

where Ng, Nbc, and Nic denote the number of collocation points for the governing equa-
tions, boundary conditions, and initial conditions, respectively. Here β > 0 is taken as a
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user-defined weighting coefficient that balances Lg (governing equations loss) and Lbc/ic

(boundary and initial conditions loss) and accelerates convergence, enabling prioritiza-
tion based on their physical relevance to enhance model accuracy and stability. Through
the minimization of the above physics-informed loss, weighted PINNs effectively learn
the dynamics of the system directly from the governing equations, offering a powerful
tool for solving complex physical problems where traditional numerical methods may
face limitations.

The techniques XPINNs[31] and CPINNs[28] advance the capabilities of PINNs
through domain decomposition. The main idea behind this methodology is partitioning
the computational domain into multiple subdomains, Ωi, where each with a dedicated
sub-network, Nθi , that facilitates localized solutions of complex PDEs. For each sub-
domain Ωi, a specific sub-PINN Nθi is trained to approximate the local solution ui.
This process adheres to the governing differential equations, boundary conditions, and
initial conditions particular to Ωi:

Di[ui](x, t;θi) = fi(x, t), x ∈ Ωi, t ∈ [0, T ], (6)

Bi[ui](x, t;θi) = gi(x, t), x ∈ ∂Ωi, t ∈ [0, T ], (7)

ui(x, 0;θi) = hi(x), x ∈ Ωi, t = 0. (8)

These equations ensure the model captures the local physics accurately within each
subdomain.

For XPINNs, ensuring smooth transitions between subdomains involves calculating
an averaged solution at the interface points, Γij, between adjacent subdomains Ωi and
Ωj. This averaging is represented as:

uavg,ij(x, t) =
1

2

(
Nθi(x, t) +Nθj

(x, t)
)
. (9)

The interface residual, Rinterface,i, measures the difference at these points between the
sub-PINN’s prediction for Ωi and the averaged solution, ensuring interface continuity:

Rinterface,i(x, t;θi,θj) = Nθi
(x, t)− uavg,ij(x, t). (10)

Minimizing Rinterface,i across interfaces achieves a cohesive global solution across the
computational domain.

In weighted XPINNs (WXPINNs), the physics-informed loss for each subdomain in-
cludes weighted terms for governing equations, boundary conditions, initial conditions,
and interfaces. The overall loss function is given by:

LWXPINN(θi) =
1

Ng,i

Ng,i∑
j=1

∥Rg,i∥2 + β

 1

Nbc,i

Nbc,i∑
k=1

∥Rbc,i∥2 +
1

Nic,i

Nic,i∑
l=1

∥Ric,i∥2


+ γ
∑

j∈N (i)

1

Nij

∑
x∈Γij

∥Rinterface,i∥2 . (11)

where Nij is the number of interface points between subdomains Ωi and Ωj, and
N (i) represents the neighboring subdomains of Ωi. Here, β > 0 serves as a user-
defined weighting coefficient that tackles the balance of boundary and initial conditions
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loss, and γ > 0 serves as a user-defined weighting coefficient that targets the enhance-
ment of interface continuity. γ controls the emphasis on the interface loss component,
Linterface, which quantifies discrepancies and ensures smooth transitions at the inter-
domain boundaries between adjacent sub-networks. Adjusting γ allows for fine-tuning
the model’s capacity to seamlessly integrate solutions across these interfaces, which is
pivotal for achieving a coherent and accurate global solution.

Through the minimization of the above physics-informed loss, weighted XPINNs
solve complex PDEs across large and geometrically intricate domains by addressing
them piecemeal yet in a manner that preserves the integrity and continuity of the
overall solution.

Algorithm 1 Training Process for Weighted XPINNs

Initialize neural network Nθi for each subdomain Ωi

for each subdomain Ωi do
Generate collocation points for governing equations: {(xj, tj)}

Ng,i

j=1 ⊂ Ωi × [0, T ]

Generate collocation points for boundary conditions: {(xk, tk)}
Nbc,i

k=1 ⊂ ∂Ωi× [0, T ]

Generate collocation points for initial conditions: {(xl)}
Nic,i

l=1 ⊂ Ωi at t = 0

Generate collocation points for interfaces with neighbors: {(xm, tm)}
Nif,ij

m=1 ⊂ Γij

for all j ∈ N (i)
end for
while not converged do

for each subdomain Ωi do
Compute residuals: Rg,i(x, t;θi), Rbc,i(x, t;θi), and Ric,i(x;θi)
for each neighboring subdomain Ωj do

Compute interface residuals Rinterface,ij(x, t;θi,θj)
end for
Compute physics-informed loss LXPINN(θi):
LWXPINN(θi) = Lg(θi) + βLbc/ic(θi) + γLinterface(θi)
Update weights and biases θi to minimize LWXPINN(θi)

end for
end while
Assemble global solution u(x, t) from local solutions ui(x, t;θi)

In CPINNs, conservation across subdomain interfaces is ensured by aligning flux
vectors, Fi and Fj, from adjacent subdomains Ωi and Ωj. The conservation condition
at these interfaces, Γij, is expressed as:

(Fi(x, t;θi)− Fj(x, t;θj)) · nij = 0 , (12)

where nij denotes the unit normal vector at Γij, pointing from Ωi to Ωj. This equation
ensures the net flux of conserved quantities across the interface is zero, upholding the
essential physical conservation laws. The flux residual, quantifying the adherence to
conservation laws at the interface Γij, is defined as:

Rflux,ij(x, t;θi,θj) = (Fi(x, t;θi)− Fj(x, t;θj)) · nij , (13)

In weighted CPINNs, the physics-informed loss for each subdomain incorporates
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residuals from the governing equations, boundary conditions, initial conditions, inter-
faces, and conservation of flux:

LWCPINN(θi) =
1

Ng,i

Ng,i∑
j=1

∥Rg,i∥2 + β(
1

Nbc,i

Nbc,i∑
k=1

∥Rbc,i∥2 +
1

Nic,i

Nic,i∑
l=1

∥Ric,i∥2)

+ γ
∑

j∈N (i)

1

Nij

∑
x∈Γij

∥Rinterface,i∥2 + δ
∑

j∈N (i)

1

Nij

∑
x∈Γij

∥Rflux,i∥2 (14)

Here, β > 0 and γ > 0 serve as user-defined weighting coefficients that tackle
the balance of boundary and initial conditions loss and tackle interface continuity, re-
spectively, and δ > 0 acts as a user-defined weighting coefficient that emphasizes the
conservation of flux at the interfaces between subdomains. This coefficient is criti-
cal for ensuring that key conservation properties, such as mass and momentum in the
case of the incompressible Navier-Stokes equations, are maintained across subdomain
boundaries. By tuning δ, the model can more effectively handle fluid dynamics prob-
lems where the accurate representation of flow and pressure continuity is essential for
achieving realistic and physically accurate simulations. Adjusting δ allows the model to
precisely manage how these conservation laws influence the overall solution, ensuring
that the continuity of physical quantities is preserved.

Through the minimization of the above physics-informed loss, weighted CPINNs
solve complex PDEs across large and geometrically intricate domains by addressing
them piecemeal yet in a manner that preserves the integrity and continuity of the
overall solution.

Algorithm 2 Training Process for Weighted CPINNs

Initialize neural network Nθi for each subdomain Ωi

for each subdomain Ωi do
Generate collocation points for governing equations: {(xj, tj)}

Ng,i

j=1 ⊂ Ωi × [0, T ]

Generate collocation points for boundary conditions: {(xk, tk)}
Nbc,i

k=1 ⊂ ∂Ωi× [0, T ]

Generate collocation points for initial conditions: {(xl)}
Nic,i

l=1 ⊂ Ωi at t = 0

Generate collocation points for interfaces with neighbors: {(xm, tm)}
Nif,ij

m=1 ⊂ Γij

for all j ∈ N (i)
end for
while not converged do

for each subdomain Ωi do
Compute residuals: Rg,i(x, t;θi), Rbc,i(x, t;θi), and Ric,i(x;θi)
for each neighboring subdomain Ωj do

Compute interface residuals Rinterface,ij(x, t;θi,θj)
Compute flux residuals Rflux,ij(x, t;θi,θj)

end for
Compute physics-informed loss LWCPINN(θi):
LWCPINN(θi) = Lg(θi) + βLbc/ic(θi) + γLinterface(θi) + δLflux(θi)
Update weights and biases θi to minimize LWCPINN(θi)

end for
end while
Assemble global solution u(x, t) from local solutions ui(x, t;θi)
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4. Model Implementation

To apply weighted Physics-Informed Neural Networks (WPINNs) to the incompress-
ible Navier-Stokes equations, a neural network that maps the spatiotemporal variables
{t,x}T to the mixed-variable solution {ψ, p,σ} is constructed. The input x has 2
components (x, y). The output σ has three components σ = (σ11, σ12, σ22)
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Figure 1: Representative Diagram of the PINN to solve Navier-Stokes Equations

The stream function ψ is used rather than velocity u directly to ensure that the
divergence-free condition of the flow is maintained. The velocity u = (u′, v′) where u′

and v′ are predicted velocities can be computed as:

u′ = ψy, v′ = −ψx (15)

Thus the residuals obtained from u and v can be computed as:

(
Ru

Rv

)
=

(
ρu′t + ρ(u′u′x + v′u′y)− (−px + 2µu′xx)−

(
µ(u′y + v′x)y

)
ρv′t + ρ(u′v′x + v′v′y)−

(
µ(v′x + u′y)x

)
−
(
−py + 2µv′yy

)) (16)

The residual obtained from p for predicted pressure p′ can be computed as:

Rp = p′ +
1

2
(σ11 + σ22) (17)

The residual obtained from σ11, σ12, σ22 can be computed as:Rσ11

Rσ12

Rσ22

 =

(−p′ + 2µu′x)− σ11
(µu′y + µv′x)− σ12
(−p′ + 2µv′y)− σ22

 (18)

The residual from the governing equations is given by:

∥Rg(x, y, t)∥2 = ∥Ru∥2 + ∥Rv∥2 + ∥Rp∥2 + ∥Rσ11∥2 + ∥Rσ12∥2 + ∥Rσ22∥2 (19)

The residuals from the boundary and initial conditions are given by:

∥Rbc(x, y, t)∥2 = ∥u(x, y, t)− u′(x, y, t)∥2 + ∥v(x, y, t)− v′(x, y, t)∥2

+ ∥p(x, y, t)− p′(x, y, t)∥2 (20)

∥Ric(x, y, 0)∥2 = ∥u(x, y, 0)− u′(x, y, 0)∥2 + ∥v(x, y, 0)− v′(x, y, 0)∥2

+ ∥p(x, y, 0)− p′(x, y, 0)∥2 (21)
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The physics-informed loss and initial/boundary condition loss can now be given by:

Lg =
1

Ng

Ng∑
i=1

∥Rg(xi, yi, ti)∥2 (22)

Lbc/ic =
1

Nbc

Nbc∑
i=1

∥Rbc(xi, yi, ti)∥2 +
1

Nic

Nic∑
i=1

∥Ric(xi, yi, 0)∥2 (23)

where N(·) represents the number of collocation points.
The loss function for the Physics-Informed Neural Network (PINN) model is formu-

lated as follows:
LWPINN = Lg + βLbc/ic, (24)

where β serves as a weighting factor to balance the components of the loss function.
To apply the weighted XPINN to the incompressible Navier-Stokes equations, the

domain Ω is decomposed into M non-overlapping subdomains {Ωi}Mi=1, each with its
own sub-PINN Ni. The interface between adjacent subdomains Ωi and Ωj is denoted as
Γi,j where j ∈ {i− 1, i+ 1}. For each subdomain Ωi, interface conditions are enforced
at the shared boundaries with adjacent subdomains. The predicted velocity fields u′i
and v′i and the pressure field p′i from the sub-PINN for Ωi, and u

′
j, v

′
j, and p

′
j from Ωj

are used to define the interface residuals.
The interface residual for velocity and pressure for subdomain Ωi at the interface

Γi,j is given by:

Rinterface,u(x, y, t) = u′i(x, y, t)−
u′i(x, y, t) + u′j(x, y, t)

2
, (25)

Rinterface,v(x, y, t) = v′i(x, y, t)−
v′i(x, y, t) + v′j(x, y, t)

2
, (26)

Rinterface,p(x, y, t) = p′i(x, y, t)−
p′i(x, y, t) + p′j(x, y, t)

2
, (27)

The interface loss Linterface,ij for subdomain Ωi for the interface Γi,j is calculated
based on the interface residuals:

Linterface,ij =
1

Nij

Nij∑
k=1

(
∥Rinterface,u(xk, yk, tk)∥2 + ∥Rinterface,v(xk, yk, tk)∥2 + ∥Rinterface,p(xk, yk, tk)∥2

)
(28)

Thus the interface loss Linterface,i for subdomain Ωi becomes:

Linterface,i = Linterface,i(i+1) + Linterface,i(i−1) . (29)

The total loss function for each sub-PINN Ni in subdomain Ωi is a combination of
the physics-informed loss, boundary, and initial condition loss, and the interface loss:

LWXPINN,i = Lg,i + βLbc/ic,i + γLinterface,i (30)

where γ serves as a weighting factor to balance the components of the loss function.
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To apply the weighted CPINN to the incompressible Navier-Stokes equations, the
domain Ω is decomposed into M non-overlapping subdomains {Ωi}Mi=1, each with its
own sub-PINN Ni. The interface between adjacent subdomains Ωi and Ωj is denoted as
Γi,j where j ∈ {i− 1, i+ 1}. For each subdomain Ωi, interface conditions are enforced
at the shared boundaries with adjacent subdomains. The predicted velocity fields u′i
and v′i and the pressure field p′i from the sub-PINN for Ωi, and u

′
j, v

′
j, and p

′
j from Ωj

are used to define the flux residuals for conservation of momentum and conservation of
energy.

The flux residuals for momentum and energy for subdomain Ωi at the interface Γi,j

are given by:

Rflux,m(x, y, t) = ρ
(
u′i(x, y, t)− u′j(x, y, t)

)
, (31)

Rflux,µ(x, y, t) =
(
ρu′i(x, y, t)

2 + p′i(x, y, t)
)
−
(
ρu′j(x, y, t)

2 + p′j(x, y, t)
)
, (32)

The flux loss Lf,ij for subdomain Ωi for the interface Γi,j is calculated based on the
flux residuals:

Lflux,ij =
1

Nij

Nij∑
k=1

(
∥Rflux,m(xk, yk, tk)∥2 + ∥Rflux,µ(x, y, t)(xk, yk, tk)∥2

)
(33)

Thus the flux loss Lflux,i for subdomain Ωi becomes:

Lflux,i = Lflux,i(i+1) + Lflux,i(i−1) (34)

The total loss function for each sub-PINN Ni in subdomain Ωi is a combination of
the physics-informed loss, boundary, and initial condition loss, interface loss, and the
flux loss:

LWCPINN,i = Lg,i + βLbc/ic,i + γLinterface,i + δLflux,i (35)

where δ serves as a weighting factor to balance the components of the loss function.
This study encompasses two primary test cases designed to demonstrate the efficacy

of the PINN framework in simulating non-Newtonian fluid flow dynamics: a rectangular
domain and a semi-circular domain.

Rectangular Domain: Numerical Simulation of flow in a rectangle using PINNs is
presented. The computational domain is a rectangle in two dimensions: a length of 1.1
cm and a height of 0.41 cm. The viscosity ν is defined as 0.01 gs−1cm−1. The total
simulation time, T , is 0.5 seconds with a time step ∆t of 0.01 seconds.

The initial velocity field at t = 0 seconds is given by:

u(x, y, 0) =

(
u(x, y, 0)
v(x, y, 0)

)
=

(
0
0

)
for all points (x, y) within the domain.

The boundary conditions are given by:

• Inlet (x = 0): A parabolic profile gives the velocity vector at the inlet boundary:

u(0, y) =

(
u(0, y)
v(0, y)

)
=

(
4Umax

y(H − y)

H2
(sin(

πt

T
+

3π

2
) + 1)

0

)

11



where H is the height of the rectangle and Umax = 0.5.

• Outlet (x = L): At the outlet, a pressure condition:

p(L, y) = 0

Where L is the length of the rectangle.

• Solid Walls (y = 0 and y = H): No-slip conditions at the solid walls:

u(x, 0) = 0, v(x, 0) = 0,

u(x,H) = 0, v(x,H) = 0,

Our implementation of the weighted PINNs is based on using the TensorFlow frame-
work. The neural network architecture consists of an input layer with three neurons,
an output layer with five neurons, and seven hidden layers containing 50 neurons. The
tanh function is utilized as the activation function for each hidden layer. A total of
3321 collocation points are generated for network training, which includes 244 boundary
points (Nb) and 81 points on the inlet/outlet boundary (Nin/out), using Latin hypercube
sampling (LHS). The balancing coefficient β is taken as 1, 2, 5, and 10.

For optimization, the network employs both Adam and L-BFGS optimizers. The
network undergoes an initial training phase with the Adam optimizer for 5000 itera-
tions, followed by a subsequent stage with the L-BFGS optimizer until convergence.
The Hager-Zhang line search algorithm is utilized with a maximum of 50 iterations to
determine the optimal step length αk.

For prediction, 64561 collocation points are used, which includes 1124 boundary
points (Nb) and 161 points on the inlet/outlet boundary (Nin/out).

For the WXPINN model, the computational domain was divided into M = 2, 3,
and 4 non-overlapping subdomains. Each subdomain was modeled using a separate sub-
PINN, whose network architecture mirrored that of the global model, and the interface
conditions were enforced as described in the previous sections. The same number of
collocation points as the global model were taken and equally distributed across the
subdomains. The balancing coefficient γ is taken as 1, 2, 5, and 10 while keeping β
fixed at 1.

For the WCPINN model, the computational domain was divided into M = 2, 3,
and 4 non-overlapping subdomains. Each subdomain was modeled using a separate sub-
PINN, whose network architecture mirrored that of the global model, and the interface
conditions were enforced as described in the previous sections. The same number of
collocation points as the global model were taken and equally distributed across the
subdomains. The balancing coefficient δ is taken as 1, 2, 5, and 10 while keeping β
fixed at 1 and γ taken as 1 and 5.

Semi-Circular Domain: Numerical Simulation of flow in a semi-circular domain using
PINNs is presented. The computational domain is a semi-circular pipe with smooth
disturbances in two dimensions, possessing a cross-sectional radius a = 1.6 cm and
curvature radius R = 2.9 cm. The kinematic viscosity ν is set to 0.4 gs−1 cm−1. The
total simulation time, T , is 6 seconds with a time step ∆t of 0.01 seconds.

The initial velocity field at t = 0 seconds is given by:

u(x, y, 0) =

(
u(x, y, 0)
v(x, y, 0)

)
=

(
0
0

)
12



for all points (x, y) within the domain.
The boundary conditions are given by:

• Inlet (at the straight segment): A parabolic profile gives the velocity vector at
the inlet boundary:

uinlet =

(
uinlet
vinlet

)
=

(
4Umax

x(D − x)

D2
(sin(

πt

T
+

3π

2
) + 1)

0

)

where Umax = 0.75 is the maximum velocity at the inlet, and D is the cross-
sectional diameter of the inlet segment.

• Outlet (at the straight segment): At the outlet, a pressure condition:

p(xout, y) = 0

where xout denotes the position at the outlet.

• Curved Boundary (semi-circular edge): No-slip conditions are applied at the
curved boundary:

ucurved =

(
ucurved
vcurved

)
=

(
0
0

)
The weighted PINN model is implemented in TensorFlow. The neural network

architecture consists of an input layer with three neurons, an output layer with five
neurons, and seven hidden layers containing 50 neurons. The tanh function is utilized
as the activation function for each hidden layer. In total, 29760 collocation points
are employed, with a batch size of 20000 points used in each training iteration. The
balancing coefficient β is set to 1, 2, 5, and 10.

For optimization, the network employs both Adam and L-BFGS optimizers. The
network undergoes an initial training phase with the Adam optimizer for the first few
iterations, followed by a subsequent stage with the L-BFGS optimizer until convergence.
The Hager-Zhang line search algorithm is utilized with a maximum of 50 iterations to
determine the optimal step length αk. For prediction, the exact total of 29760 collo-
cation points is utilized. The numerical results showcased in this study were obtained
using a Linux cluster located at IISER Thiruvananthapuram. The cluster comprises
88 nodes, with each node housing 28 compute cores running at 2.60 GHz and equipped
with 128GB of RAM.

5. Results

The weighted PINN model’s capability to simulate fluid dynamics within a rectan-
gular domain was evaluated through the visualization of velocity and pressure fields at
various timestamps. These visualizations illustrated the dynamic flow patterns, iden-
tifying regions of varying velocity and pressure essential for understanding the fluid’s
behavior and the impact of forces on domain boundaries.

The model effectively captured the evolution of the flow field over time, highlighting
significant variations in velocity across the domain, which is depicted in Figure 2 for
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the rectangular domain. The velocity profile is consistent, with the maximum veloc-
ity observed in the middle of the inlet decreasing towards the walls due to the no-slip
boundary conditions. The velocity in the middle of the channel is observed to contin-
uously increase in the simulation time period due to the parabolic inlet profile.

Figure 2: Predicted velocity field at various timestamps obtained from the weighted PINN model for
the rectangular domain

Similarly, pressure distribution plots underscored the changes in pressure gradients
driving the flow, pinpointing areas of high and low pressure crucial for fluid dynamics
analysis, which is depicted in Figure 3 for the rectangular domain. A pressure gradient
decreasing from the inlet towards the outlet is observed, reflecting the zero-pressure
boundary condition at the outlet, which drives the flow through the domain. The
pressure plots exhibit pulsatile behavior, correlating with the sinusoidal inlet velocity. A
cyclic increase and decrease in pressure is observed, mimicking the systolic and diastolic
phases of blood flow. Comparable findings were obtained in [35, 9] through conventional
numerical techniques.

Figure 3: Predicted pressure field at various timestamps obtained from the weighted PINN model for
the rectangular domain

The weighted PINN model performance metrics are presented below in the case of
the rectangular domain. The study explored the influence of different β values (1, 2,
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5, 10) on model accuracy and computational efficiency. The metrics of interest were
final loss (accuracy indicator) and computation time, alongside the number of iterations
required for convergence, which are shown in Table 1.

Table 1: Summary of Performance Metrics for different β values in rectangular domain

β Final Loss Comp. Time (s) # Iter. (Total)

1 0.0001571 51338.70 26438
2 0.0002181 45463.86 24081
5 0.0002799 53185.37 27298
10 0.0002402 55817.82 28230

β = 1 yielded the most accuracy while β = 2 took the least computation time after
26,438 iterations and 24,081 iterations, respectively, optimizing the balance between
accuracy and computational effort.

The progression of the loss function highlighted the model’s convergence behavior
across different β settings is depicted in Figure 4, offering insights into performance
optimization.

Figure 4: Evolution of the loss function in the rectangular domain

The weighted PINN model was also applied to a semi-circular domain to assess its
performance in capturing fluid dynamics within more complex geometries.

In CFD simulations, it’s a common challenge that the presence of incoming flow at
open boundaries (backflow) can lead to unphysical oscillations and instability problems,
even at moderate Reynolds numbers, see [26, 27]. This issue arises from the convective
energy entering the domain through the open boundary, which becomes problematic
when the boundary velocity is unknown. Various stabilized finite element formulations
have been proposed to address this problem in solving the incompressible Navier–Stokes
equations. These formulations introduce stabilization terms based on the residual of a
weak Stokes problem normal to the open boundary, driven by an approximate boundary
pressure gradient. In contrast, the framework of PINNs doesn’t necessitate such stabi-
lization terms to mitigate backflow instabilities. PINNs naturally handle such challenges
without additional stabilization. In this study, we utilize a benchmark example prob-
lem to showcase the effectiveness of the PINNs approach. The PINNs model effectively
captured the evolution of the flow field over time, highlighting significant variations in
velocity across the domain, as shown in Figure 5. A disturbance in the flow profile
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is observed near the stenotic region of the artery as the velocity profile has a higher
magnitude close to the origin of stenosis.

Figure 5: Predicted Velocity field at various timestamps obtained from the weighted PINN model for
the semi-circular domain

Similarly, pressure distribution plots underscored the changes in pressure gradients
driving the flow, pinpointing areas of high and low pressure crucial for fluid dynamics
analysis, which is presented in Figure 6. The pressure distribution also shows significant
gradients around the stenotic region of the artery, with higher pressure upstream and
lower downstream of the constriction. This highlights the impact of the narrowing on
flow dynamics and the forces exerted on arterial walls. Here, it’s evident that we don’t
encounter any backflow instabilities, which stands out as the major advantage of using
PINNs for addressing complex problems like this.

Figure 6: Predicted Pressure field at various timestamps obtained from the weighted PINN model for
the semi-circular domain

The weighted PINN model performance metrics are presented below in the case of
the semi-circular domain. The study explored the influence of different β values (1, 2,
5, 10) on model accuracy and computational efficiency in Table 2.
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Table 2: Summary of Performance Metrics for different β values in semi-circular domain

β Final Loss Comp. Time (s) # Iter. (Total)

1 0.0003578 128531.72 16323
2 0.0009546 132422.38 17109
5 0.0002069 100092.53 13976
10 0.0002037 123628.59 17389

A β of 10 achieved the lowest final loss after 17,389 iterations, indicating high model
accuracy. Conversely, β of 5 was the most efficient in terms of computation time and
convergence speed, with 13,976 total iterations. The progression of the loss function
highlighted the model’s convergence behavior across different β settings, offering in-
sights into performance optimization.

Figure 7: Evolution of the loss function in the semi-circular domain

The performance of the weighted Extended Physics-Informed Neural Network (WX-
PINN) model was assessed by varying the balancing coefficient γ and the number of
subdomains M while testing with β = 1. The choice of β = 1 was taken, focusing on
the model’s accuracy and computational efficiency, as that gave the best convergence
in the weighted PINN case.

The study considered γ values of 1, 2, 5, and 10, alongside subdomain counts of
2, 3, and 4. Metrics of interest included final loss, computation time, and iterations
required for convergence, providing a comprehensive view of the model’s efficiency and
accuracy.

Below, we demonstrate the WXPINNs efficiency w.r.t the number of subdomains:.

• Case I (M = 2): In this scenario, γ = 10 recorded the shortest computation time,
while γ = 5 achieved the lowest final loss, indicating the highest accuracy. See
Table 3 for more information.

• Case II (M = 3): In this scenario, γ = 1 required the least computation time, and
γ = 5 presented the lowest final loss, showcasing optimal accuracy. See Table 3
for more information.

• Case III (M = 4): In this scenario, γ = 1 was most efficient in terms of computa-
tion time, whereas γ = 5 maintained the lowest final loss, demonstrating superior
accuracy. See Table 3 for more information.
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Table 3: Summary of Performance Metrics for varying γ values and subdomain counts (M) in the
rectangular domain for β = 1

M β γ Final Loss Comp. Time (s) # Iter. (Total)

2 1 1 0.0001268 27311.14 20582
2 1 2 0.0001194 27145.35 20631
2 1 5 0.0000832 30256.92 22349
2 1 10 0.0000869 26877.42 20733

3 1 1 0.0001781 27957.15 21558
3 1 2 0.0001441 30425.47 23559
3 1 5 0.0001276 28043.87 21337
3 1 10 0.0001552 28339.32 21612

4 1 1 0.0002964 28353.51 20171
4 1 2 0.0002528 31630.81 23064
4 1 5 0.0001902 29847.30 20789
4 1 10 0.0002406 29462.45 20328

The evolution of the loss function across different configurations of the WXPINN
model, varying by the number of subdomains (M) and balancing coefficient (γ), is
visualized below.

(a) M = 2 subdomains (b) M = 3 subdomains

(c) M = 4 subdomains

Figure 8: Loss function evolution for the WXPINN model across different numbers of subdomains
(M = 2, 3, 4) and varying γ values.

Consequently, a comparative analysis of computation times and loss evolution across
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various subdomain counts (M = 2, 3, 4) elucidated the impact of domain partitioning
on model efficiency, facilitating an understanding of accuracy-computational efficiency
trade-offs.

(a) Computation Time (b) Loss Evolution

Figure 9: Comparison of Computation Time & Loss Evolution Across Different Numbers of Subdo-
mains (M = 2, 3, 4) for the WXPINN model

The performance of the weighted Conservative Physics-Informed Neural Network
(WCPINN) model was evaluated by varying the balancing coefficient δ and the num-
ber of subdomains M while maintaining a constant β = 1 with γ varied as 1 and 5.
The choice of γ = 5 was taken, focusing on the model’s accuracy and computational
efficiency, as that gave the best convergence in the WXPINN case.

The study considered δ values of 1, 2, 5, and 10, alongside subdomain counts of
2, 3, and 4. Metrics of interest included final loss, computation time, and iterations
required for convergence, providing a comprehensive view of the model’s efficiency and
accuracy.

Below, we demonstrate the WCPINNs efficiency w.r.t the number of subdomains:

• Case I (M = 2): In this scenario, for γ = 1, δ = 10 recorded the shortest
computation time, while δ = 2 achieved the lowest final loss, and for γ = 5, δ = 5
recorded the shortest computation time, while δ = 2 achieved the lowest final
loss, indicating the highest accuracy. See Table 4 for more information.

• Case II (M = 3): In this scenario, for γ = 1, δ = 5 required the least computation
time, and δ = 2 presented the lowest final loss, and for γ = 5, δ = 1 required
the least computation time, and δ = 2 presented the lowest final loss, showcasing
optimal accuracy. See Table 4 for more information.

• Case III (M = 4): In this scenario, for γ = 1, δ = 10 was most efficient in terms
of computation time, whereas δ = 2 maintained the lowest final loss, and for
γ = 5, δ = 5 was most efficient in terms of computation time, whereas δ = 2
maintained the lowest final loss, demonstrating superior accuracy. See Table 4
for more information.
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Table 4: Summary of Performance Metrics for varying δ values and subdomain counts (M) in the
rectangular domain for γ = 1 and γ = 5

M δ
Final Loss Comp. Time (s) # Iter. (Total)

γ = 1 γ = 5 γ = 1 γ = 5 γ = 1 γ = 5

2 1 0.0000834 0.0001167 26825.72 27398.77 20006 20444
2 2 0.0000750 0.0000693 30754.57 28387.97 23268 21068
2 5 0.0000965 0.0000723 29168.68 26062.06 22780 20240
2 10 0.0001355 0.0001567 26260.77 30778.42 19424 23276

3 1 0.0001898 0.0001689 30810.61 26391.59 23689 19864
3 2 0.0001107 0.0001056 28523.03 27621.32 20824 20549
3 5 0.0002403 0.0001206 26233.19 28073.90 19561 21535
3 10 0.0002224 0.0001667 29465.80 26601.74 20719 20153

4 1 0.0003783 0.0003722 31109.31 29089.39 21589 20204
4 2 0.0002296 0.0002105 30765.06 29663.42 21036 19551
4 5 0.0003369 0.0002911 28601.59 29013.70 19953 19915
4 10 0.0003777 0.0002347 27822.58 29745.53 19097 19565

The evolution of the loss function across different configurations of the WCPINN
model, varying by the number of subdomains (M) and balancing coefficient (δ), is
visualized below.

(a) M = 2 subdomains (γ = 1) (b) M = 2 subdomains (γ = 5)

(c) M = 3 subdomains (γ = 1) (d) M = 3 subdomains (γ = 5)

Figure 10: Loss function evolution for the WCPINN model, part 1.
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(e) M = 4 subdomains (γ = 1) (f) M = 4 subdomains (γ = 5)

Figure 10: Loss function evolution for the WCPINN model, part 2 (Continued).

A comparative evaluation of computation times further elucidates the impact of
domain partitioning on computational efficiency, assisting in navigating the trade-offs
between simulation accuracy and computational demand.

(g) Computation Time (γ = 1) (h) Computation Time (γ = 5)

(i) Loss Evolution (γ = 1) (j) Loss Evolution (γ = 5)

Figure 11: Comparison of Computation Time & Loss Evolution Across Different Numbers of Subdo-
mains (M = 2, 3, 4) for the WCPINN model

6. Conclusion

This study rigorously explores the capabilities of Physics-Informed Neural Networks
(PINNs), including their advanced variants as weighted Extended PINN (WXPINN)
and weighted Conservative PINN (WCPINN), to solve the blood flow model equations
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within cardiovascular systems. The study demonstrates that strategic subdomain par-
titioning and the optimal selection of balancing coefficients (β, γ, δ) are essential for
enhancing computational efficiency while preserving high model accuracy. The adapt-
ability of these models to diverse geometries underscores their potential for broader
applications in simulating real-world fluid dynamics scenarios. Our PINNs simulation
results clearly demonstrate the absence of backflow instabilities, highlighting a sig-
nificant advantage of utilizing PINNs over traditional numerical methods for tackling
complex problems like this.

However, the performance of PINN-based models heavily relies on hyperparameter
configuration, necessitating extensive tuning for optimal settings. While domain de-
composition improves generalization across subdomains, it introduces a tradeoff: sim-
plifying each segment reduces required learning complexity but also decreases available
training data per subdomain, potentially increasing overfitting risk and diminishing
model generalizability. To address these challenges, we investigated WXPINN and
WCPINN models incorporating weighted methodologies to optimize the distribution of
training data and computational resources across subdomains for solving Navier-Stokes
equations on complex domains. Based on presented numerical results and strategic
adaptations, WXPINN and WCPINN provide a general approach to managing inher-
ent tradeoffs in domain-decomposed neural network training, thereby enhancing the
accuracy and applicability of PINN simulations in complex fluid dynamics.

Future endeavors should prioritize improving the generalization abilities of weighted
PINNs across parallel computing frameworks and GPU accelerators. This enhancement
aims to enhance computational efficiency, facilitating the scaling of these models on
complex geometries and achieving real-time performance.
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