
Optimized higher-order photon state classification by machine learning

Guangpeng Xu,1 Jeffrey Carvalho,1 Chiran Wijesundara,1 and Tim Thomay1, a)

Department of Physics, University at Buffalo, State University of New York, Buffalo, NY,

14260, USA

(Dated: 26 April 2024)

The classification of higher-order photon emission becomes important with more methods

being developed for deterministic multiphoton generation. The widely-used second-order

correlation g(2) is not sufficient to determine the quantum purity of higher photon Fock

states. Traditional characterization methods require a large amount of photon detection

events which leads to increased measurement and computation time. Here, we demon-

strate a Machine Learning model based on a 2D Convolutional Neural Network (CNN)

for rapid classification of multiphoton Fock states up to |3⟩ with an overall accuracy of

94%. By fitting the g(3) correlation with simulated photon detection events, the model ex-

hibits efficient performance particularly with sparse correlation data, with 800 co-detection

events to achieve an accuracy of 90%. Using the proposed experimental setup, this CNN

classifier opens up the possibility for quasi real-time classification of higher photon states,

which holds broad applications in quantum technologies.
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I. INTRODUCTION

Recently, quantum light has been undergoing rapid advancements and playing a pivotal role

in the development of quantum technologies1–5. At the quantum level, the photon nature of light

is characterized as discrete packets of energy6,7, offering remarkable precision, sensitivity, and

enhanced communication security beyond what classical optics can achieve8–10 and thereby fa-

cilitating the application of quantum systems in diverse fields such as metrology11–14, computer

science15–17, and communication18–21.

However, due to the typically low emission rate and detection inefficiency, experimental

observation on quantum emitters often necessitates a lengthy experiment time and produces

large datasets with a high level of noise22–24, which renders the fitting process computationally

expensive25,26. The identification of multiphoton states is commonly addressed by assembling

multiple single-photon detectors that are time-correlated27–31. This exacerbates the challenge

of data analysis, as traditional computational techniques like the Levenberg-Marquardt (L-M)

Method32 require extensive co-detection events to achieve a satisfactory accuracy26.

Over the past decade, novel data-driven formalisms such as Machine Learning (ML) have in-

troduced new possibilities in quantum photonics experiments33–37. Specialized in analyzing large

and sparse datasets, ML models have provided speedup by orders of magnitude in certain quan-

tum measurements38,39, and show potential in overcoming the inherent limitations of conventional

fitting methods particularly in the low-photon flux regime40. For example, a Convolutional Neural

Network (CNN)-based algorithm was developed for rapid classification of single photon emitters

in the NV center of nanodiamonds41. Compared to the L-M method, the accuracy is improved

with the CNN model by recognizing subtle features extracted from sparse correlation data. A sin-

gle artificial neuron model was developed to reduce the required average number of photons down

to less than one for distinguishing thermal light from coherent light in low-light measurements42.

A study by Cortes et al43 demonstrated that employing statistical learning methods for the re-

construction of g(2) data can substantially accelerate the data acquisition process from few-shot

measurements.

While considerable efforts were directed towards single-photon emitters44–47, the emission

of multiple, indistinguishable photons also becomes favorable for quantum systems48,49, mak-

ing them promising candidates to exert further influence on various quantum applications such as

Boson sampling50. As the commonly adopted g(2) correlation proves inadequate when detecting
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the photon "superbunching" in higher Fock states, it necessitates the introduction of higher-order

correlation49,51,52.

In this study, we present a 2D CNN based ML model for rapid classification of multiphoton

states, including photon Fock states up to |3⟩ and coherent states of laser emission. The time-

dependent photon detection data are simulated, and by mixing each Fock state with the corre-

sponding coherent state, the quantum purity of emitters can be manipulated. g(3) correlation is

performed on the simulation data and fitted using a supervised machine learning model to return

the photon state classification results. Through model training and optimization, the average accu-

racy of classification surpasses 90% for all the Fock states, with an overall accuracy of 94%. The

model exhibits effective performance with sparse datasets, with only 800 photon detection events

to achieve a 90% average accuracy. Finally, we propose an experimental setup for quasi-real time

photon state classification accelerated by the ML model. For the first time, a 2D CNN algorithm

is employed for identifying multiphoton states and shows enhanced accuracy and data efficiency.

II. METHODS

To simulate photon correlation experiment within an extended Hanbury Brown and Twiss

(HBT) scheme53 shown in Fig.7, the Monte-Carlo Method is used to generate photon detection

events with the arrival timestamps. The simulation model consists of three primary parts: photon

stream emission, transport, and detection as the output. This model is built upon the TensorFlow

Probability (TFP) extension and the TensorFlow Distribution (TFD) probabilistic model54.

To emulate various quantum pureness of emitters and experimental factors that cause deviation

on g(k)(0), we incorporate each Fock state |n⟩ with a corresponding coherent state |α⟩, with both

states sharing the same average photon number. The expectation of photon number for a coher-

ent state is given by ⟨α|n̂|α⟩ = |α|2, hence α =
√

n.55 A pure coherent state with a temporally

random sequence of photons produces the correlation g(k)(0) to always be 1, implying no corre-

lation between the detection events6. When mixing a Fock state and the corresponding coherent

state, the variance of the photon number is increased while the average photon number remains the

same. Hence the photon distribution of such mixture lies between a delta function characterizing

the Fock state, and a Poissonian distribution for the coherent state. And the g(k)(0) values of the

superposition state is calculated by Eqs. (1):
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FIG. 1. Simulation of HBT experiment, g(3) correlation algorithm and rapid Fock state classification based

on Machine Learning. (a) Schematic view of Monte-Carlo simulation. The categorical function produces a

list of label markers distinguishing between quantum light and laser, where in this instance, "n" represents a

photon at Fock state |2⟩, while "α" means a coherent state |α⟩ with average number of photons set to 2. The

portion of quantum light labels and laser labels in the list is determined by the quantum light probability,

set here at 50%, indicating an equal mixture of both. Each marker is then replaced by the actual photon

number on the second row, depending on its distribution: each quantum light "n" is replaced by 2, from its

delta distribution shown by the red plot on the right; while each "α" is replaced with an integer generated

by a Poissonian distribution function with an average of 2, as illustrated by the blue plot. (b) g(3) correlation

algorithm. In the purple rectangle, the second row with photon numbers is equally split into three rows

using a multinomial function, representing photon events detected by three virtual detectors labeled as ’d1’,

’d2’ and ’d3’. The yellow lines linking detection events from different detectors illustrate the algorithm of

g(3) correlation associated with a particular data point marked in purple on the g(3) heat map to the right.

Here, τ12 and τ13, representing the time differences between detector 1 and 2, and detector 1 and 3, are -1

and 2, respectively. (c) CNN-based Fock state classification. The g(3) correlation results are fed into a CNN

model that is pre-trained with similar simulated data, and the model yields the classification result.

g(k)(0) =
1
nk

n!
(n− k)!

p+(1− p), n ≥ k (1a)

g(k)(0) = 1− p, n < k (1b)
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where n means the photon Fock state, p represents the probability of the Fock state in the

mixture, and (1− p) denotes the portion of the coherent state. By manipulating the contribution

of each state, the lower or upper bound of g(k)(0) can be reached, representing an ideal quantum

emitter at state |n⟩ or a coherent source at state |α⟩ with α =
√

n, respectively.

Fig.1 illustrates the simulation of an imperfect |2⟩ state emitter as an example. To simulate

the photon emission, the TFD Categorical function is used to generate a list of light source labels,

shown by the top row in Fig.1 (a). Each label represents either a quantum emission in the |n⟩

state (red), or coherent laser emission |α⟩ (blue) with an average photon number of n. While for

an ideal quantum emitter no laser labels will be included, non-ideal quantum emitters contain a

mixture of both quantum emission labels and laser labels that are randomly distributed within the

list. The quality of quantum emitters can be assessed by the portion of quantum emission labels in

the list, controlled by a simulation parameter called "quantum light probability" (QLP) that ranges

from 0 to 1. In practical experiments, the significance of QLP reflects a cumulative effect from

various factors such as the background signal of classical light, that impact the correlation result

g(k)(0). Shown in Fig. 1, the |2⟩ state emitter with a QLP of 0.5 results in an even distribution of

half quantum emission labels and half laser labels. Each light label is then replaced by an integers

to represent the number of photons in each emission, illustrated by the second row in Fig.1 (a).

For quantum emission labels, it’s straightforward to fill in an integer 2 (in red) to represent the

emission of two identical photons from the |2⟩ emitter. The laser labels are substituted by using

the TFD Poisson function, which generates integers (in blue) in a Poissonian distribution with the

average value of 2. This adjustment comes from the photon number for each emission from a

coherent laser follows a Poissonian distribution shown by the blue plot on the right of Fig.1 (a),

instead of being a constant for quantum emission represented by the red plot.

With the substitution of photon numbers, the emulated photon stream is fed into a virtual multi-

port beam splitter using the TFD multinomial function. Photons in each emission packet are split

into three paths with multinomial distribution, as shown in the purple rectangle in Fig.1 (b). The

split photon events are recorded by virtual photon detectors (noted by "d1", "d2" and "d3" in

Fig.1 (b)) and output as simulation results, including the number of photons detected each time,

along with the corresponding timestamp. For convenience and consistency, we assume all light

emitters are periodically excited by a pulsed source, with the pulse period serving as the unit

of time throughout this simulation. For simplicity, the photon number of each detection can be

resolved by the virtual detectors. Experimental imperfections such as optical loss, dark counts and
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detection inefficiency are not directly simulated. As these imperfections can be addressed either

through post-selections with respect to the triggering signal or through the use of low-loss photon

detectors56,57, without significantly altering the overall photon distribution. The total number of

detection events is another parameter that represents the experiment time and determines the data

sparsity of g(3) correlation.

g(3)(τ12,τ13) =
⟨n1(t)∗n2(t + τ12)∗n3(t + τ13)⟩

⟨n1⟩ ∗ ⟨n2⟩ ∗ ⟨n3⟩
(2)

The detected photon events are analyzed using the g(3) function, by Eq. (2). The time differ-

ences τ12, and τ13 between detector 1 and 2, and detector 1 and 3, respectively, are variables to

compute the normalized g(3)(τ12,τ13) correlation, shown by the heat map on the right of Fig.1 (b).

The data point at (τ12 =−1,τ13 = 2) marked in purple on the heat map is chosen to demonstrate the

g(3) algorithm depicted with the yellow stripes in Fig.1 (b). With these specific time differences,

the d2 vector is shifted forward by 1 unit relative to d1, while the d3 vector is shifted backward

by 2 units. The dot product of the three vectors is divided by the vector length and normalized by

its mean, shown by the purple-marked pixel in Fig.1 (b). The g(3) function implements the above

algorithm for all τ12 and τ13 variables, ranging from -16 to 16 with an interval of 1, and returns

a two-dimensional matrix of g(3) correlation results. A 2D CNN model is developed for photon

state classification based on the correlation results, shown in Fig.1 (c). In the given example, the

|2⟩ state quantum emitter is successfully identified among four options: laser within a coherent

state and quantum emitters in |1⟩, |2⟩, and |3⟩ states, respectively.

According to Eqs. (1), to characterize a multiphoton Fock state |n⟩, a k-th order correlation with

k > n is required to ensure the central point g(n)(0) remains zero. Although the presented algorithm

is extensible for high-order correlations, due to the rapid scaling of computational complexity with

the order of correlation26, g(3) is chosen for categorizing and characterizing multiphoton states

within a manageable computation time. Taking the time difference τ as the variable for g(2), the

g(3) function has two variables τ12, and τ13 represented by x and y axes, being the time differences

between detector 1 and 2, and detector 1 and 3, respectively. The third time difference τ23, which

can be recursively derived from the other two as τ23 = τ13 − τ12, is not considered as a variable in

this context.

Table 1 provides theoretical g(2)(0) and g(3)(0) values for Fock states |1⟩, |2⟩ and |3⟩ when

mixed with corresponding coherent states |α⟩. The quantum light probability (QLP) represents
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|1⟩ |2⟩ |3⟩

Quantum Light

Probability
g(2)(0) g(3)(0) g(2)(0) g(3)(0) g(2)(0) g(3)(0)

0.00 1.00 1.00 1.00 1.00 1.00 1.00

0.25 0.75 0.75 0.88 0.75 0.92 0.81

0.50 0.50 0.50 0.75 0.50 0.83 0.61

0.75 0.25 0.25 0.62 0.25 0.75 0.42

1.00 0.00 0.00 0.50 0.00 0.67 0.22

TABLE I. Theoretical g(2) and g(3) values of Fock states when mixing with the corresponding coherent

states. The quantum light probability indicates the portion of quantum light in the simulation when it is

mixed with a corresponding coherent state. A probability of 0.5 (in green) signifies a light source composed

of equal parts quantum light and laser, which is set to be the critical point distinguishing between a quantum

emitter and a coherent laser. Values below 0.5 (in blue) or above 0.5 (in red) are labeled as a laser or

quantum light, respectively.

the portion of Fock states in the mixture, e.g., QLP = 1 denotes an ideal quantum state, while

QLP = 0 is for a coherent state. During the simulation, coherent states with an average photon

number of three or less are modeled, which is often achieved by strongly attenuating a classical

source, such as a laser, when measuring quantum emission58. The g(3) results in Fig.2 align well

with the g(3)|2⟩ values in Table 1: Firstly, the zero-delay value g(3)|2⟩ (0) is 0, as the order of correlation

3 is greater than the value of the Fock state 2. Secondly, the data within the cross pattern and the

anti-diagonal that are in green, approaches 0.5 due to the special values of time differences. For

the vertical (or horizontal) stroke of the cross, the time difference τ12 (or τ13) is 0. Meanwhile, for

the anti-diagonal (bottom left to top right), the two time differences are equal, signifying that τ13

is 0. With one time difference being zero, the g(3) correlation can be treated to be equivalent to

a g(2), which correlates only two detectors with one variable of time difference. Hence the value

of 0.5 on the heatmap can be explained with g(2)|2⟩ (0) = 0.5. Finally, the remaining data points are

normalized with respect to the average photon number, typically resulting in a normalization factor

of 1. To better visualize the 2D g(3) matrix, three cross-sections marked with colored arrowheads

on the heatmap are plotted bar charts on the right side of Fig.2. Each represents the evolution of

the g(3) as a function of only τ12), with τ13) being set at special values: τ13 =−τ12 for black bars,
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FIG. 2. An example of g(3) correlation results from simulated data for a |2⟩ Fock state without mixing

with a coherent state. Left: Normalized g(3) correlation in a heat map, as a function of τ12 and τ13, which

represent the time differences between detector 1 and 2, and detector 1 and 3, respectively. Right: 2D bar

plots of g(3) correlation, as a function of only τ12, while τ13 is set to be either negative τ12, 0 or equal to

τ12, corresponding to black, magenta and yellow bars. The trace of each bar plot is indicated by the arrows

within the same color on the heat map.

τ13 = 0 for purple, and τ13 = τ12 for yellow, corresponding to the main diagonal, horizontal stroke

in the cross pattern, and the anti-diagonal, on the heatmap.

In contrast to the second-order correlation, which has only one critical point g(2)(0) for cat-

egorization, the third-order correlation g(3) features multiple critical points: one at g(3)(0), and

multiple at g(3)(0,τ ̸= 0), effectively serving as g(2)(0). In accordance with Eqs. (1), the complete

g(3) cross correlation enables the identification of unknown Fock state emission and the assess-

ment of its quantum purity. Even for Fock states higher than |2⟩, although the g(3)(0) is no longer

0, it can still be determined from the g(3)(0) and g(2)(0) values. Meanwhile, the dynamics of exci-

tons can be further explored through other correlation algorithms, such as two-time second-order

autocorrelation59. Additionally, the two-dimensional nature of the g(3) data proves advantageous

for CNN models that are adept at extracting spatial features from images60,61.

While the g(3) critical values can typically be determined using normal fitting methods, the

experimental data often exhibits significant sparsity due to the limited number of photon detection

events, entailing the introduction of advanced data fitting techniques. To efficiently categorize
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FIG. 3. Schematics of the CNN model. Conv2D is for 2D convolution layer, MaxPool is for 2D max

pooling layer, AvePool is for 2D global average pooling layer and x2 represents a layer or sequence of

operations (in a bracket) that is repeated twice. The shape of output data from each layer is written in the

parentheses. Dashed lines illustrate the connection between input data points and respective output data

during layer operations. The initial input data consists of g3 correlation results in a 2D matrix, shown by the

white cells, while red cells represent zero paddings. The Conv2D layer produces 3D matrices of data with

a depth of 64, equal to the number of convolutional kernels (blue dashed lines represent one of the kernels).

The data shape is condensed to one dimension at the AvePool layer, and the final dense layer outputs a score

vector, indicating the confidence of predictions for each light source category.

photon states by fitting the g(3) data, a machine learning model is developed based on the open-

source API Keras62. The model architecture and layer operations are illustrated in Fig.3. The

model mainly comprises 2D convolution layers (Conv2D), 2D max pooling layers (MaxPool), 2D

global average pooling layers (AvePool) and dense layers. The output shape of each layer is noted

in parenthesis.

Before passing to any layers, the correlation results are truncated and rescaled to improve the

model’s performance. The first 32 elements in each dimension of the original 33x33 g(3) matrix

are retained so that the truncated matrix, with a shape of 32x32, aligns with the preference of CNN

layers for input data dimensions that are multiples of 2. In cases of simulation with few-shot data,

where normalized g(3) results may contain extremely high values, the rescaling ensures all the g(3)

elements fall within the range of 0 to 1. The preprocessed datasets, depicted by the white square

cells in the first diagram of Fig.3, have a spatial dimension of 32x32 and a depth of 1.

As the core of the CNN model, a 2D convolutional layer connecting to the input layer extracts
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the spatial features. The input data is zero-padded on the outer border, as indicated by the red

square cells in Fig.3, to prevent rapid degradation of the information at original borders, and

maintain the output dimension of the Conv2D layer at 32x32. Each Conv2D layer contains 64

convolutional kernels and each kernel is a 3x3 matrix that spatially slides across the data array with

a step of 1. The blue dashed boxes in Fig.3 illustrate the sum product calculation of a convolutional

kernel, with the dashed lines connecting to the cells representing the results. The above operation

is performed by all the 64 kernels, with each kernel capturing an unique feature from the input,

producing the Conv2D output with a depth of 64. The zero-padding is also applied to the Conv2D

output data to maintain the layer dimension. Two of Conv2D layers are sequentially stacked

and followed by a 2D max pooling layer, which calculates the maximum values of each pooling

patch to spatially downsample the data dimension. Three patches are depicted by the red dashed

boxes in Fig.3 for visualization, and this process is repeated for all the 64 slices in depth. The

layer dimension is halved with a step size of 2 for max pooling, resulting in an output shape of

16x16x64. The number of trainable parameters is significantly reduced by the downsampling, so

that a relatively low model capacity is maintained without losing essential information63. The

architecture enclosed in the square bracket in Fig.3, composed of two consecutive convolutional

layers and one MaxPooling layer, is executed twice for learning hierarchical features.

The following global average pooling layer computes the average for each slice in depth, shown

by the grey cells on the figure. Each average reflects the importance of an extracted feature from

the neural network. This array of feature scores is analyzed by two dense layers, with each neuron

fully connected to all the neurons from the previous layer. The output layer computes scores

for four potential photon states: the coherent state, as well as Fock states |1⟩, |2⟩ and |3⟩. Each

score indicates the model’s confidence in predicting a specific photon state, and the state with the

highest score is determined as the outcome. As the QLP represents the deviation of correlation

results from the theoretical values of an ideal |n⟩ quantum emitter due to experimental factors, the

exact value is not included in the machine learning outcome. Instead, by discretizing QLPs into

bins, the regression task is reformulated into a classification problem which aligns better with the

CNN’s specialty64.

This model consists of 11 layers (excluding the input layer) and contains over 150,000 trainable

parameters. Except for the dense layers, batch normalization is applied to the output of each layer

(not shown in the diagram). The Adam method is chosen as the model optimizer and all CNN

layers use ReLU (Rectified Linear Unit) as the activation function. The g(3) data is simulated
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for |1⟩, |2⟩ and |3⟩ Fock states, with two variable parameters: QLP and the number of detection

events. The QLP has 21 possible values ranging from 0 to 1 with intervals of 0.05, to represent the

quantum pureness of the emitter. Qualified quantum emitters require a QLP greater than or equal

to 0.5, while a QLP less than 0.5 will be categorized as a coherent state. The number of detection

events that simulates the experiment time ranges from 100 to 100,000. Values from 100 to 10,000

are taken at intervals of 100, while values from 10,000 to 100,000 are taken at intervals of 1000,

totaling 190 values. A total of 11,970 cases are simulated, with 100 measurements for each case,

resulting in 11,970,000 g(3) correlation datasets. 70% of the datasets are used for model training,

with a batch size of 32 and a single epoch, given the substantial data that doesn’t necessitate

iterations. 20% of the data are validation sets for hyperparameter tuning, while the remaining 10%

is used for testing the accuracy. Considering the study’s emphasis on improving fitting accuracy

for sparse data, the model’s evaluation primarily relies on the required number of photon detection

events to achieve satisfactory predictions, instead of computational performance metrics such as

computation time.

III. RESULTS

The average accuracy of classification results is shown in Figure 4, as a function of variables

including the photon state, QLP, and the number of detection events. The left bar chart displays the

average accuracy for all cases in each photon state, with the coherent state plotted in blue, and the

Fock states |1⟩, |2⟩ and |3⟩ are in red. An accuracy of 90% is achieved for all photon states, with

classification of the coherent state and Fock state |3⟩ being higher compared to |1⟩ and |2⟩. The

middle and right plots describe the accuracy over all the photon states as functions of QLP and the

number of events. A significant drop in accuracy is observed when the QLP approaches 0.5. This is

due to the QLP = 0.5 is defined as the threshold distinguishing between quantum light (Fock state)

labels and non-quantum light (coherent state) labels. Near this decision boundary, the similarity

in the correlation results posts a challenge for accurate classification, which is further indicated in

Fig.5. As shown on the right, the average accuracy across all light categories improves from 72%

to 95% as the number of simulation events rises from 100 to 10,000. The accuracy boundary of

90%, achieved with only 800 events, is depicted by the green vertical line.

To explicitly illustrate the model’s performance on a case-by-case basis, Fig.5 presents accuracy

heatmap for the three Fock states, where each pixel is colored according to the average accuracy of
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FIG. 4. Accuracy of the CNN-based photon state classifier. Left: Overall accuracy for each light source

category. Blue: Laser with a coherent state. Red: Quantum light Fock states. Middle: Averaged accuracy

over all light source categories as a function of quantum light probability, which indicates the portion of

quantum light in the simulation when it is mixed with a corresponding coherent state. A probability of

0.5 signifies a light source composed of equal parts quantum light and laser, while 0.0 or 1.0 indicates a

pure laser or pure quantum light, respectively. Right: Averaged accuracy over all light source categories

as a function of number of detection events. The number of detections are in a logarithmic scale for better

visualization. The green vertical line indicates the 90% accuracy boundary.

all cases with a specific QLP and number of events. The accuracy of coherent state classification

is included in each Fock state where QLP is less than 0.5, instead of a separate plot. In general,

the accuracy is significantly enhanced with an increasing number of events across most QLPs. A

consistent accuracy drop occurs at the decision boundary with QLP approaching 0.5, which aligns

with the trend in the middle figure of Fig.4. For all three cases, the performance decreases at

the left of the green line (the 90% overall accuracy boundary from Fig.4, right), where datasets

contain fewer detection events and have QLPs higher than 0.5. While a relatively low accuracy

seems reasonable with few-shot data, the "vertical" asymmetry of accuracy comes from the large

data sparsity and uncertainty with higher QLPs. In photon statistics, coherent states with larger

variance are more likely to emit higher photon states6, which produces recognizable features in

the correlation. For higher QLPs, the occurrence of coherent states drops down and consequently,

leading to less distinctive features in the correlation results for recognition. As the number of

simulation events increases, the g(3) results tend to stabilize for both coherent states and Fock

states, which leads to quick disappearance of the triangular region with low accuracy.

For the |1⟩ case, the low-accuracy triangle vanishes earlier than |2⟩ and |3⟩ with growing de-
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FIG. 5. Accuracy distribution of photon Fock state classification, as a function of quantum light probability

and number of detections for each Fock state case. From top to bottom: Accuracy distributions for light

sources, comprising |3⟩, |2⟩, or |1⟩ Fock states of quantum light, respectively, each combined with its

corresponding coherent state |α⟩, where the average photon number is 3, 2, or 1, respectively. For each

case, a quantum light probability of 0.5 signifies a light source composed of equal parts quantum light

and laser, while 0.0 or 1.0 indicates a pure laser or pure quantum light, respectively. Green vertical line:

boundary of 90% averaged accuracy over all light source categories, at 800 detection events.

tection events. According to Table 1, the |1⟩ state exhibits larger variations in g(2)(0) and g(3)(0)

values with changing QLP, which contributes greatly to the CNN classification. Conversely, the

smaller differences for |2⟩ and |3⟩ make them less conducive for recognition with fewer events,

resulting in lower rate of increase in accuracy. At the decision boundary with a QLP of 0.5, the

accuracy of the |3⟩ state exhibits a higher rate of increase compared to |1⟩. This is due to the

relatively higher number of photons from the |3⟩ state facilitates pattern recognition by the model

and consequently requires fewer events for accurate classification.

For the |2⟩ state, the accuracy shows a decrease with more detection events, particularly at in-

termediate QLPs. Some mispredictions of coherent states can be attributed to the confusion near

the decision boundary, as mentioned earlier, the majority of mispredictions involve the |3⟩ state,

potentially caused by overfitting65,66. Given that |2⟩ and |3⟩ exhibit similar values of g(2)(0), the

decision boundary g(2)(0) = 0.83 (determined by Eqs. (1)) for distinguishing |3⟩ and its coher-
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FIG. 6. The confusion matrix of the classifier in a 3D bar plot. The correct predictions are represented

by the diagonal elements in green, while the off-diagonal elements, indicating incorrect predictions, are

depicted in yellow. Blue labels: Laser with a coherent state. Red labels: Quantum light Fock states.

ent state is misused for identifying |2⟩. Consequently, for the |2⟩ cases with g(2)(0) greater than

0.83 (or the QLP exceeds 0.3), misclassification as |3⟩ results in a noticeable drop in accuracy,

even with increased numbers of detection events. While they possess different g(3)(0) values, the

contribution of this single element to the classifier is overshadowed by the abundance of g(2)(0) el-

ements in the correlation matrix. Given that typically low photon co-detection events are involved

in quantum correlation experiments58, this paper primarily focuses on datasets containing fewer

than 10,000 detection events.

To visualize the prediction distribution over photon states, a 3D bar chart of the confusion ma-

trix is shown in Fig.6. The diagonal elements in green indicate the average accuracy for each state,

while the off-diagonal elements in yellow describe the distribution of misclassification. The high-

est accuracy achieved is 98.7% for the coherent state, while the accuracy for Fock states remain

above 90%. This is attributed to more datasets are simulated for coherent states, which boosts the

ML algorithm during the training process. The model showcases a balanced performance in recog-

nizing the Fock states, with the most common incorrect prediction being the coherent state, owing

to their similarity near the decision boundary. Another notable misclassification is observed be-

tween |2⟩ and |3⟩, which arises from the minor difference in the g(3)(0) values as discussed earlier.

Other elements in the error matrix are below 0.1% and can be considered negligible.
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FIG. 7. Experiment layout for measuring quasi real-time Fock state distribution enabled by Machine

Learning. (a) Light sources including: quantum light emitters, specifically two-level systems in a semicon-

ductor quantum dot, with potential photon Fock states such as |1⟩ or |2⟩ (red dots); an attenuated laser in a

coherent state |α⟩ (blue dots) with Poissonian photon distribution. (b) Optical setup. The photon emission

is coupled into an optical fiber, then equally split into four paths by the 50:50 Fiber Beam Splitter (BS).

Each path leads to a Avalanche Photodiode (APD) that is connected to the Correlation Board (CB). (c)

Correlation data will be analyzed by an optimized CNN model in the Tensor Processing Units (TPU) that is

a specialized hardware accelerator, which returns the predicted light source category.

IV. CONCLUSION

In contrast to the fitting methods that can be implemented directly, the machine learning algo-

rithm requires an additional training phase prior to data analysis. However, this tradeoff can yield

substantial enhancement of fitting accuracy and efficiency39. By achieving an average accuracy

of 90% with only 800 simulated events, the ML model demonstrates the capability for reliable

classification without requiring lengthy measurement time. Another advantage of ML algorithms

is their ability to be optimized for recognizing specific data pattern67. As 2D CNNs have been ex-

tensively developed for recognizing spatial features61, the integration of g(3) with 2D CNN holds

great potential for a novel quantum light classifier, especially in the multiphoton regime.

With Figure 7, we propose the implementation of the 2D CNN model in quasi real-time photon

state distribution measurements. Examples of different light emitters are included in Fig.7 (a).
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The model on the top shows single-photon emission from the exciton recombination in a two-level

system such as a semiconductor quantum dot. The red dots represent the single photons emitted

periodically in the temporal regime, with the photon Fock state labeled as |1⟩. The middle section

illustrates a two-photon emitter that emits two indistinguishable photons represented by the red

dots in pairs upon each excitation, with a Fock state of |2⟩. The photon stream from a continuous-

wave laser is shown at the bottom, where each emission occurs randomly in time, exhibiting a

coherent photon state |α⟩. These listed light sources are coupled into an optical fiber system with

an HBT configuration, indicated by the dark blue wavy lines in Fig.7 (b). The incident beam path

is evenly split into four output paths by the 50:50 beam splitters (BS). Each output is attached

to an avalanche photodiode (APD) that records the photon arrival time and transmits the data

to the correlation electronics (CB). g(3) correlation data is computed online and fed into a Tensor

Processing Unit (TPU), serving as a machine learning hardware accelerator. The ML model is pre-

trained and optimized to provide real-time photon state classification results, as shown in Fig.7 (c).

With the specialty of rapid fitting on sparse datasets, the measurement time on individual samples

can be substantially reduced, and immediate feedback from the ML analysis enables real-time

parameter optimization.

With the development of ML software54,62,68, further enhancement on the presented prototype

becomes possible. For example, 2D locally-connected layers can be a promising substitute for the

CNN layers for capturing the pattern (shown on Fig.2 left) that are spatially fixed in correlation

data. In these layers, the parameter-sharing scheme between convolutional kernels is relaxed,

which facilitates the recognition of specific structures69. However, the model’s capacity will be

increased by incorporating multiple such layers. Moreover, an ensemble of similar models can be

developed, with each model trained for specific cases, to enhance the overall performance.

The presented simulation model can be tailored to simulate broader scenarios involving random

coherent lights with low average photon numbers mixing with quantum emission. This adaptation

is particularly relevant as quantum light detection often involves laser emission, as the excitation

source of quantum emitters. Additionally, this model can be further modified to compute dy-

namic correlations, such as the conditional auto-correlation function (CACF) for studying heralded

photons70. As the landscape of quantum emitters has been enriched by the emerging 2D materials

with functional heterostructures and satisfactory fabrication efficiency such as Graphene71, TMD

(Transition Metal Dichalcogenides)47,72,73, and Moire superlattices74, the scalability for photonic

circuits is often impeded by the rare and random occurrence of quantum emitters47, which are
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considered from defects or strains in these atomically thin layers75,76. This study offers insights

into Fock state mapping on 2D materials, rapidly determining the spatial location, and assessing

the quantum purity of potential quantum emitters.

Recently, novel methods for multiphoton preparation have been demonstrated. This letter77

proposed a theoretical model of deterministic generation of large Fock states up to |100⟩ based

on the resonant interaction between a coherent state with two-level systems. The experimental

generation of eight indistinguishable photons using temporal-to-spatial demultiplexing with single

photon sources was presented78. The proposed g(3) correlation - 2D CNN combination introduces

new possibilities for categorizing and characterizing multiphoton states.

Additionally, this approach opens up the possibility for optimizing photosynthesis through real-

time quantum feedback. As the research79 has shown that the implantation of biocompatible quan-

tum dots (BQD) enables quantum measurements for monitoring intracellular environments, effec-

tively overcoming the persistent challenge of strong autofluorescence background in traditional

spectroscopy of plant cells80.

In this letter, we present a machine learning model for quasi real-time categorization of photon

states with g(3) correlation, and propose the implementation in experiments. This methodology

introduces new feasible solutions for identifying quantum emitters and holds broad applications in

quantum metrology within the field of nanophotonics.

REFERENCES

1W. Zhang, D.-S. Ding, Y.-B. Sheng, L. Zhou, B.-S. Shi, and G.-C. Guo, “Quantum Secure

Direct Communication with Quantum Memory,” 118, 220501.
2S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface

with sub-second lifetime,” 10, 381–384.
3S. Mittal, E. A. Goldschmidt, and M. Hafezi, “A topological source of quantum light,” 561,

502–506.
4X. He, H. Htoon, S. K. Doorn, W. H. P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chas-

sagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” 17, 663–670

().
5J.-Y. Hu, B. Yu, M.-Y. Jing, L.-T. Xiao, S.-T. Jia, G.-Q. Qin, and G.-L. Long, “Experimental

quantum secure direct communication with single photons,” 5, e16144–e16144.

17

http://dx.doi.org/10.1103/PhysRevLett.118.220501
http://dx.doi.org/10.1038/nphoton.2016.51
http://dx.doi.org/10.1038/s41586-018-0478-3
http://dx.doi.org/10.1038/s41586-018-0478-3
http://dx.doi.org/10.1038/s41563-018-0109-2
http://dx.doi.org/10.1038/s41563-018-0109-2
http://dx.doi.org/10.1038/lsa.2016.144


6A. Fox, Quantum Optics: An Introduction, Oxford Master Series in Physics (OUP Oxford).
7A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen

Gesichtspunkt,” 322, 132–148.
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