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ABSTRACT
Recommender systems (RecSys) play a vital role in online plat-
forms, offering users personalized suggestions amidst vast infor-
mation. Graph contrastive learning aims to learn from high-order
collaborative filtering signals with unsupervised augmentation on
the user-item bipartite graph, which predominantly relies on the
multi-task learning framework involving both the pair-wise rec-
ommendation loss and the contrastive loss. This decoupled design
can cause inconsistent optimization direction from different losses,
which leads to longer convergence time and even sub-optimal per-
formance. Besides, the self-supervised contrastive loss falls short
in alleviating the data sparsity issue in RecSys as it learns to differ-
entiate users/items from different views without providing extra
supervised collaborative filtering signals during augmentations. In
this paper, we propose Mixed Supervised Graph Contrastive Learn-
ing for Recommendation (MixSGCL) to address these concerns.
MixSGCL originally integrates the training of recommendation
and unsupervised contrastive losses into a supervised contrastive
learning loss to align the two tasks within one optimization direc-
tion. To cope with the data sparsity issue, instead unsupervised
augmentation, we further propose node-wise and edge-wise mixup
to mine more direct supervised collaborative filtering signals based
on existing user-item interactions. Extensive experiments on three
real-world datasets demonstrate that MixSGCL surpasses state-
of-the-art methods, achieving top performance on both accuracy
and efficiency. It validates the effectiveness of MixSGCL with our
coupled design on supervised graph contrastive learning.

CCS CONCEPTS
• Computing methodologies → Data mining; • Collaborative
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1 INTRODUCTION
Recommender systems (RecSys) have emerged as a cornerstone in
the architecture of modern online systems and web applications,
playing a pivotal role in filtering and personalizing the informa-
tion presented to users. These systems are engineered to deliver
tailor-made item recommendations that align with individual user
preferences. The scope of RecSys extends across various domains,
including but not limited to, digital retailing [9, 26, 41], social net-
working platforms [3, 10], and video-sharing services [29]. Among
the methodologies employed in RecSys, collaborative filtering (CF)
stands out as a prominent approach [32, 34]. CF algorithms function
by extrapolating patterns from historical user-item interactions to
identify and recommend items to users with similar interaction pro-
files. However, this approach is inherently challenged by the issue
of data sparsity [33], a prevalent problem in RecSys. Data sparsity
arises due to the limited interactions that each user typically has
with the items, thus constraining the system’s ability to model and
predict user preferences accurately.

Graph contrastive learning has been increasingly integrated into
RecSys as a solution to mitigate the data sparsity challenge. This
approach primarily involves data augmentation on bipartite graph
structure, where high-order structural signals are extracted via
graph neural networks [6, 27, 37]. Concurrently, graph contrastive
learning establishes a self-supervised learning task, aimed at en-
hancing representation expressiveness by distinguishing the nodes
in the bipartite graph. This is achieved through the creation of var-
ied varied representation from different views, derived from graph
augmentation techniques or embedding perturbations. Existing
methodologies in this domain [1, 13, 30, 35, 39] typically employ
a decoupled design approach. This involves the utilization of a
recommendation-specific supervised loss function [22], designed

ar
X

iv
:2

40
4.

15
95

4v
2 

 [
cs

.I
R

] 
 2

5 
A

pr
 2

02
4

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Weizhi Zhang, Liangwei Yang, Zihe Song, Henry Peng Zou, Ke Xu, Yuanjie Zhu, and Philip S. Yu

to learn from user-item interaction signals, in conjunction with
a distinct contrastive learning loss [17], which focuses on assimi-
lating knowledge from self-supervised paradigm. These dual loss
functions are simultaneously optimized during the training phase,
enabling the model to independently approximate two objects.

Despite their enhanced performance over traditional models that
solely consider original user-item interactions [6, 27, 37], current
graph contrastive learning methods in RecSys still confront two
significant challenges that impede further improvements in perfor-
mance and efficiency. 1) Inconsistent Gradients. It arises from the
prevalent practice of employing a decoupled design for high-order
supervision and self-supervised contrastive signals. This approach
necessitates the development of two distinct loss functions. These
functions, while aiming to learn from different tasks, optimize the
same set of parameters, leading to potential conflicts and inconsis-
tent gradients. Such inconsistent gradients have been identified as
a primary factor contributing to unstable training and performance
degradation, as highlighted in recent studies [15, 24]. This not only
expends considerable computational resources but also hampers
further enhancement and training efficiency of the model. 2) Unsu-
pervised Augmentation. It is inherent in these methods under the
contrastive learning framework. Typical approaches involve unsu-
pervised manipulations of the graph adjacency matrix [1, 30, 35]
or the introduction of noise in node embeddings [35, 39]. Such
unguided and randomized augmentation processes risk significant
information loss, as evidenced in scenarios where influential nodes
or critical edges are omitted [30]. Moreover, in the context of sparse
user-item interaction data, unsupervised augmentation can intro-
duce considerable noise, adversely impacting the model’s training
efficiency. This is further compounded by the need for additional
epochs to achieve convergence, owing to the model’s reliance on
learning from randomly augmented data at each iteration.

In this paper, we introduce Mixed Supervised Graph Contrastive
Learning for Recommendation (MixSGCL), a novel framework de-
signed to address the two identified obstacles. To tackle the issue of
inconsistent gradients, MixSGCL incorporates a unique supervised
graph contrastive learning (SGCL) loss. This loss function integrates
the user-item interaction supervision signal directly within the self-
supervised loss, thereby merging supervised and self-supervised
contrastive learning tasks into a single optimization objective. Such
an approach not only mitigates the issue of inconsistent gradients
arising from disparate loss components but also obviates the neces-
sity for extensive hyperparameter tuning to balance different loss
weights. We further conduct a theoretical analysis in comparison
with the SSLRec loss in [1, 13, 30, 35, 39], elucidating the bene-
fits of SGCL from avoiding the user-item distribution shift during
training, fostering better and distinguishable representations for
ranking. Moreover, MixSGCL innovatively enhances supervision
signals from the ground-truth user-item interactions to address
the data sparsity challenge. Diverging from the unsupervised aug-
mentation, our method leverages mixup [40], specifically tailored
for RecSys, to build external supervision signals guided by exist-
ing user-item interactions. We propose two novel supervised aug-
mentation strategies: node-level and edge-level mixup. Node-level
mixup augments node representations from different graph con-
volution layers, creating diversified representations for the same
node. Conversely, edge-level mixup blends node representations

along an edge, effectively simulating more user-item interactions.
These mixup techniques efficiently harness supervised historical
interactions, augmenting more direct and reliable supervision sig-
nals compared to unsupervised augmentation. In addition, since
SGCL loss computations eliminate the negative sampling process
and two types of mixup-based supervised augmentations are con-
ducted after the graph convolution, the overall training is extremely
time-efficient. Our contributions are summarized as follows:
• Identification of Key Issues: We have conceptually pinpointed
critical challenges in graph contrastive learning for recommen-
dation, specifically the Inconsistent Gradients and Unsupervised
Augmentation issues, which have been impeding the achievement
of enhanced performance and efficiency in RecSys.

• Development of the novel supervised graph contrastive loss:
Methodologically, we have developed and theoretically analyzed
an innovative supervised graph contrastive learning loss. This
loss uniquely integrates the training of supervised and self-supervised
contrastive tasks within a singular objective function, marking a
significant methodological advancement in this domain.

• Graph-basedMixup:We introduce the node and edge-level mixup
on user-item bipartite graphs. This method provides additional
direct and reliable supervision signals based on historical user-
item interactions to cope with the unsupervised augmentation
and data sparsity issue.

• Experimentally, we conduct extensive experiments on three real-
world datasets to test the effectiveness of MixSGCL. It achieves
the highest recommendation accuracy with the lowest training
time, demonstrating the remarkable performance of MixSGCL.

2 PRELIMINARIES
2.1 Problem Definition
The problem definition of graph-based recommendation involves
harnessing inherent graph structures to enhance the personaliza-
tion accuracy in RecSys. Formally, the problem can be defined as
follows. Consider the bipartite graph structure of user-item inter-
actions G = (V, E) where the graph encompasses nodes including
users 𝑢𝑖 ∈ V𝑢 and items 𝑣 𝑗 ∈ V𝑣 and edges representing relation-
ships or interactions between these nodes such as (𝑢𝑖 , 𝑣 𝑗 ) ∈ E, the
objective is to develop a recommendation algorithm that utilizes
the graph structure to predict and rank items that a user might be
interested in but has not interacted with yet.

2.2 Self-supervised Graph Recommendation
Recent approaches [1, 13, 30, 35, 39] for self-supervised graph rec-
ommendation all rely on the multi-task learning framework and
jointly learn from contrastive learning (self-supervised) tasks and
supervised recommendation tasks on the node representations.

In a formal definition, the joint learning scheme in self-supervised
graph recommendation is to optimize the SSLRec loss function:

Lsslrec = Lrec + 𝜆L𝑔𝑐𝑙 , (1)

where the Lsslrec consists of the traditional recommendation loss
Lrec , such as BPR [22], and the contrastive learning (CL) loss L𝑔𝑐𝑙 ,
with 𝜆 to weight the two losses. As the inputs are the bipartite
user-item interaction graph, the contrastive learning process is
conducted concurrently for both the user and item side. Based on
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the InfoNCE [17], the user-side CL loss L𝑢
𝑔𝑐𝑙

is formulated as:

L𝑢
𝑔𝑐𝑙

=
∑︁
𝑖∈B𝑢

− log
exp

(
𝑢′⊤
𝑖
𝑢′′
𝑖
/𝜏
)∑

𝑘∈B𝑢
exp

(
𝑢′⊤
𝑖
𝑢′′
𝑘
/𝜏
) , (2)

where 𝑖, 𝑘 are the nodes (users) in the user batch B𝑢 and 𝑢′
𝑖
, 𝑢′′
𝑖

are two views of node representation after the data augmentations.
Note that the 𝜏 is a hyperparameter that controls the temperature
of the InfoNCE loss and applies the penalties on hard negative
samples. Then, the item-side CL loss L𝑣

𝑔𝑐𝑙
can be calculated in the

same format. Finally, the CL loss will be the summation of both user
and item sides L𝑔𝑐𝑙 = L𝑢

𝑔𝑐𝑙
+L𝑣

𝑔𝑐𝑙
. In general, the graph contrastive

learning loss L𝑔𝑐𝑙 encourages the similarity between two variant
embeddings 𝑢′

𝑖
and 𝑢′′

𝑖
from the same node while maximizing the

inconsistency among all the other nodes in batch.

3 PROPOSED SOLUTIONS
In this section, we introduce the proposedMixSGCL in detail. Firstly,
we demonstrate the novel Supervised Graph Contrastive Loss that
integrates the training of both supervised recommendation and
contrastive learning losses. We conduct further in-depth theoretical
analysis of SGCL and compare it with current SSLRec loss [30].
Then we demonstrate the proposed Node/Edge-level Mixup to pro-
vide abundant supervision signals to assist the training. Besides, a
detailed time complexity investigation is conducted to demonstrate
the efficiency of the proposed method.

3.1 Supervised Graph Contrastive Learning
In the context of graph-based recommendation tasks, suppose we
observe a pair of interacted users and items with corresponding
initial input ID embeddings 𝑢0

𝑖
and 𝑣0

𝑗
, and we adopt the light graph

convolution as in [6], by consistently aggregating the connected
neighbors’ representations:

𝑢𝑘+1
𝑖 =

∑︁
𝑗∈𝑁𝑖

1√︁
|𝑁𝑖 |

√︁
|𝑁 𝑗 |

𝑣𝑘𝑗 ,

𝑣𝑘+1
𝑗 =

∑︁
𝑖∈𝑁 𝑗

1√︁
|𝑁𝑖 |

√︁
|𝑁 𝑗 |

𝑢𝑘𝑖 ,

(3)

where 𝑢𝑘
𝑖
and 𝑣𝑘

𝑗
are embeddings of user 𝑢𝑖 and item 𝑣 𝑗 at 𝑘-th

layer, respectively. The normalization employs the average degree
1√

|𝑁𝑖 |
√
|𝑁 𝑗 |

to temper the magnitude of popular nodes after graph

convolution in each layer. Afterward, the collaborative filtering
final embedding is obtained by synthesizing the layer-wise repre-
sentations:

𝑢𝑖 =

𝐾∑︁
𝑘=0

𝛼𝑘𝑢
𝑘
𝑖 ; 𝑣 𝑗 =

𝐾∑︁
𝑘=0

𝛼𝑘𝑣
𝑘
𝑗 , (4)

where 𝛼𝑘 is the representation weight of the 𝑘-th layer and 𝐾 is
total numbers of the layers. Note that we assume 𝛼𝑘 = 1/𝐾 unless
mentioned in the following sections.

For the self-supervised graph recommendation, the contrastive
lossL𝑔𝑐𝑙 in Equation 2 is incapable of explicitly learning supervised
signals from existing interactions within graph data. Therefore, rec-
ommendation loss L𝑟𝑒𝑐 is required for label utilization, whilst an
extra weight 𝜆 should be dedicatedly tuned to balance and mitigate

the gradient inconsistency. Towards uniting the power of the su-
pervised signal and self-supervised learning strategy in the graph
recommendations, we devised a new type of supervised graph con-
trastive learning (SGCL) loss as follows:

L𝑠𝑔𝑐𝑙 =
∑︁

(𝑖, 𝑗 ) ∈B
− log

exp
(
𝑢⊤
𝑖
𝑣 𝑗/𝜏

)∑
(𝑖′, 𝑗 ′ ) ∈B

(
exp(𝑢⊤

𝑖
𝑢𝑖′/𝜏) + exp(𝑣⊤

𝑗
𝑣 𝑗 ′/𝜏)

) ,
(5)

where (𝑖, 𝑗) are paired user-item interaction in batch B and (𝑖′, 𝑗 ′)
are the rest user-item representations in batch. It is noted that
this version of the loss function does not involve any type of data
augmentation, and the user-item interactions are considered posi-
tive pairs. Therefore, both complex graph augmentation and time-
consuming negative sampling processes are avoided, making the
SGCL training process extremely efficient. More importantly, we
alleviate the need to use multi-task learning for model optimization
and use only one supervised graph contrastive loss during training.

3.2 Analysis of SGCL and SSLRec
Assume given a pair of user-item (𝑢, 𝑣) and a sampled negative
item 𝑣− and the corresponding final embeddings are normalized;
minimizing the SSLRec loss without augmentation, we have:

L𝑠𝑠𝑙𝑟𝑒𝑐 = − log
(

1
1 + exp(𝑢⊤𝑣− − 𝑢⊤𝑣)

)
− 𝜆 log

exp
(
𝑢⊤𝑢/𝜏

)∑
𝑢′∈B𝑢

exp (𝑢⊤𝑢′/𝜏)

− 𝜆 log
exp(𝑣⊤𝑣/𝜏)∑

𝑣′∈B𝑣
exp(𝑣⊤𝑣 ′/𝜏)

= log
(
exp(𝑢𝑇 𝑣) + exp(𝑢𝑇 𝑣−)

)
− 𝑢𝑇 𝑣 + 𝜆 log

∑︁
𝑢′∈B𝑢

exp
(
𝑢⊤𝑢′/𝜏

)
+ 𝜆 log

∑︁
𝑣′∈B𝑣

exp(𝑣⊤𝑣 ′/𝜏) − 2𝜆
𝜏

≥ log
(
exp(1) + exp(𝑢𝑇 𝑣−)

)
+ 𝜆 log

∑︁
𝑢′∈B𝑢

exp
(
𝑢⊤𝑢′/𝜏

)
+ 𝜆 log

∑︁
𝑣′∈B𝑣

exp(𝑣⊤𝑣 ′/𝜏) − 𝜏 + 2𝜆
𝜏

,

(6)
where the equality holds when the model is fully trained with per-
fect supervision and obtains 𝑢𝑇 𝑣 = 1. Then we get the final form
and optimization object of the SSLRec loss as minimizing the 𝑢𝑇𝑢′,
𝑣𝑇 𝑣 ′, and 𝑢𝑇 𝑣− . These essentially correspond to distancing the em-
beddings among users, items, and users-items, respectively. On the
one hand, both users and items become uniformly distributed in the
entire feature space. On the other hand, as only sparse interactions
are observed, distancing user-item pairs that lack observed interac-
tions leads to similar effects of pushing the embedding spaces of
users and items away, resulting in the distribution shift. The incon-
sistent gradients problem emerges as one encourages the users and
items to co-exist sparsely on the entire embedding space while the
other opposes the overlapping feature space of users and items.

Whereas, given the same condition, SGCL is be simplified as:

L𝑠𝑔𝑐𝑙 ≥ log ©­«
∑︁

(𝑢′,𝑣′ ) ∈B
exp

(
𝑢⊤𝑢′/𝜏

)
+ exp

(
𝑣⊤𝑣 ′/𝜏

)ª®¬ − 1/𝜏 . (7)
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Graph Convolution

Mixup ratio
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      Node-level Mixup

                      Node-level Mixup

                          Edge-level Mixup

1/3

1/3

Supervised Graph
Contrastive Learning

Figure 1: The overall architecture of MixSGCL, including SGCL loss along with the Node/Edge-level Mixup for supervised
augmentation. The pair of (𝑢2, 𝑣4) are augmented for each type mixup once, generating two extra pairs (𝑢2, 𝑣4) and (𝑢2, 𝑣4)
supervision signals for SGCL loss optimization. The rightmost figure demonstrates their relations in the embedding space.

Considering the final form of our SGCL loss, instead of continu-
ously separating the user and item embedding spaces away, SGCL
only differentiates the user from the users’ embedding space and
the item from the items’ embedding space, respectively. This con-
tributes to a uniform distribution of users and items to facilitate the
ranking in the evaluation, whilst keeping the users’ and items’ rep-
resentations in the same embedding space with alignment forced
by the supervision signals.

3.3 Mixup for Supervised Augmentation
In the self-supervised graph recommendation, contrastive learning
is often applied with different sets of data augmentations. Unfor-
tunately, none of them attempt to augment graph data under the
existing supervised label nor by adding the supervised signals (more
interactions) to guarantee abundant high-quality supervision
toward the encoder training.Motivated by themixup [40] technique,
we aim to create new and virtual interactions samples. However,
the inter-class mixup in computer vision is infeasible to be directly
applied for recommendation, and instead we propose the intra-class
mixup: only mixing the samples of the positive classes from node-
level or edge-level for supervised augmentation on supervision
signals. Virtual users/items can be created by mixing the layer-wise
representations of themselves or by two adjacent nodes, thereby
creating a new edge for training while not increasing the node
embeddings for training. In Figure 1, we demonstrate an example
of how to create those virtual nodes via mixup-based augmentation.
For the pair of (𝑢2, 𝑣4), two types of augmentations are conducted
once to generate two virtual interactions. For a batch B data, 𝑁𝑚𝑖𝑥
times of augmentations can be implemented to produce 2𝑁𝑚𝑖𝑥B
of new data during SGCL optimization. Note that in the following
sections, we denote the SGCL as the model purely relying on the
supervised graph contrastive learning lossL𝑠𝑔𝑐𝑙 , and theMixSGCL
as the version armed with supervised augmentations.

3.3.1 Node-level Mixup (NMix). In the SGCL paradigm, the
supervision signal is regarded as existing user-item interactions.
Thus, augmenting supervision revolves around the creation of new
user-item pairs. Considering a known user-item interaction (𝑢𝑖 , 𝑣 𝑗 ),
the straightforward way is to craft a virtual user and item akin
to 𝑢𝑖 and 𝑣 𝑗 . To this end, we propose the node-level mixup for
augmentation - for a batch B, each user 𝑢𝑖 will be reconstituted
from their layer representation to produce a virtual counterpart
user 𝑢𝑖 of the original user 𝑢𝑖 . Notably, the layer weight 𝛼𝑘 is
reinterpreted as a node-wise mixup ratio, sampled from a uniform
distribution:

𝛼𝑘 ∼ 𝑈 (0, 1);
𝐾∑︁
𝑘=0

𝛼𝑘 = 1. (8)

The generation of virtual nodes is achieved by remixing the layer-
wise representation. By assigning differential weight to different
hops’ receptive fields in graph convolution, more structural in-
formation is gathered during the learning phase. Furthermore, as
illustrated in Figure 1, the node-level mixup can be conceptualized
as generating virtual nodes𝑈2 and 𝑉4 surrounding the𝑈2 and 𝑉4.
This proximity facilitates a smoother and expansively explored
embedding space around those original nodes that are refined and
aligned to be closer.

3.3.2 Edge-level Mixup (EMix). Beyond the node-level mixup
of the layer-wise representations, there remains an underutilization
of the existing pair-wise representations that characterize observed
user-item interactions. As the goal of the recommendation is to
encourage the node representations along an edge to be similar, we
propose to explicitly add more supervision directly along the edge.
Treating 𝑢𝑖 and 𝑣 𝑗 as two endpoints, new interactive connections
overlapping with the original edges are created for each batch of
data. Specifically, for a batch B, each user-item pair (𝑢𝑖 , 𝑣 𝑗 ) can be
amalgamated to synthesize two corresponding virtual user/item
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nodes on the edge:
𝑢𝑖 = (1 − 𝛽)𝑢𝑖 + 𝛽𝑣 𝑗 ,
𝑣𝑖 = 𝛽𝑢𝑖 + (1 − 𝛽)𝑣 𝑗 ,

(9)

where 𝛽 is a randomly generated ratio number drawn from the
uniform distribution 0 to 0.5, 𝛽 ∼ 𝑈 (0, 0.5). It is noteworthy that 𝑢𝑖
can be interpreted as the user with stronger favors of the products
similar to 𝑣 𝑗 , and the 𝑣 𝑗 is the items adding more characteristics
appealing to the type user 𝑢𝑖 . As depicted in Figure 1, a virtual edge
is established by connecting𝑈2 and 𝑉4, imposing more supervised
signals on the edge delineated by the user-item pair.

3.4 Time Complexity
In this subsection, we conduct the time complexity analysis on
SGCL and MixSGCL and compare them with one of the predomi-
nant baseline methods SGL [30] in the self-supervised graph recom-
mendation. We first denote |E | as the number of edges in the graph.
Then, let K be the number of layers in graph convolution, and d
be the embedding size. 𝑝 represents the probability of retaining
the edges in SGL and 𝑁𝑚𝑖𝑥 indicates the times of augmentations
applied in MixSGCL.

Then, we can derive that: 1) For the normalization of the adja-
cency matrix, both SGCL and MixSGCL do not contain the graph
structure manipulation; they only need to compute the 2|E | non-
zero elements in the original adjacency matrix. On the contrary,
SGL drops the edges in the graph data to create two versions of the
modified adjacency matrix, and thus the time complexity is approx-
imately three times of our methods. 2) In the graph convolution, as
SGL changed the graph structure twice in contrastive learning, it
requests an extra 4𝑝 |E |𝐾𝑑 for graph convolution. Whereas no aug-
mentations are implemented before graph convolution in SGCL and
MixSGCL, and they only convolution once based on the LighGCN
backbone, resulting in efficient 2|E |𝐾𝑑 time consumption. 3) Both
SGCL and MixSGCL obviate the necessity of BPR loss computation,
while SGL still needs 2𝐵𝑑 for calculating the 2B pairs of positive
and negative interactions. 4) Regarding the graph contrastive loss,
SGL separates the user and item loss calculation into L𝑢

𝑔𝑐𝑙
and

L𝑣
𝑔𝑐𝑙

, with 𝐵𝑑 for the numerator part and 𝐵2𝑑 for the denominator
part computation, and the total time cost is 𝑂 (2𝐵𝑑 + 2𝐵2𝑑). Since
SGCL is based on a joint embedding learning process of the users
and items, the time complexity in the batch is 𝑂 (𝐵𝑑 + 2𝐵2𝑑). On
account of the number of mixup-based augmentations, MixSGCL
will cost 𝑂 (𝑁𝑚𝑖𝑥𝐵𝑑 + 2𝑁𝑚𝑖𝑥𝐵2𝑑) time per batch. It is noted that,
as all experiments are conducted on the GPU parallel computation,
therefore the time spent in loss computation differs slightly.

4 EVALUATION
4.1 Experimental Setup
4.1.1 Datasets. To evaluate the superior performance and effi-
ciency of the proposed MixSGCL along with SGCL, we conduct the
experiments on three public real-world datasets: Amazon-Beauty
(Beauty), Amazon-Toys-and-Games (Toys-and-Games), and Yelp-
2018 (Yelp), varying in domains and scale. Beauty and Toys-and-
Games are collected from real-world data in Amazon 1 datasets.
1https://jmcauley.ucsd.edu/data/amazon/links.html

Table 1: Time complexity comparison of SGL, SGCL, and
MixSGCL in different steps of graph recommendation.

Steps SGL SGCL MixSGCL

Adj.
Matrix 𝑂 ((2 + 4𝑝) |E |) 𝑂 (2|E |) 𝑂 (2|E |)

Graph
Conv. 𝑂 ((2+4𝑝) |E |𝐾𝑑) 𝑂 (2|E |𝐾𝑑) 𝑂 (2|E |𝐾𝑑)

BPR Loss 𝑂 (2𝐵𝑑) - -

GCL Loss 𝑂 (2𝐵𝑑 + 2𝐵2𝑑) 𝑂 (𝐵𝑑 + 2𝐵2𝑑) 𝑂 (𝑁𝑚𝑖𝑥𝐵𝑑 +
2𝑁𝑚𝑖𝑥𝐵2𝑑)

Table 2: The statistics of the datasets.

Dataset Users Items Interactions Sparsity

Beauty 22,364 12,102 198,502 99.9267%
Toys-and-Games 19,413 11,925 167,597 99.9276%

Yelp 77,278 45,639 2,103,896 99.9403%

We use the 5-core filtering setting by eliminating the users/items
with lower than five interactions so as to ensure the data quality for
testing. The Yelp-2018 2 dataset was adopted from the 2018 edition
of the Yelp challenge. Where local businesses such as restaurants
or bars are viewed as items. We use the 10-core setting for the
Yelp-2018 datasets. We split all datasets into training, validation,
and testing with the ratio (8:1:1), and the statistical information of
the three datasets after the preprocessing is summarized in Table 2.

4.1.2 Evaluation Metrics. For the evaluation metrics, Recall@K
and NDCG@K are adopted for a fair comparison of all the baselines
in the top-K recommendation task. K is set as 20 and 50 in the main
performance evaluation and is set to 20 by default in the other
experiments. The full-ranking strategy [42] is adopted for all the
experimental studies, i.e., all the candidate items not interacted
with the user will be ranked in testing.

4.1.3 Implementation Details. We implement our proposed
SGCL and MixSGCL and all the baseline methods based on the
RecBole [43]. For the training of all the baselines, we carefully
search their hyperparameters for different datasets to ensure a fair
comparison. The batch size and the embedding size are set to 1,024
and 64, respectively. All the models are optimized with Adam op-
timizer [11] with the learning rate searching in [1e-2, 5e-3, 1e-3,
5e-4, 1e-4]. To prevent overfitting, we adopt the early stop strategy
with patience for consistent performance degradation of NGCG@K
for 10 epochs. For our methods SGCL and MixSGCL, we tune the
temperature 𝜏 in the range of [0.1, 1] and set 𝑁𝑚𝑖𝑥 as 1 for the
mixup-based augmentation. In the efficiency analysis, we run one
model with a single GPU at a time for fair comparison.

4.1.4 Baselines. We compare our proposed SGCL and MixSGCL
with the following various state-of-the-art methods.

2https://www.yelp.com/dataset

https://jmcauley.ucsd.edu/data/amazon/links.html
https://www.yelp.com/dataset
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Table 3: Performance comparison on three datasets in terms of NDCG and Recall.

Method Beauty Toys-and-Games Yelp

R@20 N@20 R@50 N@50 R@20 N@20 R@50 N@50 R@20 N@20 R@50 N@50

BiasMF 0.1152 0.0544 0.1754 0.0668 0.0981 0.0479 0.1624 0.0625 0.0761 0.0366 0.1216 0.0448
NeuMF 0.072 0.032 0.1317 0.049 0.069 0.0345 0.1094 0.0428 0.0547 0.0252 0.1157 0.0409

NGCF 0.1126 0.0517 0.1699 0.0625 0.0944 0.0429 0.1532 0.0561 0.055 0.024 0.1374 0.0497
LightGCN 0.1224 0.0583 0.1903 0.0718 0.1159 0.0565 0.1759 0.068 0.0953 0.0472 0.1711 0.0645

NCL 0.1264 0.0613 0.1948 0.0721 0.117 0.0566 0.1782 0.0686 0.105 0.0518 0.1839 0.0703
SGL 0.1335 0.0634 0.2048 0.078 0.1248 0.0595 0.1869 0.072 0.1021 0.0505 0.1805 0.0688

LightGCL 0.1278 0.0596 0.1905 0.0697 0.1177 0.0549 0.1772 0.0647 0.0949 0.0462 0.1731 0.0643
SimGCL 0.1345 0.064 0.2058 0.0799 0.1162 0.0593 0.1738 0.0713 0.1058 0.0527 0.1847 0.0707

MixSGCL 0.143 0.0694 0.2116 0.084 0.1355 0.0651 0.1972 0.0779 0.1096 0.0541 0.1935 0.0733

• BiasMF [12] is a typical matrix factorization method that in-
corporates the bias vectors for both users and items to improve
the learning for user preference and item profiles.

• NeuMF [7] presents a novel collaborative filtering method
based on neural networks, utilizing a multi-layer perceptron to
learn user-item interaction patterns for the final predictions.

• NGCF [27] introduces a GCN-based recommendation frame-
work that integrates user-item graph structure into collabora-
tive filtering, leveraging high-order connectivity in graphs.

• LightGCN [6] simplifies the graph convolutional network rec-
ommendation, focusing on the linear and efficient propagation
of user and item embeddings through the graph structure.

• NCL [13] proposes to integrate contrastive learning with en-
riched neighborhood information from the structural and se-
mantic neighbors in the graph-based recommendations.

• SGL [30] presents a self-supervised learning framework for
graph recommendation, by leveraging auxiliary CL tasks to cap-
ture intrinsic user-item interaction patterns within the graph.

• LightGCL [1] introduces an efficient graph contrastive learn-
ing framework by exclusively utilizing singular value decom-
position for adjacency matrix augmentation.

• SimGCL [39] challenges the necessity of complex graph aug-
mentation and proposes simple graph contrastive learning and
noise-based augmentation for graph recommendation.

4.2 Overall Performance Comparison
In this comprehensive experimental study, we evaluated the perfor-
mance of several state-of-the-art recommendation methods across
three diverse datasets: Beauty, Toys-and-Games, and Yelp, using
critical metrics, including the Recall@20, Recall@50, NDCG20, and
NDCG@50. Here, we summarize the main observations:

• Predominantly, MixSGCL achieved the highest NDCG and Re-
call scores across all datasets, highlighting its superior efficacy
in recommendation tasks. This outcome not only emphasizes
the significance of the proposed mixup augmentation but also
validates the efficiency of the supervised graph contrastive
learning framework.

• Among all traditional collaborative filtering baselines, encom-
passingMF-based and graph-basedmodels, LightGCN emerges

as the best competitor in all three datasets, which demonstrates
the effectiveness of the light graph convolution [6].

• Most of the self-supervised graph recommender systems con-
sistently outperform the traditional ones. This suggests that
the auxiliary contrastive learning task leverages extra graph
structure information, boosting the performance of the pre-
dictions on unobserved user-item interactions. Among them,
SGL is generally the best model, albeit its duplicate graph
convolution due to the dropout on the graph structures.

4.3 Ablation Study
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Figure 2: Ablation study on different components.

Here, we provide the ablation study of different components of
the MixSGCL. From Figure 2, we observe that MixSGCL achieves
the highest recall and NDCG scores on all three datasets, whereas
the graph model with SSLRec loss (w/o SGCL) yields extremely
low performance. Replacing SSLRec loss with our SGCL objective
function notably advances performance, even without supervised
augmentation. Additionally, Both node-level and edge-level mixup
augmentations further bolster the GNN recommendation system,
especially on the large and sparse Yelp dataset. Each component
within our MixSGCL framework contributes to the final recommen-
dation performance.

4.4 Efficiency Analysis
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Figure 3: Trade-off between the performance and the effi-
ciency on the Beauty dataset. The upper side indicates better
performance; the left side represents more efficient training.

4.4.1 Trade-off between the Performance and the efficiency.
Figure 3 demonstrates the superiority of our models in both effi-
ciency and performance. Two matrix factorization models are more
efficient than graph-based models but achieve lower performance.
Generally, LightGCN and NGCF outperform the rest of the graph
contrastive learning baseline frameworks in terms of speed. Our
methods exhibit the most competitive performances while being
much faster than the other graph contrastive recommendation base-
lines. With the integration of our supervised augmentation process,
the increase in training time is trivial. Our methods maintain a
good balance of rapid training efficiency and elevated performance.

4.4.2 Training Time Comparison. In Table 4, LightGCN is ef-
ficient per epoch but may not always be the best choice when
considering total training time due to the higher number of epochs
required. SGL appears to offer a better compromise between the
number of epochs and time per epoch, often resulting in an ap-
proximate total time for the Beauty and Toys-and-Games datasets
compared with LightGCN. In contrast, SGCL demonstrates extreme
efficiency in all datasets, which run for the fewest epochs despite
being the fastest per epoch in most cases, thereby resulting in the
lowest total training time in all three datasets. Note that, in the
Beauty and Yelp datasets, the average training time is lower than
LightGCN’s due to the presence of a negative sampling process
for each epoch for the LightGCN. MixSGCL, while not excelling in
per-epoch efficiency, provides a balanced approach that can lead to
a low overall training time, particularly approximating the SGCL
in the Beauty dataset.

4.4.3 Performance Curve and Convergence Speed. We com-
pare the metrics of Recall@20 and NDCG@20 (Figure 4) across
the first 30 training epochs with the LightGCN and the SGL on
three datasets. Our proposed methods reach high recall results at
early training stages, SGCL in particular, exhibiting the fastest con-
vergence speed. By 30 epochs, both of our models achieve high
and stable Recall levels, whereas the LightGCN and the SGL have
not yet arrived at their convergence points. A similar result is

Table 4: Training time efficiency comparison on Beauty, Toys-
and-Games, and Yelp datasets, which includes the average
training time for each epoch, the total number of training
epochs, and the total time spent during training (we denote
second as s, minute as m, and hour as h as the abbreviation).

Dataset Method Time/Epoch # Epochs Total Time

Beauty

LightGCN 2.82s 153 7.19m
SGL 6.11s 63 6.42m
SGCL 2.08s 62 2.15m

MixSGCL 3.21s 52 2.78m

Toys-and
-Games

LightGCN 1.53s 173 4.41m
SGL 6.24s 75 7.80m
SGCL 1.63s 35 0.95m

MixSGCL 2.21s 50 1.84m

Yelp

LightGCN 246.14s 145 9.91h
SGL 651.67s 93 16.83h
SGCL 222.07s 63 3.89h

MixSGCL 360.53s 69 6.91h

0 10 20 30
Epochs

0.04

0.06

0.08

0.10

0.12

0.14

Re
ca

ll

Beauty

LightGCN
SGL
SGCL
MixSGCL

0 10 20 30
Epochs

0.04

0.06

0.08

0.10

0.12

Re
ca

ll

Toys-and-Games

LightGCN
SGL
SGCL
MixSGCL

0 10 20 30
Epochs

0.02

0.04

0.06

0.08

0.10

Re
ca

ll

Yelp

LightGCN
SGL
SGCL
MixSGCL

0 10 20 30
Epochs

0.02

0.03

0.04

0.05

0.06

0.07

ND
CG

Beauty

LightGCN
SGL
SGCL
MixSGCL

0 10 20 30
Epochs

0.02

0.03

0.04

0.05

0.06

ND
CG

Toys-and-Games

LightGCN
SGL
SGCL
MixSGCL

0 10 20 30
Epochs

0.01

0.02

0.03

0.04

0.05
ND

CG
Yelp

LightGCN
SGL
SGCL
MixSGCL

Figure 4: Performance curve of the Recall and NDCG in the
first 30 epochs.

observed in the NDCG result figures, where our methods consis-
tently outperform the two baseline models, meanwhile, gaining
more performance with mixup augmentations. These findings are
in consonance with the outcomes of our training time experiments,
underscoring the preeminence of our methodologies in practical
and real-world applications.
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4.5 Performance on Data Sparse Scenarios
To investigate the effectiveness of MixSGCL in the data sparse
conditions, we remove different ratios of interactions in the original
training data to the testing. In this case, the NDCG might increase
if the model maintains robust performance on sparse scenarios,
given that more positive items can be ranked in higher positions.
MixSGCL is the most consistent top performer across both metrics
in two datasets, with a slight increase in NDCG when the data ratio
drops to 75%, suggesting that it is the most effective method for
utilizing sparse amounts of data. SGL is competitive at full data
availability, often close to MixSGCL’s performance. However, its
performance drops sharply with the decrease of supervision data,
surpassed by LightGCN in the 75% scenario in terms of the Recall
and in the 50% scenario for Recall and NDCG. This indicates the
complex graph augmentation is not only incapable of utilizing the
data but also abandons some significant supervision information
during unsupervised and randomized augmentation, thus hindering
the ranking performance. LightGCN seems to be less sensitive to
the decrease in data ratio, with smaller performance degradation,
albeit with the lowest performance on original training data.
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(a) Different ratios of training interactions in Beauty.
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Figure 5: Performance trained with different portions of orig-
inal training data (with more sparse supervision data).

4.6 Visualization of the Embeddings
In this subsection, we visualize the final user-item embeddings on
Beauty and Toys-and-Games datasets via the t-SNE [20]. LightGCN
exhibits relatively scattered clusters of users and items in the em-
bedding space, with users seemingly more dispersed than items. In
the Beauty dataset, a conspicuous cluster of users (circled in red),
stands apart from the main distribution, and in the Toys-and-Games
dataset, a similar pattern is observed, while the distinct subgroup
is more separated from the majority. This pattern indicates that
a potential subgroup of users with distinct preferences or items
with unique features may not find the corresponding products or

customer segments, leading to suboptimal performance outcomes.
The embeddings from the SGL are characterized by a more uniform
distribution, with densely populated central clusters, particularly in
the Toys-and-Games dataset. Such centralization could signify the
model’s capability to identify commonality in the popular user-item
groups, but the major clusters are not aligned for the user-item sides.
In such scenarios, it is hard to distinguish what items are favored by
highly active users and what users would prefer to use among all
popular items. In comparison, aligned with the theoretical findings
in Section 3.2, the user-item embedding spaces of our methods are
highly cohesive and overlap with each other, where the clusters of
users and items are perfectly matched cohesively. This indicates
much less distribution shift between users and item representations
in SGCL and MixSGCL, contributing to better recommendation
performances.

4.7 Hyperparameter Analysis
4.7.1 Impact of the Temperature 𝜏 . Here, we showcase the in-
fluence of the temperature 𝜏 on the performance of our MixSGCL
across three datasets in figure 7. On three datasets, when the tem-
perature 𝜏 is tuned to 0.2, our model reaches the highest score of
Recall. Then, the performance gradually declines as 𝜏 grows. Lower
value 𝜏 increases the sensitivity of distinguishing negative pairs in
the training batch, which is advantageous for the recommendation
performance.

4.7.2 Impact of the Times of Augmentation 𝑁𝑚𝑖𝑥 . To study
how the number of times of augmentations influences the model
training, we conduct the experiments of varying the 𝑁𝑚𝑖𝑥 from 0
to 10. The results are reported in Figure 8, where larger numbers
of augmentation do not bring significant change in the ranking
performance. Thus, we set 𝑁𝑚𝑖𝑥 as 1 in all the other experiments
considering the time efficiency.

5 RELATEDWORK
5.1 Graph Contrastive Learning for RecSys
The data sparsity issue significantly limits the potential perfor-
mance of recommendation models [36]. Recently, contrastive learn-
ing has gained considerable attention across various fields due
to its proficiency in handling massive amounts of unlabeled data
[2, 5, 19, 25, 38]. The essence of self-supervised learning lies in de-
riving valuable knowledge from large quantities of unlabeled data
through meticulously crafted self-supervised tasks. Building upon
this principle, a number of self-supervised recommendation models
[1, 13, 30, 39] have been developed. To address the issue of data
sparsity, NCL[13] incorporates potential neighbors into contrastive
pairs, by considering both the graph structure and semantic space.
Different than NCL, the dropout-based methods are employed by
SGL[30] for randomized graph augmentation to obtain two con-
trastive views. The optimization includes node-level contrast using
the InfoNCE loss, along with joint optimization using the BPR loss
for recommendation. SimGCL[39] first investigates the necessity
of complex graph augmentation and then devises noise-based aug-
mentation techniques that perturb the representations of users
and items during training, contributing to learning more robust
features and preventing overfitting. However, the use of random
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(a) Visualization of the User-Item Embeddings on Beauty Dataset

(b) Visualization of the User-Item Embeddings on Toys-and-Games Dataset

Figure 6: The t-SNE visualization of the final embeddings of graph-based recommender systems in Beauty and Toys-and-Games
datasets. The red circle highlights the most obvious distribution shift between the users and items embedding spaces.
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Figure 8: Impact of the number of augmentations 𝑁𝑚𝑖𝑥

perturbation in graph augmentation may result in the loss of valu-
able structural information. To alleviate this issue, LightGCL [1] has
been proposed to utilize the singular value decomposition (SVD)
[21] as a light and efficient tool to augment user-item interaction
graph structures. Nevertheless, such augmentations still contain
randomness in the randomized SVD algorithms, and some signifi-
cant structure information can be dropped during the selection of
low-rank singular values.

5.2 Mixup
Data augmentation is an effective method to enhance the general-
ization ability to unseen data [23], particularly in scenarios with
noisy and scarce training datasets [16]. Mixup was first introduced
for vision, speech, and tabular data [40] augmentation. The strategy
of mixup is straightforward, which generates new data samples
through mixing up the representation of two data samples and,
similarly, their labels. Later works that adapt the idea of mixup
to graph data include G-transplant [18], which selects subgraphs
based on structural information and transplants subgraphs to tar-
get graphs; G-mixup [4] which interpolates graphons to generate
samples for classification; mixup for node and graph classification
[28] which designs a two-branch GCN layer to mix up the rep-
resentation for nodes in a subgraph; S-Mixup [14] employs soft
alignment to compute the node correspondences and match nodes
across graphs for mixup. In the realm of RecSys, MixGCF [8] ad-
dresses the limitation of directly sampling negative data samples
from the graph and presents their mixup strategy for hard negative
data generation. DINS [31] dimension-independently mixup the
positive items and negative sampled ones to create hard negative
sampling for model training. Therefore, neither methods [8, 31]
are beneficial in self-supervised learning as they only aim to gen-
erate hard negative item samples in the BPR loss. Different from
previous methods, we propose the novel node-level and edge-level
intra-class mixup on positive data. It augments supervision signals
directly from ground-truth interactions, which greatly alleviates
the data sparsity issue.
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6 CONCLUSION
In this paper, we revisit the existing graph contrastive learning
methodologies in the recommendation and identify two critical chal-
lenges, i.e., Inconsistent Gradients and Unsupervised Augmentation.
Towards these issues, MixSGCL innovatively integrates the train-
ing of recommendation and contrastive losses using a supervised
contrastive learning loss. This unified approach effectively resolves
the problem of inconsistent optimization directions and suboptimal
performance, typically seen in decoupled multi-task learning frame-
works. Furthermore, by incorporating Node-wise and Edge-wise
Mixup techniques, MixSGCL adeptly adopts a supervision-guided
augmentation and tackles the prevalent data sparsity problem in
recommender systems, extracting richer, supervised collaborative
filtering signals from user-item interactions. The empirical vali-
dation of MixSGCL, conducted through extensive experiments on
three real-world datasets, underscores its superior performance.
Notably, MixSGCL outshines state-of-the-art methods, achieving
faster convergence speed, and excelling in both accuracy and ef-
ficiency. This paper’s findings highlight the potential of coupled
design in supervised graph contrastive learning, paving the way
for more efficient and effective recommender systems.
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