
Efficiently constructing a quantum uniform superposition over bit

strings near a binary linear code

Edward Farhi∗1,2 and Stephen P. Jordan†1

1Google Quantum AI
2Massachusetts Institute of Technology

Abstract

We demonstrate that a high fidelity approximation to |Ψb⟩, the quantum superposition over
all bit strings within Hamming distance b of the codewords of a dimension-k linear code over
Zn
2 , can be efficiently constructed by a quantum circuit for large values of n, b and k which

we characterize. We do numerical experiments at n = 1000 which back up our claims. The
achievable radius b is much larger than the distance out to which known classical algorithms can
efficiently find the nearest codeword. Hence, these states cannot be prepared by quantum con-
stuctions that require uncomputing to find the codeword nearest a string. Unlike the analogous
states for lattices in Rn, |Ψb⟩ is not a useful resource for bounded distance decoding because
the relevant overlap falls off too quickly with distance and known classical algorithms do better.
Furthermore the overlap calculation can be dequantized. Perhaps these states could be used
to solve other code problems. The technique used to construct these states is of interest and
hopefully will have applications beyond codes.

1 Introduction

Given a probability distribution p over the bit strings of length n one can define a corresponding
quantum state |p⟩ =

∑
x∈{0,1}n

√
p(x) |x⟩. The problem of preparing these states when p can be

efficiently sampled from classically was originally called qsampling in [1] but we call it Quantum
Distributional State Construction, to emphasize that it is a problem of preparing coherent quantum
states. Given |p⟩ one can sample from the classical probability distribution p by measuring |p⟩ in
the computational basis. QDSC can also be used to do things that classical sampling cannot. In
particular, given two probability distributions p and q on {0, 1}n, there is no way in general to
determine whether p is close to q (e.g. in total variation distance) by drawing polynomially many
samples from p and q. In contrast, using polynomially many copies of |p⟩ and |q⟩ one can answer
this question using the Hadamard test.

Here, we consider the problem of QDSC for the uniform distribution over all bit strings within
radius b of a binary linear code. Any binary linear code can be expressed in terms of a generator
matrix B ∈ Zk×n

2 as follows:
C = {xB : x ∈ Zk

2}. (1)

∗edwardfarhi@google.com
†stephenjordan@google.com

1

ar
X

iv
:2

40
4.

16
12

9v
1

 [
qu

an
t-

ph
]

 2
4

A
pr

 2
02

4

The quantities n and k are known as the length and dimension of the code, respectively. There are
2k codewords. (We are assuming that the rows of B are linearly independent.) For a given linear
code C ⊂ Zn

2 and a radius b ∈ {0, 1, . . . , n} we will show how to efficiently produce the state

|Ψb⟩ = N
∑
c∈C

∑
z∈Zn

2

Θ(b− |z|) |z⊕ c⟩ , (2)

where |z| denotes the Hamming weight of z, and Θ is the unit step function:

Θ(y) =

{
1 if y ≥ 0
0 if y < 0

. (3)

For now, assume that b is less than half the distance of the code. (The distance of the code
is the minimum Hamming weight of the difference between any two codewords.) In this case, the
state |Ψb⟩ is a superposition of non-overlapping balls of radius b centered at the codewords of C.
The normalization factor is then

N =
1√

2kVol(b)
(4)

where Vol(b) is the number of points contained within a ball of Hamming radius b:

Vol(b) =
b∑

j=0

(
n

j

)
. (5)

If the balls overlap the normalization is more complicated.
The uniform probability distribution over all bit strings within Hamming distance b of a binary

linear code is easy to sample from classically. First, sample x uniformly from bit strings of length k
and sample z uniformly from bit strings of length n and Hamming weight at most b. Then compute
xB ⊕ z. This suggests an approach to prepare the state |Ψb⟩. First, prepare(1√

2k

∑
x∈Zk

2

|x⟩
)(1√

Vol(b)

∑
z∈Zn

2

Θ(b− |z|) |z⟩
)
|0⟩⊗n . (6)

Next, reversibly compute xB ⊕ z into the last register, yielding

1√
2k

∑
x∈Zk

2

|x⟩ 1√
Vol(b)

∑
z∈Zn

2

Θ(b− |z|) |z⟩ |xB ⊕ z⟩ . (7)

Last, we need to uncompute x and z from the first two registers to obtain |Ψb⟩. By assumption, b is
less than half the distance of the code. Therefore, the balls do not overlap and x and z are uniquely
determined by xB⊕ z. However, determining x and z from xB⊕ z is in general a computationally
hard problem. Specifically, it is a bounded distance decoding problem for the code C where the
bound on distance is b.

Bounded Distance Decoding. We are given a linear code C ⊂ Zn
2 specified by its generator

matrix, as in (1). We are given a bit string v ∈ Zn
2 and are promised that v has Hamming distance

at most d from the nearest codeword: minc∈C |v − c| ≤ d. The bounded distance decoding problem
is to find c.

2

(|0⟩+ |1⟩)/
√
2 • H

|Ψb⟩ / Tv

Figure 1: This circuit implements the Hadamard test. The unitary Tv implements the translation
by v. That is, Tv |x⟩ = |x⊕ v⟩. The probability that the final measurement yields outcome zero is
1
2 + 1

2 ⟨Ψb|Tv |Ψb⟩.

Bounded distance decoding for general binary linear codes can only be solved out to d logarith-
mic in n using known polynomial-time algorithms [2, 3]. Consequently the method just described
is only capable of efficiently preparing the state |Ψb⟩ for b = O(log n). Preparing |Ψb⟩ out to larger
radius by this direct approach fails due to an uncomputation barrier. In this work, we show that
by taking a more intrinsically quantum approach we can surpass the uncomputation barrier and
efficiently prepare |Ψb⟩ out to b much larger than the radius to which we can solve bounded distance
decoding.

In [1, 4] it was shown that the ability to prepare superpositions over points within Euclidean
distance b of the elements of a lattice in Rn would yield efficient quantum algorithms to solve
classically-intractible instances of the Bounded Distance Decoding (BDD) problem over these lat-
tices. No efficient quantum circuits for this state preparation task are known. The states |Ψb⟩ that
we prepare here are closely analogous to the states described in [1, 4], except over Z2 instead of R
and using Hamming distance instead of Euclidean distance.

The state |Ψb⟩ can be used as a resource for BDD on binary linear codes using the same approach
that was proposed in [1, 4] for lattices over R. For v ∈ Zn

2 let Tv be the corresponding unitary
translation operator defined by Tv |x⟩ = |x⊕ v⟩. If the overlap between |Ψb⟩ and its translation by
Tv is bigger than 0 then v is within distance 2b of the lattice. Given |Ψb⟩, one can use the Hadamard
test to estimate the overlap ⟨Ψb|Tv |Ψb⟩, as illustrated in figure 1. This overlap is determined by
the distance from v to the nearest codeword and decreases monotonically with this distance. (See
§9.) By iteratively flipping a bit of v and accepting the move if the distance is decreased one can
find the nearest codeword.

The number of Hadamard tests required to detect that ⟨Ψb|Tv |Ψb⟩ is nonzero and hence that v
is less than distance 2b from the nearest codeword is on the order of 1/| ⟨Ψb|Tv |Ψb⟩ |2. Using ampli-
tude amplification, this cost can be reduced quadratically [5]. However, the overlap | ⟨Ψb|Tv |Ψb⟩ |
falls rapidly with |v|. Consequently, as we show in §11, using the states |Ψb⟩ in this way beats brute
force search but fails to outperform the classical algorithm Information Set Decoding. Furthermore,
in §10, we show that this approach can be dequantized.

It is interesting to see another example where the uncomputation barrier thwarts the naive
approach to QDSC. As discussed in [1], the graph isomorphism problem can be reduced to QDSC
as follows. Given a graph G with n vertices, one wishes to prepare the uniform superposition over
all of its permutations,

|ΦG⟩ =
1√
N(G)

∑
π∈Sn

|π(G)⟩ (8)

where N(G) is the appropriate normalization factor. If G and G′ are isomorphic graphs then
⟨ΦG|ΦG′⟩ = 1. Otherwise ⟨ΦG|ΦG′⟩ = 0. These cases are easily distinguished using the Hadamard
test. Furthermore, the uniform probability distribution over permutations of a graph is easy to

3

sample from classically by sampling a permutation at random and then applying it to G.
Now, consider the approach to quantum state preparation that is analogous to the above (failed)

attempt to make |Ψb⟩. For simplicity, we restrict attention to the case thatG has no automorphisms,
so the number of distinct permutations is n!. The hoped for state construction process would be:

1√
n!

∑
π∈Sn

|π⟩ |G⟩ → 1√
n!

∑
π∈Sn

|π⟩ |π(G)⟩ (9)

→ 1√
n!

∑
π∈Sn

|identity⟩ |π(G)⟩ . (10)

The second step of unentangling the first register from the second by reverting it to the identity is
achievable if, with knowledge of G, π can be computed from π(G). In this case, one computes π
from π(G) reversibly in superposition and applies π−1 to the first register. However, computing π
from π(G) is exactly the graph isomorphism problem. So we have not made any progress.

In [1] reductions are also given from quadratic residuosity and discrete logarithm to QDSC. In
the case of discrete logarithm, the uncomputation barrier arises just as in the above two examples.
In the case of quadratic residuosity, the uncomputation task that arises is to uncompute a super-
position rather than an individual bit string. These examples show that quantum approaches to
several hard problems are thwarted by uncomputation barriers. Our results in this paper provide
an example of how an uncomputation barrier can be surmounted.

2 Preliminaries

We now give the background necessary for understanding our construction of |Ψb⟩. Our procedure
begins by constructing a state over the dual code so let us review what the dual is.

Dual Code. Given a code C ⊂ Zn
2 , the dual code C⊥ is defined as

C⊥ = {d ∈ Zn
2 : d · c = 0 ∀c ∈ C}, (11)

where d · c =
⊕n

i=1 dici is the Zn
2 inner product.

The dual to a code of length n and dimension k has length n and dimension n − k. We call the
n − k by n generator matrix of the dual code B⊥. Given B we can efficiently construct B⊥, as
discussed in appendix B.

On the quantum side each codeword and each dual codeword can be viewed as a computational
basis state in a 2n-dimensional space. The normalized uniform superposition of the 2k codewords
is related to the normalized uniform superposition of the 2(n−k) dual codewords by the Hadamard
transform. Given any function f : Zn

2 → C, its Hadamard transform f̃ : Zn
2 → C is defined by

f̃(x) =
1√
2n

∑
y∈Zn

2

(−1)x·yf(y). (12)

This transform can be applied to the amplitudes of a quantum state by applying the Hadamard

gate H = 1√
2

[
1 1
1 −1

]
to each qubit:

H⊗n
∑
x∈Zn

2

f(x) |x⟩ =
∑
x∈Zn

2

f̃(x) |x⟩ . (13)

4

Hadamard of a Uniform Superposition of Codewords. Given a uniform superposition over
a code C, its Hadamard transform is the uniform superposition over the dual code C⊥. That is:

If f(x) =
1√
|C|

∑
c∈C

δx,c then f̃(x) =
1√
|C⊥|

∑
d∈C⊥

δx,d. (14)

Proof. Writing out the Hadamard transform yields

f̃(x) =
1√
2n

1√
|C|

∑
c∈C

(−1)x·c. (15)

For x ∈ C⊥
1√
|C|

∑
c∈C

(−1)x·c =
√

|C|. (16)

Recall that |C| = 2k and accordingly |C⊥| = 2n−k. Thus f̃(x) = 1√
|C⊥|

for any x ∈ C⊥. For all

x /∈ C⊥ one must have f̃(x) = 0 since any additional nonzero amplitudes would yield norm greater
than one, which cannot occur because the Hadamard transform is unitary.

Our algorithm for preparing |Ψb⟩ begins by constructing a preliminary state
∣∣∣Ψ̃b

〉
and then

applying the quantum Hadamard transform H⊗n. The state
∣∣∣Ψ̃b

〉
is the Hadamard transform of

the target state |Ψb⟩, ∣∣∣Ψ̃b

〉
= H⊗n |Ψb⟩ , (17)

so we see that acting on this state with the Hadamard transformation gives the target state.
By a slightly involved calculation which we defer to §5,∣∣∣Ψ̃b

〉
= N

∑
d∈C⊥

Kn−1
b (|d| − 1) |d⟩ , (18)

where Kn
j (x) is the Krawtchouk polynomial defined by

Kn
j (x) =

j∑
r=0

(
x

r

)(
n− x

j − r

)
(−1)r, (19)

and N is the normalization factor. If the balls do not overlap then

N =
1√

2n−kVol(b)
, (20)

which is also shown in section §5.
If we can construct

∣∣∣Ψ̃b

〉
we can act on it with the Hadamard transform and get our desired

state,

|Ψb⟩ = H⊗n
∣∣∣Ψ̃b

〉
. (21)

5

So our task now is to give an efficient construction of
∣∣∣Ψ̃b

〉
. Suppose we can make the state∣∣∣|Ψ̃b|

〉
= N

∑
d∈C⊥

∣∣Kn−1
b (|d| − 1)

∣∣ |d⟩ . (22)

For a given dual codeword d ∈ C⊥ it is easy to compute the sign of the amplitude Kn−1
b (|d| − 1)

and apply it using phase kickback, as described in appendix A, to make the state (18) from (22).
So the task now is to make this unsigned state.

The unsigned state can be described in terms of a probability distribution as follows. Let
B⊥ ∈ Zk⊥×n be the generator matrix for C⊥. Again k⊥ = n− k. Then,∣∣∣|Ψ̃b|

〉
=
∑

u∈Zk⊥
2

√
p(u) |uB⊥⟩ , (23)

where p(u) is the normalized probability distribution over Zk⊥
2 given by

p(u) = N2
[
Kn−1

b (|uB⊥| − 1)
]2

(24)

States of the form
∑

x

√
p(x) |x⟩ can in some cases be prepared efficiently using the method of

conditional rotations, described in the next section.

3 Conditional Rotations by Metropolis Monte Carlo

Given a probability distribution p(u1, . . . , uk⊥), the method of conditional rotations, introduced in
[6] and further developed in [7, 8], can be used to efficiently prepare the state∑

u∈Zk⊥
2

√
p(u) |u⟩ (25)

provided certain marginal conditional probabilities can be efficiently computed. Here, our goal
is to prepare this state in the case that p(u) is as given in (24). Once we have done this, it is
straightforward to perform the transformation

∑
u

√
p(u) |u⟩ →

∑
u

√
p(u) |uB⊥⟩, using classical

reversible computation, to get the desired state (23). This is spelled out in §4. Our method for
computing the necessary conditional marginal probabilities is Metropolis Monte Carlo.

The method of conditional rotations works as follows. Start with k⊥ qubits initialized to the

zero state, |0⟩⊗k⊥ . Suppose there is an efficient way to calculate the marginals p(u1 = 0) and
p(u1 = 1) which are the probabilities that the first bit is 0 or 1. Then perform a rotation on the
first qubit, obtaining (√

p(u1 = 0) |0⟩+
√
p(u1 = 1) |1⟩

)
|0⟩⊗(k⊥−1) . (26)

Assuming there is an efficient way to compute subsequent conditional marginals, perform a rotation
on the second qubit conditioned on the value of the first qubit, obtaining[√

p(u1 = 0) |0⟩
(√

p(u2 = 0|u1 = 0) |0⟩+
√

p(u2 = 1|u1 = 0) |1⟩
)
+√

p(u1 = 1) |1⟩
(√

p(u2 = 0|u1 = 1) |0⟩+
√

p(u2 = 1|u1 = 1) |1⟩
)]

|0⟩⊗(k⊥−2)
. (27)

6

Similarly, rotate the third qubit conditioned on the first two according to p(u3|u2, u1) and so on
until all the bits are rotated. At the end of this process one is left with the state∑

u1...uk⊥

a(u1, . . . , uk⊥) |u1 . . . uk⊥⟩ (28)

where

a(u1, . . . , un) =
√

p(u1)
√
p(u2|u1)× . . .×

√
p(uk⊥ |uk⊥−1, . . . , u1) (29)

=
√
p(u1, . . . , uk⊥) (30)

as desired.
For this process to be efficient, it must be possible to efficiently evaluate all the necessary condi-

tional marginal probabilities in which the first m bits are fixed and the last k⊥−m bits are summed
over, keeping track of how often bit m+ 1 is 0 or 1 to get the marginal. Classically precomputing
these sums would be infeasible because there are exponentially many of them. Instead, these eval-
uations are done in superposition by reversible circuits. Thus, the key question is whether these
conditional marginal probabilities can each be computed by an efficient classical algorithm.

The classical algorithm that we propose for estimating these conditional probabilities is the
method of Markov chain Monte Carlo, using the Metropolis rule. We find that the necessary Markov
chains converge remarkably rapidly, despite the exponentially large state space of codewords in C⊥

for certain values of b and k. We discuss the conditions that guarantee good convergence in §8.
Consider first the Markov chain used to estimate the rotation probability for the first bit. At

each step in the Markov chain our random walker is located at some string u ∈ Zk⊥
2 . We then

choose one bit of u unformly at random and flip it, yielding u′. Since we are going for (24) we then
evaluate:

f(u′) =
[
Kn−1

b (|u′B⊥| − 1)
]2

. (31)

If f(u′) ≥ f(u) this move is accepted and the walker moves from u to u′. Otherwise, the move is
accepted with probability f(u′)/f(u). This is the Metropolis rule. Under mild conditions, this is
guaranteed to converge to the limiting normalized distribution proportional to f .

One obtains a sequence of bit strings u,u′, . . . ∈ Zk⊥
2 by running this Markov chain. The fraction

of bit strings sampled in which the first bit is 1 is used as the marginal distribution for the first
qubit rotation. For the mth qubit rotation the same procedure is followed except that the first m
bits of u are frozen to specific values, and only flips of remaining k⊥ −m bits are proposed in the
random walk, thereby sampling from the necessary conditional distribution. This is done reversibly
in superposition over values that the first m bits are fixed to. Reversible implementation of the
Markov chain is to be carried out using a reversible pseudorandom number generator.

4 Quantum State Preparation Algorithm for |Ψb⟩
We now present pseudocode for the construction of |Ψb⟩, which is an example of the Quantum
Distributional State Construction problem. It relies on sampling by Metropolis Monte Carlo which
we described in the last section. The key equation (18) is established later so if you take it on faith
hopefully you have enough to follow the pseudocode.

Given a generator matrix for C, we construct |Ψb⟩ using the following steps.

7

1. Precompute Kn−1
b (h − 1) for h = 0, . . . , n so they need not be evaluated with the quantum

device. Note that they do not depend on the code.

2. Starting from the generator matrix for C, compute B⊥, the k⊥ × n generator matrix for C⊥.
This can be done in polynomial time, see for example appendix B.

3. Initialize a register of k⊥ qubits and second register of n qubits to the all zero state,

|0⟩⊗k⊥ |0⟩⊗n .

4. Use the method of conditional rotations, estimated using the Metropolis Monte Carlo method,
to construct a weighted superposition over the coefficient vectors u,

→ N
∑

u∈Zk⊥
2

∣∣Kn−1
b (|uB⊥| − 1)

∣∣ |u⟩ |0⟩⊗n .

where N is the normalization constant. Note that our method automatically produces a
normalized state so there is no need to know N in advance.

5. Reversibly compute the corresponding codewords of C⊥ into the second register,

→ N
∑

u∈Zk⊥
2

∣∣Kn−1
b (|uB⊥| − 1)

∣∣ |u⟩ |uB⊥⟩ .

6. Uncompute the first register, returning it to |0⟩⊗k⊥ . We do this after having classically
precomputed the right-inverse B−1

⊥ for the (non-square) matrix B⊥, that is, B⊥B
−1
⊥ = 1.

Then in the first register add (uB⊥)B
−1
⊥ to u. This yields

→ N
∑

u∈Zk⊥
2

∣∣Kn−1
b (|uB⊥| − 1)

∣∣ |0⟩ |uB⊥⟩ .

This can be rewritten as
= N

∑
d∈C⊥

∣∣Kn−1
b (|d| − 1)

∣∣ |d⟩ ,

where we have discarded the first register for clarity.

7. Use phase kickback (c.f. appendix A) to put in the correct sign of Kn−1
b (|d| − 1),

→ N
∑

d∈C⊥

Kn−1
b (|d| − 1) |d⟩ .

8. Perform the quantum Hadamard transform H⊗n. As we show next in §5, this yields the
desired final state,

→ N
∑
c∈C

∑
z∈Zn

2

Θ(b− |z|) |z⊕ c⟩ = |Ψb⟩ .

The fidelity with which the final state is produced depends entirely on the precision to which
the Metropolis Monte Carlo method can estimate the conditional probabilities defining the qubit
rotations. This is step 4. All other steps of the algorithm are exact.

8

5 Deriving the form of
∣∣∣Ψ̃b

〉
In this section we collect and prove some facts regarding Hadamard transforms and then use them
to derive (18).

Convolution Theorem.

H⊗n 1√
2n

∑
z∈Zn

2

∑
y∈Zn

2

f(y)g(z⊕ y) |z⟩ =
∑
x∈Zn

2

f̃(x)g̃(x) |x⟩ (32)

where f̃ is the Hadamard transform of f

f̃(x) =
1√
2n

∑
y∈Zn

2

(−1)x·yf(y) (33)

and g̃ is the Hadamard transform of g.

Proof.

H⊗n 1√
2n

∑
z∈Zn

2

∑
y∈Zn

2

f(y)g(z⊕ y) |z⟩ = 1

2n

∑
x,y,z∈Zn

2

(−1)x·zf(y)g(z⊕ y) |x⟩ (34)

Let w = z⊕ y. Then the previous expression can be rewritten as

=
1

2n

∑
x,y,w∈Zn

2

(−1)x·(w⊕y)f(y)g(w) |x⟩ (35)

=
∑
x∈Zn

2

(1√
2n

∑
y∈Zn

2

(−1)x·yf(y)
)(1√

2n

∑
w∈Zn

2

(−1)x·wg(w)
)
|x⟩ (36)

=
∑
x∈Zn

2

f̃(x)g̃(x) |x⟩ .

Hadamard Transform of a Single Ball. Given a radius b ∈ {0, 1, 2, . . . , n}, let g : Zn
2 → C be

g(x) = Θ(b− |x|), (37)

where Θ is the unit step function as defined in (3). Then, the Hadamard transform of g is

g̃(x) =
1√
2n

Kn−1
b (|x| − 1), (38)

where Kn−1
b is the Krawtchouk polynomial as defined in (19).

Proof. To compute the Hadamard transform of a ball, first rewrite g(y) = Θ(b − |y|) as g(y) =∑b
j=0 δj,|y|. Then

g̃(x) =
1√
2n

b∑
j=0

∑
y∈Zn

2

(−1)x·yδj,|y|. (39)

9

The summand (−1)x·yδj,|y| depends on x and y only through r, the number of bits which are equal
to 1 in both x and y, and s, the number of bits which are equal to 1 in y but not x. Thus,

g̃(x) =
1√
2n

b∑
j=0

|x|∑
r=0

n−|x|∑
s=0

(
|x|
r

)(
n− |x|

s

)
(−1)rδj,r+s (40)

=
1√
2n

b∑
j=0

(
j∑

r=0

(
|x|
r

)(
n− |x|
j − r

)
(−1)r

)
. (41)

The inner expression is recognizable as a Krawtchouk polynomial, which is defined by

Kn
j (x) =

j∑
r=0

(
x

r

)(
n− x

j − r

)
(−1)r (42)

thus we can write

g̃(x) =
1√
2n

b∑
j=0

Kn
j (|x|). (43)

Using the identity
b∑

j=0

Kn
j (x) = Kn−1

b (x− 1), (44)

which we derive in appendix C, we can further simplify our expression to

g̃(x) =
1√
2n

Kn−1
b (|x| − 1).

With these facts in hand, we can derive (18) as follows. Examination of (2) shows that |Ψb⟩ is
proportional to a convolution in the form of (32). Namely,

|Ψb⟩ =

√
2n

Vol(b)

1√
2n

∑
z∈Zn

2

∑
y∈Zn

2

f(y)g(z⊕ y) |z⟩ , (45)

where

f(x) =
1√
2k

∑
c∈C

δc,x (46)

and
g(x) = Θ(b− |x|). (47)

The convolution theorem therefore tells us that

H⊗n |Ψb⟩ =

√
2n

Vol(b)

∑
x∈Zn

2

f̃(x)g̃(x) |x⟩ . (48)

Now the Hadamard transform of f(x) is given by (14) and the Hadamard transform of g(x) is given
by (38) so plugging in gives

10

∣∣∣Ψ̃b

〉
= H⊗n |Ψb⟩ = N

∑
d∈C⊥

Kn−1
b (|d| − 1) |d⟩ (49)

where N is given as

N =
1√

2n−kVol(b)
. (50)

So we have established (18).

6 Impact of Imperfect Convergence on Fidelity

In §7 we show computer experiments to see how well a Metropolis Monte Carlo algorithm does at
sampling from a Krawtchouk distribution at n = 1000 with 1010 samples. In this section we quantify
the effect of sampling with a finite number of samples versus the ideal limiting distribution. We
calculate the fidelity between the ideal quantum state and one that arises from imperfect sampling
assuming that the only source of error is the imperfect sampling. We do assume that the sampled
distribution is uniform over codewords of a given Hamming weight, as it is in the ideal case. The
result is (60) in terms of the ideal and sampled distributions and is evaluated in specific cases in
the next section.

Let

|h⟩ = 1√
W (h)

∑
d∈C⊥

|d|=h

|d⟩ , (51)

where W (h) is the number of codewords in C⊥ with Hamming weight h. Note that we are not
assuming anything about W (h). Then

⟨h|h′⟩ = δh,h′ . (52)

By (22), ∣∣∣|Ψ̃b|
〉
= N

n∑
h=0

√
W (h)

∣∣Kn−1
b (h− 1)

∣∣ |h⟩ . (53)

The probability distribution over Hamming weights defined by this state is

pideal(h) =

[
Kn−1

b (h− 1)
]2

W (h)∑n
h=0

[
Kn−1

b (h− 1)
]2

W (h)
. (54)

We can correspondingly rewrite (53) as∣∣∣|Ψ̃b|
〉
=

n∑
h=0

√
pideal(h) |h⟩ . (55)

Let psam(h) be the probability distribution over Hamming weights achieved from the product of
conditional probabilities estimated by Markov chains, as in (29) and (30). Assuming no other
sources of error, the unsigned state resulting from conditional rotations would be∣∣∣|Ψ̃sam

b |
〉
=

n∑
h=0

√
psam(h) |h⟩ . (56)

11

Here is where we assumed that the distribution over sampled dual codewords at fixed Hamming

weight is uniform. By (52), the inner product between
∣∣∣|Ψ̃sam

b |
〉
and

∣∣∣|Ψ̃b|
〉
is

〈
|Ψ̃sam

b |
∣∣∣ |Ψ̃b|

〉
=

n∑
h=0

√
psam(h)

√
pideal(h). (57)

The minus signs imposed by phase kickback are always exact, and so the signed state will have this
same inner product 〈

Ψ̃sam
b

∣∣∣ Ψ̃b

〉
=

n∑
h=0

√
psam(h)

√
pideal(h). (58)

Let |Ψsam
b ⟩ be the approximation to |Ψb⟩ obtained by taking the Hadamard transform of

∣∣∣Ψ̃sam
b

〉
,

|Ψsam
b ⟩ = H⊗n

∣∣∣Ψ̃sam
b

〉
. (59)

Now |Ψb⟩ is the Hadamard of
∣∣∣Ψ̃b

〉
so the fidelity of the ideal state with the sampled state is

⟨Ψsam
b |Ψb⟩ =

n∑
h=0

√
psam(h)

√
pideal(h). (60)

By doing numerical experiments where we classically sample to get psam(h) we can estimate the
quantum fidelity between the less than perfect quantum state and the ideal.

7 Empirical Convergence of Metropolis Monte Carlo

To see if the Monte Carlo algorithm converges with not too many samples we consider the Markov
chain used in the first step of the method of conditional rotations. That is, none of the bits of u are
fixed and the state space consists of all 2k

⊥
bit strings u. Any subsequent Monte Carlo step with

m bits of u frozen is essentially a version of the same problem with m rows of the generator matrix
for C⊥ removed. As we will see in §8, failures of convergence can arise when one or both of the ball
radius b and the Hamming distance f of the step size in the random walk are too large. The step
size f is the Hamming weight of a row of the generator matrix B⊥. As B⊥ is in systematic form,
these rows have Hamming weight approximately k/2. In the mth random walk, we have removed
m of these rows. This leaves b unchanged and f still has an expected size of k/2. So we expect
that if the first step converges, the subsequent ones do as well.

For our examples we use random codes. Because this state space is exponentially large, it is
not practical to verify the convergence of the Metropolis Markov chain by directly comparing the
sampling frequencies to (24). Instead, we measure the frequency at which elements of C⊥ with
given Hamming weight are sampled. If the algorithm is converged, these sampling frequencies
should be proportional to

W (h)
[
Kn−1

b (h− 1)
]2

(61)

where W (h) is the number of codewords in C⊥ with Hamming weight h. It is well known that
random linear codes have a weight distribution which is close to binomial

W (h) ≃ 2k
⊥

2n

(
n

h

)
(62)

12

300 350 400 450 500 550 600 650 700
Hamming Weight

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
Pr

ob
ab

ilit
y

n=1000,k=100,b=20,samples=1010

Sampled
Ideal

Figure 2: Comparison between pideal(h) and the probability distribution in Hamming weight
produced by Metropolis Monte Carlo sampling on a random linear code with n = 1000 and k⊥ =
n− k = 900 basis vectors. The ball radius is b = 20. The Metropolis random walk was run for 1010

steps. The fidelity between the ideal quantum state and the sampled quantum state is 0.999995. We
plot only from Hamming weight 300 to 700 because outside of that range the sampled probabilities
are zero.

so we take

pideal(h) ∝
(
n

h

)[
Kn−1

b (h− 1)
]2

. (63)

We do not need the explicit form of the normalization for what follows.
We want to see if sampling can produce the distribution in (63). We show two numerical

examples. The first is at n = 1000, k = 100, b = 20 and is shown in figure 2. The results show
close agreement between the measured sampling frequencies as a function of Hamming weight and
the prediction of (63). This close agreement suggests both that the Metropolis algorithm is well
converged and that the binomial distribution is a good approximation to W (h).

Figure 2 shows that pideal(h) is very small outside of a limited range of Hamming weights. In the
example shown pideal(h) is very small for Hamming weights less than roughly 340 or greater than
roughly 660. This is significant, because finding codewords of low (or high) Hamming weight is an
approximate version of the lightest codeword problem which is classically hard. Algorithms that
require sampling from dual codewords of very low Hamming weight are unlikely to be successful.

13

In this example, for our task of constructing the state (2), we succeed without going near low
Hamming weight dual codewords.

For a linear code, we can estimate the minimum Hamming weight of any nonzero codeword. As
shown in [9], if a generator matrix is chosen uniformly at random then with high probability the
resulting code will have minimum distance D saturating the Gilbert-Varshamov bound. That is,
D is obtained by solving

2k =
2n

Vol(D)
=

2n∑D
j=0

(
n
j

) . (64)

In our example the dual is a random code, and we estimate that minimum Hamming weight of any
nonzero dual codeword is approximately 14. We see that we are not sampling near the smallest
dual codewords and we do not need to.

By choosing larger k and b we can construct examples in which the support of pideal(h) extends
to dual codewords of low and high Hamming weight which take exponential time to reach. In such
cases, the Markov chain converges nicely to the correct relative probabilities for the dual codewords
of Hamming weight in the middle range but the outer tails are cut off. We illustrate this in figure
3 where n = 1000, k = 300, and b = 60. In figure 4 we show the central region but we rescale
the two distributions so they both sum to one in this limited range. Note the excellent agreement
between the sampled and the ideal in the middle range. This results in high fidelity between the
ideal quantum state and the sampled quantum state. A quantitative analysis of which values of
n, k, b are expected to yield fully-converged Markov chains as in figure 2 versus which are expected
to yield cut-off distributions as in figure 3 is given in §8.

Note that, even in this second example (n = 1000, k = 300, and b = 60), the ideal distribu-
tion over dual codewords has negligible probability at Hamming weight below approximately 263,
whereas the shortest nonzero dual codeword for a random code of these parameters is, with high
probability, approximately 65. So achieving full convergence would not require sampling near the
shortest nonzero codeword.

Another phenomenon that we frequently observe in the unconverged regime is that some code-
words just at the boundaries of the regions of accessible Hamming weights are sampled with fre-
quencies that appear to be anomalously high. An example of this phenomenon can be seen in figure
3 in which there are a few outlier red points showing sampling frequencies substantially higher than
expected.

By the results of §6, namely (60), we can compute the fidelity between a state arising from the
sampled probability distributions and the ideal state, under the assumption that the sampling of
codewords of a given Hamming weight is uniform as in the ideal case. We are ignoring the error
that occurs from successive conditional rotations. For the well converged example at n = 1000, k =
100, b = 20 from figure 2 we obtain a fidelity of 0.999995. For the example at n = 1000, k = 300, b =
60 shown in figure 3 we obtain fidelity 0.67. These overlaps are high and show that in practice we
should be able to make the desired states with good fidelity.

14

0 200 400 600 800 1000
Hamming Weight

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Pr
ob

ab
ilit

y

n=1000,k=300,b=60,samples=1010

Sampled
Ideal

Figure 3: Comparison between pideal(h) and the probability distribution in Hamming weight
produced by Metropolis Monte Carlo sampling on a random linear code with n = 1000 and k⊥ =
n− k = 700 basis vectors. The ball radius is b = 60. The Metropolis random walk was run for 1010

steps. Incomplete convergence is observed because the region of nonnegligible support for pideal(h)
extends to dual codewords of small and large Hamming weight which are inaccessible to the random
walk. Still the fidelity between the ideal quantum state and sampled quantum state is 0.67 because
the sampling in the middle range is very accurate as is shown in figure 4.

15

460 480 500 520 540
Hamming Weight

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y

n=1000,k=300,b=60,samples=1010

Sampled
Ideal

Figure 4: Here is a blowup of the central region of figure 3. In figure 3 the sampled frequencies
for these Hamming weights are higher than in pideal(h) because the sampled frequencies on the low
and high Hamming weight tails are too small so the central region gets amplified to maintain the
normalization. Here we show only the range 450 ≤ h ≤ 550 and renormalize both the ideal and
sampled distributions so that these probabilities in this region both add to one.

16

8 Analysis of Convergence of Metropolis Monte Carlo

In this section we derive a criterion to predict which values of n, k, b will yield good convergence,
and which will not. We then compare these predictions against numerical experiments.

Based on the form of pideal(h) illustrated in figure 2, we identify two circumstances that cause
concern regarding the convergence of our Markov chain to its limiting distribution. The first we
will show is actually not problematic. The second can prevent full convergence for some values of
n, k, b that we fully characterize.

First, one expects the random walk to fail if pideal(h) contains regions of high probability sep-
arated by a region of very low probability with width greater than the Hamming distance of the
trial steps. We would expect failure in this case because the Metropolis walk would need to go
from one region to the other only by stepping across a region of low probability. The Metropolis
walk will not accept moves into very low probability regions so they will create “bottlenecks” for
the Metropolis walk.

As shown in figure 2, pideal(h) oscillates, and has many points of low probability. If the Metropo-
lis walk were only allowed to make moves of Hamming distance one, these low probability codewords
would create bottlenecks, which might cause the Metropolis walk to fail. However, the walk actually
moves by taking steps of Hamming distance one on the coefficient vector u. A step u → u′ where
|u′ − u| = 1 corresponds to a step from the dual codeword uB⊥ to the dual codeword u′B⊥. That
is, the new dual codeword is obtained by adding one row of B⊥ to the current dual codeword. The
distance of the move will be the Hamming weight of the row. When B⊥ is in systematic form, as de-
fined in appendix B, the typical Hamming weight of a row is is approximately (1/2)(n−k⊥) = k/2.
By taking steps of Hamming distance k/2, the Metropolis walk can easily step over regions of very
low probability as is confirmed in our numerical examples.

It is known that the Krawtchouk polynomial Kn
b (x) has b real zeros which all lie in the range

n/2 −
√

b(n− b) ≤ x ≤ n/2 +
√

b(n− b) [10, 11]. So the average spacing between the zeros is
2
√
(n− b)/b and numerically we see that the zeros are roughly uniformly spaced. Many of the

values of x where the exact zeros occur are not at integers but as we can see from figure 4 at the
integer values near the exact zeros the polynomial is tiny. As discussed above, a bottleneck could
occur if there were a “trough” in which pideal(h) is consistently low over some region whose width is
larger than the steps taken by the random walker. So we can see that unless 2

√
(n− b)/b ≫ k/2,

the oscillations in pideal(h) are of short enough wavelength that any troughs will be much narrower
than the step length for the walker and this type of bottleneck will not occur. Accordingly in our
numerical experiments we do not see this failure mode.

The second circumstance in which we might expect the Markov chain to fail to converge is when
the distribution pideal(h) assigns nonnegligible probability to codewords of Hamming weight near
either zero or n, which become exponentially hard to reach by the sampling process. (Note that
this is not the problem of finding short codewords which are difficult to discover. It is a problem of
failure to sample.) If a random walker is sitting at a bit string of very low Hamming weight, a move
that is proposed in the Metropolis algorithm which flips roughly k/2 bits will be much more likely
to raise the Hamming weight than lower it. And the reverse holds at very high Hamming weight.
If the edges of the nonnegligible region for pideal(h) extend beyond these entropic barriers, then we
expect the random walk to converge incompletely. After any reasonable number of moves in the
random walk, the number of times the walker reaches the regions beyond the entropic barrier will
remain tiny, thereby cutting off the tails of the desired distribution pideal(h). We see this in figure
3.

17

Unlike bottlenecks, which we believe never occur, this second failure mode can occur when b
or k is large. We can quantify this as follows. Consider a random walker at bit string d that has
Hamming weight h. At a given step of the Metropolis algorithm a move is proposed by adding a
random row of B⊥, which will have Hamming weight f ≃ k/2 since B⊥ is in systematic form. We
model this as flipping f bits of d chosen uniformly at random. Let j be the number of ones in d
that flip and accordingly the number of zeros that flip is f − j. The Hamming weight of the flipped
string is (h − j) + (f − j) so to decrease the Hamming weight we need j > f/2. Counting the
number of ways that this can happen we get that the probability for the proposed move to decrease
the Hamming weight is

Pdown(h) =

∑f
j=⌈f/2⌉

(
h
j

)(
n−h
f−j

)(
n
f

) . (65)

If h becomes too small relative to n and f then this probability becomes exponentially small. The
value of h below which Pdown becomes insurmountably small relative to the number of steps in the
Markov chain defines an entropic barrier which the random walker is unlikely to cross. One also
has the analogous situation at h close to n for which Pup becomes insurmountably small.

The existence of this entropic barrier only prevents convergence if the region to which pideal(h)
assigns nonnegligible probability extends outside this entropic barrier. Using the results of [10] on
the asymptotics of Krawtchouk polynomials, we find that the region on which pideal(h) is nonneg-
ligible is

n/2−
√
b(n− b) ≤ h ≤ n/2 +

√
b(n− b). (66)

Since this region is symmetric about n/2, the region of nonnegligible pideal(h) extends above the
high-Hamming-weight entropic barrier for the same values of n, k, b in which it extends below the
low-Hamming-weight barrier. Hence, given n, k, b we can predict whether the Markov chain will
converge by solving Pdown(h) = ϵ for h using some appropriately small ϵ. If the resulting value
hbarrier(ϵ) satisfies hbarrier(ϵ) < n/2−

√
b(n− b) then the Markov chain can be expected to converge,

and otherwise not.
Let us now compare this prediction against computer experiments. The location of the entropic

barrier is not highly sensitive to the choice of ϵ so we semi-arbitrarily set ϵ = 10−6. Using this
criterion, for any fixed n we can map out the k − b plane, classifying each point into one of three
categories. The first category is where the left entropic barrier hbarrier(ϵ) is below the Krawtchouk
edge at n/2 −

√
b(n− b). In this case we expect efficient convergence across the full range of

nonnegligible pideal(h). The second region is where the entropic barrier is above the Krawtchouk
edge. In this case we expect the sampled distribution psam(h) to look like pideal(h) with the outer
tails cut off. The third region is where the ball radius exceeds the minimum distance of the code
C, that is 2b > D. This is the regime of overlapping balls, which we do not consider in this paper.
These regions are plotted for n = 1000 in figure 5.

We next examine a slice through these regions along the line k = 5 × b. We choose a set of
seven evenly-spaced points along this line, and at each one generate ten random codes and carry
out our Markov chain for each one. The analysis above predicts that the first four points, which
lie in the fully-convergent region, should yield sampled distributions over Hamming weights with
high fidelity to the ideal distribution. The last three points, which lie in the cut-off region, should
have fidelity falling off due to an increasing fraction of the tails of the distribution being cut off.
Two of these seven points, namely k = 100, b = 20 and k = 300, b = 60 are used in §7 to illustrate
in more detail the behavior in the convergent and cut-off regions, respectively.

18

0 50 100 150 200 250
b

0

200

400

600

800

k

n=1000
fully-convergent
cut-off

Figure 5: At n = 1000 we show the region (blue) in the b−k plane in which we predict our Markov
chain to efficiently converge and the region (red) in which we expect the sampled distribution to be
resemble the ideal distribution with its low and high Hamming weight tails cut off. The boundary
between the the red and blue regions is described after (66). The white region corresponds to
overlapping balls (2b greater than the code distance), which we do not consider in this paper. The
grey crosses illustrate the location of the Monte Carlo experiments plotted in figure 6.

19

50

100

150

200

250

300

350

400
Ha

m
m

in
g

we
ig

ht
Krawtchouk edge
Entropic barrier

10 20 30 40 50 60 70
b

0.0

0.2

0.4

0.6

0.8

1.0

fid
el

ity

n = 1000, k = 5 × b

Figure 6: Here, at n = 1000 we take a slice through the k−b plane illustrated in figure 5 by setting
k = 5× b. For b = 10, 20, ...70 we run ten trials of the Markov chain each with 1010 steps. Then we
compute the fidelity

∑n
h=0

√
psam(h)

√
pideal(h). The first four values of b are in the region where

we expect full convergence, and we observe high fidelity. The last three are in the cut-off region,
and we observe the fidelity drop off.

20

The results are shown in figure 6, which show good qualitative agreement with these predictions.
For our trials at the three points in the cut-off region, the fidelity, as calculated with (60), is greater
than 0.5, as shown in figure 6. This is higher than one might naively expect since a look at figure
3 suggests that the sampled and ideal distributions are not close. However inside of the entropic
barrier where psam is not tiny, the two distributions are in fact proportional, that is, one is scale
factor times the other. See figure 4 where both have been normalized over the plotted region. The
quantum state overlap (60) has support only inside the entropic region where the two distributions
are proportional and the fidelity is then the square root of the scale factor which is not very small.

21

b b b

D

b

Figure 7: The red circles represent balls from Tv |Ψb⟩. Their centers are separated by Hamming
distance D, which is the minimum distance of the code C. The blue circle represents a ball from
|Ψb⟩. All balls have radius b. Here we illustrate that if 4b < D then it is impossible for any ball
from |Ψb⟩ to overlap more than one ball from Tv |Ψb⟩. The closest it can come to this is if δ = 2b
which is shown. This is illustrated using Euclidean distance, but the same holds for Hamming
distance, as it also obeys the triangle inequality.

9 Overlap of |Ψb⟩ with Tv |Ψb⟩
Our original motivation for finding a way to construct |Ψb⟩ is that the overlap of this state with its
translation by v gives information about how close v is to the lattice. We do not claim that we have
an efficient quantum algorithm for BDD. Still we want to understand how this overlap depends on
how far v is from the lattice and in this section we derive an expression for the ideal state overlap
⟨Ψb|Tv |Ψb⟩. This determines the runtime needed to solve BDD using Hadamard tests, which we
discuss in §11.

Let δ be the displacement of v from the nearest codeword. That is

δ = v ⊕ c (67)

where c is the element of the code C that minimizes |v⊕ c|. If each ball in |Ψb⟩ overlaps with only
one ball from Tv |Ψb⟩ then ⟨Ψb|Tv |Ψb⟩ is equal to the overlap between a pair of single normalized
balls displaced by δ. This is because there are 2k overlapping ball pairs and there is the same factor
in the denominator from the overall normalization. We denote the overlap of a single ball with its
translate by δ as A(δ).

Since the triangle inequality holds for Hamming distance, one can observe that if 2b + |δ| is
less than the minimum distance of the code C then it is guaranteed that each ball in |Ψb⟩ will
overlap with at most one ball from Tv |Ψb⟩. Furthermore, if 4b is less than the minimum distance
of C then this will hold for all v, as illustrated in figure 7. In these cases ⟨Ψb|Tv |Ψb⟩ = A(δ).
In our first example in §7 we have n = 1000, k = 100 and b = 20. We estimate the length of
the smallest codeword is 320 so we are safely in the regime of 4b < D. For our next example at
n = 1000, k = 300 and b = 60 we estimate that the smallest codeword has length 192 so for δ up
to 72 we have 2b+ |δ| < D and so each ball in |Ψb⟩ will overlap only one ball from Tv |Ψb⟩.

By definition
A(δ) = ⟨B1|B2⟩ (68)

22

where, for j = 1, 2

|Bj⟩ =
1√
|Bj |

∑
x∈Bj

|x⟩ (69)

Bj = {x ∈ Zn
2 : |x⊕ zj | ≤ b} (70)

(71)

and z1, z2 are any pair of bit strings satisfying

z1 ⊕ z2 = δ. (72)

Now

⟨Ψb|Tv |Ψb⟩ = ⟨B1|B2⟩ =
|B1 ∩B2|√
|B1| · |B2|

=
|B1 ∩B2|

|B1|
, (73)

where we used that |B1| = |B2|. Next, observe that

|B1| =
b∑

j=0

(
n

j

)
. (74)

To compute |B1 ∪B2| we can assume without loss of generality that

z1 =

n︷ ︸︸ ︷
00 . . . 000 . . . 0

z2 = 11 . . . 1︸ ︷︷ ︸
δ

00 . . . 0︸ ︷︷ ︸
n−δ

where δ = |δ|, which is equal to the distance from v to the nearest codeword.
Starting from z2 one generates all elements of B2 by flipping s1 bits from the first δ and s2 bits

from the last n− δ, where s1 + s2 ≤ b. The number of ways to do this is
(
δ
s1

)(
n−δ
s2

)
. The Hamming

weight of the resulting string is δ − s1 + s2. Therefore,

|B1 ∩B2| =
∑

(s1,s2)∈P

(
δ

s1

)(
n− δ

s2

)
(75)

where
P = {(s1, s2) : s1 ≥ 0, s2 ≥ 0, s1 + s2 ≤ b, and δ − s1 + s2 ≤ b}. (76)

Putting it all together, we have

A(δ) =

∑
(s1,s2)∈P

(
δ
s1

)(
n−δ
s2

)∑b
j=0

(
n
j

) (77)

with P as given in (76). In the case that each ball overlaps with at most one other,

⟨Ψb|Tv |Ψb⟩ =
∑

(s1,s2)∈P
(
δ
s1

)(
n−δ
s2

)∑b
j=0

(
n
j

) , (78)

where δ is the Hamming distance from v to the nearest codeword.

23

10 Dequantizing the calculation of ⟨Ψb|Tv |Ψb⟩
Here we show that there is a classical sampling procedure that one can run to estimate ⟨Ψb|Tv |Ψb⟩
by sampling a ±1 variable and averaging the result. The number of samples needed to distinguish
this quantity from zero is of order 1/| ⟨Ψb|Tv |Ψb⟩ |2, which has the same scaling as the number of
repetitions of the Hadamard test that are needed in the quantum setting. The quantity ⟨Ψb|Tv |Ψb⟩
is exponentially small in the distance of v from the lattice so both the quantum and dequantized
algorithms require time exponential in this distance to distinguish ⟨Ψb|Tv |Ψb⟩ from zero. The
dequantization shown here is modeled on the dequantization results regarding lattices on Rn shown
in [12].

To dequantize the estimation of ⟨Ψb|Tv |Ψb⟩ we first write Tv in terms of Pauli X operators
which flip bits where v is 1,

Tv =
∏

i s.t. vi=1

Xi. (79)

Next, we recall that |Ψb⟩ = H⊗n
∣∣∣Ψ̃b

〉
. Since HXiH = Zi we have

⟨Ψb|Tv |Ψb⟩ = ⟨Ψb|
∏

i s.t. vi=1

Xi |Ψb⟩ (80)

=
〈
Ψ̃b

∣∣∣H⊗n
∏

i s.t. vi=1

XiH
⊗n
∣∣∣Ψ̃b

〉
(81)

=
〈
Ψ̃b

∣∣∣ ∏
i s.t. vi=1

Zi

∣∣∣Ψ̃b

〉
. (82)

Recalling the expression (18) for
∣∣∣Ψ̃b

〉
this yields

⟨Ψb|Tv |Ψb⟩ = N2
∑

d∈C⊥

[
Kn−1

b (|d| − 1)
]2 ⟨d| ∏

i s.t. vi=1

Zi |d⟩ . (83)

The quantity N2
[
Kn−1

b (|d| − 1)
]2

is the probability distribution over dual codewords that we
sample from in our Markov chain. See (24). In a slight abuse of notation we define

pideal(d) = N2
[
Kn−1

b (|d| − 1)
]2

, (84)

whereN is the normalization factor (20). The previously defined probability pideal(h) over Hamming
weights is related to this by

pideal(h) =
∑

d∈C⊥

|d|=h

pideal(d). (85)

For any given codeword, the quantity ⟨d|
∏

i s.t. vi=1 Zi |d⟩ ∈ {+1,−1} is easy to compute. Namely

⟨d|
∏

i s.t. vi=1

Zi |d⟩ = (−1)d·v. (86)

Consequently,

⟨Ψb|Tv |Ψb⟩ =
∑

d∈C⊥

pideal(d)(−1)d·v. (87)

24

The formula (87) yields the following dequantization of our procedure for estimating ⟨Ψb|Tv |Ψb⟩.
Use Metropolis Monte Carlo to sample dual codewords according to pideal. For each dual codeword
sampled, compute (−1)d·v. After S samples, the average of this list of ±1 values will be an esti-
mate of ⟨Ψb|Tv |Ψb⟩ accurate to ±O(1/

√
S), provided n, k, b are in the regime where the Markov

chain converges. This is the same regime for which our quantum state preparation works and is
characterized in §8.

11 Bounded Distance Decoding with Hadamard Tests

To distinguish an overlap of ϵ from an overlap of zero via Hadamard tests requires order 1/ϵ2 rep-
etitions, as dictated by standard sampling statistics. Thus, 1/| ⟨Ψb|Tδ |Ψb⟩ |2 provides an estimate
of runtime for this task as a function of δ = |δ|. Neglecting sampling error, | ⟨Ψb|Tδ |Ψb⟩ | is given
by (78). Given an empirical distribution over Hamming weights of dual codewords observed in our
Monte Carlo simulations, we can also calculate | ⟨Ψb|Tδ |Ψb⟩ | making only the assumption that
dual codewords of given Hamming weight remain equiprobable. We omit this calculation, as it is
much more involved than the calculation of the ideal overlap given in §9.

But we show the runtimes in the presence of empirically observed sampling errors in figures 8
and 9 alongside the ideal runtimes achievable without sampling errors.

In figures 8 and 9 we compare these runtimes against classical brute force search, which has
runtime

(
n
δ

)
. We also compare against Information Set Decoding, a more sophisticated classical

randomized algorithm described in §12. We find that the quantum approach outperforms brute
force search but falls short of Information Set Decoding. All three of these algorithms could be
quadratically sped up using Grover search, leaving their relative performance unaffected.

25

0 5 10 15 20 25 30
Distance to Nearest Codeword

0

10

20

30

40

50

Lo
g 1

0 R
un

tim
e

n=1000,k=100,b=20,samples=1010

Hadamard Tests (Sampled)
Hadamard Tests (Ideal)
Brute Search
Information Set Decoding

Figure 8: The log of the runtimes for three approaches to Bounded Distance Decoding as a
function of the distance to the nearest codeword. The red circles are from brute force search which
the quantum algorithm beats but Information Set Decoding does the best. To illustrate the effect
of sampling errors, the blue dots show the runtimes corresponding to the overlaps implied by the
Hamming weight distributions on the dual code observed in ten Monte Carlo trials. This is for the
well converged examples with n = 1000, k = 100, b = 20. Consequently, the blue dots all lie on top
of one another and match the ideal.

26

0 5 10 15 20 25 30
Distance to Nearest Codeword

0

10

20

30

40

50

Lo
g 1

0 R
un

tim
e

n=1000,k=300,b=60,samples=1010

Hadamard Tests (Sampled)
Hadamard Tests (Ideal)
Brute Search
Information Set Decoding

Figure 9: The log of the runtimes for three approaches to Bounded Distance Decoding. Here
n = 1000, k = 300, b = 60 and the Monte Carlo converges incompletely. To illustrate the effect of
sampling errors, we use ten colors to plot the runtimes corresponding to the overlaps implied by the
Hamming weight distributions on the dual code observed in ten Monte Carlo trials. Even though
the Monte Carlo has not perfectly converged the quantum algorithm beats brute force search in all
ten cases. Still Information Set Decoding beats the quantum algorithm.

27

12 Information Set Decoding

In this section we discuss a classical algorithm for BDD, specifically the most basic version of
Information Set Decoding. This provides a useful point of reference because it is a simple classical
algorithm that provides nearly state of the art performance. More recently, other more complicated
classical algorithms have been devised that achieve slightly improved (but still exponential) scaling
relative to ISD, e.g. [13]. Some noteworthy features of ISD are that it uses only polynomial memory
and it can be quadratically accelerated through Grover search [14].

In a bounded distance decoding problem, we are given a generator matrix B ∈ Zk×n
2 for a code

C and a vector v which is near an unknown codeword c, that is, v = c ⊕ δ ∈ Zn
2 . Here δ is the

error vector satisfying |δ| = δ with δ not too large. So uB = c for some u ∈ Zk
2. The goal is to

find c, or equivalently u.
The ISD algorithm works as follows.

1. Select k elements of {1, 2, . . . , n} uniformly at random. Let v(k) be the length-k string ob-
tained by keeping only these bits from v and let B(k) be the k × k submatrix of B obtained
by keeping only these columns of B.

2. Check whether B(k) is an invertible matrix over the field Z2. If not, go back to step 1 and
try a different subset.

3. Solve the linear system ũB(k) = v(k) for ũ ∈ Zk
2 using Gaussian elimination.

4. Compute the Hamming distance |ũB ⊕ v|. If this is equal to δ then ũB is a codeword of
distance δ from v and we are done. Otherwise, go back to step 1 and try again with a different
subset.

Next, let us analyze the probability of success for each trial. The probability that a uniformly
random k × k matrix over the field Z2 is invertible, in the limit of large k, is approximately 0.29
[15]. For generic dense B this is also an accurate prediction of the approximate probability that
the random submatrix B(k) will be invertible in step 2.

Since v = c⊕ δ, the linear system we solve in step 3 can be rewritten as

ũB(k) = c(k) ⊕ δ(k). (88)

If we are lucky, the subset of bits we chose contains no errors. That is δ(k) = 0. In this case,

ũB(k) = c(k). (89)

Next, recall that since c is a codeword there is a u such that uB = c. Given c one could solve this
system of linear equations to obtain u. In fact, this system of equations is overdetermined, having
n constraints but only k unknowns. Throwing away all but k of these constraints will still provide
a fully determined system of equations, provided that the remaining submatrix of B is invertible.
Since δ(k) = 0, the system we solve in step three is (89), which is precisely this same system of
equations, which we can solve to obtain the unique solution ũ = u. Now ũB is c, which we have
checked in step four has Hamming distance δ from v and so the algorithm terminates with success.
How likely is this to happen?

28

The string δ has n bits, of which δ have errors and each trial randomly selects k of these n bits.
The probability that the subset contains no errors is exactly(

n−δ
k

)(
n
k

) . (90)

Hence, the probability of success in one trial is

pISD ≃ 0.29

(
n−δ
k

)(
n
k

) . (91)

If δ is small compared to n and k then one can make the approximation

pISD ≃ 0.29(1− k/n)δ. (92)

The expected runtime of ISD is 1/pISD, which can be reduced to 1/
√
pISD if one replaces random

sampling with Grover search [14].

13 Discussion

In this work, we show how to solve the Quantum Distributional State Construction problem for
|Ψb⟩, the superposition over bit strings within Hamming distance b of a linear code of length n and
dimension k. We map out the region of n, k, b where this procedure efficiently yields a high fidelity
approximation to |Ψb⟩. We find that this region extends beyond the uncomputation barrier that
thwarts a direct approach to constructing |Ψb⟩.

We restricted our investigations in several respects. We considered only balls whose radius is
less than half the distance of the code, so that the balls do not overlap. We considered only random
binary linear codes. And the only application we considered is the bounded distance decoding
problem where we did not beat a known classical algorithm and our procedure can be dequantized.
Given that |Ψb⟩ can be constructed efficiently out to surprisingly large b, it may be interesting to
consider potential algorithmic, cryptographic, or complexity-theoretic applications beyond what we
considered here. Or, the state preparation method used here could perhaps be applied to overcome
uncomputation barriers in other Quantum Distributional State Construction problems.

Acknowledgments: We thank Madhu Sudan for discussions a long time ago. We thank Noah
Shutty and Bill Huggins for more recent discussions. And we particularly thank Oded Regev for a
key observation.

A Phase Kickback

Let f : {0, 1}n → {0, 1} be a function for which we know an efficient classical circuit. A unitary Uf

can always be implemented efficiently such that [16]:

Uf |x⟩ |z⟩ = |x⟩ |z ⊕ f(x)⟩

where the second register is a single qubit. By initializing the second register to |0⟩ one obtains
f(x) written into the computational basis in the second register. One can instead compute f into

29

the phase by initializing the second register with 1√
2
(|0⟩ − |1⟩) so

Uf |x⟩
1√
2
(|0⟩ − |1⟩) = (−1)f(x) |x⟩ 1√

2
(|0⟩ − |1⟩) .

The second register remains unentangled with the first and can be discarded. The net effect is
|x⟩ → (−1)f(x) |x⟩. By linearity, an arbitrary superposition undergoes the transformation∑

x

a(x) |x⟩ →
∑
x

(−1)f(x)a(x) |x⟩ .

This is known as phase kickback and it is one of the steps in the state preparation algorithm.

B Systematic Form for Linear Codes

The k×n generator matrix B for a code C is not unique. The basis vectors b1, . . . ,bk that form the
rows of B can be replaced by any invertible Z2-linear combination of b1, . . . ,bk without changing
the code. One consequence of this is that B can be put into systematic form:

B = [1k×k|R] ,

where 1k×k is an identity matrix and R is a general k × (n− k) matrix. Thinking of Z2 as a finite
field, systematic form is recognizable as reduced row echelon form, which can be obtained in O(k2n)
classical operations using Gaussian elimination. Let

B⊥ =
[
RT |1n−k×n−k

]
.

By construction, BBT
⊥ = R⊕R = 0. Hence, B⊥ is a generator matrix for the dual code C⊥. From

this construction, we see that given a generator matrix for C, a generator matrix for C⊥ can be
obtained in polynomial time classically. Also if we want to generate a random code and its dual
at the same time we can just generate a random k × (n − k) matrix R and then get B and B⊥
immediately.

C Krawtchouk Identity

As stated in (44), Krawtchouk polynomials obey the identity

b∑
j=0

Kn
j (x) = Kn−1

b (x− 1).

30

To show this, we note that binomial coefficients have the property
(
x
r

)
=
(
x−1
r

)
+
(
x−1
r−1

)
. Thus

b∑
j=0

Kn
j (x) =

b∑
j=0

j∑
r=0

(
x

r

)(
n− x

j − r

)
(−1)r

=

b∑
j=0

j∑
r=0

[(
x− 1

r

)
+

(
x− 1

r − 1

)](
n− x

j − r

)
(−1)r

=
b∑

j=0

([
j∑

r=0

(
x− 1

r

)(
n− x

j − r

)
(−1)r

]
+

[
j−1∑
r=0

(
x− 1

r

)(
n− x

j − r − 1

)
(−1)r+1

])

=
b∑

j=0

(
Kn−1

j (x− 1)−Kn−1
j−1 (x− 1)

)
= Kn−1

b (x− 1),

where the last line follows from Kn−1
−1 (x− 1) = 0. □

References

[1] Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state generation and statistical
zero knowledge. In Proceedings of the 35th Annual ACM Symposium on Theory of computing
(STOC), pages 20–29, 2003. arXiv:quant-ph/0301023.

[2] Piotr Berman and Marek Karpinski. Approximating minimum unsatisfiability of linear equa-
tions. In Electron. Colloquium Comput. Complexity (ECCC), volume 25, 2001.

[3] Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation algorithms
for the nearest codeword problem. In International Workshop on Approximation Algorithms
for Combinatorial Optimization, pages 339–351. Springer, 2009.

[4] Dorit Aharonov and Oded Regev. A lattice problem in quantum NP. In Proceedings of the
44th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 210–219.
IEEE, 2003. arXiv:quant-ph/0307220.

[5] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplifica-
tion and estimation. Contemporary Mathematics, 305:53–74, 2002. arXiv:quant-ph/0005055.

[6] Christof Zalka. Simulating quantum systems on a quantum computer. Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1969):313–
322, 1998. arXiv:quant-ph/9603026.

[7] Phillip Kaye and Michele Mosca. Quantum networks for generating arbitrary quantum states.
In International Conference on Quantum Information, page PB28. Optica Publishing Group,
2001. arXiv:quant-ph/0407102.

[8] Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently inte-
grable probability distributions. quant-ph/0208112, 2002.

31

[9] Alexander Barg and G. David Forney. Random codes: minimum distances and error exponents.
IEEE Transactions on Information Theory, 48(9):2568–2573, 2002.

[10] Mourad E. H. Ismail and Plamen Simeonov. Strong asymptotics for Krawtchouk polynomials.
Journal of Computational and Applied Mathematics, 100:121–144, 1998.

[11] Wei-Yuan Qiu and Roderick Wong. Asymptotic expansion of the Krawtchouk polynomials
and their zeros. Computational Methods and Function Theory, 4(1):189–226, 2004.

[12] Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. Journal of the ACM
(JACM), 52(5):749–765, 2005.

[13] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents: ball-
collision decoding. In Advances in Cryptology–CRYPTO 2011: 31st Annual Cryptology Con-
ference, pages 743–760. Springer, 2011.

[14] Daniel J. Bernstein. Grover vs. McEliece. In Post-Quantum Cryptography–PQCrypto 2010:
Third International Workshop, pages 73–80. Springer, 2010.

[15] William C. Waterhouse. How often do determinants over finite fields vanish? Discrete Math-
ematics, 65(1):103–104, 1987.

[16] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

32

	Introduction
	Preliminaries
	Conditional Rotations by Metropolis Monte Carlo
	Quantum State Preparation Algorithm for b
	Deriving the form of "0365b
	Impact of Imperfect Convergence on Fidelity
	Empirical Convergence of Metropolis Monte Carlo
	Analysis of Convergence of Metropolis Monte Carlo
	Overlap of b with Tv b
	Dequantizing the calculation of b Tv b
	Bounded Distance Decoding with Hadamard Tests
	Information Set Decoding
	Discussion
	Phase Kickback
	Systematic Form for Linear Codes
	Krawtchouk Identity

