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Abstract

In this paper we introduce and study new classes of mappings in
metric spaces. The main class of mappings is called generalized orbital
triangular contractions and it generalizes some existing results (such
as Banach contractions, mappings contracting perimeters of triangles).
We prove that these contractions are not necessarily continuous and
have a unique fixed point under certain conditions. Moreover, we
extend our class to generalized orbital triangular Kannan contractions
and generalized orbital triangular Chatterjea contractions.
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1 Introduction

The research on fixed point theorems has been a central theme in mathematical
analysis from the moment Banach introduced the fixed point result known as the
contraction principle (see [1]). The continuous interest towards the subject is
due to the numerous applications in various fields such as differential equations,
dynamical systems, or the theory of computation.

In light of the joint effort to obtain more general classes of mappings which
have fixed points, very recently, Petrov introduced in [4] a new type of mappings
in complete metric spaces, which can be characterized as mappings contracting
perimeters of triangles. He showed that mappings contracting perimeters of tri-
angles are continuous and proved the fixed point theorem for such mappings. His
results were generalized in [9] for mappings contracting (a feature) of triangles,
not necessarily perimeters. Also, related results to this new concept were obtained
in [5–8].
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In this paper, we extend the classical frameworks of Banach contractions by
introducing a new concept of generalized orbital triangular contractions in metric
spaces. As opposed to traditional approaches that often require continuity con-
ditions, our novel class of mappings are not necessarily continuous. For the class
of generalized orbital triangular contractions, we establish the existence of unique
fixed points. Moreover, we extend our results to Kannan orbital triangular con-
tractions, which are a generalization of Kannan contractions, and to Chatterjea
orbital triangular contractions, which are a generalization of Kannan contractions.

2 Preliminaries

Let us recall some definitions of different types of contractions:

Definition 2.1. Let (X, d) be a metric space. A mapping T : X → X is called:

i) Banach contraction (see [1]) if there exists C ∈ [0, 1) such that

d(Tx, Ty) ≤ Cd(x, y), (1)

for all x, y ∈ X;

ii) Kannan contraction (see [3]) if there exists C ∈
[
0, 12

)
such that

d(Tx, Ty) ≤ C[d(x, Tx) + d(y, Ty)], (2)

for all x, y ∈ X;

iii) Chatterjea contraction (see [2]) if there exists C ∈
[
0, 12

)
such that

d(Tx, Ty) ≤ C[d(x, Ty) + d(y, Tx)], (3)

for all x, y ∈ X;

iv) mapping contracting perimeter of triangles on X (see [4]) if there exists
C ∈ [0, 1) such that the inequality

d(Tx, Ty) + d(Ty, Tz) + d(Tz, Tx) ≤ C[d(x, y) + d(y, z) + d(z, x)], (4)

holds for all three pairwise distinct points x, y, x ∈ X;

Definition 2.2. Let (X, d) be a metric space and T : X → X. A point x ∈ X is
called periodic point of period n if Tnx = x. The least positive integer n for which
Tnx = x is called the prime period of x.

2



3 Generalized orbital triangular contractions

In this section we give the definition of generalized orbital triangular contrac-
tion, prove that they are not necessarily continuous and give a fixed point result
for such mappings.

Definition 3.1. Let (X, d) be a metric space. We shall say that T : X → X is a
generalized orbital triangular contraction on X if there exists α ∈ [0, 1) such that
the inequality

d(Tx, T 2x) + d(T 2x, Ty) + d(Ty, Tx) ≤ α[d(x, Tx) + d(Tx, y) + d(y, x)], (5)

holds for all x, y ∈ X, such that x ̸= y ̸= Tx.

Remark 3.1. Every Banach contraction is a generalized orbital triangular con-
traction.

Indeed, if T is a Banach contraction, then for x ̸= y ̸= Tx, by (1) we have:

d(Tx, T 2x) ≤ C · d(x, Tx), (6)

d(T 2x, Ty) ≤ C · d(Tx, y). (7)

d(Ty, Tx) ≤ C · d(y, x), (8)

where C ∈ [0, 1).
Adding inequalities (6), (7) and (8) we obtain (5), so the conclusion follows.

Remark 3.2. If we impose the additional condition that x ̸= Tx in Definition
3.1, then we obtain that every mapping contracting perimeters of triangles is a
generalized orbital triangular contraction.

Indeed, if T is a mapping contracting perimeters of triangles, then for x, Tx, y
pairwise distinct, via (4), we obtain (5).

Theorem 3.1. Let (X, d) be a complete metric space and let T : X → X be a
generalized orbital triangular contraction on X such that T has no periodic points
of prime period 2. Then, T has a unique fixed point.

Proof. Let x0 ∈ X, arbitrarily chosen, and

xi+1 = Txi

for every i ≥ 0, the Picard iteration.
Now, suppose that xi is not a fixed point of T , then xi ̸= xi+1 = Txi. Moreover,

since T does not have periodic points of prime period 2, we have xi+2 = TTxi ̸= xi
for every i = 0, 1, . . .
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Then we have xi−1 ̸= xi+1 ̸= xi = Txi−1, and taking x = xi−1 and y = xi+1 in
(5), we obtain

pi = d(xi, xi+1) + d(xi+1, xi+2) + d(xi+2, xi) =

= d(Txi−1, T
2xi−1) + d(T 2xi−1, Txi+1) + d(Txi+1, Txi−1) ≤

≤ α(d(xi−1, Txi−1) + d(Txi−1, xi+1) + d(xi+1, xi−1)) =

= α(d(xi−1, xi) + d(xi, xi+1) + d(xi+1, xi−1)) = αpi−1,

for every i ≥ 1. So, we obtain

pi ≤ αpi−1 ≤ α2pi−2 ≤ . . . αip0.

Thus, for m ∈ N, by the triangle inequality we have

d(xn, xn+m) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+m−1, xn+m) ≤
≤ pn+m−2 + · · ·+ pn−1 ≤
≤ p0(α

n−1 + αn + · · ·+ αn+m−2)

= αn−1 · 1− αm

1− α
p0

≤ αn−1

1− α
p0,

so we obtain that {xn} is Cauchy sequence and given the completeness of X, we
have that {xn} is convergent, so there exists x∗ ∈ X such that xn → x∗ as n → ∞.
Moreover, there exists a subsequence {xn(k)} such that xn(k) ̸= x∗ ̸= Txn(k), so,
by (5) we obtain

d(Txn(k), T
2xn(k)) + d(T 2xn(k), Tx

∗) + d(Tx∗, Txn(k)) ≤
≤ α[d(xn(k), Txn(k)) + d(Txn(k), x

∗) + d(x∗, xn(k))].

Hence, we get

d(xn(k)+1, xn(k)+2) + d(xn(k)+1, Tx
∗) + d(Tx∗, xn(k)+2) ≤

≤ α[d(xn(k), xn(k+1)) + d(xn(k+1), x
∗) + d(x∗, xn(k))],

where taking the limit as k → ∞ we get

2d(x∗, Tx∗) ≤ 0,

by where d(x∗, Tx∗) = 0, so x∗ is a fixed point of T .
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Now, suppose that there exists another fixed point of T , y∗ ∈ X such that
Ty∗ = y∗ and x∗ ̸= y∗. Then Tx∗ ̸= y∗, so, by (5) we obtain

d(Tx∗, T 2x∗)+d(T 2x∗, T y∗)+d(Ty∗, Tx∗) ≤ α[d(x∗, Tx∗)+d(Tx∗, y∗)+d(y∗, x∗)],

so we get
2d(x∗, y∗) ≤ 2αd(x∗, y∗),

which is a contradiction since α ∈ [0, 1). Thus, we obtain x∗ = y∗, so T has a
unique fixed point.

Remark 3.3. If we impose the additional condition that x ̸= Tx in Definition
3.1, then T can have many fixed points.

Remark 3.4. Generalized orbital triangular contractions on X are not necessarily
continuous.

Indeed, let X = [0, 1] and T : X → X defined as

Tx =

0, x ∈ [0, 1)
1

4
, x = 1.

Obviously, T is not continuous at x = 1, but T is a generalized orbital trian-

gular contraction for α =
2

3
< 1.

Indeed, if x, y ∈ [0, 1), then Tx = T 2x = Ty = 0, so

d(Tx, T 2x) + d(T 2x, Ty) + d(Ty, Tx) = 0 ≤ 2

3
(d(x, Tx) + d(Tx, y) + d(y, x)).

If x = 1, then Tx =
1

4
and for y ̸= x, we have T 2x = Ty = 0, so

d(Tx, T 2x) + d(T 2x, Ty) + d(Ty, Tx) =
1

4
+ 0 +

1

4
=

1

2

and

d(x, Tx) + d(Tx, y) + d(y, x) = 1− 1

4
+

∣∣∣∣14 − y

∣∣∣∣+ 1− y =

=
7

4
− y +

∣∣∣∣14 − y

∣∣∣∣ ≥ 7

4
− y ≥ 7

4
− 1 =

3

4
,

so for α =
2

3
, since

1

2
≤ 2

3
· 3
4
, (5) is true.
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If y = 1, then Ty =
1

4
and since x ̸= y, Tx = T 2x = 0 so we have

d(Tx, T 2x) + d(T 2x, Ty) + d(Ty, Tx) = 0 +
1

4
+

1

4
=

1

2

and
d(x, Tx) + d(Tx, y) + d(y, x) = x+ 1 + 1− x = 2,

and since
1

2
≤ 2

3
· 2, we obtain that (5) is true.

So, T is generalized orbital triangular contraction which has a unique fixed
point 0 = T0.

Remark 3.5. There exist generalized orbital triangular contractions which are
not Banach contractions [1], nor mappings contracting perimeters of triangles [4],
neither mappings contracting triangles [9].

Indeed, since generalized orbital triangular contractions are not necessarily con-
tinuous, the conclusion follows.

4 Generalized orbital triangular Kannan con-

tractions

In this section, we give the definition of generalized orbital triangular Kannan
contractions and prove a fixed point theorem for such mappings.

Definition 4.1. Let (X, d) be a metric space. We shall say that T : X → X is a
generalized orbital triangular Kannan contraction on X if there exists β ∈ [0, 23)
such that the inequality

d(Tx, T 2x) + d(T 2x, Ty) + d(Ty, Tx) ≤ β[d(x, Tx) + d(y, Ty) + d(Tx, T 2x)], (9)

holds for all x, y ∈ X, such that x, y, Tx are pairwise distinct.

Remark 4.1. Every Kannan contraction with C <
1

3
is a generalized orbital

triangular Kannan contraction.
Indeed, if T is a Kannan contraction, then for x, y, Tx pairwise distinct, by

(2) we have:
d(Tx, T 2x) ≤ C[d(x, Tx) + d(Tx, T 2x)], (10)

d(T 2x, Ty) ≤ C[d(Tx, T 2x) + d(y, Ty)]. (11)

d(Ty, Tx) ≤ C[d(y, Ty) + d(x, Tx)]. (12)

Adding inequalities (10), (11) and (12) we obtain (9), so the conclusion follows.
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Theorem 4.1. Let (X, d) be a complete metric space and let T : X → X be a
generalized orbital triangular Kannan contraction on X such that T has no periodic
points of prime period 2. Then, T has a fixed point.

Proof. We suppose that T has no periodic points of prime period 2. And for
x0 ∈ X arbitrarily chosen, let the Picard iteration xn = Txn−1 for all n ≥ 0.
Suppose that xn is not a fixed point of T for every n ≥ 0. Then, xn, Txn = xn+1

and T 2xn = xn+2 are pairwise distinct, and choosing x = xn, y = T 2xn in (9) we
have

d(Txn, T
2xn) + d(T 2xn, T

3xn) + d(T 3xn, Txn) ≤
≤ β[d(xn, Txn) + d(T 2xn, T

3xn) + d(Txn, T
2xn)],

thus, using the triangle inequality, we get

(1− β)[d(Txn, T
2xn) + d(T 2xn, T

3xn)] + |d(Txn, T 2xn)− d(T 2xn, T
3xn)| ≤

≤ (1− β)[d(Txn, T
2xn) + d(T 2xn, T

3xn)] + d(T 3xn, Txn) ≤
≤ β[d(xn, Txn)].

(13)
Now, let dn = d(xn, xn+1). By (13), we obtain

(1− β)(dn+1 + dn+2) + |dn+1 − dn+2| ≤ βdn. (14)

If dn+1 ≥ dn+2, (14) becomes

(2− β)dn+1 − βdn+2 ≤ βdn,

by where
(2− 2β)dn+1 ≤ βdn,

so we obtain

dn+1 ≤
β

2− 2β
dn. (15)

If dn+1 < dn+2, then, (14) becomes

(2− β)dn+2 ≤ β(dn + dn+1),

so we have
(2− β)dn+1 ≤ (2− β)dn+2 ≤ β(dn + dn+1),

and thus

dn+1 ≤
β

2− 2β
dn. (16)
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By (15) and (16), since β <
2

3
, λ =

β

2− 2β
< 1 and we have

dn+1 ≤ λdn. (17)

Thus, for m ∈ N, by the triangle inequality and (17), we have

d(xn, xn+m) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+m−1, xn+m) =

= dn + · · ·+ dn+m−1 ≤
≤ λn−1d0 + λnd0 + · · ·+ λn+m−1d0

= λn−1 · 1− λm

1− λ
d0

≤ λn−1

1− λ
d0,

so, since λ < 1, we obtain that {xn} is Cauchy sequence and given the completeness
of X, we have that {xn} is convergent, so there exists x∗ ∈ X such that xn → x∗

as n → ∞.
Moreover, there exists a subsequence {xn(k)} such that xn(k) ̸= x∗ ̸= Txn(k),

so by (9) we have

d(Txn(k), T
2xn(k)) + d(T 2xn(k), Tx

∗) + d(Tx∗, Txn(k)) ≤
≤ β[d(xn(k), Txn(k)) + d(x∗, Tx∗) + d(Txn(k), T

2xn(k))],

so

d(xn(k)+1, xn(k)+2) + d(xn(k)+1, Tx
∗) + d(xn(k)+2, Tx

∗) ≤
≤ β[d(xn(k), xn(k)+1) + d(x∗, Tx∗) + d(xn(k)+1, xn(k)+2)],

and taking the limit as k → ∞ we get

2d(x∗, Tx∗) ≤ β · d(x∗, T ∗),

by where d(x∗, Tx∗) = 0, so x∗ is a fixed point of T .

Example 4.1. Let X = {A,B,C,D} and as in Figure 1:

d(A,B) = d(A,C) = d(A,D) = 4, d(B,C) = d(C,D) = 1, d(B,D) = 2,

and T : X → X defined as

TA = TC = C, TB = B, TD = D.
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Figure 1: Example of generalized orbital triangular Kannan mapping

Since d(TB, TD) = 2 and d(B, TB) + d(D,TD) = 0, T is not a Kannan
contraction.

Moreover, since

d(TA, TB) + d(TB, TD) + d(TD, TA) = 4 = d(A, TA) + d(B, TB) + d(D,TD),

T is not a generalized Kannan mapping (see [6]).
However, we have

d(TA, T 2A)+d(T 2A, TB)+d(TB, TA) = 2 ≤ 1

2
·4 =

1

2
[d(A, TA)+d(B, TB)+d(TA, T 2A)],

d(TA, T 2A)+d(T 2A, TD)+d(TD, TA) = 2 ≤ 1

2
·4 =

1

2
[d(A, TA)+d(D,TD)+d(TA, T 2A)],

so T is a generalized orbital triangular Kannan contraction.
Let us note that T does not have periodic points of prime period 2, and T is

not a Banach contraction either as d(TB, TD) = 2 = d(B,D).

5 Generalized orbital triangular Chatterjea

contractions

In this section, we give the definition of generalized orbital triangular Chatter-
jea contractions and prove a fixed point theorem for such mappings.
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Definition 5.1. Let (X, d) be a metric space. We shall say that T : X → X is a
generalized orbital triangular Chatterjea contraction on X if there exists γ ∈

[
0, 12

)
such that the inequality

d(Tx, T 2x) + d(T 2x, Ty) + d(Ty, Tx) ≤
≤ γ[d(x, Ty) + d(y, Tx) + d(x, T 2x) + d(y, T 2x) + d(Tx, Ty)],

(18)

holds for all x, y ∈ X, such that x ̸= y ̸= Tx.

Remark 5.1. Every Chatterjea contraction is a generalized orbital triangular
Chatterjea contraction.

Indeed, if T is a Chatterjea contraction, then there exists C ∈ [0, 12) such that
for x ̸= y ̸= Tx by (3) we have:

d(Tx, T 2x) ≤ C[d(x, T 2x) + d(Tx, Tx)], (19)

d(T 2x, Ty) ≤ C[d(Tx, Ty) + d(y, T 2x)]. (20)

d(Ty, Tx) ≤ C[d(x, Ty) + d(y, Tx)]. (21)

Adding inequalities (19), (20) and (21) we obtain (18), so the conclusion fol-
lows.

Theorem 5.1. Let (X, d) be a complete metric space and let T : X → X be
a generalized orbital triangular Chatterjea contraction on X such that T has no
periodic points of prime period 2. Then, T has a unique fixed point.

Proof. Let xi and the Picard iteration as in the proof of Theorem 3.1 and

pi = d(xi, xi+1) + d(xi+1, xi+2) + d(xi+2, xi),

for every i ≥ 0. Then, by (18), we have

pi = d(xi, xi+1) + d(xi+1, xi+2) + d(xi+2, xi) =

= d(Txi−1, T
2xi−1) + d(T 2xi−1, Txi+1) + d(Txi+1, Txi−1) ≤

≤ γ[d(xi−1, Txi+1) + d(xi+1, Txi−1) + d(xi−1, T
2xi−1)+

+d(xi+1, T
2xi−1) + d(Txi−1, Txi+1)] =

= γ[d(xi−1, xi+2) + d(xi+1, xi) + d(xi−1, xi+1) + d(xi, xi+2)] ≤
≤ γ[d(xi−1, xi) + d(xi, xi+1) + d(xi+1, xi−1)+

+d(xi, xi+1) + d(xi+1, xi+2) + d(xi+2, xi)] =

= γ · (pi−1 + pi),
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for every i ≥ 1, so we obtain

pi ≤
γ

1− γ
pi−1

for every i ≥ 1. Thus, since
γ

1− γ
< 1, as in the proof of Theorem 3.1 we obtain

that {xn} is a Cauchy sequence, so it is a convergent sequence to an x∗ ∈ X.
To prove that x∗ is a fixed point of T , notice that since {xn} is convergent and

xn ̸= xn+1 ̸= xn+2, there exists a subsequence {xn(k)} such that xn(k) ̸= Txn(k) ̸=
x∗, so, by (18) we obtain

d(Txn(k), T
2xn(k)) + d(T 2xn(k), Tx

∗) + d(Tx∗, Txn(k)) ≤
≤ γ[d(xn(k), Tx

∗) + d(x∗, Txn(k)) + d(xn(k), T
2xn(k))+

+d(x∗, T 2xn(k)) + d(Txn(k), Tx
∗)],

so
d(xn(k)+1, xn(k)+2) + d(xn(k)+1, Tx

∗) + d(xn(k)+2, Tx
∗) ≤

≤ γ[d(xn(k), Tx
∗) + d(x∗, xn(k+1)) + d(xn(k), xn(k+2))+

+d(x∗, xn(k+2)) + d(xn(k)+1, Tx
∗)],

and taking the limit as k → ∞ we get

2d(x∗, Tx∗) ≤ 2γd(x∗, T ∗),

by where d(x∗, Tx∗) = 0, so x∗ is a fixed point of T .
Let us suppose that there exists another fixed point of T , y∗ ∈ X for which

Ty∗ = y∗ ̸= x∗ ̸= Tx∗. Then, by (18) we get

d(Tx∗, T 2x∗) + d(T 2x∗, Ty∗) + d(Ty∗, Tx∗) ≤
≤ γ[d(x∗, T y∗) + d(y∗, Tx∗) + d(x∗, T 2x∗) + d(y∗, T 2x∗) + d(Tx∗, Ty∗)],

so
2d(x∗, y∗) ≤ 4γd(x∗, y∗),

which is a contradiction since γ <
1

2
.

Example 5.1. Let X = {0, 1, 2, 3} endowed with the distance d(x, y) = |x − y|
and let T : X → X defined as

T0 = T1 = T2 = 0, T3 = 2.

Let us first note that T has a unique fixed point 0 = T0 and T does not possess
any periodic points of prime period 2 since

T 21 = T 22 = T 23 = 0.
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Moreover, T is not a Chatterjea contraction since we have

d(T2, T3) = |0− 2| = 2

and
d(2, T3) + d(3, T2) = |2− 2|+ |3− 0| = 3.

However, for every x, y ∈ X such that x ̸= y ̸= Tx, letting

L(x, y) := d(Tx, T 2x) + d(T 2x, Ty) + d(Ty, Tx)

and

R(x, y) := d(x, Ty) + d(y, Tx) + d(x, T 2x) + d(y, T 2x) + d(Tx, Ty)

we have
L(0, 1) = L(0, 2) = L(1, 2) = L(2, 1) = 0,

L(0, 3) = L(3, 0) = L(1, 3) = L(3, 1) = L(2, 3) = 4

and
R(0, 1) = 3, R(0, 2) = 4, R(1, 2) = R(2, 1) = 6,

R(0, 3) = R(3, 0) = R(1, 3) = R(3, 1) = R(2, 3) = 10.

Thus, T is a generalized orbital triangular Chatterjea contraction with γ =
2

5
.
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