
QuickerCheck
Implementing and Evaluating a Parallel Run-Time for QuickCheck

Robert Krook
krookr@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Nicholas Smallbone
nicsma@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Bo Joel Svensson
bo.joel.svensson@gmail.com

Lind Art & Technology
Stockholm, Sweden

Koen Claessen
koen@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

ABSTRACT
This paper introduces a new parallel run-time for QuickCheck, a
Haskell library and EDSL for specifying and randomly testing prop-
erties of programs. The new run-time can run multiple tests for a
single property in parallel, using the available cores. Moreover, if a
counterexample is found, the run-time can also shrink the test case
in parallel, implementing a parallel search for a locally minimal
counterexample.

Our experimental results show a 3–9× speed-up for testing
QuickCheck properties on a variety of heavy-weight benchmark
problems. We also evaluate two different shrinking strategies; deter-
ministic shrinking, which guarantees to produce the same minimal
test case as standard sequential shrinking, and greedy shrinking,
which does not have this guarantee but still produces a locally
minimal test case, and is faster in practice.

CCS CONCEPTS
•Computingmethodologies→Concurrent algorithms; Shared
memory algorithms; • Theory of computation → Shared
memory algorithms; • Software and its engineering→ Soft-
ware testing and debugging.

KEYWORDS
property-based testing, quickcheck, testing, parallel functional pro-
gramming, haskell

ACM Reference Format:
Robert Krook, Nicholas Smallbone, Bo Joel Svensson, and Koen Claessen.
2023. QuickerCheck: Implementing and Evaluating a Parallel Run-Time for
QuickCheck. In The 35th Symposium on Implementation and Application of
Functional Languages (IFL 2023), August 29–31, 2023, Braga, Portugal. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3652561.3652570

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IFL 2023, August 29–31, 2023, Braga, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1631-7/23/08.
https://doi.org/10.1145/3652561.3652570

1 INTRODUCTION
QuickCheck [5] is a widely known Haskell tool for property-based
random testing of programs. First, the programmer writes a prop-
erty of the program under test that they expect to always hold.
Then, to check the property, QuickCheck generates a number of
random test cases to exercise the property. If the property always
held, the check is reported as successful. If a test case makes the
property fail, a process called shrinking is invoked, which consists
of a greedy search for a (locally) minimal failing test case.

For example, we may be testing an implementation of System F
[6], where we have the following types and functions:

1 type Expr −− expressions
2 type Type −− types
3

4 reduce :: Expr −> Maybe Expr
5 typeOf :: Expr −> Type

The types Expr and Type stand for expressions and types of expres-
sions in System F. The function reduce takes one evaluation step, if
possible. The function typeOf computes the type of an expression.
Subject reduction is a property that says that evaluation of expres-
sions does not cause their type to change. This can be expressed as
a QuickCheck property as follows:

1 prop_Preservation :: Expr −> Property
2 prop_Preservation e =
3 isJust r ==> typeOf e == typeOf (fromJust r)
4 where
5 r = reduce e

Here, the operator ==> specifies a precondition: only tests satisfying
isJust r are of interest.

To run QuickCheck, the user must also supply an Arbitrary
instance describing how to generate random well-typed Exprs1 (a
non-trivial task studied in e.g. [7]). QuickCheck will then generate
a configurable amount of random expressions, which by default is
100, and evaluate the property for them. In fact, QuickCheck will
typically evaluate the property even more times, because:

• QuickCheck discards any test case not satisfying the pre-
condition isJust r, and continues until it has executed 100
tests satisfying the precondition.

1There is no requirement by QuickCheck itself that the generator has to generate
well-formed terms. This is primarily required to meaningfully exercise the property in
question.

ar
X

iv
:2

40
4.

16
06

2v
1

 [
cs

.P
L

]
 1

7
A

pr
 2

02
4

https://doi.org/10.1145/3652561.3652570
https://doi.org/10.1145/3652561.3652570

IFL 2023, August 29–31, 2023, Braga, Portugal Robert Krook, Nicholas Smallbone, Bo Joel Svensson, and Koen Claessen

• If a test case fails (for example if the function reduce contains
a bug), shrinking searches for a smaller counterexample by
executing the property on many smaller test cases.

All this happens sequentially at the moment in QuickCheck. If
the evaluation of the property takes a long time, QuickChecking
it (and possibly shrinking the counterexample) will take an even
longer time. This is time often spent waiting by the programmer,
perhaps wondering why their computer is roaring like a spaceship
while only one core is in use. The contribution of this paper is
to propose and practically evaluate a way of performing both the
testing phase as well as the shrinking phase of QuickCheck in
parallel2.

Note that our work aims to reduce waiting time for the program-
mer while checking a single property. There exist frameworks (for
example tasty [4]) that allow testing of multiple properties and unit
tests in parallel or even distributed on a cluster. These are typically
used in regression tests or continuous integration. Our work can
not only speed up testing in these settings but also during active
development, where programmers typically run QuickCheck on a
single property and wait for the result.

2 WHAT ARE THE CHALLENGES?
Even though running each test is supposed to be independent,
and as such testing a property 100 times should be a so-called
embarrassingly parallel task, in practice parallelizing testing is not
so easy. For one, individual tests may interact with each other, but
luckily in Haskell, we often get the independence guarantees we
need from pure (or at least thread-safe) code. In this paper, we
assume that the property itself is thread-safe.

But the biggest problem is that QuickCheck’s algorithm is in-
herently sequential. This is not at all obvious at first glance. The
problem comes from two features in QuickCheck – adjustment of
test size, and shrinking. As we will see, these features introduce a
data dependency: the test case that we should try next depends on
the result of the previous test. Addressing these dependencies was
one of the main challenges in parallelizing QuickCheck.

Test size. Many times it is enough to generate a small test input
to falsify a property. QuickCheck tries to generate smaller inputs
early on, and gradually increases the size as more and more tests
are passed. This is achieved by QuickCheck supplying the test-data
generator with a size. The generators are free to disregard the size
completely but may use it if they wish to. As an example, the default
generator for lists uses the size as an upper bound of the length
of the generated list. The size of the first test is always 0, while
the default upper bound is 100. If the user specifies that 100 tests
should be executed, QuickCheck will make sure that the generator
has been provided with all sizes between 0 and 99. The authors
point out that so far everything discussed is easily parallelisable.

However, properties in QuickCheck can not only succeed or fail,
but also discard, which means that a pre-condition in the property
was not fulfilled. A discarded test case is not counted towards the

2The implementation can be found at https://github.com/Rewbert/quickcheck. The
authors intend to eventually merge this work into mainline QuickCheck.

total number of successful tests3. So, the distribution of sizes during
testing only depends on the total number of successful tests so far,
not on the total number of tests in general. This introduces a small
but significant data dependency preventing parallel evaluations of
tests; when a worker runs a test it must know the appropriate size
of the test case to run, and the appropriate size depends on whether
the previous tests were successful or not. This dependency needs
to be dealt with somehow in the parallelization.

Shrinking. When a failing test case is found, QuickCheck
searches for a smaller failing test case by applying a process called
shrinking [10]. The goal of shrinking is to produce a locally minimal
failing test case. Shrinking first produces a list of shrink candidates,
variants of the test case that have been reduced in size in a vari-
ety of ways. This list is traversed from left to right until we find
a new failing test case. Shrinking is then applied recursively on
the new failing test case until the current failing test case cannot
be reduced anymore. Shrinking does not backtrack in search of a
globally minimal counterexample, but only promises to yield a local
minimum.

To use shrinking, the user must define a shrink function. For a
type T, this is a function shrink :: T -> [T] which, given a test
case, produces a list of shrink candidates, i.e. smaller or simpler
test cases to try. For example, suppose that we are testing System F
again, and the type of expressions is defined as follows:

1 data Expr
2 = Var String −− variable
3 | App Expr Expr −− application
4 | ... −− other constructors

Then we can define a shrink function as follows:
1 shrink :: Expr −> [Expr]
2 shrink (Var _) = []
3 shrink (App t u) =
4 concat [[t , u]
5 , [App t ' u | t ' <− shrink t]
6 , [App t u' | u' <− shrink u]
7]
8 shrink (...) = ... −− other constructors

A Var can not be shrunk further, so we return an empty list of can-
didates. A function application App t u, however, can be shrunk
further. We can remove the App constructor and one of the subex-
pressions, leaving just t or u, which if successful may shrink the
expression considerably. We can also keep the App constructor but
shrink the subexpressions.

Note that QuickCheck always tries the shrink candidates in the
order they appear in the list, from left to right. Hence it is com-
mon to return the greedy candidates first, those that remove large
parts of the value, as we do in this case. Ordering the shrink list
appropriately can greatly improve the speed of shrinking.

We propose to parallelize shrinking in two ways:
(1) Greedy shrinking evaluates as many shrinking candidates

in parallel as possible, and as soon as a candidate fails, it
recursively continues with that candidate. It may be that a

3The reason for this is that if the precondition of a property is more likely to succeed
for small test data sizes, we still want to make sure that we exercise the property on
larger sizes.

https://github.com/Rewbert/quickcheck

QuickerCheck IFL 2023, August 29–31, 2023, Braga, Portugal

candidate earlier in the shrink list (corresponding to a more
aggressive shrink step) would also have failed if we had
waited, and in that case, we may perform a smaller shrink
step than necessary.

(2) Deterministic shrinking speculatively evaluates test cases in
the search before we knowwewill need to, but always makes
the same choices as in the sequential case. That is, when a
shrink candidate fails, it waits until it knows that no earlier
candidate fails

In our evaluation, greedy shrinking is usually faster than determin-
istic shrinking.

3 QUICKERCHECK
We present QuickerCheck via two examples. We point out that the
QuickCheck API for writing generators, shrinkers, and properties
remains unchanged, and only the internal evaluation of a property
is modified.

System F. In Section 1, we saw the property prop_Preservation
:: Expr -> Property for testing subject reduction in System F.
To test this property with sequential QuickCheck we run:
> quickCheck prop_Preservation
+++ OK! Passed 100 tests.

As the property is pure, it is safe to test in parallel using Quick-
erCheck. To do so, we must compile the code with the -threaded
and -rtsopts flags and pass in the -N option to the run-time sys-
tem, to enable parallelism in GHC. Then all we have to do is invoke
quickCheckPar instead of quickCheck.

The output (assuming all tests passed) is
> quickCheckPar prop_Preservation
+++ OK! Passed 100 tests.

tester 0: 50
tester 1: 50

The lines tester 0: 50 and tester 1: 50 show that two
threads were used (we happened to limit GHC to using two cores)
and that they each executed 50 test cases. What is not visible in the
output is that, since the tests were distributed among two cores,
QuickerCheck ran close to twice as fast.

Compiler testing. A function that is not necessarily embarrass-
ingly parallel is one that is effectful. To test a compiler it is necessary
to perform IO actions, such as invoking the compiler under test or
executing the compiled binary. Testing compilers is non-trivial, but
a well-studied approach ismetamorphic testing [3]. In this approach,
assuming a function of type Program -> IO Output that compiles
and runs the program, we define a function mutateProgram ::
Program -> Program that mutates the program in some way, and
then specify how the output should change in response by a func-
tion mutateOutput :: Output -> Output. Mathematically, the
property that should hold is:

1 −− compileAndRun :: Program −> IO Output
2 compileAndRun (mutateProgram p) =
3 fmap mutateOutput (compileAndRun p)

In practice, we also need to perform various housekeeping tasks
such as writing the program source to a file and cleaning up output
files, so a more realistic property is:

1 prop_metamorphic :: Program −> Property
2 prop_metamorphic program = ioProperty $ do
3 writeFile "p.c" (render program)
4 writeFile "q.c" (render $ mutateInput program)
5 output1 <− compileAndRun "p.c"
6 output2 <− compileAndRun "q.c"
7 mapM removeFile ["p.c" , "q.c" , "p.exe" , "q.exe"]
8 return (mutateOutput output1 == output2)

The property executes both the original and modified programs
after having first written them to the file system. The file system is
cleaned up, after which the outputs are compared. The output of
the unmodified program is modified to reflect the change described
by the metamorphic relation.

Unfortunately, running this property with quickCheckPar will
produce extremely strange test failures. The reason is that the prop-
erty, while innocent-looking, is not thread-safe. There is an implic-
itly shared resource, the file system: if multiple instances of the
property execute in parallel, they will all write to the same files p.c
and q.c. This leads to obvious race conditions. There are different
ways to modify the property such that there are no race conditions,
one of which is to let the property create a temporary directory to
which intermediary files are written.

1 −− create a fresh temporary directory based on a baseline name
2 −− withSystemTempDirectory :: String −> (FilePath −> IO a) −> IO a
3

4 prop_metamorphic :: Program −> Property
5 prop_metamorphic program = ioProperty $ do
6 withSystemTempDirectory "compiler_output" $ \ dir −> do
7 −− rest of property , now using dir as a
8 −− scratch space for temporary files

If we disregard other implicitly shared resources such as CPU
caches, RAM, bandwidth, etc, this property can now be evaluated
in parallel by using quickCheckPar.

In general, using QuickerCheck requires three steps. (1) Make
sure that the property is thread-safe (only for properties doing
I/O). (2) Compile the program with threading options. (3) Run
quickCheckPar instead of quickCheck.

4 QUICKERCHECK DESIGN AND
IMPLEMENTATION

The extensions to QuickCheck described in this paper are designed
such that as few observable behaviors as possible are changed. Some
design choices of QuickCheck do not lend themselves nicely to par-
allelism, and QuickerCheck tries to make reasonable compromises
where possible. One notable case of this is the way QuickCheck
computes sizes for a test case. The size is derived from the number
of tests that have passed so far, and the number of tests that have
been discarded since the last passing test. This means that we can
not compute the size of a test until we have observed the outcome
of all tests that came before. This sounds sub-optimal for paral-
lelization; below, we explain what QuickerCheck does to address
this.

Testing. The test loop in ordinary, sequential QuickCheck is a
recursive function that maintains a state containing e.g. the count
of how many tests were executed so far, how many were discarded

IFL 2023, August 29–31, 2023, Braga, Portugal Robert Krook, Nicholas Smallbone, Bo Joel Svensson, and Koen Claessen

due to a failed pre-condition, etc. It also holds the random seed
used to generate the test case. It generates and executes one test at
a time, adjusting the size of the test case whenever a test succeeds,
but not when a test is discarded. Once a test fails, the test loop
terminates and a shrinking routine is invoked.

The parallel test loop is implemented by running concurrent
instances of the sequential test loop. The main thread spawns con-
current testers that evaluate one test after another, and then goes to
sleep until the testers report that all tests have been executed, too
many tests were discarded, or a counterexample was found. The
test loop maintains a state that is updated after every test, recording
how many tests have been passed so far, the next random seed, and
many other things. In order to facilitate multiple, concurrent testers,
some of the state has been moved into MVars. As an example, the
integer representing the number of tests a particular thread has yet
to run resides in an MVar, enabling other threads to read it if they
wish to steal work from that thread.

Communication between threads occurs as little as possible in
order to not incur synchronization costs. When testing is initiated,
the number of tests to run is divided equally between the testers, and
onlywhen one thread has exhausted its budget of tests will it inspect
the budgets of the concurrent testers. If work-stealing is enabled, a
thread may then decrement the counter of a sibling tester and run
another test on its own. Each tester has its own random seed that
it splits before running a test, as sharing a seed between all testers
would incur synchronization overheads. Additionally, each tester
computes the sizes to use for test cases based on their individual
counters for how many tests they have passed, and how many
tests they have discarded since the last passing test. In an effort to
explore the same set of sizes as in sequential QuickCheck, they each
apply a stride: If we have 𝑘 threads, then thread number 𝑖 uses sizes
𝑖, 𝑖 +𝑘, 𝑖 + 2𝑘, 𝑖 + 3𝑘, This is illustrated in figure 1. A compromise
is made when a thread steals a test from a sibling tester, in which
case the local next size is used. This reduces synchronization costs,
as the thread that ran the test doesn’t need to report the result
back to the other thread. With this approach, we explore the same
set of sizes as sequential QuickCheck, except when work stealing
happens.

As an alternative to strides, we have also implemented a strategy
that divides the set of sizes into contiguous segments for each of
the testers, by applying an offset to the size computation. There is
a risk, however, that test cases generated by e.g. smaller sizes will
run faster than test cases generated with larger sizes. This would
lead to the concurrent testers finishing their given workloads at
different times. Computing sizes with an offset is implemented and
can be chosen by configuring the arguments to quickCheckWith4,
but the default behavior is to use a stride.

When a thread finds a counterexample it wakes up the main
thread by writing the used seed and size to an MVar. The main
thread will then terminate the remaining testers before it shrinks
the counterexample, by delivering asynchronous exceptions. This
is very abrupt, with the exceptions delivered at the next allocation
point.

4The function quickCheckWith is a variant of quickCheck that accepts a configuration
parameter where default behavior can be overridden.

Figure 1: An illustration of how size grows as more and more
tests are passed, and to which worker they are assigned. In
order to get a fair workload for the concurrent testers a stride
is applied when computing sizes.

graceful. When a property is aborted as violently as this, by
raising an asynchronous exception, there is a risk that there will be
artifacts left from a test. If a property e.g. creates a new file on the
file system that is normally deleted at the end, an interruption by
an asynchronous exception may make the file erroneously persist.

1 prop :: Input −> Property
2 prop ip = ioProperty $ do
3 run $ writeFile "temp.txt " (show ip)
4 −− do some work
5 run $ deleteFile "temp.txt " −− we may never execute this

To address this, we introduce a combinator graceful that takes
an IO action and a handler. The handler will run if QuickCheck
makes the choice to terminate evaluation of the property.

1 −− graceful :: IO a −> IO () −> PropertyM IO a
2

3 prop :: Input −> Property
4 prop ip = ioProperty $ do
5 run $ writeFile "temp.txt " (show ip)
6 graceful
7 (do −− do some work
8 deleteFile "temp.txt ")
9 (deleteFile "temp.txt ")

The handler is implemented by intercepting the asynchronous
exception before the worker is restarted and running the handler
before rethrowing the exception. graceful can only capture a spe-
cific exception thrown internally by QuickCheck. We choose to
implement this dedicated operator like this rather than relying on
existing bracket functionality, as both user code and QuickCheck
might already have code in place to deal with exceptions.

graceful can be used not only for shrinking but also for testing.
When one tester finds a counterexample the concurrent testers will
be aborted. This combinator will make sure that cleanup occurs
then as well.

Shrinking. The existing shrink loop continually evaluates the
head of the candidate list until a new counterexample is found, at
which point the loop recurses, or until the list is empty, at which
point shrinking is terminated. This is illustrated in figure 2a. The
design of the new loop is very similar.

QuickerCheck IFL 2023, August 29–31, 2023, Braga, Portugal

Rather than a single thread traversing the candidate list one ele-
ment at a time, the parallel shrink loop spawns concurrent worker
threads that cooperate and traverse the same list, now residing in
an MVar. If any of the concurrent workers finds a new counterex-
ample, they will update the shared list of candidates and signal to
their sibling workers that they should stop evaluating their current
candidate and instead pick a new one from the new list.

The behavior of this shrink loopmight return a non-deterministic
result. Whereas the previous loop will always find the first coun-
terexample in the candidate list, the parallel loop might find a
counterexample other than the first one. To emulate the determin-
istic behavior, the new loop can choose to only signal a restart
to those concurrent workers that are evaluating candidates that
appeared after the current one in the candidate list, and tell them
to speculatively start shrinking the new counterexample. The other
workers will keep evaluating their current candidates, and if one of
them turns out to be a counterexample, the current progress will
be discarded, and shrinking will continue with the new counterex-
ample. In this case, we might do some unnecessary work, but we
will get the same deterministic result. Figure 2b illustrates this and
how this approach may make us evaluate candidates that we don’t
need.

Another alternative is that when any worker has found a coun-
terexample, all concurrent workers are restarted and told to start
shrinking the new counterexample, regardless if this was the first
counterexample or not. This might lead to a non-deterministic re-
sult, as the path down the rose tree of shrink candidates is not the
leftmost one, as illustrated in figure 2c. Restarting a worker is done
by raising an asynchronous exception in the worker. The worker
will catch this exception and enter the shrink-loop anew, and begin
to search through the new list of candidates.

Repeatedly accessing a shared resourcemay incur overhead costs.
If two workers attempt to modify a shared resource at the same
time, one will have to wait for the other. As the list of candidate
counterexamples is shared between workers, if candidates are eval-
uated very fast, it is likely that using more threads will slow down
shrinking.

5 EVALUATION
We evaluate QuickerCheck to answer the following four questions

• Question 1: Is the sequential performance of the new im-
plementation comparable with QuickCheck?

• Question 2: How does the parallel run-time scale as we add
more cores?

• Question 3: Can we find bugs faster by using more cores?
• Question 4: Can we shrink counterexamples faster by using
more cores?

• Question 5: Does the choice of shrinking algorithm affect
the quality of shrunk counterexamples?

To answer these questions we run properties and collect infor-
mation. We will refer to such properties as benchmarks, and the
benchmarks we use are described in the following subsection.

5.1 Benchmarks
Weperform all our evaluations using six distinct benchmarks.While
the first benchmark constant is artificial, the other benchmarks are

(a) Illustration of the existing QuickCheck
shrink-loop. It guarantees to always return
the same locally minimal counterexample.

(b) The new deterministic shrink-loop
promises to find the same local minimum
every time, but it may speculatively eval-
uate other candidates in its search for the
final counterexample.

(c) The greedy shrink-loop does not guar-
antee to find the same local minimum, po-
tentially returning a different final coun-
terexample.

Figure 2: The three figures above illustrate how the search
for a minimized counterexample happened. The dotted line
represents the final path to the local minimum, green boxes
are candidate counterexamples that turned out to not be
new counterexamples, and red boxes are counterexamples
that still falsified the property. Grey boxes are candidate
counterexamples that were never evaluated.

intended to represent a diverse set of testing tasks. compiler testing
and compressid are effectful tasks making use of IO facilities, while
the other tasks are pure.

constant. The benchmark named constant is not one that anyone
would write organically, but its inclusion as a benchmark in this
set has a very specific purpose. The underlying property is

IFL 2023, August 29–31, 2023, Braga, Portugal Robert Krook, Nicholas Smallbone, Bo Joel Svensson, and Koen Claessen

Figure 3: A high-level description of the internal testing loop.
The loop begins by generating input and then invoking the
property. After this, the loop inspects the outcome before it
either reports having found a counterexample, or loops back
to repeat all steps. The bottom box and all arrows are part of
the internal testing loop, while the top two boxes are defined
by the user.

1 prop_constant :: () −> Bool
2 prop_constant () = True

The cost in execution time of running a test consists of three
parts – generating input, running the property, and the machinery
of the internal testing loop. This is illustrated in figure 3. As Quick-
erCheck only changes the workings of the testing loop, we want
to measure the change in cost of just the testing loop. The above
property minimizes the execution time of both the generation of
test data and evaluation of the property. Generation and evaluation
are constant time as there are no random choices to make dur-
ing generation and evaluation of the property is trivial. Measured
changes in the execution speed of QuickCheck vs QuickerCheck on
this benchmark should primarily be a result of the different testing
loops.

compiler testing. The underlying property of the compiler test-
ing benchmark asserts that a compiler for an imperative language
generates correct output. The property is stated as a metamorphic
relation as described in section 3.

In practice, the property does significantly more work than the
other benchmarks. It generates a type-correct imperative program
and produces several executables that are invoked to assert the
correctness. The generated programs may include non-terminating
loops, so the property might require some time to execute. Such
loops are eventually broken by the property itself after consuming
too many resources. During evaluation, the property will spend a
significant amount of time in external processes.

compressid. This benchmark composes the two Unix commands
gzip and gunzip and verifies that the composition behaves as the
identity function. It generates an arbitrary string and invokes gzip,
passes the compressed result to gunzip, and asserts that the final
output is identical to the input.

This benchmark comes in three flavors – one is a naive imple-
mentation (naive) that writes intermediary values directly to the
file system. Since the file system is a shared resource a property

like this will experience race conditions if multiple threads are used.
We test two alternative implementations that make the property
thread-safe in different ways. The first (tmpfs) generates fresh di-
rectories for each concurrent worker to write such files to, and the
second (nofs) uses pipes to pass values around, never using the file
system.

verse. This property asserts the confluence of the rewrite system
for the Verse Core Calculus [2]. A rewrite system is confluent if,
regardless of which rewrite rules are applied in each step, the result
is always the same, single, normal form.

The property generates an arbitrary term and applies two arbi-
trary sequences of rewrite rules. If the two resulting normal forms
are different, the rewrite system is not confluent and the property
is falsified.

system f. The system f benchmark is a pure property that gen-
erates arbitrary lambda terms and asserts the subject reduction
property, described in section 1, which states that the type of a
term should not change after performing one reduction of said
term. The code was taken from Etna, an evaluation platform for
Property-based testing frameworks[8].

twee. Twee [9] is a high-performance theorem prover for equa-
tional logic written in Haskell. A key component is the term index,
a data structure for finding equations matching a given term. The
twee benchmark is a pure property stating that, after any sequence
of update operations on a term index, the data structure’s invariant
is preserved.

5.2 Results and Discussion
Evaluation is done using an Intel I7-10700 8-core CPU with turbo-
boost turned off. The evaluation system is equipped with 64GB of
2933MT/s RAM.

We use GHC to compile and execute Haskell code, using
the compile-time flags -threaded, -feager-blackholing, and
-rtsopts. We don’t try to mitigate garbage collection costs by in-
creasing the nursery size or try to improve the performance in any
other way, as we believe most people use QuickCheck without do-
ing this. All invocations of QuickCheck are made with the chatty
flag set to False as printing would otherwise affect the results. In
appendix A it is illustrated how chatty affects experimentation.

Is the sequential performance of the new implementation compara-
ble with QuickCheck? We answer this by executing each benchmark
several times both with QuickCheck and QuickerCheck, using only
one core. We compute the median execution times and compare
them. The results are presented in figure 4.

Something that immediately stands out is the huge overhead ex-
perienced by the constant benchmark. This benchmark is intended
to act as a worst-case property and illustrate precisely what the
overhead of the new testing loop is. The results indicate that, in
the worst case, QuickerCheck will incur a penalty of 70%.

The other benchmarks all perform some actual workload and
experience much more modest changes in performance. The system
f property, just like the constant property, is very fast. By running
many more tests it interacts much more with the new testing loop,
incurring more of the new costs. This shows up by QuickerCheck

QuickerCheck IFL 2023, August 29–31, 2023, Braga, Portugal

Figure 4: The performance of sequential QuickerCheck com-
pared to that of QuickCheck. A number of 1 means that
there was no difference in performance, whereas a num-
ber less than 1 indicates that QuickerCheck was faster than
QuickCheck (e.g. 0.5 shows that QuickerCheck finished in
half the time). A number greater than 1 indicates that Quick-
erCheck was slower than QuickCheck.

requiring 11% more execution time to finish the same workload.
Some of the workloads experienced no change at all or even got
slightly faster.

Not accounting for the constant benchmark, it appears that there
is no major change in performance by using sequential Quick-
erCheck instead of QuickCheck.

How does the parallel run-time scale as we add more cores? Each
of the benchmarks is executed several times for each core config-
uration, the median execution time is computed and the speedup
relative to the sequential running time is computed. The results are
presented in figure 5.

We first observe that many of the benchmarks scale very well
until the point where we exhaust the number of physical cores. The
highest speedup was achieved by the compiler testing benchmark
which got more than eight times faster. The verse property is not
far behind.

The twee benchmark initially scales very well but starts to lose
momentum when we approach the limit of physical resources.
When hyper-threading is active performance slowly but surely de-
grades. The twee benchmark is very data-intensive and frequently
moves data around. While two hyper-threads appear to the operat-
ing system as two CPUs, they are actually two logical threads that
share hardware components required to execute machine instruc-
tions, such as caches and the system bus. One potential explanation
for this degradation is that the different testers affect the cache in
unfavorable ways.

One noticeable difference between e.g. the compiler testing and
system f benchmark is that the compiler testing property is signifi-
cantly slower. The property may spend over a second evaluating
a single test while the system f benchmark may run thousands of

Figure 5: The acquired speedup relative to the sequential
execution time when running tests.

Figure 6: The acquired speedup relative to the sequential
execution time when searching for a planted bug.

tests in the same time frame. The results seem to indicate that the
more time a property spends inside the body of the property, the
greater the potential speedup.

Can we find bugs faster by using more cores? To evaluate this we
plant a bug in 4 of the 6 benchmarks and let QuickerCheck run
until it finds the bug. This is repeated 300 times after which the
median execution time is computed. Figure 6 illustrates the speedup
acquired relative to the sequential execution time.

We first note that the system f benchmark doesn’t reach as high
of a speedup as when we are running tests without a bug enabled.
While we can’t say with certainty what to attribute this to, we
have a pretty good guess of what is happening. The shape of the

IFL 2023, August 29–31, 2023, Braga, Portugal Robert Krook, Nicholas Smallbone, Bo Joel Svensson, and Koen Claessen

curve is the same, except that it is pushed down towards lower
multiples. There are some new costs associated with starting up the
parallel test loop, and when we run tests without a bug enabled the
benchmark is allowed to run for a few seconds, running hundreds of
thousands of tests. The cost of starting up the test loop is amortized
over all these tests, while when a bug is enabled there are many
fewer tests. The bug was found after roughly 200 tests, running for
just a couple of milliseconds.

The overall shape of the twee benchmark is the same, but not
reaching quite as high of a speedup as when just running tests. The
compiler testing benchmark acquires a 10x increase in performance,
outperforming all other evaluated benchmarks. We believe this
speedup is higher than that achieved in figure 5 because many
concurrently running tests are aborted when a counterexample
is found. When evaluating speedup for question two, every test
that we began evaluating was expected to finish, whereas when we
evaluated question three, we terminated concurrent testers when
one of them found a counterexample. We will thus do slightly less
work. We observe the inverse behavior in the system f property,
where the concurrent testers have time to run many additional tests
before they are terminated by a tester who found a counterexample.

Can we shrink counterexamples faster by using more cores? We
generate 200 random seeds that we know trigger bugs, such that
we can replay them to deterministically see the same counterexam-
ples. We replay the seeds and measure how long it takes to shrink
them, varying the number of cores and the choice of strategy (de-
terministic or greedy shrinking). We have done this for the three
benchmarks compiler testing, twee, and verse. Because it is imprac-
tical to show all the results, we have picked some subsets of data
that we find representative of the overall results.

The compiler testing results are presented in figure 7, 8, and
9. Figures 7 and 8 illustrate the relationship between sequential
and parallel execution time, using two cores. The red dots got
slower when two cores were used, whereas the blue dots achieved
a speedup. The further from the line a point lies, the more extreme
the achieved effect is. From the two figures, we can see that the
greedy algorithm appears to benefit more experiments and that
the achieved effects are greater. The blue dots in figure 7 appear to
tangent a line. This line traces the execution time that is twice as
fast as the sequential one and illustrates the upper bound defined
by Amdahl’s law[1]. The results in figure 8 show some experiments
crossing this boundary, which is explained by the greedy algorithm
being able to return a completely different counterexample.

As more and more cores are added, the results indicate that more
and more experiments got slower, while the remaining ones that
achieved a speedup achieved a much greater speedup.

To try and answer which counterexamples may benefit from
parallel shrinking, we plot the efficiency of the shrunk counterex-
amples. The efficiency of a single counterexample is defined as
the fraction of evaluated candidates that successfully shrunk the
counterexample, and as such is a number between 0 and 1. It is
clear that if the efficiency is one, there is nothing to be gained
from parallelism as shrinking becomes a sequential search. As an
example, the total number of evaluated candidates in figures 2a,
2b, and 2c are 5, 7, and 8 respectively. In all 3 cases the number of
successful shrinks was 3, so the efficiencies are 0.6, 0.42, and 0.375.

Figure 7: The speedups acquired when using two cores to
shrink the compiler testing tests, using the deterministic
algorithm.

Figure 8: The speedups acquired when using two cores to
shrink the compiler testing tests, using the greedy algorithm.

Figure 9 shows that there is a clear trend of counterexamples with
a good efficiency not benefiting from parallel shrinking. If there
was not that much extra work to be done from the beginning, the
existence of more cores does not offer any substantial performance
improvements.

The results observed from twee (figures 10, 11, and 12) tell a
different story. The twee property finishes shrinking in a couple
of milliseconds, and using more cores quickly makes all observed
counterexamples shrink slower. The efficiency appears to make no
difference and we believe that the overhead of the parallel search
overshadows any benefits of using more cores. The advantage of
having more cores at one’s disposal appears to mainly be beneficial
in cases where execution will require a non-trivial amount of time.

QuickerCheck IFL 2023, August 29–31, 2023, Braga, Portugal

Figure 9: This figure illustrates that the closer the efficiency is
to one, the higher the probability that the test will get slower
when shrinking. It also appears that the relative speedup is
higher the lower the efficiency.

Figure 10: The results indicate thatmost tests finished shrink-
ing very fast when only two cores was used.

The verse benchmark,much like the compiler testing one, achieves
a noticeable speedup for the majority of candidates. This is illus-
trated in figures 13 and 14. The efficiency of the shrinker is depicted
in figure 15, and shows that there is a slight trend towards can-
didates with a lower efficiency being more likely to benefit from
multiple cores. This benchmark shrinks quite rapidly, and as we
add more cores, more and more candidates become slower, with the
final number at 16 cores showing that roughly half of the candidates
experienced a slowdown.

Does the choice of shrinking algorithm affect the quality of shrunk
counterexamples? The deterministic shrinking algorithm will al-
ways yield the same locally minimal counterexample, while the
greedy algorithm may return another local minimum, of a poten-
tially different size. We are interested in finding out whether the

Figure 11: The greedy algorithm appears to perform roughly
the same as the deterministic one, with the exception of some
tests that did indeed shrink faster.

Figure 12: While the efficiency turned out to be an excellent
indicator for whether a test got faster or not for the compiler
testing benchmark, the same can not be said for twee. Using
16 cores and the greedy algorithm, all tests got slower and
there was quite a spread of efficiencies. The overall efficiency
appears to be much lower, but there is still nothing to be
gained by additional cores.

distribution of sizes of shrunk counterexamples is different for the
two algorithms. We evaluate this on two benchmarks, compiler
testing and verse. We collect 300 seeds from the compiler testing
benchmark and 500 from the verse benchmark. These seeds imme-
diately falsify the property, allowing us to shrink them and record
the size using both algorithms. We define the size of a counterex-
ample as the number of constructors in it. We point out that both
algorithms produce identical results when only one core is used.

To compare the results from the two algorithms, we model the
measured sizes as negative binomial distributions. Whereas we

IFL 2023, August 29–31, 2023, Braga, Portugal Robert Krook, Nicholas Smallbone, Bo Joel Svensson, and Koen Claessen

Figure 13: The speedups acquired with two cores using the
deterministic algorithm, for the verse benchmark.

Figure 14: The speedups acquired with two cores using the
greedy algorithm, for the verse benchmark. It can be observed
that the number of candidates that achieved a speedup in-
creased, compared to using the deterministic algorithm.

only have one baseline model (the deterministic algorithm), we
have 16 models representing the greedy algorithm (one for each
core configuration). The authors note that in the single-core case,
the two algorithms are identical. Figure 16 illustrates both the
measured sizes of the deterministic algorithm, as well as the model
representing them.

We compare the models representing the greedy algorithm to the
baseline model by computing the entropy between them. Figures
17 and 18 illustrate the baseline model and the greedy model with
the highest relative entropy. In both measured benchmarks the
difference is very small. While the verse benchmark shows little
to no difference at all, the compiler testing benchmark has a small
but noticeable difference. This difference is not large enough to say
whether the distributions are different or not. The results indicate

Figure 15: The efficiency of the verse shrinker shows that
there is a slight trend of lower efficiency indicating that there
is a speedup to have by using more cores.

Figure 16: The measured sizes are rendered as a histogram,
together with a model that represents the distribution from
which they were drawn.

that the choice of algorithm does not impact the quality of shrunk
counterexamples at all.

6 RELATEDWORK
QuickCheck, having proven itself an extremely useful framework
for testing software, has been re-implemented in many program-
ming languages. It appears that most other implementations don’t
support parallel execution of properties. The only other imple-
mentation we could find that supports parallelism is fsCheck, a
QuickCheck implementation for testing .NET code. The parallel
run-time is not described in any paper and the documentation is
sparse, but the implementation is discussed in a merge request
introducing the work. The discussion indicates that they initially

QuickerCheck IFL 2023, August 29–31, 2023, Braga, Portugal

Figure 17: The figure illustrates the distribution of the base-
line samples, as well as the greedy distribution with the high-
est relative entropy, from the compiler testing benchmark.

Figure 18: The figure illustrates the distribution of the base-
line samples, as well as the greedy distribution with the high-
est relative entropy, from the verse benchmark. The distribu-
tions are practically the same.

used an offset to compute sizes for tests but switched to using a
stride after observing an uneven workload between workers.

The largest framework for property-based testing by number
of users is the Python package Hypothesis. They have explicitly
chosen not to provide support for parallel evaluation of properties
as it can not be determined beforehand whether the function being
tested is thread-safe or not. In a non-pure language like Python,
this might be a concern, but we believe that this concern is not as
severe when it comes to Haskell code. Haskell code is usually split
up into its pure parts and effectful parts, with the pure parts being
embarrassingly parallel from the get-go. Effectful code can in many
cases be refactored to be thread-safe, such that parallel testing may
yield positive results.

The Haskell package tasty [4] lets the user define test suites with
individual tests in a suite being of different kinds. A test suite can
simultaneously include e.g. QuickCheck tests, SmallCheck tests,
and unit tests. This is possible by tasty using different test drivers
to execute the tests. tasty can execute individual tests in a test suite
in parallel, but it will not introduce parallelism in the underlying
test drivers. If a test suite contains many tests, with all but one test
terminating very quickly, the majority of execution time will be
sequential, waiting for the longest running test to terminate.

7 CONCLUSIONS AND FUTUREWORK
Our results show that parallel testing is beneficial. If the property
being tested is slow to run the expected performance increase is
high, whereas a fast property stands to gain less (but not nothing).

Thanks to the natural division of effectful and pure code in
Haskell, many properties are immediately able to benefit from
the parallel run-time. We found that with slight modifications to
effectful properties, we could run them in a thread-safe manner.

Parallel shrinking is not as universally beneficial, but can still
yield good results. For all benchmarks evaluated, individual coun-
terexamples could go either way, either experiencing a slowdown
or a speedup. We can not conclude that parallel shrinking is always
beneficial. It depends on not only the property but also the specific
test case. As more cores are added, some counterexamples will get
significantly faster, while the likelihood of your counterexample
shrinking slower increases. There seems to be a good compromise
around using multiple cores, but a lower number. The greedy al-
gorithm appears to offer a greater speedup than the deterministic
one, without compromising on the quality of the counterexamples.

While the work presented in this paper represents a considerable
engineering effort, there are still many lines of future work to
pursue. While implementing the work described in this paper, it
became clear that the ad-hoc way of computing sizes in QuickCheck
does not lend itself nicely to parallelism. It imposes a sequential
ordering to test cases and is tricky to distribute over multiple cores.
While we have implemented a best-effort attempt to maintain the
previous behavior, it is not a perfect imitation. The authors would
like to implement and evaluate several different ways of computing
sizes and reach some conclusions about which strategies are most
efficient.

While the greedy algorithm is allowed to search for the fastest
path to a counterexample, there may well be more efficient algo-
rithms still. There is still a bias towards finding earlier paths. It
would be interesting to see how a random walk would perform.

Currently, the user must explicitly request parallel QuickCheck
by using quickCheckPar instead of quickCheck. This choice was
made because properties involving I/O can not always be safely ex-
ecuted in parallel. It would be possible to instead have QuickCheck
automatically execute tests in parallel when it is safe to do so. For
example, pure properties (not using 𝑖𝑜𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) can always be par-
allelized. Properties doing I/O could be marked as thread-safe using
a special combinator.

We are also working together with the QuickCheck maintainers
towards merging this line of work into mainline QuickCheck.

IFL 2023, August 29–31, 2023, Braga, Portugal Robert Krook, Nicholas Smallbone, Bo Joel Svensson, and Koen Claessen

REFERENCES
[1] Gene M. Amdahl. 1967. Validity of the single processor approach to achieving

large scale computing capabilities. In American Federation of Information Process-
ing Societies: Proceedings of the AFIPS ’67 Spring Joint Computer Conference, April
18-20, 1967, Atlantic City, New Jersey, USA (AFIPS Conference Proceedings, Vol. 30).
AFIPS / ACM / Thomson Book Company, Washington D.C., New York, NY, USA,
483–485. https://doi.org/10.1145/1465482.1465560

[2] Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon
Peyton Jones, Olin Shivers, Guy L. Steele Jr., and Tim Sweeney. 2023. The
Verse Calculus: A Core Calculus for Deterministic Functional Logic Program-
ming. Proc. ACM Program. Lang. 7, ICFP, Article 203 (aug 2023), 31 pages.
https://doi.org/10.1145/3607845

[3] Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu. 2020. Metamorphic Testing:
A New Approach for Generating Next Test Cases. CoRR abs/2002.12543 (2020).
arXiv:2002.12543 https://arxiv.org/abs/2002.12543

[4] Roman Cheplyaka. 2013. tasty. https://hackage.haskell.org/package/tasty
[5] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for

random testing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, New York,
NY, USA, 268–279. https://doi.org/10.1145/351240.351266

[6] Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Ph. D. Dissertation.

[7] Michał H Pałka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing
an optimising compiler by generating random lambda terms. In Proceedings of
the 6th International Workshop on Automation of Software Test. 91–97.

[8] Jessica Shi, Alperen Keles, Harrison Goldstein, Benjamin C Pierce, and Leonidas
Lampropoulos. 2023. Etna: An Evaluation Platform for Property-Based Testing
(Experience Report). Proceedings of the ACM on Programming Languages 7, ICFP
(2023), 878–894.

[9] Nicholas Smallbone. 2021. Twee: An Equational Theorem Prover. In Automated
Deduction - CADE 28 - 28th International Conference on Automated Deduction,
Virtual Event, July 12-15, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer, New York, NY, USA,
602–613. https://doi.org/10.1007/978-3-030-79876-5_35

[10] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200. https://doi.org/
10.1109/32.988498

A THE EFFECT OF CHATTY
The chatty flag in QuickCheck controls whether QuickCheck
should continuously print what it is doing or not. While printing
is helpful in assessing the current progress, it can be a bottleneck
when it comes to performance.

QuickCheck prints the current progress before every test. If you
run just a few tests every second this is of no concern, but if your
property is a very fast one it has a huge effect on performance.
Running 10000 tests per second means that you will print 10000
times per second, which is significantly more than a human eye
can observe.

QuickerCheck takes a different approach to printing. Since the
new run-time is multi-threaded anyway, QuickerCheck will spawn
a separate worker thread whose sole purpose is to periodically
print the progress to the terminal. The duration of the period can
be configured, and the default is 200 milliseconds.

While the property that now runs 10000 tests in one second
would previously have printed 10000 times, QuickerCheck would
only have printed 5 times. In figure 19 it can be observed how much

of an effect this has on a sequential workload. The constant and
system f properties run extremely fast, and we observe that with
the chatty flag set to True, QuickerCheck is significantly faster.
The constant property finished evaluating in one-fifth of the time
that QuickCheck required.

As we add cores, it appears that chatty might make the bench-
marks scale slightly worse, but not a lot, as indicated in figure
20.

Figure 19: The sequential performance of QuickerCheck rel-
ative to QuickCheck, evaluated with the chatty flag turned
on and off. The (c) suffix indicates that Chattywas set to True.

Figure 20: The speedup relative to sequential execution time,
when chatty is enabled.

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/3607845
https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2002.12543
https://hackage.haskell.org/package/tasty
https://doi.org/10.1145/351240.351266
https://doi.org/10.1007/978-3-030-79876-5_35
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498

	Abstract
	1 Introduction
	2 What are the challenges?
	3 QuickerCheck
	4 QuickerCheck Design and Implementation
	5 Evaluation
	5.1 Benchmarks
	5.2 Results and Discussion

	6 Related Work
	7 Conclusions and Future Work
	References
	A The effect of Chatty

