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Abstract—Quantum machine learning (QML) continues to be
an area of tremendous interest from research and industry. While
QML models have been shown to be vulnerable to adversarial
attacks much in the same manner as classical machine learning
models, it is still largely unknown how to compare adversarial
attacks on quantum versus classical models. In this paper,
we show how to systematically investigate the similarities and
differences in adversarial robustness of classical and quantum
models using transfer attacks, perturbation patterns and Lips-
chitz bounds. More specifically, we focus on classification tasks on
a handcrafted dataset that allows quantitative analysis for feature
attribution. This enables us to get insight, both theoretically and
experimentally, on the robustness of classification networks. We
start by comparing typical QML model architectures such as
amplitude and re-upload encoding circuits with variational pa-
rameters to a classical ConvNet architecture. Next, we introduce a
classical approximation of QML circuits (originally obtained with
Random Fourier Features sampling but adapted in this work to
fit a trainable encoding) and evaluate this model, denoted Fourier
network, in comparison to other architectures. Our findings show
that this Fourier network can be seen as a “middle ground”
on the quantum-classical boundary. While adversarial attacks
successfully transfer across this boundary in both directions, we
also show that regularization helps quantum networks to be more
robust, which has direct impact on Lipschitz bounds and transfer
attacks.

Index Terms—Adversarial robustness, Feature attribution,
Lipschitz bounds, Quantum machine learning, Transfer attacks

I. INTRODUCTION

Quantum machine learning (QML) offers the potential to
expand the current frontiers of many fields in computa-
tional technologies [1], with its power to leverage quantum-
mechanical effects such as entanglement and high-dimensional
latent spaces paired with insights from classical machine
learning (ML). As a result, recent years have seen an immense
research interest in different possibilities to leverage these ef-
fects for practical challenges. Most prominently, this includes
parameterized quantum circuit (PQC) architectures that allow
for the training of variational parameters inside the quantum
circuit in order to fit a specific function for classification or
regression tasks. It has been shown that although results from
quantum variational classifiers look promising, the models

can be fooled with carefully crafted modifications of the
input samples [2]. These adversarial perturbations, allowing
an attacker to force a high misprediction rate in the attacked
model, are investigated in the emerging field called quantum
adversarial machine learning (QAML). For classical machine
learning approaches, adversarial attacks have been rigorously
explored, opening the door for research to find similarities
and differences between adversarial attacks on classical and
quantum machine learning architectures.

In an effort to make the first steps in this direction, West
et al. [3] investigate the behavior of different classical and
quantum ML models under adversarial attacks and the re-
sulting perturbation patterns in the input. Interestingly, the
authors found that classical attacks fail to transfer to the PQC
architecture while attacks originally designed for the quantum
model seem to work for classical ML models. In this light,
the authors suspected a ”quantum supremacy” in adversarial
robustness. In this work, we aim to continue this line of
research by connecting theoretical and practical insights from
previous work with experiments on a specifically designed
dataset. The contributions of this paper are as follows:

• We create a four-class image dataset for QML that allows
semantic analysis while keeping input dimensions low

• On this dataset, attack patterns resulting from adversarial
attacks on PQC models are evaluated

• Transfer attacks between quantum models of different
architectures are conducted

• We construct a classical Fourier network similar to [4]
and a convolutional network to compare attack patterns
and check quantum/classical transferability

• Regularization is used to increase the robustness of quan-
tum models and verify the impact on attacks

• We link outcomes of the experiments with theoretical
Lipschitz bounds for classical and quantum models

We start by presenting relevant work related to the topics dis-
cussed here before briefly introducing the theoretical concepts
used in the paper. In Section IV, we describe the experimental
setup and results, followed by a short summary of the findings.
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II. RELATED WORK

Quantum adversarial machine learning has been investigated
thoroughly, both in theory (e.g. [2], [5]) and practice (e.g. [3],
[6], also see [7] for a review on current progress and challenges
in QAML). An important aspect of quantum machine learning,
especially in QAML, is to find parallels between insights
from classical ML models (in this case the vulnerability to
adversarial attacks) and observations from experiments from
QML.

As a first step, West et al. [3] benchmarked classical
Convolutional networks such as ResNet [8] against quantum
variational circuit architectures of different sizes. Specifically,
the authors used the transferability of the attacks across
the quantum/classical boundary and the visual appearance of
the attacks (discussed in Section IV) in images of different
datasets (FashionMNIST, CIFAR10, and CELEB-A) to con-
clude that quantum models may offer supremacy in robustness
”by design”. However, the training of the quantum models
itself and the effect of hyperparameters (training time, learning
rate, regularization) are not taken into account. Also, the data
is encoded into the models using amplitude encoding, which
is not yet feasible to implement on real quantum hardware
for large input dimensions. In this work, we will therefore fill
in these gaps by systematically investigating quantum models
of different architectures (re-upload encoding and amplitude
encoding) and their relation to classical adversarial machine
learning with respect to training time and regularization.

Bridging the gap between quantum models and classical
ML techniques is also one of the main themes of classical
approximation papers [4], [9], [10] that use the function classes
of PQC models as a basis to construct a quantum kernel and
classically optimize over embedded features, as discussed in
Section III. Here, we use insights from this corpus of work
to construct a classical approximation of our PQC model, that
is used as a “middle ground” between purely classical models
such as ConvNet or ResNet architectures and quantum models
such as variational circuits. We see that we can indeed make
statements about the robustness of the quantum model by
analyzing the classical counterpart, which is often easier to
examine.

These investigations of generalization and adversarial ro-
bustness are done both theoretically via Lipschitz bounds and
practically via transfer attacks and attack pattern analysis on
a constructed image dataset. Lipschitz bounds (as detailed in
Subsection III-C) have been motivated and derived for classi-
cal machine learning [11]–[13] – although only approximated
Lipschitz bounds can be calculated for typical neural network
architectures – and for quantum machine learning [14], [15]. In
the QML domain, results on Lipschitz bounds have only been
tested for simple, low-dimensional datasets, therefore it will
also be a focus of this paper to incorporate the calculation
of Lipschitz bounds of classical and quantum models for
real-world multi-class classification tasks into the analysis of
robustness and generalization capability.

III. THEORETICAL BACKGROUND

A. Function classes of parametrized quantum circuits

Parametrized quantum circuits typically consist of layers
of rotational and entangling gates, followed by measurements
of the first k qubits. Classical input features are generally
embedded into the latent model space of noisy intermediate-
scale quantum (NISQ) devices using some form of repeated
rotational encoding [16]. A notable second option – although
not yet feasible in practice due to the large depth of the
encoding circuit – is to encode the (possibly padded) 2n input
features into the amplitudes of the n-qubit quantum state via
amplitude embedding. Both of these variants will be explored
in Section IV. In the following, we consider a typical re-upload
encoding circuit [16], [17], where the rotational parameters
θ of the PQC are optimized in a training loop to minimize
some suitable loss function. As model output, we consider
the expectation value of the measured qubits, resulting in the
expression

f(x; θ) =
〈
0
∣∣U(x; θ)†MU(x; θ)

∣∣ 0
〉

(1)

for some data input vector x = (x1, . . . , xD), a parametrized
circuit represented by some unitary U(x; θ) and an observable
M. We can write the functions represented by such PQC
models as a truncated Fourier series of the form

f(x; θ) =
∑

ω∈Ω

cωe
iωx (2)

where the accessible frequencies ω ∈ Ω are determined by the
data encoding strategy and the Fourier coefficients cω result
from the trainable layer blocks [17], [18]. In Section IV, we
construct a trainable encoding that increases the accessible
frequency spectrum [16], [19] and show the implications for
adversarial robustness.

B. Classical approximations of PQC models

In the light of Subsection III-A, it seems natural to try and
find classical approximates for the function class that a PQC
can realize. Indeed, we can regroup the terms in the partial
Fourier series as done in [9], [10] by defining

aω := cω + c−ω ∈ R

bω :=
1

i
(cω − c−ω) ∈ R

to write Equation (2) as

f(x; θ) =
∑

ω∈Ω+

cωe
iωx + c−ωe

−iωx

=
∑

ω∈Ω+

aω cos(ωx) + bω sin(ωx)
(3)

where Ω+ contains the positive half of the frequencies in Ω
[9]. If the frequency spectrum is known and small enough to
allow efficient computation of all summands, we can construct
a classical surrogate model [4]. In most cases, however, the
frequency spectrum is not accessible in its entirety due to
the exponential number of elements (e.g., considering Pauli



encoding gates, |Ω+| ∈ O(LD) for D input dimensions
and L re-upload encoding layers [9], [20]). To assemble
possible frequencies ω ∈ Ω+ for classical approximations
of PQC architectures, recent work utilizes Random Fourier
features (RFF) sampling [9], [10]. The values of the classical
parameters aω and bω are then found by classical optimization
techniques (in [9], this corresponds to a ridge regression
optimization). In this work, we use a single-layer feed-forward
network with the corresponding sine and cosine functions
inside the hidden layer, similar to the approach described in
[4]. For PQC models defined as in (2), one can then simply
RFF-sample frequencies ω ∈ RD according to [9], construct
the (classical) sum from Equation (3) and use stochastic
gradient descent to find a set of optimal parameters. For
trainable encoding architectures discussed in Section IV, we
optimize over the encoding weights as well as the aω and bω
parameters. The precise model architectures (for the classical
and quantum models), as well as the training and optimization
specifications can be found in Appendix A.

C. Adversarial attacks and Lipschitz bounds

1) Adversarial attacks on QML: Quantum machine learn-
ing models are generally trained using hybrid quantum-
classical approaches where the PQC is evaluated on (actual
or simulated) quantum hardware in contrast to the classical
optimization algorithm of evaluating loss functions and up-
dating the model parameters. This allows us to define attacks
on quantum models using the same principles that are known
in classical machine learning. As such, QAML finds pertur-
bations δ ∈ ∆ to individual input samples x = (x1, . . . xD)
maximizing the loss function L as

δ ≡ argmax
δ′∈∆

L (f (x+ δ′; θ∗) , y) (4)

where f : RD → RK is the PQC model mapping input
samples x to softmax probability distributions of K classes
(with ground-truth labels y) via measurements of the first K
qubits. For an adversarial attack to be considered useful, it
must hold that the modifications to the input elements are
imperceptible, i.e. that ∆ = {δ ∈ RD : ∥δ∥∞ ≤ ε}1, where
ε denotes the perturbation strength of the attack. Using these
perturbations δ on a different model than that of the attack
is known as conducting a transfer attack. It has been shown
that many classical models are vulnerable to attacks even
from source models that fundamentally differ in architecture
[21]–[23].

2) Lipschitz bounds for robustness estimation: A general
strategy to evaluate the robustness of (classical and quantum)
models is to investigate the effect of input differences on the
model output via Lipschitz bounds. The Lipschitz bound of
a function f is commonly defined as the smallest constant L
satisfying

∥f(x)− f(y)∥ ≤ L ∥x− y∥ (5)

1It is common practice to use the ℓ∞ norm for adversarial attacks, however
other norms are also studied in literature.

where one can directly derive a bound on the worst-case effect
of an adversarial perturbation by setting y = x+ δ.

While an exact computation of global Lipschitz bounds
for classical ML models is NP-hard [11], [12], different
approaches exist to approximate L. One of the most prominent
ideas makes use of semi-definite programming methods to
solve an inequality arising from the slope-restriction of the
activation functions used in the network [12], [13]. More
precisely, this means that the slope-restriction of an activation
function φ : R → R given by

α ≤ φ(y)− φ(x)

y − x
≤ β ∀x, y ∈ R (6)

can be reformulated into an incremental quadratic constraint
for φ, which gives rise to Theorems 1 and 2 in Fazlyab
et al. [12] stating that one can find efficient and accurate
approximations for the Lipschitz bounds of a model if we
have access to all weights and activation functions.

For QML models, recent work by Berberich et al. [15]
has shown that the linearity of quantum models in feature
space (defined e.g. by the space of complex matrices and
their Hilbert-Schmidt inner products in Schuld [24]) can be
used to compute tight Lipschitz bounds, allowing systematic
evaluation and robust training of quantum circuits. Concretely,
the authors derive the bound

LΘ = 2 ∥M∥
N∑

j=1

∥wj∥ ∥Hj∥ (7)

where M is the measurement observable, Hj can be any
encoding Hamiltonian (for the experiments, Pauli gates are ap-
plied) and the weights wj are used in their trainable encoding
gates of the form Uj,Θj (x) = e−i(w⊤

j x+θj)Hj .
This notion of Lipschitz bounds for PQC models using train-

able encodings can directly be used to construct a regularized
loss function, where a trade-off between the loss target and
the norm of encoding weights and Hamiltonians emerges. In
the experiments, we make use of the Lipschitz regularizer
presented in [15] for enhancing the robustness of our quantum
models. The optimization problem of the PQC model in [15]
is then described by

min
Θ

1

n

n∑

k=1

L (f (xk; θ) , yk) + λ

N∑

j=1

∥wj∥2 ∥Hj∥2 . (8)

In Section IV, we use Lipschitz bounds for comparison
between classical and quantum ML models, where we see
that the Lipschitz bounds correlate with the ability to transfer
attacks. Specific derivations of Lipschitz bounds for the PQC
architectures we examine can be found in Appendix B.

IV. EXPERIMENTAL SETUP AND RESULTS

In this chapter, a brief overview of the dataset and mod-
els used in the experiments is given before constructing
attacks on each model and checking the adversarial robustness,
transferability, and feature attribution. To give a theoretical
background for the results of the experiments, Lipschitz values



and regularization of quantum models are introduced. For all
experiments, an image classification task is conducted, where
the output of the respective model corresponds to a probability
distribution over the four possible classes. A cross-entropy
loss function is used to optimize over parameters, evaluation
is done via cost and accuracy scores. Classical models (RFF
approximation model and ConvNet) are implemented using
Pytorch [25], and quantum models are built with the Pennylane
[26] library. This dataset contains four classes of grayscale
images, where each pixel value lies in the interval [0, 1],
analogous to the MNIST set [27].

A. Dataset and Preprocessing
To have some quantifiable measures to compare the shapes

emerging from adversarial attacks on the different model
architectures, we construct an artificial image dataset for
classification.
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Fig. 1. Examples of images in the corresponding classes of the synthetic
dataset used for image classification.

One sample of each class is shown in Fig. 1, where the
shape depicted in an image corresponds to the symbol in
the respective label class (class 0: ‘−’, class 1: ‘+’, class
2: ‘⊢’, class 3: ‘⊣’). This allows us to define the semantic
meaning of pixel perturbations on the image and distinguish
attacks that visually alter the correct label from perturbations
that look like random noise. Each pair of classes has some
defined attack perturbation – to flip the classification output
from one to the other class – which humans would consider
meaningful (e.g. adding a vertical bar to visually change a ‘−’
into a ‘+’). In the work conducted by West et al. [3], these
semantically meaningful perturbations (on their datasets such
as FashionMNIST) were found predominantly on attacks on
quantum models, therefore the authors suspected that quantum
models have the capability to attend to more sensible, robust
features in the input data. In the following subsections, we
investigate that claim on the constructed dataset that offers
more insight into the semantic meaning of attacks.

The training dataset (test dataset) consists of 1000 (200)
images that are balanced in the classes and randomly permuted
before training. Random rotations of ±10 degrees, blurs,
and different thicknesses in the bars help diversify the sets.
The dataset is normalized if needed for the repective model
(amplitude embedding) and reshaped into a vector if suitable
for the model architecture. The different architectures are
described in the following.

B. Models in comparison
1) Parametrized Quantum Circuits: The first model we

train is a re-upload encoding variational classifier, where each

input x = (x1, . . . , xD) is split into 3-tuples to facilitate
integration into the angles of rotational gates. More precisely,
for an input image of (16 × 16) = 256 dimensions, we
use 8 qubits and 32 layers, each consisting of a block
of rotational gates followed by an entangling layer, giving
(32 · 8 · 3) = 768 variational parameters and a three times
re-upload encoding. Each input feature is multiplied by some
encoding weight, which we optimize alongside the variational
parameters, adding up to a total of 1536 trainable parameters
in the model. For the model layers, the Pennylane template
StronglyEntanglingLayers2 is used.

As an alternative, we implement a variational model anal-
ogous to the previous one, with the difference that the input
samples are encoded with Pennylane’s AmplitudeEmbedding3

routine. As a result, the rotational layers after the embedding
subcircuit only contain the variational parameters without
any input dependency or input weighing. Both models are
visualized and described in more detail in Appendix A.

2) ConvNet: As a classical counterpart that has been used
for decades in the realm of image classification, we construct a
simple convolutional network (ConvNet) consisting of a single
convolutional layer (including MaxPool operation and ReLU
activation) followed by a linear layer with four output nodes.
The simplicity of the network allows us in the following chap-
ters to efficiently compute Lipschitz bounds using linearization
techniques discussed in Section III-C and Appendix C.

3) Fourier network: In addition to the models above, we
train and evaluate a second classical model that is mathe-
matically similar to the re-upload encoding quantum model.
As introduced in Subsection III-B, we can approximate the
parametrized circuit by a single-layer feedforward neural net-
work learning a classical Fourier series

g(x;w) =
∑

w∈W

aw cos(wx) + bw sin(wx) (9)

where the weights w ∈ W (whose shape is determined
by the number of hidden neurons in the inner layer) control
the number of summands in g(x;w). If we do not restrict
ourselves to sampling M frequencies ω as in [9] and setting
wi = ωi, but instead let the classical model also optimize over
the encoding weights, we get a similar notion to the trainable
encoding of the PQC architecture, albeit with a limited number
of frequencies to learn. We can then optimize over both w and
aw, bw (see Fig. 10 in Appendix A for more information). A
similar model architecture has been investigated as early as
1988 by Gallant and White [28]. We adhere to their naming
and subsequently refer to our second classical network as the
“Fourier network”. As discussed before, this network structure
can be seen as a “middle ground” between the mathematical
description of a PQC architecture and a classical feedforward
network such as ConvNet.

2https://docs.pennylane.ai/en/stable/code/api/pennylane.
StronglyEntanglingLayers.html

3https://docs.pennylane.ai/en/stable/code/api/pennylane.
AmplitudeEmbedding.html

https://docs.pennylane.ai/en/stable/code/api/pennylane.StronglyEntanglingLayers.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.StronglyEntanglingLayers.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.AmplitudeEmbedding.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.AmplitudeEmbedding.html


C. Model training and adversarial attacks

First, all models (ConvNet, Fourier net, and both PQC
architectures) are trained on the training dataset consisting of
1000 images as described in Subsection IV-A. In all cases,
an AdamOptimizer routine is used with a learning rate of
0.001, no weight decay. Every model achieved a near-perfect
accuracy on the (unsurprisingly easy) task of 4-class image
classification. For most parts of the following chapters, we
evaluate and attack each model after 20 epochs of training,
however, we also conduct specific experiments concerning
training epochs, therefore we also evaluate some models after
training for 100 epochs. Whenever we use models trained for
this increased duration, we explicitly mention it in the text. For
visual confirmation of the models’ ability to achieve correct
classification results, the reader is referred to Appendix A,
where we show the performance plots for the models.

Next, we construct projected gradient descent (PGD) attacks
[29] for each model, with varying attack strengths ε ∈
{0.05, 0.1, 0.2}. For each attack, 100 images from the dataset
are modified according to the defined attack and fed into the
model. The resulting accuracy under attack (i.e. accuracy with
respect to perturbed input) is shown in Fig. 2. As expected,
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Fig. 2. Accuracy under PGD(ε) attack for each investigated model. While
all models are susceptible to attacks, the number of training epochs of the
re-upload encoding model makes a difference in robustness.

the performance of all models drastically deteriorates for
relatively small changes in the input. Interestingly, we can
see a difference in adversarial performance between the re-
upload encoding model trained for 20 epochs and the one
trained for 100 epochs, where the robustness of the model in
question decreases during training. The changes in adversarial
performance with increasing training time can also be verified
when we investigate the different outcomes of transfer attacks
in the following subsections.

An adversarial sample including attack perturbations
xadv = x+δ is shown for each model in Fig. 3, where for ease
of notation we drop the indices when referring to a single input
sample and denote the components of δ by δi. The resulting δ

are obtained by PGD(0.1) attacks, i.e. the modifications shown
in the images are in the range [−0.1, 0.1].

ConvNet Fourier AmpEnc ReUp(0.0)

Fig. 3. Perturbed images resulting from PGD(0.1) attacks for each model.
The attacks clearly add a bar (±10 degrees) to the left of each image, however
differences in areas that do not bear semantic meaning are visible, e.g. in the
amplitude encoding model we observe perturbations scattered across all parts
of the image.

All models misclassify the respective image as being in class
‘+’ instead of the true class ‘⊢’. Here we can see the reason
for the chosen dataset: If the target of the attack is to fool
the classifier into classifying a label ‘+’, the most sensible
modification would be to introduce a horizontal half-bar left
of the vertical middle bar. Indeed, for each model, we find
this change (in the range of the random ±10 deg rotations) on
the left part of the respective image. However, we can also
spot differences in the level of “random noise” to the right
of the middle bar in each image, in regions where a robust
model should not be influenceable. For the classical networks,
the attack is more locally bounded to the actual region of the
label flip, whereas the quantum models’ attack perturbations
are noisier. Most strikingly, this can be verified in the am-
plitude encoding architecture, where the attack modifications
are scattered across the whole image, and the overlap of the
resulting attack pattern and the one a human would consider
sensible is small. When introducing regularization of the re-
upload encoding PQC models below, we return to the attack
pattern analysis and show that regularization helps the model
in finding sensible features in the input data.

D. Transfer attacks

As a baseline for further investigations, we conduct ex-
periments on the transferability of adversarial attacks. More
specifically, we use the PGD(0.1) attacks (100 perturbed input
images) as established above for each epoch 20 model and
feed them into each of the other models (also trained for 20
epochs). The resulting accuracies are listed in Fig. 4, where
entry[i, j] corresponds to the accuracy of model j for transfer
attacks from model i.

The first observation can be made on the diagonal, where
the vulnerability of each model to attacks constructed for
the particular model itself is shown (corresponding to the
values in Fig. 2 for ε = 0.1). It is not surprising to see the
effectiveness of the attacks for each model, however, it may
be noted that the adversarial accuracy of the ConvNet stays
relatively high (which can be due to the low parameter count in
the convolutional architecture). More importantly, we can see
that we can indeed construct adversarial attacks on classical
networks that transfer well into the quantum domain, where a
transfer attack of the Fourier network achieves a degradation



Fig. 4. Accuracies under PGD(0.1) transfer attacks from source model (row)
to target model (column) for each pair of models in question. Attacks tranfer
notably better between ConvNet, Fourier net and re-upload encoding models
than from/to amplitude encoding models.

of the re-upload encoding architecture by 0.5. Also, we notice
that although the amplitude encoding model seems robust to
transfer attacks from the classical and quantum domain (last
column), attacks constructed for the amplitude encoding model
also fail to transfer to any of the other models (last row)
which shows the difference in the model architecture and
the learned feature importance. Lastly, we see that the attack
from the (non-regularized) re-upload encoding models is not
as effective on the Fourier net (entry[1, 2]) as in the reversed
case (entry[2, 1]), which opens the question if we can see a
change on this matter when we introduce regularization to our
re-upload model.

E. Impact of regularization

As the re-upload encoding architectures as described in
Appendix A make use of trainable encodings, we can reg-
ularize the input weights as developed by [15] and discussed
in Section III. Thus we can define variants of the re-upload
encoding model named ReUp(λ) with respective regulariza-
tion rates λ ∈ {0.0, 0.1, 0.2} (λ = 0.0 corresponds to no
regularization). This way, changes in the Lipschitz bound (by
applying regularized training) can be related to the outcomes
of transfer attacks and the change in robustness.

To see this in action, we study transfer attacks between
the classical Fourier net and quantum models, where we now
include the ReUp(λ) models and check for differences in the
success of the transfer attack. We start by using the perturbed
images generated by the PGD(0.1) attack constructed for
the Fourier net (epoch 20) and feed them into the ReUp(λ)
architectures. Fig. 5 shows the resulting accuracy under attack
for each of the quantum models with respect to input samples
perturbed as described above.

These transfer attacks show that the amplitude encoding
model retains its high accuracy, whereas the non-regularized
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Fig. 5. Accuracies for transfer attacks from the classical Fourier net to
regularized re-upload encoding PQC architectures.

re-upload encoding model performs notably worse. Further-
more, one can see a big difference in the adversarial transfer
robustness of the ReUp(0.0) model in relation to the number of
trained epochs. Lastly, we can see that regularization helps the
quantum models against transfer attacks from classical attacks,
where the training epochs have less of an influence.

As a logical next step, we investigate the flip side of
the experimental coin above: Feeding the perturbed input
generated by each of the quantum models into the classical
Fourier network trained for 20 epochs. Note that in this case,
we vary the attacks to perturb images (source models), while
the target model (Fourier net) stays constant. The green bars
in Fig. 6 visualize the outcome of this switched experiment.
The models on the x-axis correspond to the source model of
the attack, i.e. the model that the perturbations were originally
generated for. On the y-axis, we can see the accuracy under
these transfer attacks for the Fourier net. Again, the first (gray)
bar remains high, meaning that the attack from the amplitude
encoding model has little impact on the performance of the
classical model.

For the attacks coming from the ReUp(λ) circuits, we notice
an increasing success of the attack with higher values of λ,
meaning that the original ReUp(λ) model learns increasingly
useful features that are attacked and transfer better over the
classical/quantum boundary. It is also apparent that attacks on
a model trained for 100 epochs are less successful in fooling
the Fourier net, demonstrating that the source model was less
potent in focusing on important features.

Interestingly, a similar pattern emerges when looking at
visual modifications δ for the regularized vs. non-regularized
re-upload encoding models. When plotting the raw δ values
of an adversarial input image for each of the models, we
can check which pixels are changed the most and in which
direction (i.e. the value of δi ∈ [−ε, ε]). In Fig. 7, the resulting
perturbation patterns are visualized, where regions in blue
correspond to high values (δi = ε) and red areas correspond
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Fig. 6. Accuracies for transfer attacks from re-upload source models (differing
in regularization strength) to the Fourier net target model.

to low values (δi = −ε). As the original sample belongs to
class ‘−’, we can see the modifications adding a vertical bar
(to flip the predicted label to ‘+’) in each case. However,
the expected hourglass shape differs in consistency, where the
same concept of Fig. 5 reappears. For non-regularized models,
longer training duration has a stark effect on the resulting
attack pattern, where the attack on the 100 epoch model
looks more chaotic and noisy than the epoch 20 one. If we
introduce regularization, the effect becomes less apparent and
the overall shape is more defined, meaning that the attack (and
thus the underlying model) focuses more on features actually
contributing to the target class label.

Fig. 7. Perturbation patterns for PGD(0.1) attacks on non-regularized versus
regularized re-upload encoding models for the sample image shown on the
left. The attack pattern for regularized models are less noisy, showing evidence
of improved attention to useful features in the underlying model.

F. Lipschitz bounds

To tie the findings of the transfer attack experiments and
the perturbation patterns for different regularization strengths
together, we return to the introduced measure of Lipschitz
bounds. For each model involved in the adversarial attacks
earlier, we calculate an approximation of the Lipschitz bound,
where we use methods developed by Fazlyab et al.[12] for
our classical models and an adapted version of the bound
calculated by Berberich et al. [15] for the PQC models. As the
derived Lipschitz bounds are derived for ℓ2 norm constraints,

we note that we can use the conservative ℓ∞ conversion mul-
tiplying by

√
D, however for the simple comparison between

models as we do in the following, this is not needed. Future
work may engage in finding tighter bounds and the relations
between different model architectures. Also, as discussed by
Szegedy et al. [30], a high Lipschitz bound does not imply the
existence of adversarial attack possibilities, but a low bound
does give some certificate of robustness. Given the derivation
in Appendix B, the resulting Lipschitz bounds are stated in
Table I.

TABLE I
APPROXIMATED LIPSCHITZ BOUNDS FOR SELECTED MODELS.

REGULARIZATION OF RE-UPLOAD MODELS HAS A DIRECT EFFECT ON THE
RESULTING LIPSCHITZ BOUND, PUSHING IT TOWARDS (OR SLIGHTLY

BELOW) THE BOUNDS DERIVED FOR THE CLASSICAL MODELS.

Model Lipschitz bound

ReUp(0.0), epoch 20 73.11

ReUp(0.0), epoch 100 106.33

ReUp(0.1), epoch 20 18.18

ReUp(0.1), epoch 100 19.77

ReUp(0.2), epoch 20 13.50

ReUp(0.2), epoch 100 11.83

Fourier, epoch 20 25.38

ConvNet, epoch 20 20.24

First, the re-upload encoding model shows a relatively large
bound, even more so for the increased training time. Second,
regularization notably makes a difference, not only in the
practical attacks, but also in theory, where L drops to values
slightly below the range of those obtained by the analysis of
classical models. Lastly, we can see that the additional training
time for the re-upload models has less of an influence on L if
regularization is introduced during training. These results fit
into the picture outlined in the transfer attacks and perturbation
patterns above. In the following section, we summarize these
findings and put them into place at the current research frontier
on QAML.

V. SUMMARY AND OUTLOOK

In this work, a series of experiments has been conducted,
which allow for a comparative analysis of adversarial ro-
bustness for both quantum and classical machine learning
classification networks. The findings of these experiments are
summarized below, where we split the results thematically into
single-model analysis and inter-model (i.e. transfer) analysis.

A. Adversarial attacks and training epochs

The main observations of the attack success rate and the
perturbation pattern coherence are as follows:

1) During training, the features that a re-upload model
with trainable encoding attends to change dramatically,
which increases Lipschitz bounds on the theoretical side
and adversarial vulnerability and perturbation pattern



noise on the practical side. For models without trainable
encodings, the training time has less/ no influence on this
matter, but the resulting model is also less adaptive [15].

2) If we introduce regularization to the re-upload models,
the training time has less impact on robustness as the
encoding weights are kept small during training and do
not overly emphasize single input features.

3) The attack perturbation patterns give useful insight into
the features that have most influence on the classification
decision of a model as these features are perturbed the
most. As we repeat the attacks for models of the same
architecture with different initializations, this is very
similar to popular feature attribution approaches such
as SmoothGrad [31].

4) To this end, the constructed dataset offers useful capa-
bilities into the semantic categorization of useful versus
noisy feature perturbations.

B. Transfer attacks

While single-model attacks offer some insight into robust-
ness and feature attribution of the respective models, the focus
of this paper lies on the comparison of robustness for both
classical and quantum machine learning models. In this area,
the following insights surfaced during the experiments:

1) The suspected quantum supremacy in robustness has to
be taken with a grain of salt: Many factors influence
the success rate of a transfer attack between classical
and quantum models. Most importantly, we can see that
not all quantum models are robust to classical transfer
attacks, which makes regularization an important topic
for future research.

2) Fourier networks, as introduced in this paper, can be
seen as “middle ground” between classical and quantum
networks; attacks from this model architecture transfer
well into both quantum and classical domains. Inves-
tigating this model class further can bring important
insight into attributes of the re-upload encoding model
that are otherwise hard to examine.

3) Amplitude encoding shows greatly different behavior in
our experiments than the other models, where transfer
attacks are not successful in either direction. While the
perturbation pattern seems more noisy for the given at-
tacks, the training time/ regularization has little influence
on this measure as the parameters in the model have no
input dependency/ influence on input features.

4) Regularized re-upload models are more successful in
transferring attacks to the classical Fourier network. This
can be seen in the corresponding Lipschitz bounds, but
also in the attack success rate and the attribution to more
robust features in the input data.

C. Future work

While this paper sheds some light on the usefulness of
theoretical Lipschitz bounds and practical transfer attacks
across the quantum-classical boundary for a comparative ro-
bustness analysis paired with perturbation patterns for finding

a model’s attribution to features, there are still open fields to
investigate. First, the calculated Lipschitz bounds for classical
and quantum models can be made tighter by considering
local bounds given by the absolute modification ε in each
input feature and lower/ upper bounds on the resulting values
in the non-linear layers. Also, one can consider ℓ∞ bound
certificates to go into more detail of the underlying attacks.
On the practical side, quantum classification models are still
limited to relatively low-dimensional input data, therefore it
would be of research interest to validate the experiments
done here on larger-scale input. As a reference, we show
in Appendix D, that the re-upload encoding architecture as
shown in this paper can be easily adapted to other input
datasets such as MNIST. While much work has been dedicated
towards re-upload encodings, their Fourier representation, their
Lipschitz bounds, regularization and classical approximations,
relatively less work is commited to thoroughly finding bounds,
classical representations and their implications for comparison
of amplitude encoding circuits, which by design should have
relatively low Lipschitz bounds resulting from their simple
linear structure and direct input encoding into the amplitudes
of the circuit qubits. For NISQ devices that are expected
to depend on efficient encoding routines such as re-upload
encoding, it is nevertheless very important to develop strategies
to obtain robustness and generalization guarantees before
being able to surpass classical models in practice.

VI. CODE AVAILABILITY

The dataset (including train/validation split and data genera-
tion script) used in the paper, as well as all models, pretrained
weights, and Lipschitz calculations will be made available
upon publication.
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APPENDIX A
MODEL ARCHITECTURES AND TRAINING SPECIFICATIONS

A. Quantum model architectures

The focus of the paper lies on the re-upload encoding
architecture, proposed by Pérez-Salinas et al. [16], where the
features of the input vector are grouped into 3-tuples and
sequentially inserted as rotational angles of (general) rotational
gates. A similar architecture is used by Berberich et al. [15]
(in their training of Lipschitz-regularized quantum models)
with the difference that they use an inner product of encoding
weights and feature vectors as input to every rotational gate
which becomes computationally infeasible for large input
dimensions. Figure 8 shows a schematic overview over our
circuit architecture (based on the StronglyEntanglingLayers
subroutine), where wlq ∈ R3 correspond to the encoding
weights (for l ∈ {1, · · · , L}, q ∈ {1, · · · , Q}) to be multiplied
with the input features. Each xjk ∈ R3 therefore corresponds
to a 3-tuple of features of the current (linearized) input sample.
The expression inside the rotational gates, wlqxjk is then the
Hadamard (i.e. element-wise) product of the two vectors with
an additional bias vector θlq ∈ R3. In the following, we again
shift from the indices used here to denote the position in the
circuit to a single index specifying the element of a vector.

Parametrized layer

|0⟩ R(w11x11 + θ11)

Ent.

· · · R(wL1xjk + θL1)

Ent.

|0⟩ R(w12x12 + θ12) · · · R(...)

|0⟩ R(w13x13 + θ13) · · · R(...)

|0⟩ R(w14x14 + θ14) · · · R(...)

|0⟩ R(w15x15 + θ15) · · · R(...)

|0⟩ R(w16x16 + θ16) · · · R(...)

|0⟩ R(w17x17 + θ17) · · · R(...)

|0⟩ R(w18x18 + θ18) · · · R(...)

︸ ︷︷ ︸
L layers

Fig. 8. Re-upload Encoding circuit used for the experiments in the main text.
L StronglyEntanglingLayers are used encode the input and optimize over
variational parameters, followed by measurements of the first four qubits.

Mathematically, given some input 3-tuple x and weights
w, θ ∈ R3, this general rotation can be written as a product of
unitaries

R(wx+ θ) = Uw,θ(x) =

3∏

j=1

e−i(wjxj+θj)Hj (10)

where the typical gate decomposition of general rotational
gates (also used in the Pennylane module4) uses Hamiltonians
H1 = 1

2σZ , H2 = 1
2σY , H3 = 1

2σZ .
A similar architecture is used for the amplitude encoding

model, where we only use the additive parameters θ ∈ R3

inside the general rotational gates as the input is already

4https://docs.pennylane.ai/en/stable/code/api/pennylane.Rot.html

embedded into the amplitudes of the qubits (shown as a black-
box unitary in Fig. 9).

Parametrized layer

|0⟩

AmpEnc

R(θ11)

Ent.

· · · R(θL1)

Ent.

|0⟩ R(θ12) · · · R(θL2)

|0⟩ R(θ13) · · · R(θL3)

|0⟩ R(θ14) · · · R(θL4)

|0⟩ R(θ15) · · · R(θL5)

|0⟩ R(θ16) · · · R(θL6)

|0⟩ R(θ17) · · · R(θL7)

|0⟩ R(θ18) · · · R(θL8)

︸ ︷︷ ︸
L layers

Fig. 9. Amplitude encoding circuit, where the encoding routine is depicted
as a black-box unitary, followed by L parametrized StronglyEntanglingLayers
and a final measurement of the first four qubits.

For both amplitude and re-upload encoding, we use L = 32
parametrized StronglyEntanglingLayers for Q = 8 qubits.
As model output, we use a softmax distribution from the
expectation values of the first four qubits corresponding to
the four target classes. For the re-upload encoding model,
this means that each feature of a D = 256-dimensional input
sample is shown to the model three times, resulting in a three
times re-upload encoding.

B. Classical model architectures

The classical ConvNet used in the experiments consists of a
single convolutional layer (6 output channels, (5× 5)-filters),
followed by ReLU activation and MaxPool layers. A linear
layer maps the obtained latent states to an output vector of
dimension four. This simple architecture is easy to analyse
while still obtaining sufficiently good performance on the used
dataset (this was also verified on MNIST). The model contains
a total of 1.024 parameters, making it comparable to the other
model architetures in the experiments.

The Fourier net depicted in Fig. 10 is built from two linear
layers: one embedding layer with 64 hidden neurons, alter-
nately applying sine and cosine activations and an output layer
for the four-dimensional logits of the model. As described in
the picture, the weights for two subsequent hidden nodes are
shared, therefore the model effectively uses a latent size of
32 neurons. The transform of the second layer, as denoted
in the image yi = a⊤i z contains the trainable coefficients
ai = (aw1 , bw1 , · · · , aw64 , bw64) for the summands in the
truncated classical Fourier series from (9). The output function
therefore directly applies (9) to the input samples, with the
encoding weights in the first layer and the Fourier coefficients
in the output layer.

The code for the models described here can be found in the
repository linked in section VI, alongside the training, opti-
mization and validation routines discussed in the following.

https://docs.pennylane.ai/en/stable/code/api/pennylane.Rot.html


Fig. 10. Fourier network modeling a classical approximation of re-upload
encoding circuits with trainable encodings. A single hidden layer with sine
and cosine activation functions connects the 256-dimensional input to the
four-dimensional output.

C. Model training

All models are trained using the Adam optimizer routine
(0.001 learning rate, batch size 50) in Pytorch; for the quantum
models, this means that we first convert the circuits into a
Pytorch model using Pennylane’s TorchLayer5 class. After
each epoch, the respective model’s loss values and accuracy
on the training and validation set are recorded. This procedure
is repeated 5 times with different initialization seeds to avoid
a single “lucky run”. The averaged model performances are
plotted in Fig. 11. As the re-upload models use encoding
weights, we can initialize them (and the biases) with small
values to circumvent the Barren plateau problem [32], [33],
as the whole circuit resembles an Identity operation for the
first few training steps. Equivalently, we can initialize the
variational parameters of the amplitude encoding with small
random values to have the same effect.
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Fig. 11. Validation accuracy (as we do not fine-tune the training hyperparam-
eters, this can be used to verify the model performance) for the quantum (left)
and classical (right) models. For all models, the validation accuracy is ≥ 99%
after 10 epochs. The regularized models show a drop in performance due to
the regularization term of the loss taking over during training, depending on
the parameter λ.

5https://docs.pennylane.ai/en/stable/code/api/pennylane.qnn.TorchLayer.
html

APPENDIX B
DERIVATION OF LIPSCHITZ BOUNDS FOR QUANTUM

MODELS

For the key steps in deriving an upper bound on the
Lipschitz constant for re-upload encoding models, we refer
to the Appendix of Berberich et al. [15]. The main dif-
ference between their architecture and ours is our use of
Hadamard products for the three rotational angles of each
general rotational gate and the measurement of a subset of
qubits in contrast to a tensor observable over all qubits in
their paper (making only a two-class parity measurement
possible). The first difference can be adjusted if we consider
the decomposition in (10) in its product form, the second
difference disappears if we look at each expectation value in
our model output [⟨σ1

Z⟩, ⟨σ2
Z⟩, ⟨σ3

Z⟩, ⟨σ4
Z⟩] seperately (as the

observables are commuting), which again takes the same form
as in [15]. Accordingly, the Lipschitz bounds for the re-upload
encoding models in this paper are calculated as in (7).

APPENDIX C
DERIVATION OF LIPSCHITZ BOUNDS FOR CLASSICAL

MODELS

As pointed out in Subsection III-C, we consider the LipSDP
[12] framework for tight upper bounds on the Lipschitz
constant of the Fourier net, where the used activation functions
(sine, cosine) are slope-restricted by α = −1 and β = 1. For
the resulting network architecture f(x) = W 1ϕ

(
W 0x+ b0

)
+

b1, where W 0 is the encoding weight matrix and W 1 is the
coefficient weight matrix containing the ai terms in Fig. 10,
the resulting LipSDP constrained optimization problem can be
found in Thm. 1 of [12].

For the ConvNet, we use the representation of 2D-
convolutions as large Toeplitz block matrices (e.g. described
in Araujo et al. [34]) to obtain a simple feed-forward struc-
ture as for the Fourier net. As Pytorch implements the
2D-convolution operator as discrete cross-correlations6, the
conversion is straightforward to realize. Unfortunately, the
resulting architecture is too computationally expensive for the
LipSDP method, however we can still check for the spectral
norm of the resulting weight matrices and obtain an upper
bound for the Lipschitz bound as detailed in Szegedy et al.
[30], although the bound might not be as accurate as in [12].

APPENDIX D
RESULTS FOR MNIST CLASSIFICATION

All classical and quantum models were also trained on a
four-class MNIST classification task, achieving near-perfect
training and testing accuracies. The MNIST dataset can be
loaded into the models referenced in Section VI in the same
way as our dataset. The experiments in the paper were also
successfully conducted on MNIST, however the perturbation
patterns are less interpretable due to the nature of the dataset
where all regions of the image bear semantic meaning.

6https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

https://docs.pennylane.ai/en/stable/code/api/pennylane.qnn.TorchLayer.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.qnn.TorchLayer.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
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