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Abstract—Quantum Generative Adversarial Networks
(qGANs) are at the forefront of image-generating quantum
machine learning models. To accommodate the growing demand
for Noisy Intermediate-Scale Quantum (NISQ) devices to train
and infer quantum machine learning models, the number of
third-party vendors offering quantum hardware as a service is
expected to rise. This expansion introduces the risk of untrusted
vendors potentially stealing proprietary information from the
quantum machine learning models. To address this concern
we propose a novel watermarking technique that exploits the
noise signature embedded during the training phase of qGANs
as a non-invasive watermark. The watermark is identifiable
in the images generated by the qGAN allowing us to trace
the specific quantum hardware used during training hence
providing strong proof of ownership. To further enhance the
security robustness, we propose the training of qGANs on a
sequence of multiple quantum hardware, embedding a complex
watermark comprising the noise signatures of all the training
hardware that is difficult for adversaries to replicate. We also
develop a machine learning classifier to extract this watermark
robustly, thereby identifying the training hardware (or the suite
of hardware) from the images generated by the qGAN validating
the authenticity of the model. We note that the watermark
signature is robust against inferencing on hardware different
than the hardware that was used for training. We obtain
watermark extraction accuracy of 100% and ∼ 90% for training
the qGAN on individual and multiple quantum hardware setups
(and inferencing on different hardware), respectively. Since
parameter evolution during training is strongly modulated by
quantum noise, the proposed watermark can be extended to
other quantum machine learning models as well.

Index Terms—Quantum Machine Learning, Generative Adver-
sarial Network, Watermarking, Quantum Security

I. INTRODUCTION

Generative Adversarial Networks (GANs) are a pivotal
neural network architecture used in computer vision [1]. A
classical GAN uses two neural networks, a generator and a
discriminator. The role of the generator is to create synthetic
data that mimics real data from the training dataset, while the
discriminator evaluates this data against the training dataset
to determine its authenticity. This method of training helps
generate new data with the same statistics as the training
dataset. Classical GANs find numerous multiple real-world
applications like text-to-image generation [2]. They also help
in other tasks like increasing image resolution [3], and image
inpainting [4] to name a few. With the increasing complexity of
GANs, research has shifted towards optimizing their training
and design with the help of quantum computers. Recent

TABLE I
PRICING COMPARISON FOR EXECUTION ON REAL QUANTUM HARDWARE

Hardware Provider QPU Rate(per hr)
IonQ Aria $7000

QuEra Aquila $2500
Rigetti Aspen-M-3 $3000
IBM Eagle $5760 ($1.6/s)

research indicates [5] that quantum GANs (qGANs) may have
exponential advantages over classical GANs in optimizing
the number of parameters in the generator and discriminator
models.

To cope with the high demand for designing and training
quantum machine learning (QML) models quantum hardware
providers have taken the same route as the classical machine
learning engineers [6], i.e., providing quantum machine learn-
ing hardware as a service to quantum circuit designers for
training and inferencing complex QML models like qGANs.
In the near future, the number of third-party vendors providing
quantum hardware as a service is bound to increase which will
reduce the overall cost of training QML models. Many third-
party quantum cloud service providers are evolving around
the globe some of which are from less trustworthy countries
[7]. Such quantum service providers may offer computing at
a cheaper rate in addition to readily available hardware. Both
of these factors could be motivating for users who would like
to obtain results quickly at a cheaper cost to boost their profit
margins. However, owing to the importance of high-quality
training datasets and the complex circuit design of the qGAN
models, untrusted third-party vendors or rogue adversaries
will be incentivized to steal trained qGAN models, leaking
sensitive data from the training dataset or use the stolen models
in an unauthorized way.

A. Motivation

A trained qGAN circuit possesses many intellectual prop-
erties (IP) such as the quantum circuit model architecture,
the trained model, and weights, since developing a quantum
circuit design and training it on quantum hardware requires
considerable time and resources (Table I).

During the inferencing phase, if this trained qGAN model
is sent to an untrusted quantum cloud provider—or even
falls into the hands of a rogue adversary within a trusted
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Fig. 1. The plot describes the fluctuation in the training of the same parameter
in the quantum generator of the qGAN while training on ideal hardware
(noiseless), and different noisy quantum hardware - IBM Athens(5q), IBM
Jakarta(7q), IBM Kolkata(27q), IBM Washington(127q).

provider—it risks being stolen [8]. Counterfeit qGAN models,
being inexpensive to deploy and operate, can yield signif-
icant profits, thereby enticing untrusted vendors and rogue
adversaries to engage in IP theft. The motivation to steal
these models is strong because preparing a training dataset
is costly, and the training process on quantum hardware is
both time-intensive and expensive. Without effective security
measures, the incidence of counterfeit models could surge,
making it challenging to distinguish between genuine and
counterfeit models and potentially destabilizing the quantum
service market. This issue is analogous to the counterfeiting of
hardware chips by untrusted fabrication houses and the theft of
classical machine learning models by untrusted classical cloud
providers. Various strategies have been developed to combat
model theft to enhance the security of the classical GANs
by embedding external signatures in the generated images to
support steganography [9]. However, these traditional defense
methods involving image steganography may prove ineffective
for images produced by quantum adversarial networks. The
intrinsic noise in quantum hardware could result in data loss
while embedding the signature, thereby risking its integrity
and effectiveness.

B. Contribution

In the Noisy Intermediate-Scale Quantum (NISQ) era of
quantum devices, all quantum computers have noise and
the noise inherent to quantum hardware is unique to their
configurations in terms of the number of qubits and basis
gate sets. Therefore, we propose a watermarking solution to
protect the IP of a qGAN based on the following observations
of a NISQ [10] device: (i) noise signature from the quantum
hardware where the qGAN is trained gets embedded in the
images generated. This is evident from Fig. 1 as we observe
the influence of noise in the evolution of a parameter in
the qGAN under ideal conditions (simulation without noise)
and on noisy IBM hardware. Since the noise signature is
prominent for different configurations of quantum hardware
(number of qubits and noise models), this can be valuable
watermark information to detect the hardware where a model
has been trained, and (ii) a qGAN when trained on a particular
hardware and used to infer images on different hardware,

still preserves the original watermark i.e., the hardware on
which the model was trained. Let us take an example to
explain Fig. 2 where the user trains the qGAN model (q) on a
particular hardware (qt) and hosts it on the third-party cloud-
based quantum hardware provider for inferencing. However,
during the inferencing phase, the trained qGAN model gets
stolen (q′t) by the untrusted cloud owner or a rogue adversary
sharing the same suite of hardware as the user. The user can
claim ownership of the qGAN model by testing a set of images
generated by the suspected qGAN model on the classifier
to detect the hardware where it was trained. Owing to the
robust noise characteristics of different quantum hardware,
the classifier detects images generated by qGANs trained
on different quantum hardware thus proving the claim of
ownership of the original model. To our knowledge, this is
the first attempt to watermark a qGAN circuit. Although we
demonstrate the watermarking for qGAN, the idea is equally
applicable to other QML models like quantum classifiers. The
major contributions are defined as follows:

1) Our study utilizes the inherent noise in NISQ-era quan-
tum hardware to watermark a qGAN model.

2) We perform detailed training of a qGAN on a suite
of backends that have noise calibration data from real
hardware, varying the noise models and size of the
backend.

3) We propose to further increase the robustness of the
watermark by training the qGAN model on a sequence
of multiple hardware to make it difficult to replicate.

4) We train a classical machine learning model to classify
the images based on the hardware where the generator
model was trained. This would aid in extracting the
watermark (i.e., the hardware (or suite of hardware) on
which the gGAN was trained) from potentially counter-
feit qGAN during the proof of ownership process.

5) We demonstrate the efficacy of our proposed method
by training the qGAN on the digits dataset [11] which
is widely used for Quantum Machine Learning (QML)
evaluation.

C. Paper Structure

Section II provides a background for the proposed idea
including the model of qGAN that is used for experimentation.
Section III goes over the threat model. Section IV presents
a detailed description of the proposed idea and includes a
comparison of the results. Section V contains an analysis of
the efficacy of the idea followed by the security analysis in
Section VI and the conclusion in Section VII.

II. BACKGROUND

A. Generative Adversarial Network

The idea of a generative adversarial network (GAN) is to
generate data resembling the original data used in training.
This is best understood through the framework of a min-max
game, a concept from game theory that involves two players
who compete against each other with opposing goals. In the
context of GANs, these two players are the generator and the
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Fig. 2. The flow diagram describes our attack model and the proposed
security measure. In the figure (1) shows the user training his qGAN, q on
hardware h1 to generate a trained qGAN qt; (2), (3) describes the threat
model of an untrusted quantum hardware vendor where the user sends qt for
inferencing (note, the hardware used for inferencing, Hi, could be different
than the hardware used for training h1), from where it gets counterfeited by
the untrusted vendor (q

′
t); (4) is our proposed method of collecting the images

generated by q
′
t and detecting the hardware where it has been trained using

the classifier for proof of ownership.

discriminator. The role of the generator is to create synthetic
data that mimics the original data while the discriminator
tries to classify the data as accurately as a real or a fake.
Through iterative training cycles, the generator tries to ‘fool’
the discriminator by improving the quality of the generated
images and the discriminator concurrently improves at dis-
tinguishing between real and fake data, eventually reaching
an equilibrium. The value function for this 2-player min-max
game is summarised by,

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))]

The generator, G starts from some initial latent noise distri-
bution Pz and maps it to Pg = G(Pz). The best solution for
this value function would be to achieve Pg = Pdata.

B. Quantum Generative Adversarial Network

In this work, we used a Patch QGAN (Fig. 3) [12] which is
designed to operate within the constraints of NISQ machines
e.g., a limited number of qubits. The architecture cleverly
utilizes a combination of quantum and classical components
to generate high-dimensional features using limited quantum
resources. This approach allows for the effective use of quan-
tum systems in generating complex data distributions, such as
images, by breaking down the task into smaller, manageable
segments or “patches”. The quantum generator in a Patch
QGAN is the core component where quantum computing is
employed. It operates based on the following specifics:

Sub-Generators Structure: The generator is composed of
multiple sub-generators, each designed as a Parameterized
Quantum Circuit (PQC). These sub-generators operate inde-
pendently to produce segments of the overall data output. This
modularity allows the generator to manage high-dimensional
data generation tasks by effectively distributing the workload
among available quantum resources.
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Fig. 3. Block diagram of a Patch qGAN model that we implement and train
on our suite of IBM backends.

Quantum State Preparation: Each sub-generator receives
an encoded quantum state derived from a latent vector sampled
from a predefined distribution. This encoding transforms the
latent space data into a quantum state that can be manipulated
by the quantum circuits.

Parameterized Quantum Circuits: The PQCs employ
tunable rotation gates which are adjusted during the training
process. These gates manipulate the quantum states to encode
the necessary features of the data being generated.

Measurement and Assembly: After processing through the
PQCs, the quantum states are measured. The results of these
measurements correspond to different features of the output
data. These measured outputs from all sub-generators are then
assembled to form a complete data instance.

Classical Discriminator The discriminator in this archi-
tecture is entirely classical and functions to evaluate the
authenticity of the data generated by the quantum generator.
The classical discriminator assesses whether the data instances
produced by the generator resemble real data from the training
set. It performs binary classification to label data as “real” or
“fake.”

Training Process The training of Patch QGAN with a
classical discriminator follows the typical GAN training pro-
tocol but is adapted to accommodate the quantum-classical
interaction:

Forward Pass: The generator produces data instances, which
are forwarded to the discriminator. This step involves trans-
forming quantum measurements into a format compatible with
the classical discriminator.

Loss Evaluation and Parameter Updates: The discriminator
evaluates the generated data against real data and calculates
the loss. This loss informs the updates made to the quantum
parameters of the generator via quantum-specific optimization
techniques, such as quantum gradient estimation methods.

Iterative Optimization: The training process iteratively ad-



TABLE II
A COMPARISON OF THE NOISE METRICS OF 127-QUBIT REAL AND FAKE

QUANTUM HARDWARE

Hardware T1 (µs) T2 (µs) Readout PauliX
Brisbane (Fake) 224.85 141.72 0.029 3.690e-04

Kyiv (Fake) 273.28 104.25 0.017 1.514e-03
Osaka (Fake) 287.31 139.96 0.042 1.357e-03

Sherbrook (Fake) 303.93 162.05 0.019 7.217e-04
Brisbane (Real) 222.67 151.55 0.014 2.337e-04

Kyiv (Real) 282.84 104.63 0.006 2.660e-04
Osaka (Real) 259.75 121.66 0.002 3.020e-04

Sherbrook (Real) 264.42 172.34 0.001 2.270e-04

justs the parameters of both the generator and the discrimina-
tor. For the generator, quantum circuit parameters are tuned
to minimize the ability of the discriminator to distinguish
generated data from real data. Simultaneously, the discrim-
inator optimizes its parameters to maximize its accuracy in
classification.

C. Quantum Noise

Quantum noise refers to the undesirable disruptions that
impact quantum systems, causing errors in quantum computa-
tions. These disturbances can originate from multiple sources,
such as electromagnetic interference, flaws in quantum gates,
thermal variations, and interactions with the environment.
Gate errors occur during the implementation of quantum
gates. These errors arise from imprecise control or environ-
mental interference affecting the quantum system, leading to
incorrect qubit states impacting the accuracy of quantum algo-
rithms. Decoherence errors happen from qubits losing their
quantum properties over time due to interactions with their
environment which causes the qubits to lose superposition and
entanglement leading to the degradation of the quantum state.
Decoherence limits the time available to perform quantum
operations before the information stored in the qubits becomes
unreliable. Dephasing errors occur when the relative phases
between the components of a superposition state of a quantum
system become imperfections in quantum gate operations.
This error type does not affect the probability distribution
of the qubit states but disrupts the coherence between them,
which can degrade the outcome of quantum algorithms that
rely on phase coherence. Relaxation error refers to the
process where a qubit in an excited state loses energy and
relaxes to a lower energy state more quickly than intended
leading to erroneous computational results. Relaxation errors
are particularly problematic in maintaining the state of qubits
over the duration required for complex quantum calculations.
Readout error in quantum computing refers to inaccuracies
that occur when measuring the state of qubits at the end of a
quantum computation. These errors can arise from technical
limitations of the quantum hardware in the measurement
process. Crosstalk error in quantum computing occurs when
the operation of one qubit inadvertently affects the state
of another nearby qubit, due to their physical proximity or
electromagnetic interactions. This unwanted interference can

alter the intended states of qubits in multi-qubit circuits leading
to computational errors.

D. IBM backends

Qiskit IBM Runtime is a new environment offered by IBM
Quantum that streamlines quantum computations and provides
optimal implementations of the Qiskit primitives. Several APIs
are designed to streamline access to multiple IBM devices. The
fake provider module provides a suite of 56 fake backends
which are built to mimic the behaviors of the original IBM
system snapshots. This has been done to ease the workload on
real devices due to the high queue times. To prove the efficacy
of our approach we train the qGAN on a suite of different
hardware from the IBM fake backends with different coupling
maps and noise characteristics. Since the IBM backends are
system snapshots, the error values have been calibrated using
real hardware as shown in Table II (the median values of T1
and T2 times and mean values of readout and PauliX error
over all qubits have been shown).

E. Related Work

Recent research has addressed secure computing on un-
trustworthy cloud-based quantum hardware providers to some
extent. For example, the rise of multi-tenant computing en-
vironments in cloud-based quantum hardware and untrusted
but efficient quantum compilers has been pointed out as
challenging security threats [13]. Splitting of computation in
terms of shots for executing a quantum circuit between trusted
and untrusted hardware has been found to be secure, providing
∼ 30% times improvement in performance [14]. However, this
solution does not work for securing trained qGAN models as
splitting the iterations or shots for inferencing the model is not
feasible. Another work involves randomly injecting X gates at
the last layer of the quantum circuit to obfuscate the quantum
circuit and the output from the untrusted cloud. The user can
extract the correct output classically by flipping the obfuscated
portion [15]. This, again does not work for inferencing qGANs
as the adversary could always brute force through the circuit
(in reasonable time since the number of qubits and the number
of trials to recover the correct qGAN and image will be
manageable) to obtain the correct image. There have been
attempts to include decoy nodes in the Quantum Approximate
Optimization Algorithm (QAOA) circuits to enhance their
security and prevent untrusted cloud providers from stealing
them [16]. An extension of this approach to qGANs by
inserting parameterized gates is not useful for securing qGAN
models as it only increases the overhead of inferencing without
securing the weights of the trained qGAN model.

There have been approaches to secure the IP of the user
by obfuscating them with decoy pulses [17]. The idea is the
corrupt the functionality using fake gates/pulses to defeat IP
theft. The decoy pulses will be suppressed inside the quantum
hardware based on an encrypted classical channel that carries
the decoy pulse information. This technique may be applicable
to protect the qGAN IP however, it will require the following
support from an untrusted cloud provider: (i) a secure classical



decrypting hardware inside the quantum software stack to
decrypt the pulse map, obtain the decoy gates, and suppress
them during execution and, (ii) a pulse suppression feature in
the quantum hardware. Both of these features are currently
not supported by any quantum cloud provider and will require
significant implementation costs. In contrast, the proposed
watermarking idea does not require any extra and potentially
costly infrastructure from the quantum cloud provider. To
summarize, existing work focuses on protecting the IP through
obfuscation many of which are not directly applicable to the
qGAN domain. Furthermore, watermarking-based solutions,
that are covered in this paper, have remained largely unex-
plored.

III. THREAT MODEL AND ANALYSIS

A. Threat model
The NISQ-era devices are much in demand due to the

increasing complexity of quantum generative models and the
increase in their number of parameters. This spikes the demand
for quantum hardware to train and infer such models and
motivates other third-party vendors to provide execution on
quantum hardware as a service. Devices with various qubit
technologies, varied numbers of qubits, and varying noise
calibrations are typically present in the suite of hardware
maintained by a cloud provider. We assume that this quantum
hardware is cloud-based and hosted remotely (possibly in
untrusted/less trusted countries) which makes it untrustwor-
thy/less trustworthy.

Considering that qGAN IP is costly, the untrusted cloud
provider or a rogue adversary accessing the same cloud
provider as the user may steal the trained qGAN model during
inference operation and host the stolen model on some other
quantum hardware within their suite or on a different quantum
cloud claiming it to be their own. As a result, multiple variants
of the same qGAN may be available in the market potentially
at a much cheaper price siphoning the profit from the original
qGAN provider.

B. Adversary capability
We assume that the untrusted cloud provider has: (i) access

to the white-box architecture of the qGAN circuit. Therefore,
they can strip the noise embedding (i.e., the state preparation
circuit) from the qGAN to create a counterfeit copy. Next, they
will attach their own noise embedding to this copy which can
be offered as their own version of the original qGAN, (ii)
the weights of the trained qGAN model. This will require
reverse engineering of the transpiled qGAN circuit (where the
parametric rotation gates are decomposed into basis gates) to
recover the pre-transpiled version of the trained qGAN circuit.
This ability will allow the adversary to perform further training
to potentially tamper with the watermark.

C. Assumptions
We assume as a part of the threat model that the hardware

suite used by the user for training the qGAN is different from
the one used to inference the qGAN models on the untrusted
cloud.

IV. PROPOSED IDEA

A. Architecture of quantum GAN

Our approach is recreated from [12] and utilizes a series
of quantum generators, where each sub-generator, denoted
G(i), (Fig. 4) is assigned the task of forming a distinct
segment of the final image. These segments are subsequently
concatenated to assemble the complete image, as illustrated
below. One of the primary advantages of our methodology
is its adaptability to scenarios with limited qubit availability.
The same quantum device can be employed iteratively for
each sub-generator, or the sub-generators can be executed in
parallel across multiple devices.

1) Implementing the Generator: Our approach involves
a network of sub-generators, each denoted as G(i), which
share a consistent circuit architecture as depicted below. The
complete quantum generator comprises NG sub-generators,
each equipped with N qubits. The transformation process from
the input of a latent vector to the final image output is divided
into four key stages: state embedding, parameterization, non-
linear transformation, and post-processing. To clarify, each of
the sections described below corresponds to a single cycle of
the training process.

1) State Embedding: A latent vector z ∈ RN is randomly
selected from a uniform distribution within the range
[0, π/2). This vector is simultaneously fed into all sub-
generators, where it is embedded using RY gates.

2) Parameterized Layers: This stage involves parameter-
ized RY gates followed by controlled Z gates, repeated
D times in sequence.

3) Non-Linear Transformation: Given that quantum gates
are inherently unitary and thus linear, our challenge
is to induce non-linear transformations for complex
generative tasks. We employ ancillary qubits for this
purpose. For any sub-generator, the quantum state prior
to measurement is described by:

|Ψ(z)⟩ = UG(θ)|z⟩

Post-measurement, when tracing out the ancillary sub-
system A, the state ρ(z) becomes:

ρ(z) =
TrA(Π⊗ I|Ψ(z)⟩⟨Ψ(z)|)
Tr(Π⊗ I|Ψ(z)⟩⟨Ψ(z)|)

=
TrA(Π⊗ I|Ψ(z)⟩⟨Ψ(z)|)

⟨Ψ(z)|Π⊗ I|Ψ(z)⟩
The non-linear transformation is evidenced by the de-
pendency of ρ(z) on z in both the numerator and
denominator.

4) Post Processing: The measured probability ρ(z) of each
computational basis state P (j) is used to derive the
output g(i) from the sub-generator:

g(i) = [P (0), P (1), . . . , P (2N−NA − 1)]

Due to measurement normalization constraints, where
the sum of all elements in g(i) must equal one, we



TABLE III
DESCRIPTION OF THE LAYER SIZES AND PARAMETERS IN OUR CNN USED FOR DETECTING THE TRAINING HARDWARE

Layer Type Output Shape Kernel Size Stride Activation # Filters Pooling Size Parameters
Conv2D 148x148x32 3x3 1 ReLU 32 N/A 896

MaxPooling2D 74x74x32 N/A N/A N/A N/A 2x2 0
Conv2D 72x72x64 3x3 1 ReLU 64 N/A 18,496

MaxPooling2D 36x36x64 N/A N/A N/A N/A 2x2 0
Conv2D 34x34x128 3x3 1 ReLU 128 N/A 73,856

MaxPooling2D 17x17x128 N/A N/A N/A N/A 2x2 0
Flatten 36992 N/A N/A N/A N/A N/A 0
Dense 512 N/A N/A ReLU N/A N/A 21,234,176

Dense (Output) # hardwares N/A N/A Softmax N/A N/A 5,130

Ry(z1) Ry(𝜃1)

Ry(z1) Ry(𝜃1)

Ry(z1) Ry(𝜃1)

Ry(z1) Ry(𝜃1)

Ry(z1) Ry(𝜃1)

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

State Embedding Parameterized Layers

Fig. 4. A Parameterized quantum circuit design for the sub-generator to
generate a patch for the fake image. The purple qubit represents the ancilla
qubit and the blue qubits represent the data qubits.

apply a post-processing normalization to convert g(i)
into usable pixel intensity values for image patches:

x̃(i) =
g(i)

maxk g(i)k

Thus, the final constructed image x̃ is formed by assem-
bling these normalized patches:

x̃ = [x̃(1), . . . , x̃(NG)]

2) Implementing the Discriminator: The Discriminator is
structured as a fully connected classical neural network within
the PyTorch framework, designed with two hidden layers to
classify images as real or generated. It takes a flattened image
as input, processed through layers of 64 and 16 neurons
respectively, each followed by ReLU activations. The output is
a single neuron with a sigmoid activation function, yielding a
probability score. The network architecture enables it to learn
and make binary classifications during GAN training.

B. Watermark generation and extraction

The core property of NISQ-era quantum hardware is its
noisy behavior. We note that the model parameters evolve
differently under quantum noise during training. As such,
training of the qGAN on a particular quantum hardware
with specific noise embeds the watermark naturally within
the model parameters. Therefore, the generated images are
different than the images generated by a qGAN model which is
trained under noiseless conditions or on a different hardware.

The watermark will persist even after the adversary steals
and reuses the model. During the proof of ownership, the
images obtained from the stolen model will be analyzed to
extract the watermark i.e., the hardware that was used for
training. If the watermark matches with the claim, the proof of
ownership will be established. For the watermark extraction,
we designed a classifier that can classify the images generated
by the suspected qGAN to detect the quantum hardware where
the qGAN had been trained. The proof of ownership relies on
robust classification of the generated images. Therefore, we
create a dataset by training a qGAN on various hardware and
inferring on a suite of hardware.

C. Classifier for watermark extraction

To amplify the features of the images used for training the
classifier, we increase the resolution from 8x8 to 150x150 to
help the classifier learn better. The architecture comprises an
initial input layer that accepts images of dimensions 150x150
pixels, followed by a series of three convolutional layers with
32, 64, and 128 filters of stride size 3x3 respectively. Each
convolutional layer utilizes the ReLU activation function to
introduce non-linearity. These layers are interspersed with
MaxPooling layers of size 2x2 with a stride of 2, aimed at
reducing the dimensionality of the feature maps. This mitigates
the risk of overfitting the model.

Subsequent to the Convolutional and MaxPooling layers,
the network transitions to a fully connected segment through
a flattening operation that transforms the spatial feature maps
into a dense vector. The vector feeds into a densely connected
layer of 512 neurons, also activated by ReLU, which serves
to integrate learned features across the image. The final layer
of the network is a softmax layer that maps the output of
the previous dense layer to a probability distribution over the
class labels. This layer has dimensions based on the number
of hardware in the suite and the number of labels representing
images generated from other hardware. More details about the
classifier architecture are present in Table III.

D. Training

To provide a robust comparison for our watermark extrac-
tion method, we consider two use cases for training the qGAN
model. First, we consider that the user trains the qGAN on
a single quantum hardware till near-final stability and hosts
the trained qGAN model on an untrusted quantum hardware



TABLE IV
NOISE CHARACTERISTICS FOR OUR SUITE OF IBM BACKENDS

Hardware # Qubits Readout Pauli-X TR
ibm athens 5 0.017 4.82e-04 0.035
ibm bogota 5 0.038 4.00e-04 0.019

ibm burlington 5 0.035 7.02e-04 0.027
ibm jakarta 7 0.025 3.49e-04 0.041
ibm nairobi 7 0.027 3.06e-04 0.021
ibm lagos 7 0.009 2.58e-04 0.023
ibm cairo 27 0.016 3.07e-04 0.024

ibm cambridge 27 0.107 9.59e-04 0.039
ibm kolkata 27 0.012 3.20e-04 0.022

ibm washington 127 0.049 2.00e-04 0.030

provider. In this case, the weights of the trained qGAN model
are tuned to the noise of the single quantum hardware where
the qGAN was trained. Second, we consider that the user trains
the qGAN on a particular hardware for a few epochs and
then migrates the partially trained model to different hardware.
This route of training quantum machine learning models is
observed to escape longer queue times of third-party quantum
hardware. In such a situation, the trained qGAN model will
have weights that possess the noise characteristics of multiple
quantum hardware.

E. Validating ownership

Since the watermark extraction classifier trains on the data
of a known suite of quantum hardware, it will be incapable of
detecting images from a qGAN trained on unknown quantum
hardware. This raises the concern of misclassifying an original
qGAN model as stolen. To encounter this situation, we define
a threshold value M which determines the probability with
which the classifier detects the quantum hardware. Owing to
the training and validation set of images and the number of
parameters and complexity of the qGAN being trained, we
consider M to be a hyperparameter decided by the user to
claim his ownership of the model. More details about M have
been discussed with results in the next section.

V. RESULTS

This section describes the experimental results and discusses
the efficacy of the proposed idea.

A. Simulation setup

Training: The qGAN model has been implemented in
Pennylane [18] using PyTorch [19] as a wrapper for ease of
pipelining the flow. The sub-generators of the qGAN use 5
qubit parameterized quantum circuits (PQCs) for generating
the fake image. We implement 4 sub-generators to generate
the patches which totals 100 tunable parameters for the
qGAN, and train the qGAN for 500 epochs before inferencing
the trained model on multiple quantum hardware. The SGD
(Standard Gradient Descent) optimizer is used for both the
quantum generator and the discriminator and a BCE (Binary
Cross Entropy) loss is the shared loss of both models. The
learning rate for the discriminator is set to 0.01 which is
quite less than that of the quantum generator (=0.2). The
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Fig. 5. Plot demonstrating the image quality using FID score for images
generated by the qGAN when trained on a single hardware and on multiple
hardware.

classifier for detecting the quantum hardware is implemented
using TensorFlow [20] with a batch size of 64. We use the
Adam optimizer and Categorical Crossentropy to evaluate the
accuracy of our proposed model within 15 epochs. Dataset:
Since we are training our qGAN on IBM backends with
limited qubits, high error rates, and complex data encoding,
we conduct all experiments using the handwritten digit dataset
[11] as a proof of concept for our proposed model. Each
training sample is an 8x8-pixel image. IBM backends: We
run our simulations on the open-source quantum software
development kit from IBM (Qiskit). To validate the proposed
algorithm we pick a suite of 10 IBM backends shown in Table
IV. Here we consider the mean values of readout, PauliX, and
thermal relaxation (TR) error over all qubits to train the qGAN
model of the user and infer it to produce a rich dataset for
training the classifier.

B. Image quality

We use the Fréchet Inception Distance (FID) score [21] to
compare the quality of generated images with the images of
the original dataset. FID score is used as an evaluation metric
based on the distance between two Gaussian distributions. For
two distributions with mean (m1, C1) and mean (m2, C2), the
FID = ||m1 −m2||22 +Tr(C1 +C2 − 2(C1C2)

1/2). A lower
FID score between two distributions implies higher similarity.
Fig. 5 compares the FID values of the images from the original
dataset and the images generated by the qGAN trained by the
user on a single hardware and on multiple hardware. It can
be observed that, in spite of the inherent noise in the IBM
backend, the generated images have a relatively lower FID
score determining their similarity with the original images.
For multiple hardware training, the user might be concerned
about degraded quality due to two different noise models.
However, that is not the case as seen in Fig. 5. We describe a
subset of images generated in Fig. 6. We can observe that the
images when generated by qGANs trained on different IBM
backends, show distinct pixel characteristics which machine
learning models can learn to help detect the hardware the
qGAN has been trained on.

C. Watermark extraction

Extraction for Single Hardware Training: We consider
that the user has trained the qGAN on a single hardware.
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Fig. 7. Plot describing the high accuracy of the classifier when trained on
images generated by qGANs trained on different hardware. 1, 2 shows the
accuracy and loss for single hardware training. 3, 4 shows the accuracy and
loss for multiple hardware training. 5, 6 shows the accuracy and loss for a
case where we test the impact of fixing the order of hardware during the
training of the qGAN.

To train the classifier, we generate a dataset from different
IBM backends. We train the qGAN model on all 10 IBM
backends and generate the images while inferencing on the
backends. We generate 100 images every time the trained
model is inference on a different IBM backend. This way we
obtain a rich dataset of images having 10 labels representing
the hardware where the qGAN was trained. From Fig 7 (1,
3) we can observe that the classifier trains with near-perfect
accuracy. Owing to the richness of the dataset produced due to
the influence of noise of the IBM backends, the task of earning
patterns in the data is not a very complex task. To make
the extraction task very efficient, we set a threshold value,
M. To define M, we test the classifier with a test dataset
comprising images generated by the trained qGAN on different
IBM backends and set M as the mean of the probability of the
detected training hardware by the classifier for each image. To
ensure that the test and training datasets differ, we re-train the
qGAN and re-generate the images using random seed values.
For the situation where the user trains on a single hardware,
we obtain M = 0.9999 for our qGAN model and dataset.
We demonstrate a subset of the results in Fig 8, where we
test the trained classifier using a test dataset consisting of
5000 images where the images generated from qGANs trained
on IBM Washington and IBM Cambridge have previously
not been seen by the classifier. We can observe that the
images generated from known backends are classified correctly
with a probability of ∼ 1. Although the images generated
from unknown sources are classified as known hardware, the
probability of predicting the correct label of hardware is less
than the value of M(= 0.9999), which proves our case of
handling cases where the suspected qGAN models belong to
the user (known hardware) or not (unknown hardware).

Extraction for Multiple Hardware Training: To demon-
strate this procedure we pick 4 IBM backends from our
suite having 5, 7, 27, and 127 qubits and train the qGAN
on all possible combinations taking two at a time providing
a set of 12 labels of known hardware. We also include
the dataset of images generated from the single hardware
whose combinations we provide, making a final dataset of
16,000 images generated from the qGAN model trained on 12
combinations of 4 IBM backends and the 4 single backends,
to train the classifier. We observe from Fig. 7 (2,4) that
the classifier trains with a reduced accuracy of around 90%.
Owing to the multiple noise models influencing the generated
images, the quality of the dataset used to train the classifier
was reduced slightly, therefore decreasing the accuracy of the
prediction. We find that while testing the trained classifier
with a dataset of images generated from known combinations
of hardware, the mean probability of detecting the correct
hardware combination is almost equal to 1(∼ 0.9) which
becomes our threshold value, M. We describe a subset of these
results in Fig. 8 where we test the classifier on a dataset of
5000 images generated similarly as the first use case to ensure
that the classifier has never seen the test data. We observe
that the images generated from the qGAN trained on known
hardware combinations get predicted with a probability of ∼ 1.
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Fig. 8. Plots describing the high predicted probability for known hardware
during the proof of ownership using the classifier.
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Fig. 9. In this figure, (1) represents the difference of FID scores between
images generated by the qGAN trained on IBM Athens, IBM Jakarta, and a
combination of both. The FID scores are taken on a mean of 1000 images.
(2) A visual representation of the images generated on the same.

Although the images generated from unknown sources are
classified as known hardware combinations, the probability of
predicting the correct label of hardware is less than the value of
M(= 0.9), which proves our case of handling cases where the
suspected qGAN models belong to the user (known hardware)
or not (unknown hardware). We also counter a corner case
where the user trains the qGAN model on a set of quantum
hardware in a particular sequence, and the suspected qGAN
model has been trained on the same set of quantum hardware
but in a different sequence. We validate our results in this
case by training the classifier on a reduced dataset from the
sub-section of model migration. We train the qGAN model on
unique combinations from the 4 chosen IBM backends, taking
2 at a time. We can observe from Fig. 7 that the classifier in
this situation trains with almost 100% accuracy. We proceed to
calculate the threshold value (M) to be 0.999. To test the case,
we prepare a dataset comprising 4000 images with images
generated by the qGAN trained on two known combinations
in two different orders. Fig. 8 shows that the known hardware
combinations are predicted with a near-perfect probability and
the unknown sequence of hardware gets classified with a
probability much less than the threshold value, M(= 0.999).

D. Overhead Analysis

We present an analysis of the overhead incurred to embed
the watermark during the training of the qGAN. Since the
user trains the qGAN on noisy hardware, the influence of
noise on the weights of the trained model will occur naturally
without any overhead. However, when the user shifts the
training to a sequence of models, there will be an influence
of multiple noise signatures on the images generated by the
qGAN which may degrade the image quality. From Fig. 9
we observe that the FID score for images generated on a
sequence of IBM Athens and IBM Jakarta is ∼ 18% higher
than the images generated after individual training on each of
the devices. However, images generated by a qGAN trained
on a sequence of IBM Jakarta followed by IBM Athens are
almost identical in terms of FID score. On the entire dataset,
the FID scores have ∼ 7.4% increase for the images generated
by the qGAN trained on a sequence of hardware than on single
hardware. Visually, the images are distinct (Fig. 9) and have
sufficient features for the classifier to learn and extract the
noise watermark in terms of the hardware (or sequence of
hardware) where the qGAN was trained.

VI. SECURITY ANALYSIS AND DISCUSSIONS

A. Security Analysis

1) Uniqueness of the watermark: Consider a suite of n
quantum hardware on which the user can train the qGAN
model. If the user decides to train the qGAN model on a single
hardware the probability of collision with another user training
a similar qGAN model will be 1/n. To increase the robustness
of the watermark in the trained qGAN model of the user, if
the training is done on a sequence of k quantum hardware out
of n, the probability of collision reduces to

∏k
i=1 1/(n−i). In

our experimental setup, the probability of collision for a single
hardware training is 0.1 which gets lowered by ∼ 13 times
when the user shifts to training on a sequence of two quantum
hardware. The chances of collision and proof of ownership
could be further boosted by increasing the number of hardware
used for training. For instance, IBM has a suite of 15 cloud-
based quantum hardware. If the user chooses a sequence of 5
hardware for training, the probability of collision of two users
with the same set of hardware in the same sequence will be
∼ 10−5, proving the uniqueness of the watermark further.

2) Removal of watermark: The watermark in the images
generated by the qGAN is directly dependent on the noise
model of the quantum hardware where it was trained. Even if
we assume that the rogue adversary has a reverse engineering
toolkit to obtain the original quantum circuit with the same
rotation values as set by the user from the transpiled interme-
diate, it is computationally costly to un-learn the weights of
the trained qGAN [22] owing to the complex stochasticity in
the training process and limited knowledge about the initial
data points to remove the watermark and ultimately reduces
the incentive of the adversary to steal the qGAN model.

3) Tampering the watermark: There might be attempts by
an untrusted vendor or rogue adversary to alter the watermark
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in a stolen qGAN model to derail the proof of ownership.
Suppose the adversary has access to the trained qGAN model
and the tools to retrieve the original quantum circuit used by
the owner. They could try to overwrite the original watermark
by training the stolen model on different, unknown quantum
hardware for a short period. This approach will minimize
the cost of extra training. To evaluate our security measures
against such tampering, we trained a qGAN model on a
known sequence of quantum hardware (IBM Athens and IBM
Jakarta), then briefly trained it on different hardware, and
conducted inference tests on various hardware. The results,
shown in Fig. 10, indicate that our classifier can still identify
the original hardware sequence correctly even after the model
was trained on different hardware for a few epochs, with a high
level of prediction probability (> M). However, completely
altering the watermark would require much more extensive
retraining, which is unlikely to be cost-effective, reducing the
motivation to steal and tamper with the model.

4) Ghost watermark: When an adversary falsely claims
their watermark exists in a stolen qGAN model based on
some pattern in the images generated by the stolen qGAN,
in the absence of a real watermark, it will be referred to as
a ghost watermark [23]. The possibility of claiming a ghost
watermark depends on how cleverly the adversary can mimic
a feature hidden in the trained qGAN model. One can defeat
ghost watermarks by including multiple watermarks in the
trained qGAN which will offer stronger proof of ownership.
This could be a topic for further research.

B. Discussion

1) Watermark of other QML models: The watermark ex-
traction procedure and accuracy on multiple hardware are high
enough to conclude the influence of quantum hardware noise
in the training of generic QML models and hence the proposed
method could be extended to other QML circuits like Quantum
classifiers by observing the pattern of the probability vectors
generated during the classification.

2) Hardware validation: Due to large queue times for
training and inferencing large QML models like qGAN on
cloud-based quantum hardware provided by companies like
IBM, we decided to provide extensive results by simulating
our proposed setup on IBM backends that are snapshots of

original IBM quantum hardware calibrated with the original
noise values (Table II) to provide a proof-of-concept for our
proposed idea. Recent research in the development of quan-
tum machine learning applications like Variational Quantum
Circuits [24], and quantum approximate estimation using Vari-
ational Quantum Eigensolvers [25] show that the parameters
and loss function evolve differently on real quantum hardware
compared to noiseless simulations. This confirms our idea that
quantum noise embeds hardware noise-specific watermarks
(i.e., different evolution of parameters) during training on real
hardware. Therefore, the ideas and conclusions drawn in this
paper will remain the same even on real hardware.

VII. CONCLUSION

This paper leverages the unique noise characteristics of the
quantum hardware used for training to watermark quantum
generative adversarial networks (qGANs) for securing intel-
lectual property (IP) against unauthorized use and theft by
third-party quantum computing resources. We note that noise
in quantum hardware gets embedded in the model parameters
as a footprint which in turn is reflected in the generated images
by the qGANs. Tested across ten IBM quantum backends, our
method demonstrated a 100% accuracy rate in extracting the
watermark from the images generated by qGANs trained on
a single hardware and ∼ 90% accuracy rate when the qGAN
was trained on a sequence of quantum hardware to incorporate
a more complex watermark. The security analysis confirms
the resilience of the proposed watermark against removal and
tampering.
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