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Abstract

Nonlinear mean field dynamics enables quantum information processing operations
that are impossible in linear one-particle quantum mechanics. In this approach, a
register of bosonic qubits (such as neutral atoms or polaritons) is initialized into a
symmetric product state |ψ⟩⊗n through condensation, then subsequently controlled
by varying the qubit-qubit interaction. We propose an experimental implementation
of quantum state discrimination, an important subroutine in quantum computation,
with a toroidal Bose-Einstein condensate. The condensed bosons here are atoms,
each in the same superposition of angular momenta 0 and ℏ, encoding a qubit. A
nice feature of the protocol is that only readout of individual quantized circulation
states (not superpositions) is required.
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I. INTRODUCTION

A variety of atomtronic architectures have been proposed for quantum computing and

quantum technology applications [1, 2]. Two main Bose-Einstein condensate (BEC) types

have been considered for realizing qubits: multi-component condensates and multi-mode

condensates. Multi-component and spinor condensate approaches [3–8] encode a single qubit

in two (or more) metastable atomic states, such as spin or hyperfine levels, with all atoms

in the same translational mode (for example the motional ground state). Multi-mode ap-

proaches [9–11] encode a single qubit using two (or more) translational modes in a scalar

condensate, such as a BEC in a double-well trapping potential. In the limit where there are

a large number of condensed bosons in each well, the system becomes equivalent to two (or

more) BECs, each with a well defined phase, connected by tunneling barriers that act as

Josephson junctions [9–11]. Arrays of such BECs can be produced in optical lattices and

are described by the Bose-Hubbard model [10, 11]. Another multi-mode approach, which we

adopt here, uses circulating states in a ring geometry [12–18] for the translational modes.

Given the demonstrated high performance and scalability of trapped ion qubits [19],

superconducting qubits [20–22], and of neutral atom arrays [23, 24], what does a BEC qubit

offer? We argue that it offers a platform for an alternative approach to quantum information

processing that leverages the special properties of condensates. In this approach, a BEC

is used to prepare a register of qubits in a product state |ψ⟩⊗n and control its subsequent

evolution. From a quantum computing perspective, having multiple identical copies of an

unknown input is already a useful resource (whereas classical information is freely cloned).

In standard circuit-model quantum computation, illustrated in Fig. 1a, initialized qubits

are subsequently entangled using two-qubit gates. Here we do the opposite and try to

suppress entanglement, Fig. 1b. This is achieved by making n large, interactions weak,

and by preserving permutation symmetry. In this limit entanglement monogamy [25, 26]

bounds the pairwise concurrence to zero, and the BEC is exactly described by a nonlinear

Schrödinger equation (the Gross–Pitaevskii equation [27, 28]), enabling novel dynamics [10–

12, 29–36]. The theory is developed in a large n limit with a rigorous bound on the error

resulting from the mean field approximation. The nonlinear approach trades exponential

time complexity for space complexity, requiring n to be large.
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FIG. 1. Nonlinear quantum information processing with a BEC. (a) In circuit-model quantum

computation, a register of qubits is initialized to a product state (such as |0⟩⊗n), after which gates

are applied, entangling the qubits. (b) In the nonlinear approach, the qubits ideally remain in a

product state |ψ(t)⟩⊗n throughout the computation. The BEC simulates a single nonlinear qubit.

Does this mean that n has to be exponentially large? Actually the requirements on n

are not that bad. This is because the BEC is assumed to be initialized in a product state,

and it takes time tent for the atomic collisions to produce entanglement. Ideally, the whole

experiment is performed in a short-time regime. We measure the accuracy of mean field

theory by ϵ := ∥ρeff(t) − ρ1(t)∥1, and call this the model error. Here ρeff is the mean field

state, ρ1 is the exact state traced over all atoms but one, t is the gate duration, and ∥ · ∥1
is the trace norm. In a large family of condensate models [37, 38]

ϵ ≤ c
et/tent − 1

n
, (1)

where c and tent are positive constants (model-dependent quantities independent of t and n).

Although the error might grow exponentially in time, there is always a short-time window

t < tent where the required number of condensed atoms n ≈ ct/tentϵ is sub-exponential in t.

We propose a demonstration of quantum information processing using this nonlinearity.

In the remainder of this section we discuss the qubit encoding and state discrimination

subroutine. The protocol is explained in Sec. II. Conclusions are given in Sec. III, and

additional information about the BEC model and large n limit are provided in the Appendix.
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A. Qubit encoding

BEC-based qubits necessarily encode a small number of parameters (ψ0,1 ∈ C) into a large

number of degrees of freedom and the map is not unique. However two encodings can often

be considered: Let a†l create an atom in BEC component l ∈ {0, 1} (in a two-component

condensate) or in translational mode l ∈ {0, 1} (in a two-mode condensate), and let ψ0,1 be

complex coordinates satisfying |ψ0|2 + |ψ1|2 = 1. One encoding that is interesting from a

quantum foundations perspective is

|CATn⟩ :=
ψ0(a

†
0)

n + ψ1(a
†
1)

n

√
n!

|vac⟩, ⟨CATn|CATn⟩ = 1, n ≥ 1, (2)

but this is a superposition of two macroscopically distinct BECs (a Schrödinger cat state)

which would be highly susceptible to decoherence [3]. Instead we use the encoding

|Fn⟩ :=
(ψ0 a

†
0 + ψ1 a

†
1)

n

√
n!

|vac⟩, ⟨Fn|Fn⟩ = 1, n ≥ 1, (3)

which is a condensate of n bosons ψ0 a
†
0 + ψ1 a

†
1, each a single atom in a superposition of

components or modes. (While |CATn⟩ and |Fn⟩ depend on both n and ψ0,1, the latter

dependence is suppressed.) The encoding (3) was originally proposed by Cirac et al. [3] and

by Byrnes et al. [5, 6] for two-component condensates; in that case |Fn⟩ is a pseudospin

coherent state [6]. But our a†0 and a†1 create atoms in circulating states of orbital angular

momentum 0 and ℏ, respectively, and it is better to regard |Fn⟩ as a coherent state of atoms

in angular momenta superpositions. The states (3) are mean field states since the atoms are

not entangled. They satisfy

al|Fn⟩ = ψl

√
n|Fn−1⟩ and alal′ |Fn⟩ = ψlψl′

√
n(n− 1)|Fn−2⟩. (4)

Because each atom in (3) carries a copy of the qubit state |ψ⟩ = ψ0|0⟩+ψ1|1⟩, the state |Fn⟩

exhibits a bosonic orthogonality catastrophe [39] in the large n limit, meaning that close

qubit states |ψ⟩ and |ψ′⟩ encode to orthogonal |Fn⟩ and |F ′
n⟩ as n → ∞ (the semiclassical

limit in the spin coherent state picture [6]). Furthermore, due to the polynomial encoding in

|Fn⟩, the single-particle superposition principle with respect to ψ0,1 is violated (see below).
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In the atomtronic implementation we assume a toroidal BEC operated in a regime sup-

porting metastable quantized circulation states with l trapped vortices

|Φn
l ⟩ =

(a†l )
n

√
n

|vac⟩, (5)

where a†l creates an atom in the ring with angular momentum l ∈ Z. These states are

stabilized by the repulsive atomic interactions [40, 41]. An atom with mass m and l = 1

has velocity ℏ/mR and circles the ring with angular velocity Ω0 = ℏ/mR2. We construct

a low-energy effective description for the BEC within the manifold of states (3). This is

possible because they are selected out by the path integral in the large n limit, due to their

diverging contribution to the action. The action in the subspace spanned by these states is

Seff [ψ̄l, ψl] =

∫
dt ⟨Fn|i∂t −Hrot|Fn⟩, (6)

whereHrot is the BEC Hamiltonian in the rotating frame. The BEC is rotated with frequency

Ω ≈ Ω0/2 to bring the 0-vortex (no circulation) state |Φn
0 ⟩ and the 1-vortex state |Φn

1 ⟩ close

in energy. Higher energy l are then neglected, leading to a two-mode model. In the large n

limit (see Appendix) the saddle point equations are

d

dt

ψ0

ψ1

=−iHeff

ψ0

ψ1

, Heff = V01σ
x +Bzσ

z + g(|ψ0|2−|ψ1|2)σz. (7)

The first two terms in Heff generate rigid x and z rotations of the Bloch sphere. Rotations

about x couple l = 0 and l = 1 angular momenta and are produced by breaking rotational

symmetry. Here V01 is a matrix element for an applied potential energy barrier. The param-

eter Bz is controlled by the frequency Ω of the BEC rotation discussed above. The nonlinear

term describes a z rotation with a rate that increases with increasing Bloch sphere coordi-

nate tr(ρσz) = |ψ0|2−|ψ1|2, vanishes on the equator, and reverses direction for tr(ρσz) < 0.

This z-axis torsion [42] (1-axis twisting [43]) of the Bloch sphere is the key to fast state

discrimination, but is prohibited in ordinary single-particle quantum mechanics. Although

the qubit here is informational and not associated with any physical 2-state system, we can
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define a logical basis {|0⟩, |1⟩} and treat it like any other qubit:

|ψ⟩ = ψ0|0⟩+ ψ1|1⟩ =

ψ0

ψ1

, |0⟩ :=

1

0

 = |Φn
0 ⟩, |1⟩ :=

0

1

 = |Φn
1 ⟩. (8)

It should be emphasized that (3) is the physical state of the quantum gas, not (8). However

the basis states |0⟩, |1⟩ are the quantized circulation states |Φn
0,1⟩, which is important for the

readout step.

B. Single-input state discrimination

As an application, we consider the problem of quantum state discrimination [44–47],

a basic task in quantum information science. In the two-state variant considered here, a

quantum state |ψ⟩ ∈ {|a⟩, |b⟩} is input to a processor, which knows the values of |a⟩ and |b⟩

ahead of time and tries determine which was provided (with a bounded failure probability).

This is easy if |a⟩ and |b⟩ are orthogonal: For a qubit, a single unitary Uread = |0⟩⟨a|+ |1⟩⟨b|

rotates α|a⟩ + β|b⟩ to α|0⟩ + β|1⟩, which is then measured in the standard basis. The

challenging case is when |a⟩ and |b⟩ are similar, |⟨a|b⟩|2 = 1 − 2−k with k ≫ 1, where

n > 2k identical copies of the input are required [48]. In minimum-error discrimination, the

subroutine selects |a⟩ or |b⟩, each with some probability of error, and the objective is to

minimize the average error. In unambiguous state discrimination, the subroutine identifies

|a⟩ or |b⟩ perfectly, but has the possibility of abstaining, returning an inconclusive result.

State discrimination can be used to solve NP-complete (and harder) problems [29, 33, 49],

at the expense of 2k input copies and exponential runtime. This cost reflects the limited

information gained from measurement.

Abrams and Lloyd [29] showed that certain nonlinearity in the Schrödinger equation

would bypass this exponential cost, allowing NP-complete problems to be solved efficiency

(in an idealized setting with no errors or decoherence). But the presence of such nonlinearity

would constitute a fundamental modification of quantum mechanics that is not supported

by experiment [50–53]. In a condensate, the nonlinearity is not fundamental, but effective.

Although we can realize nonlinear gates, this doesn’t constitute a complexity violation, due

to the large n requirement of mean field theory.
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FIG. 2. State discrimination channel. Here ⟨a|b⟩ ̸= 0 but ⟨0|1⟩ = 0, so the channel must be

nonlinear. Note that the output is always a basis state, |0⟩ or |1⟩, simplifying readout.

II. PROTOCOL

The process is illustrated in Fig. 2. A single state |ψ⟩ ∈ {|a⟩, |b⟩} is input to the discrimi-

nator, which ideally returns output |0⟩ if |ψ⟩= |a⟩, or returns |1⟩ if |ψ⟩= |b⟩. The single-input

discriminator regarded as a channel must be nonunitary, because the overlap ⟨a|b⟩ is not

preserved. Equivalently, the distance ∥ρa−ρb∥1 between their density matrices in trace norm

is not preserved in time (here ∥X∥1 := tr
√
X†X). For pure states, ∥ρa−ρb∥1 = 2| sin(θab/2)|,

where θab is the angle between their Block vectors. Linear completely-positive trace preserv-

ing (CPTP) channels satisfy d
dt
∥ρa− ρb∥1 ≤ 0; they are either distance preserving or strictly

contractive on the inputs [54]. Because the discriminator orthogonalizes the potential in-

puts, it is expansive on those inputs: d
dt
∥ρa − ρb∥1 > 0. Thus, the discriminator is described

by a nonlinear PTP channel [29, 36, 42].

The implementation proposed here does not discriminate an unknown input (produced

by a previous computation), but instead uses a black box state preparation step to randomly

prepare |a⟩ or |b⟩, with a small Bloch vector angle θab ≥ 0 between them. Then |⟨a|b⟩|2 =

cos2(θab/2) ≈ 1 − (θab/2)
2. This can be accomplished by initializing in the |Φn

0 ⟩ state and

using V01 and Bz in (7) to apply x and z rotations. (Ideally, this step is hidden from the

remainder of the experiment.) The discrimination gate itself follows Refs. [29, 33] and uses

the z-axis torsion to increase the angle between |a⟩ and |b⟩. It’s clear that |a⟩ and |b⟩ should

begin with equal and opposite z components za = −zb [here rµa,b = tr(ρa,bσ
µ), µ ∈ {1, 2, 3}].
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Consider a simple option with ya,b = 0, namely

|a⟩ = cos

(
π − θab

4

)
|0⟩+ sin

(
π − θab

4

)
|1⟩, (9)

|b⟩ = cos

(
π + θab

4

)
|0⟩+ sin

(
π + θab

4

)
|1⟩, (10)

which has

xa = xb =

∣∣∣∣cos(θab2
)∣∣∣∣, ya = yb = 0, za = sin

(
θab
2

)
, zb = − sin

(
θab
2

)
. (11)

After switching on g, the two input options evolve as Rz(±gtθab) and orthogonalize after a

time t ≈ π/gθab. However this implementation does not have a favorable scaling with θab.

The optimal protocol for nonlinear discrimination was derived by Childs and Young (CY)

in [33]. Instead of (11), the CY gate begins with

xa = xb =

∣∣∣∣cos(θab2
)∣∣∣∣, ya = za =

sin( θab
2
)

√
2

, yb = zb = −
sin( θab

2
)

√
2

, (12)

and applies x rotations to hold ya,b = za,b during the subsequent evolution in order to reach

antipodal points on the Bloch sphere. The options orthogonalize in a time t = O(log 1
θab

),

after which a readout gate Uread (defined with respect to time-evolved |a⟩, |b⟩) transforms

them to circulation states |Φn
0 ⟩ or |Φn

1 ⟩, which are then measured via time-of-flight [55, 56].

In an idealized context where (7) is regarded as exact, and where there are no control

errors, readout errors, decoherence errors, or noise, the nonlinear discriminator works per-

fectly every time. We refer to this idealization as a single-input discriminator to distinguish

it from the more familiar minimum error and unambiguous discriminators based on linear

CPTP channels [44–47]. Of course any actual atomtronic realization is likely to suffer from

all such errors, and may fail to give the correct answer or return an answer at all. Although

the theoretically achievable performance depends sensitively on the system and device de-

tails, and is beyond the scope of this work, we note that combining torsion with non-CP

dissipation is predicted to implement an autonomous discriminator [36], whose control se-

quence and operation is (mostly) independent of |a⟩ and |b⟩. In this implementation, the

nonlinearity and dissipation create two basins of attraction with a shared boundary in the

Bloch ball, one with an attracting fixed point near |0⟩ and the other with an attracting fixed
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FIG. 3. Linear versus nonlinear qubit evolution. (a) Unitary evolution. Vectors show the isometric

flow of states on the Bloch sphere generated by linear Hamiltonian H = σz. (b) Torsion dynamics

generated by nonlinear Hamiltonian H = ⟨ψ|σz|ψ⟩σz.

point near |1⟩, giving the discriminator a degree of intrinsic fault-tolerance.

The presence of channel nonlinearity indicates a breakdown of the superposition principle.

Figure 3 illustrates a nice example of this effect: In Fig. 3a, the evolution of a superposition

ψ0|0⟩+ψ1|1⟩ is given by a superposition of evolved basis states e−it|0⟩ and eit|1⟩, shown as a

velocity field. However in Fig. 3b, the evolved states e−it|0⟩ and e−it|1⟩ are now static (phase

factors are a global phase), whereas the actual dynamics is not, except on the equatorial

plane.

III. CONCLUSIONS

We have discussed an approach to quantum information processing that leverages the

special properties of condensates, including their nonlinearity, and proposed an atomtronic

implementation of a “nonlinear” qubit. An experimental demonstration of nonlinear state

discrimination, while striking, would not by itself constitute a computation, because the

qubit isn’t coupled to anything. To implement a useful computation, the BEC qubit must be

entangled with other qubits (for example trapped ions) in a scalable circuit-model quantum

computer, which is not addressed here.

The standard models of quantum computation assume gates and errors based on lin-

ear CPTP channels. Physical hardware, however, might admit initial correlation and be

better described by more general maps [57, 58]. It is therefore interesting to investigate
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any additional computational power enabled by quantum channels beyond the linear CPTP

paradigm, as we did here. Another example was investigated by Chen et al. [59], who ex-

perimentally demonstrated unambiguous state discrimination in a linear but non-Hermitian

optical system. After completing this work, Großardt posted a preprint [8] proposing the

use of a two-component BEC coupled to a neutral atom computer to simulate a large family

of nonlinear Schrödinger equations. Given their potential for fast quantum state discrimina-

tion and simulation of the nonlinear Schrödinger equation, the non-Hermitian and nonlinear

approaches to quantum information processing deserve further exploration.
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Appendix A: BEC model

Here we derive the qubit equation of motion (7). We consider a toroidal BEC (thin

circular ring with radius R) with rotating tunneling barriers that act as Josephson junctions

[10–12, 16]. Thin means the dynamics is quasi-1d in the azimuthal direction, θ. This requires

the energy, temperature, and effective interaction strength to be below an energy scale ∆ϵ

determined by the confining potential. The shape of the potential (without barriers) is

mostly arbitrary as long as it is invariant under rotations about the axis threading the

ring, which we call the z axis. The angular momentum eigenfunctions on the ring are

φl(θ) = eilθ/
√
2πR, with l ∈ Z the angular momentum. In the absence of the tunnel barriers

and interaction, these are stationary states. The condensate consists of n weakly interacting

bosonic atoms of mass m, each in their electronic ground state |Ψ0⟩. At sufficiently low

energy and densitiy, the atomic collisions are elastic, and the Hamiltonian is

H(t) =

∫
Vol

d3r

{
ℏ2∇ϕ† ·∇ϕ

2m
+
U

2
ϕ†ϕ†ϕϕ+ V ϕ†ϕ

}
, [ϕ(r), ϕ†(r′)] = δ(r− r′). (A1)

Here Vol is the volume of the ring, U = 4πℏ2as/m is a short-range interaction strength (pro-

portional to the s-wave scattering length as), and V (r, t) is a confining potential, including

the rotating barriers. Acting on the vacuum, ϕ†(r) creates a bosonic atom in state |Ψ0⟩
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at point r. We assume a tunable repulsive interaction with as ≥ 0. We also assume zero

temperature, no dissipation, and no disorder.

Two rotating tunnel barriers are used to implement an atomtronic quantum interference

device [11, 12]. When the barriers are turned on, the Hamiltonian (A1) is time depen-

dent. Assuming the barriers are rigidly rotated about the z axis with frequency Ω, we have

V (r, t) = e−iΩtLz/ℏ V (r, 0) eiΩtLz/ℏ, where Lz is the angular momentum.

However, we can transform to a noninertial reference frame in which the Hamiltonian,

Hrot, is time independent. Decomposing the time-evolution operator in the lab frame as

Ulab = Te−
i
ℏ
∫ t
0 Hdt′ = e−iΩtLz/ℏUrot, (A2)

we obtain

dUrot

dt
= − i

ℏ
HrotUrot, Hrot = eiΩtLz/ℏ(H − ΩLz)e

−iΩtLz/ℏ = H(0)− ΩLz. (A3)

Next we discuss the two-mode limit: In the low energy, thin ring limit, we can expand

the field operators and angular momentum as

ϕ(r) =
∑
l

eilθ√
Vol

al, Lz =
∑
l

ℏla†lal, [al, a
†
l′ ] = δll′ , (A4)

which leads to

Hrot =
ℏΩ0

2

∑
l

l2a†lal +
U

2Vol

∑
l1,l2,l3

a†l1+l3
a†l2−l3

al2al1 +
∑
l1,l2

Vl1l2 a
†
l1
al2 − ℏΩ

∑
l

la†lal, (A5)

where

Vl1l2 =

∮
dθ

2π
V (θ, t=0) e−i(l1−l2)θ. (A6)

Nonzero Vl1l2 induce transitions between angular momentum states. Then we have

Hrot =
∑
l

ℏωla
†
lal +

U

2Vol

∑
l1,l2,l3

a†l1+l3
a†l2−l3

al2al1 +
∑
l1,l2

Vl1l2 a
†
l1
al2 −

nℏΩ2

2Ω0

, (A7)
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where

ωl =
(Ω− lΩ0)

2

2Ω0

, ω0 =
Ω2

2Ω0

, ω1 =
(Ω− Ω0)

2

2Ω0

. (A8)

As explained above, the BEC is rotated with frequency Ω ≈ Ω0/2 to bring the l = 0 and

l = 1 states close in energy. We restrict (A7) to angular momenta l = 0, 1 neglecting the

others on the basis of their higher energy. Then

∑
l1,l2,l3

a†l1+l3
a†l2−l3

al2al1 =
∑
l∈Z

{
a†la

†
−la0a0 + a†l+1a

†
−la0a1 + a†la

†
1−la1a0 + a†1+la

†
1−la1a1

}
(A9)

= a†0a
†
0a0a0 + a†1a

†
1a1a1 + 4a†0a

†
1a1a0 (A10)

= (a†0a0)
2 − a†0a0 + (a†1a1)

2 − a†1a1 + 4a†0a0a
†
1a1. (A11)

This leads to a two-mode model

Hrot=
∑
l=0,1

(
ℏωl + Vll + γa†lal − γ

)
a†lal + γ′a†0a0a

†
1a1 +

(
V01a

†
0a1+V̄01a

†
1a0

)
− nℏΩ2

2Ω0

, (A12)

where

γ =
U

2Vol
, γ′ = 4γ =

2U

Vol
. (A13)

In what follows we will treat γ, γ′ ≥ 0 as independent parameters, allowing (A12) to apply

to other systems as well. The last term in (A12) subtracts the classical kinetic energy of the

spinning ring: nℏΩ2/2Ω0 =
1
2
IringΩ

2, Iring = nmR2.

Finally we discuss the large n limit: Condensates feature an enhanced two-particle in-

teraction ⟨a†a†aa⟩ ≈ n(n − 1) caused by the effectively infinite-ranged interaction between

condensed atoms. This makes a naive large n limit unphysical, because the energy per

particle diverges [60], and our low-energy assumptions would be violated. The framework

discussed here is instead based on a modified large n limit where the interaction simulta-

neously weakens as 1/n (a standard assumption in rigorous studies of mean field theory

[60, 61]). This allows for a rigorous study of the large n limit including bounds on the

accuracy of mean field theory. For real V01 =
∮

dθ
2π
V (θ) eiθ, and after dropping the classical
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kinetic energy term (which does not affect the qubit dynamics) we obtain

Hrot =
∑
l=0,1

(
(ℏωl + Vll)a

†
lal + γa†la

†
lalal − γa†lal

)
+ γ′a†0a0a

†
1a1 + V01

(
a†0a1+a

†
1a0

)
. (A14)

Evaluating (6) and assuming n≫ 1 leads to (setting ℏ = 1)

Seff=n

∫
dt

{∑
l=0,1

(
ψ̄li∂tψl−(ωl + Vll)|ψl|2−nγ |ψl|4

)
−nγ′|ψ0ψ1|2−V01(ψ̄0ψ1+ψ̄1ψ0)

}
. (A15)

Here z̄ denotes complex conjugation. Due to the O(n2) interaction energies in (A14), we

cannot take the n→ ∞ limit in (A15) without violating our low-energy assumptions. Instead

we consider a modified limit defined by the simultaneous limits γ, γ′ → 0, n→ ∞, and low

energy. To evaluate (A15) in this limit we assume that the interaction strengths decrease

with n as γ = K/n and γ′ = K ′/n, where K and K ′ are now fixed coupling constants. Then

Seff=n

∫
dt

{∑
l=0,1

(
ψ̄li∂tψl−(ℏωl + Vll)|ψl|2−K|ψl|4

)
−K ′|ψ0ψ1|2−V01(ψ̄0ψ1+ψ̄1ψ0)

}
. (A16)

To obtain (A16) we have used the results summarized below in Table I, which also

gives the corresponding results for encoding (2). In the large n limit the stationary phase

approximation leads to (7) with

Heff =

ℏω0 + V00 + 2K|ψ0|2 +K ′ |ψ1|2 V01

V01 ℏω1 + V11 + 2K|ψ1|2 +K ′ |ψ0|2

 (A17)

= V01σ
x +Bzσ

z + g tr(ρσz)σz + const., (A18)

where

Bz :=
ℏω0 − ℏω1 + V00 − V11

2
and g :=

2K −K ′

2
= − Un

2Vol
. (A19)

This concludes the derivation of (7).
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TABLE I. One- and two-particle correlators versus encoding.

⟨a†lal′⟩ ⟨a†lala
†
l′al′⟩

|CATn⟩ n |ψl|2δll′ n(n− 1) |ψl|2δll′
|Fn⟩ nψ∗

l ψl′ n(n− 1) |ψl|2|ψl′ |2
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