
The Power of Resets in Online Reinforcement Learning

Zakaria Mhammedi
mhammedi@google.com

Dylan J. Foster
dylanfoster@microsoft.com

Alexander Rakhlin
rakhlin@mit.edu

Abstract

Simulators are a pervasive tool in reinforcement learning, but most existing algorithms cannot effi-
ciently exploit simulator access—particularly in high-dimensional domains that require general function
approximation. We explore the power of simulators through online reinforcement learning with local
simulator access (or, local planning), an RL protocol where the agent is allowed to reset to previously
observed states and follow their dynamics during training. We use local simulator access to unlock new
statistical guarantees that were previously out of reach:

1. We show that MDPs with low coverability (Xie et al., 2023)—a general structural condition that
subsumes Block MDPs and Low-Rank MDPs—can be learned in a sample-efficient fashion with
only Q⋆-realizability (realizability of the optimal state-value function); existing online RL algorithms
require significantly stronger representation conditions.

2. As a consequence, we show that the notorious Exogenous Block MDP problem (Efroni et al., 2022b)
is tractable under local simulator access.

The results above are achieved through a computationally inefficient algorithm. We complement them
with a more computationally efficient algorithm, RVFS (Recursive Value Function Search), which achieves
provable sample complexity guarantees under a strengthened statistical assumption known as pushforward
coverability. RVFS can be viewed as a principled, provable counterpart to a successful empirical paradigm
that combines recursive search (e.g., MCTS) with value function approximation.

1 Introduction
Simulators are a widely used tool in reinforcement learning. Many of the most well-known benchmarks for
reinforcement learning research make use of simulators (Atari (Bellemare et al., 2012), MuJoCo (Todorov et al.,
2012), OpenAI Gym (Brockman et al., 2016), DeepMind Control Suite (Tassa et al., 2018)), and high-quality
simulators are available for a wide range of real-world control tasks, including robotic control (Qassem et al.,
2010; Akkaya et al., 2019), autonomous vehicles (Bojarski et al., 2016; Aradi, 2020), and game playing (Silver
et al., 2016, 2018). Simulators also provide a useful abstraction for planning with a known or learned model,
an important building block for many RL techniques (Schrittwieser et al., 2020). Yet, in spite of the ubiquity
of simulators, almost all existing research into algorithm design—empirical and theoretical—has focused
on the online reinforcement learning (where only trajectory-based feedback is available), and does not take
advantage of the extra information available through the simulator. Relatively little is known about the full
power of RL with simulator access, either in terms of algorithmic principles or fundamental limits.

We explore the power of simulators through online reinforcement learning with local simulator access (RLLS
for short), also known as local planning (Weisz et al., 2021a; Li et al., 2021; Amortila et al., 2022; Weisz
et al., 2022; Yin et al., 2022, 2023). Here, the agent learns by repeatedly executing policies and observing the
resulting trajectories (as in online RL), but is allowed to reset to previously observed states and follow their
dynamics during training.

Empirically, algorithms based on local simulators have received limited investigation, but with promising
results. Notably, the Go-Explore algorithm (Ecoffet et al., 2019, 2021) uses local simulator access to achieve
state-of-the-art performance for Montezuma’s Revenge (a difficult Atari game that requires systematic
exploration), beating the performance of the best agents trained with online RL (Badia et al., 2020; Guo
et al., 2022) by a significant margin that has yet to be closed. The successful line of research on AlphaGo

1

ar
X

iv
:2

40
4.

15
41

7v
2

 [
cs

.L
G

]
 2

6
A

pr
 2

02
4

and successors (Silver et al., 2016, 2018; Schrittwieser et al., 2020) also uses local simulator access, albeit at
test time in addition to training time.

These results suggest that developing improved algorithm design principles for RL with local simulator access
could have significant practical implications, but current theoretical understanding of local simulators is
limited. Recent work has shown that local simulator access has provable benefits for reinforcement learning
with various types of linear function approximation (Weisz et al., 2021a; Li et al., 2021; Amortila et al., 2022;
Yin et al., 2022; Weisz et al., 2022), but essentially nothing is known for RL problems in large state spaces
that demand general, potential neural function approximation. This leads us to ask:

Can we develop algorithms for reinforcement learning with general function approximation that
provably benefit from local simulator access?

From an algorithm design perspective, perhaps the greatest challenge in using local simulators to speed up
learning is to understand which states are “informative” in the sense that we should prioritize revisiting
them. Here, we are faced with a chicken-and-egg problem: to understand which states to prioritize, we
must explore and gather information, but it is unclear how to do so efficiently unless we already have a
way to understand which states are informative. It is natural to let function approximation (valued-based,
model-based, or otherwise) guide us; to this end, recent research (Li et al., 2021; Yin et al., 2022; Weisz
et al., 2022) on linearly-parameterized RL with local simulators makes use of core-sets: small, adaptively
chosen sets of informative state-action pairs designed to cover the feature space and enable efficient value
function learning. Core-sets facilitate sample complexity guarantees for linear models that are not possible
without local simulator access (e.g., Li et al. (2021)). Yet, for general function classes—particularly rich
models like neural networks that do not readily support extrapolation—defining a suitable notion of core-set
is challenging. Consequently, existing techniques have yet to meaningfully leverage local simulator access
beyond the linear regime.

1.1 Contributions
We show that local simulator access unlocks new guarantees for online reinforcement learning with general
value function approximation—statistical and computational—that were previously out of reach.

Sample-efficient learning. We show that MDPs with low coverability (Xie et al., 2023)—a general
structural condition that subsumes Block MDPs and Low-Rank MDPs—can be learned in a sample-efficient
fashion with only Q⋆-realizability (that is, realizability for the optimal state-action value function). This
is achieved through a new algorithm, SimGolf, that augments the principle of global optimism with local
simulator access, and improves upon the best existing guarantees for the fully online RL setting, which
require significantly stronger representation conditions. As a consequence, we show for the first time that
the notoriously challenging Exogenous Block MDP (ExBMDP) problem (Efroni et al., 2022b,a) is tractable
in its most general form under local simulator access.

Practical, computationally efficient learning. Our results above are achieved through a computation-
ally inefficient algorithm. We complement them with a practical and computationally efficient algorithm,
RVFS (“Recursive Value Function Search”), which achieves sample-efficient learning guarantees with general
value function approximation under a strengthened, yet novel, statistical assumption known as pushforward
coverability (Xie and Jiang, 2021; Amortila et al., 2024b). Assuming either i) realizability of the optimal
state-value function V ⋆ and a state-action gap or ii) realizability of V π for all π, RVFS achieves polynomial
sample complexity in a computationally efficient fashion, and leads to guarantees for a new class of Exogenous
Block MDPs with weakly correlated exogenous noise. RVFS explores by building core-sets with a novel value
function-guided scheme, and can be viewed as a principled counterpart to algorithms including MCTS and
AlphaZero (Silver et al., 2016, 2018; Ecoffet et al., 2019, 2021; Yin et al., 2023), that combine recursive search
with value function approximation. Compared to these approaches, RVFS is designed to provably address
stochastic environments and distribution shift.

2

Paper organization. Section 2 formally introduces our problem setting, including the local simulator
framework. Section 3 presents our main sample complexity guarantees, and Section 4 gives computationally
efficient algorithms. We close with discussion in Section 5. All proofs are deferred to the appendix.

2 Setup: Reinforcement Learning with Local Simulator Access
We consider an episodic reinforcement learning setting. A Markov Decision Process (MDP) is a tuple
M= (X ,A, T,R,H), where X is a (large/potentially infinite) state space, A is the action space (we abbre-
viate A = ∣A∣), H ∈ N is the horizon, R = {Rh}Hh=1 is the reward function (where Rh ∶ X × A → [0,1]) and
T = {Th}Hh=0 is the transition distribution (where Th ∶ X ×A → ∆(X)), with the convention that T0(⋅ ∣ ∅) is the
initial state distribution. A policy is a sequence of functions π = {πh ∶ X → ∆(A)}Hh=1; we use ΠS to denote the
set of all such functions. When a policy is executed, it generates a trajectory (x1,a1,r1), . . . , (xH ,aH ,rh) via
the process ah ∼ πh(xh),rh ∼ Rh(xh,ah),xh+1 ∼ Th(⋅ ∣ xh,ah), initialized from x1 ∼ T0(⋅ ∣ ∅) (we use xH+1
to denote a terminal state with zero reward). We write Pπ[⋅] and Eπ[⋅] to denote the law and expectation
under this process.

For a policy π, J(π) ∶= Eπ[∑H
h=1 rh] denotes expected reward, and the value functions are given by

V π
h (x) ∶= Eπ[

H

∑
h′=h

rh′ ∣ rh = x], and Qπ
h(x, a) ∶= Eπ[

H

∑
h′=h

rh′ ∣ xh = x,ah = a].

We denote by π⋆ = {π⋆h}Hh=1 the optimal deterministic policy that maximizes Qπ⋆ at all states, and write
Q⋆ ∶= Qπ⋆ and V ⋆ ∶= V π⋆ .

2.1 Online Reinforcement Learning with Local Simulator Access
In the standard online reinforcement learning framework, the learner repeatedly interacts with an (unknown)
MDP by executing a policy and observing the resulting trajectory, with the goal of maximizing the total
reward. Formally, for each episode τ ∈ [Nepisodes], the learner selects a policy π(τ) = {π(τ)h }Hh=1, executes it
in the underlying MDP M⋆ and observes the trajectory {(x(τ)h ,a(τ)h ,r(τ)h)}Hh=1. After all Nepisodes episodes
conclude, the learner produces a policy π̂ ∈ ΠS with the goal of minimizing the risk given by E[J(π⋆) − J(π̂)].
In online RL with local simulator access, or RLLS, (Weisz et al., 2021a; Li et al., 2021; Yin et al., 2022;
Weisz et al., 2022; Yin et al., 2023), we augment the online RL protocol as follows:1 At each episode τ ∈ [N],
instead of starting from a random initial state x1 ∼ T0(⋅ ∣ ∅), the agent can reset the MDP to any layer
h ∈ [H] and any state xh previously encountered, and proceed with a new episode starting from this point.
As in the online RL protocol, the goal is to produce a policy π̂ ∈ ΠS such that

E[J(π⋆) − J(π̂)] ≤ ε

with as few episodes of interaction as possible; our main results take Nepisodes = poly(C, ε−1) for a suitable
problem parameter C.

Executable versus non-executable policies. We focus on learning policies that can be executed without
access to a local simulator (in other words, the local simulator used at train time, but not test time). Some
recent work using local simulators for RL with linear function approximation (Weisz et al., 2021a) considers a
more permissive setting where the final policy π produced by the learner can be non-executable; our function
approximation requirements can be slightly relaxed in this case.

Definition 2.1 (Non-executable policy). We refer to a policy π for which computing π(x) ∈∆(A) for any
x ∈ X requires n local simulator queries as a non-executable policy with sample complexity n.

1We use the term “local simulator” instead of “local planning” because we find it to be slightly more descriptive.

3

Implications for planning. RL with local simulator access is a convenient abstraction for the problem
of planning : Given a known (e.g., learned) model, compute an optimal policy. Planning with a learned model
is an important task in theory (Foster et al., 2021; Liu et al., 2023) and practice (e.g., Schrittwieser et al.
(2020)). Since the model is known, computing an optimal policy is a purely computational problem, not a
statistical problem. Nonetheless, for planning problems in large state spaces, where enumerating over all
states is undesirable, algorithms for online RL with local simulator access can be directly applied, using the
model to simulate the environment the agent interacts with. Here, any computationally efficient algorithm in
our framework immediately yields an efficient algorithm for planning. See Appendix A for more discussion.

2.2 Additional Notation
For any m,n ∈ N, we denote by [m..n] the integer interval {m, . . . , n}. We also let [n] ∶= [1 .. n]. We refer
to a scalar c > 0 as an absolute constant to indicate that it is independent of all problem parameters and
use Õ(⋅) to denote a bound up to factors polylogarithmic in parameters appearing in the expression. We
define πunif ∈ ΠS as the random policy that selects actions in A uniformly at random at each layer. We
define the occupancy measure for policy π via dπh(x, a) ∶= Pπ[xh = x,ah = a]. For functions g ∶ X ×A → R and
f ∶ X → R, we define Bellman backup operators by Th[g](x, a) = E[rh +maxa′∈A g(xh+1, a′) ∣ xh = x,ah = a]
and Ph[f](x, a) = E[rh + f(xh+1) ∣ xh = x,ah = a]. For a stochastic policy π ∈ ΠS, we will occasionally use
the bold notation πh(x) as shorthand for the random variable ah ∼ πh(x) ∈ ∆(A). For a function f ∶ A → R,
we write a′ ∈ argmaxa∈A f(a) to denote the action that maximizes f . If there are ties, we break them by
picking the action with the smallest index; we assume without loss of generality that actions in A are index
from 1, . . . , ∣A∣.

3 New Sample-Efficient Learning Guarantees via Local Simulators
This section presents our most powerful results for RLLS. We present a new algorithm for learning with
local simulator access, SimGolf (Section 3.1), and show that it enables sample-efficient RL for MDPs with
low coverability (Xie et al., 2023) using only Q⋆-realizability (Section 3.2). We then give implications for
the Exogenous Block MDP problem (Section 3.3).

Function approximation setup and coverability. To achieve sample complexity guarantees for online
reinforcement learning that are suitable for large, high-dimensional state spaces, we appeal to value function
approximation. We assume access to a function class Q ⊂ (X ×A × [H] → [0,H]) that contains the optimal
state-action value function Q⋆; we define Qh = {Qh ∣ Q ∈ Q}.
Assumption 3.1 (Q⋆-realizability). For all h ∈ [H], we have Q⋆h ∈ Qh.

Q⋆-realizability is widely viewed as a minimal representation condition for online RL (Wen and Van Roy, 2017;
Du et al., 2020, 2019b; Lattimore et al., 2020; Weisz et al., 2021b; Wang et al., 2021). The class Q encodes
the learner’s prior knowledge about the MDP, and can be parameterized by rich function approximators
like neural networks. We assume for simplicity of exposition that Q and Π are finite, and aim for sample
complexity guarantees scaling with log∣Q∣ and log∣Π∣; extending our results to infinite classes via standard
uniform convergence arguments is straightforward.

Coverability. Beyond representation conditions like realizability, online reinforcement learning algorithms
require structural conditions that limit the extent to which deliberately designed algorithms can be surprised
by substantially new state distributions. We focus on a structural condition known as coverability (Xie et al.,
2023), which is inspired by connections between online and offline reinforcement learning.

Assumption 3.2 (Coverability (Xie et al., 2023)). The coverability coefficient Ccov > 0 is given by

Ccov ∶= max
h∈[H]

inf
µh∈∆(X×A)

sup
π∈ΠS

∥d
π
h

µh
∥
∞
. (1)

4

Coverability is an intrinsic strutural property of the underlying MDP. Examples of MDP families with low
coverability include (Exogenous) Block MDPs, which have Ccov ≤ ∣S∣∣A∣, where S is the latent state space
(Xie et al., 2023), and Low-Rank MDPs, which have Ccov ≤ d∣A∣, where d is the feature dimension (Huang
et al., 2023); importantly, these settings exhibit high-dimensional state spaces and require nonlinear function
approximation. To the best of our knowledge, coverability is the only structural parameter that is known to
be small for the Exogenous Block MDP problem, as other well-known parameters like Bellman rank and
Bellman-Eluder dimension can be arbitrarily large (Xie et al., 2023). We emphasize that as in prior work
(Xie et al., 2023; Amortila et al., 2024a), our algorithms require no prior knowledge of the distribution µh

that minimizes Eq. (1).

3.1 Algorithm
Our main algorithm, SimGolf, is displayed in Algorithm 1. The algorithm is a variant of the GOLF method
of Jin et al. (2021); Xie et al. (2023) with novel adaptations to exploit the availability of a local simulator.
Like GOLF, SimGolf explores using the principle of global optimisim: At each iteration t ∈ [N], it maintains a
confidence set (or, version space) Q(t) ⊂ Q of candidate value functions with low squared Bellman error under
the data collected so far, and chooses a new exploration policy π(t) by picking the most “optimistic” value
function in this set. As the algorithm gathers more data, the confidence set shrinks, leaving only near-optimal
policies.

The main novelty in SimGolf arises in the data collection strategy and design of confidence sets. Like GOLF,
SimGolf algorithm constructs the confidence set Q(t) ⊂ Q such that all value functions g ∈ Q(t) have small
squared Bellman error:

∑
i<t

Eπ(i)[(gh(xh,ah) − Th[gh+1](xh,ah))2] ≲ log∣Q∣ ∀h ∈ [H]. (2)

Due to the presence of the Bellman backup Th[gh+1] in Eq. (2), naively estimating squared Bellman error
leads to the notorious double sampling problem. To avoid this, the approach taken with GOLF and related work
(Zanette et al., 2020; Jin et al., 2021) is to adapt a certain de-biasing technique to remove double sampling
bias, but this requires access to a value function class that satisfies Bellman completeness, a representation
significantly more restrictive than realizability (e.g., Foster et al. (2022)).

The idea behind SimGolf is to use local simulator access to directly produce high-quality estimates for the
Bellman backup function Th[gh+1] in Eq. (2). In particular, for a given state-action pair (x, a) ∈ X ×A, we can
estimate the Bellman backup Th[gh+1](x, a) for all functions g ∈ Q simultaneously by collecting K next-state
transitions x̃(1)h+1, . . . , x̃

(K)
h+1

i.i.d.∼ Th(⋅ ∣ x, a) and K rewards r̃(1)h , . . . , r̃(K)h

i.i.d.∼ Rh(x, a), then taking the empirical
mean: Th[gh+1](x, a) ≈ 1

K ∑
K
k=1(r̃(k)h + maxa′∈A gh+1(x̃(k)h+1, a

′)). Line 9 of SimGolf uses this technique to
directly estimate the Bellman residual backup under a trajectory gathered with π(t), sidestepping the double
sampling problem and removing the need for Bellman completeness. We suspect that the idea of performing
estimation with respect to squared Bellman error directly using local simulator access may find broader use.

Remark 3.1 (Squared Bellman error versus average Bellman error). A general approach to removing the
need for Bellman completeness is to estimate average Bellman error instead of squared Bellman error (e.g.,
Jiang et al. (2017)). However, Xie et al. (2023) show that this is insufficient to obtain sample complexity
guarantees under coverability.

3.2 Main Result
We now state the main guarantee for SimGolf and discuss some of its implications.

Theorem 3.1 (Main guarantee for SimGolf). Let ε, δ ∈ (0,1) be given and suppose Assumption 3.1
(Q⋆-realizability) and Assumption 3.2 (coverability) hold with Ccov > 0. Then the policy π̂ produced by
SimGolf(Q,Ccov, ε, δ) (Algorithm 1) has J(π⋆) −E[J(π̂)] ≤ ε with probability at least 1 − δ. The total sample

5

Algorithm 1 SimGolf: Global Optimism via Local Simulator Access
1: input: Value function class Q, coverability Ccov > 0, suboptimality parameter ε > 0, and confidence

parameter δ > 0.
2: Set N ← Θ̃(H2Ccovβ/ε2), βstat ← 16 log(2HN ∣Q∣δ−1), β ← 2βstat, and K ← 8N

βstat
.

3: initialize: Q(1) ←Q.
4: for iteration t = 1,2, . . . ,N do
5: Select g(t) = argmaxg∈Q(t) ∑s<tmaxa∈A g1(x(s)1 , a).
6: For each h ∈ [H] and x ∈ X , define π(t)h (x) ∈ argmaxa∈A g(t)h (x, a).
7: Execute π(t) for an episode and observe τ (t) ∶= (x(t)1 ,a(t)1), . . . , (x

(t)
H ,a(t)H).

8: for h ∈ [H] do
9: Draw K independent samples x(t,k)h+1 ∼ Th(⋅ ∣ x(t)h ,a(t)h), r

(t,k)
h ∼ Rh(x(t)h ,a(t)h).

10: Compute confidence set:

Q(t+1) ←
⎧⎪⎪⎨⎪⎪⎩
g ∈ Q ∶ ∑

h≤t
(gh(x(t)h ,a(t)h) −

1

K

K

∑
k=1
(r(t,k)h +max

a∈A
gh+1(x(t,k)h+1 , a)))

2

≤ β, ∀h ∈ [H]
⎫⎪⎪⎬⎪⎪⎭
.

11: return: π̂ = unif(π(1), . . . , π(T)).

complexity in the RLLS framework is bounded by

Õ(H
5C2

cov log(∣Q∣/δ)
ε4

).

This result (whose proof is in Appendix D) shows that under only Q⋆-realizability and coverability, SimGolf
learns an ε-optimal policy with polynomial sample complexity, significantly relaxing the representation
assumptions (Bellman completeness, weight function realizability) required by prior algorithms for coverability
(Xie et al., 2023; Amortila et al., 2024a). This is the first instance we are aware of where local simulator access
unlocks sample complexity guarantees for reinforcement learning with nonlinear function approximation that
were previously out of reach; perhaps the most important technical idea here is our approach to combining
global optimism with local simulator access, in contrast to greedy layer-by-layer schemes used in prior work
on local simulators (with the exception of Weisz et al. (2021a)). In particular, we suspect that the idea
of performing estimation with respect to squared Bellman error directly using local simulator access may
find broader use beyond coverability. Improving the polynomial dependence on problem parameters is an
interesting question for future work.

A conjecture. By analogy to results in offline reinforcement learning, where Q⋆-realizability and concentra-
bility (the offline counterpart to coverability) alone are known to be insufficient for sample-efficient learning
(Chen and Jiang, 2019; Foster et al., 2022), we conjecture that Q⋆-realizability and coverability alone are not
sufficient for polynomial sample complexity in vanilla online RL. If true, this would imply a new separation
between online RL with and without local simulators.

Proof sketch. As described in Section 3.1, the main difference between SimGolf and GOLF lies in the
construction of the confidence sets. The most important new step in the proof of Theorem 3.1 is to show
that the local simulator-based confidence set construction in Line 10 is valid in the sense that the property
Eq. (2) holds with high probability. From here, the sample complexity bound follows by adapting the
change-of-measure argument based on coverability from Xie et al. (2023).

3.3 Implications for Exogenous Block MDPs
We now apply SimGolf and Theorem 3.1 to the Exogenous Block MDP (ExBMDP) problem (Efroni et al.,
2022b,a; Lamb et al., 2023; Islam et al., 2023), a challenging rich-observation reinforcement learning setting
in which the observed states xh are high-dimensional, while the underlying dynamics of the system are
low-dimensional, yet confounded by temporally correlated exogenous noise.

6

Formally, an Exogenous Block MDP M = (X ,S,Ξ,A,H,T,R, g) is defined by a latent state space and an
observation space. We begin by describing the latent state space. Starting from an initial endogenous state
s1 ∈ S and exogenous state ξ1 ∈ Ξ, the latent state zh = (sh,ξh) evolves for h ∈ [H] via

sh+1 ∼ T endo
h (⋅ ∣ sh,ah), and ξh+1 ∼ T exo

h (⋅ ∣ ξh),

where ah ∈ A is the agent’s action at layer h; we adopt the convention that s1 ∼ T endo
0 (⋅ ∣ ∅) and ξ1 ∼ T exo

0 (⋅ ∣ ∅).
Note that only the endogenous state is causally influenced by the action. The latent state is not observed;
instead, at each step h, the agent receives an observation xh ∈ X generated via2

xh = gobsh (sh,ξh), (3)

where gobsh ∶ S ×Ξ→ X is the emission function. We assume the endogenous latent space S and action space
A are finite, and define S ∶= ∣S∣ and A ∶= ∣A∣. However, the exogenous state space Ξ and observation space
X may be arbitrarily large or infinite, with ∣Ξ∣, ∣X ∣ ≫ ∣S∣.3

The final property of the ExBMDP model is decodability, which asserts the existence of a decoder such
that ϕ⋆ ∶ X → S such that ϕ⋆(xh) = sh a.s. for all h ∈ [H] under the process in Eq. (3). Informally,
decodability ensures the existence of an (unknown to the learner) mapping that allows one to perfectly recover
the endogenous latent state from observations. In addition to decodability, we assume the rewards in the
ExBMDP are endogenous ; that is, the reward distribution Rh(xh,ah) only depends on the observations (xh)
through the corresponding latent states (ϕ⋆(xh) = sh). To enable sample-efficient learning, we assume access
to a decoder class Φ that contains ϕ⋆, as in prior work.

Assumption 3.3 (Decoder realizability). We have access to a decoder class Φ such that ϕ⋆ ∈ Φ.

Applying SimGolf and Theorem 3.1. To apply Theorem 3.1 to the ExBMDP problem, we need to verify
that Q⋆-realizability and coverability hold. For coverability, Xie et al. (2023) show that ExBMDPs have
Ccov ≤ SA under decodability, in spite of the time-correlated exogenous noise process (ξh) and potentially
infinite observation space X (interestingly, coverability is essentially the only useful structural property that
ExBMDPs are known to satisfy, which is our primary motivation for studying it). Realizability is also a
straightforward consequence of the decodability assumption.

Lemma 3.1 (Efroni et al. (2022a)). For the ExBMDP setting, under Assumption 3.3, (i) the function
class Qh ∶= {x ↦ g(ϕ(x), a) ∶ g ∈ [0,H]SA, ϕ ∈ Φ} satisfies Assumption 3.1, and (ii) the policy class Πh =
{x↦ π(ϕ(x)) ∶ π ∈ AS , ϕ ∈ Φ} satisfies Assumption 4.3. Both classes have log∣Qh∣ = log∣Πh∣ = Õ(S + log∣Φ∣).4

This leads to the following corollary of Theorem 3.1.

Corollary 3.1 (SimGolf for ExBMDPs). Consider the ExBMDP setting. Suppose that Assumption 3.3
holds, and let Q be constructed as in Lemma 3.1 of Part I. Then for any ε, δ ∈ (0,1), the policy π̂ =
SimGolf(Q, SA, ε, δ) has J(π⋆) − J(π̂) ≤ ε with probability at least 1 − δ. The total sample complexity in the
RLLS framework is bounded by

Õ(H
5S3A3 log∣Φ∣

ε4
).

This shows for the first time that general ExBMDPs are learnable with local simulator access. Prior to this
work, online RL algorithms for ExBMDPs required either (i) deterministic latent dynamics (Efroni et al.,
2022b), or (ii) factored emission structure (Efroni et al., 2022a). Xie et al. (2023) observed that ExBMDPs
admit low coverability, but their algorithm requires Bellman completeness, which is not satisfied by ExBMDPs
(see Islam et al. (2023)). See Appendix A for more discussion.

2A more standard formulation of the observation process (Efroni et al., 2022b,a; Lamb et al., 2023; Islam et al., 2023) assumes
that observations are generated via xh ∼ qh(sh,ξh), where qh(⋅, ⋅) is a conditional distribution with the decodability property.
This is equivalent to Eq. (3) under mild measure-theoretic conditions, as randomness in the emission process can be included in
the exogenous state without loss of generality, but the formulation in Eq. (3) makes our proofs slightly more compact.

3To simplify presentation, we assume that Ξ and X are countable; our results trivially extend to the case where the
corresponding variables are continuous with an appropriate measure-theoretic treatment.

4Formally, this requires a standard covering number argument; we omit the details.

7

4 Computationally Efficient Learning with Local Simulators
Our result in Section 3 show that local simulator access facilitates sample-efficient learning in MDPs with
low coverability, a challenging setting that was previously out of reach. However, our algorithm SimGolf is
computationally-inefficient because it relies on global optimism, a drawback found in most prior work on
RL with general function approximation (Jiang et al., 2017; Jin et al., 2021; Du et al., 2021). It remains an
open question whether any form of global optimism can be implemented efficiently, and some variants have
provable barriers to efficient implementation (Dann et al., 2018).

To address this drawback, in this section we present a new algorithm, RVFS (Recursive Value Function Search;
Algorithm 3), which requires stronger versions of the coverability and realizability assumptions in Section 3,
but is computationally efficient in the sense that it reduces to convex optimization over the state-value function
class V. RVFS makes use of a sophisticated recursive exploration scheme based on core-sets, sidestepping the
need for global optimism, and can be applied to Exogenous Block MDPs with weakly correlated exogenous noise.

4.1 Function Approximation and Statistical Assumptions
To begin, we require the following strengthening of the coverability assumption in Assumption 3.2.

Assumption 4.1 (Pushforward coverability). The pushforward coverability coefficient Cpush > 0 is given by

Cpush = max
h∈[H]

inf
µh∈∆(X)

sup
(xh−1,ah−1,xh)∈Xh−1×A×X

Th−1(xh ∣ xh−1, ah−1)
µh(xh)

.

Pushforward coverability is inspired by the pushforward concentrability condition used in offline RL by Xie
and Jiang (2021); Foster et al. (2022). Concrete examples include, (i) Block MDPs with latent space S, which
admit Cpush ≤ ∣S∣, (ii) Low-Rank MDPs in dimension d, which admit Cpush ≤ d (Xie and Jiang, 2021), and (iii)
Exogenous Block MDPs for which the exogenous noise process satisfies a weak correlation condition that we
introduce in Section 4.4. Note that Ccov ≤ Cpush∣A∣, but the converse is not true in general.

Instead of state-action value function approximation as in SimGolf, in this section we make use of a state
value function class V ⊂ (X × [H] → [0,H]), but require somewhat stronger representation conditions than in
Section 3. We consider two complementary setups, which can be summarized briefly as follows:

• Setup I: Assumptions 4.2 and 4.3 (V ⋆/π⋆-realizability) and Assumption 4.4 (∆-gap) hold.

• Setup II: Assumption 4.5 (V π-realizability) and Assumption 4.6 (π-realizability) hold.

We describe these assumptions in more detail below.

Function approximation setup I. First, instead of Q⋆-realizability, we consider the weaker V ⋆-realizability
(Jiang et al., 2017; Weisz et al., 2021a; Amortila et al., 2022).

Assumption 4.2 (V ⋆-realizability). For all h ∈ [H], we have V ⋆h ∈ Vh.
Under V ⋆-realizability, our algorithm learns a near-optimal policy, but the policy is non-executable in the
sense of Definition 2.1; this property is shared by prior work on local simulator access with value function
realizability (Weisz et al., 2021a). To produce executable policies, we additionally require access to a policy
class Π ⊂ ΠS containing π⋆; we define Πh = {πh ∣ π ∈ Π}.
Assumption 4.3 (π⋆-realizability). The policy class Π contains the optimal policy π⋆.

Note that V ⋆-realizability (Assumption 4.2) and π⋆-realizability (Assumption 4.3) are both implied by
Q⋆-realizability, and hence are weaker. However, we also assume the optimal Q-function admits constant
suboptimality gap (this makes the representation conditions for Setup I incomparable to Assumption 3.1).

Assumption 4.4 (∆-Gap). The optimal action π⋆h(x) is unique, and there exists ∆ > 0 such that for all
h ∈ [H], x ∈ X , and a ∈ A ∖ {π⋆h(x)},

Q⋆h(x,π⋆h(x)) > Q⋆h(x, a) +∆.

8

This condition has been used in a many prior works on computationally efficient RL with function approxi-
mation (Du et al., 2019b, 2020; Foster et al., 2020; Wang et al., 2021).

Function approximation setup II. As an alternative to assuming constant suboptimality gap, we also
provide guarantees under the assumption that the value function class V satisfies all-policy realizability (Weisz
et al., 2022; Yin et al., 2022; Weisz et al., 2023) in the sense that it contains the value functions V π for all π ∈ ΠS.

Assumption 4.5 (V π-realizability). The value function class V = V1∶H has V π
h ∈ Vh for all π ∈ ΠS and h ∈ [H].

This assumption will be sufficient to learn a non-executable policy, but to learn executable policies we require
an analogous strengthening of Assumption 4.5.

Assumption 4.6 (π-realizability). The policy class Π is such that for all π ∈ ΠS, we have that x ↦
argmaxa∈APh[V π

h+1](⋅, a) ∈ Π.

This assumption, also known as policy completeness has been used by a number of prior works on compu-
tationally efficient RL (Bagnell et al., 2003; Misra et al., 2020). Assumptions 4.5 and 4.6 are both implied
by the slightly simpler-to-state assumption of Qπ-realizability (Weisz et al., 2022; Yin et al., 2022; Weisz
et al., 2023), which asserts access to a class Q that contains Qπ for all π ∈ ΠS.

Remark 4.1. Assumptions 4.5 and 4.6 can both be weakened to only require realizability for near-optimal
policies; i.e.., we only need to assume that V π

h ∈ V for all h ∈ [H] and near-optimal policies π (instead of all
policies). We will only use this weaker assumption in the analysis.

4.2 Algorithm
For ease of exposition, we defer the full version of our algorithm, RVFS (Algorithm 3), to Appendix E and
present a simplified version here (Algorithm 2). The algorithms are nearly identical, except that the simplified
version assumes that certain quantities of interest (e.g., Bellman backups) can be computed exactly, while
the full version (provably) approximates them from samples.

RVFS maintains a value function estimator V̂ = V̂1∶H that aims to approximate the optimal value function V ⋆1∶H ,
as well as core sets C1, . . . ,CH of state-action pairs that are used to perform estimation and guide exploration.
At a high level, RVFS alternates between (i) fitting the value function V̂h for a given layer h ∈ [H] based on
Monte-Carlo rollouts, and (ii) using the core-sets to test whether the current value function estimates V̂h+1∶H
remain accurate as the roll-in policy induced by V̂h changes.

In more detail, RVFS is based on recursion across the layers h ∈ [H]. When invoked for layer h with value
function estimates V̂h+1∶H and core-sets Ch, . . . ,CH , RVFSh performs two steps:

1. For each state-action pair (xh−1, ah−1) ∈ Ch,6 the algorithm gathers Ntest trajectories by rolling out from
(xh−1, ah−1) with the greedy policy π̂ℓ(x) ∈ argmaxa∈APℓ[V̂ℓ+1](x, a) that optimizes the estimated value
function; in the full version of RVFS (see Algorithm 3), we estimate the bellman backup Pℓ[V̂ℓ+1](x, a)
using the local simulator. For all states xℓ−1 ∈ {xh, . . . ,xH−1} encountered during this process, the
algorithm checks whether ∣E[V̂ℓ(xℓ) − V ⋆ℓ (xℓ) ∣ xℓ−1 = xℓ−1,aℓ−1 = aℓ−1]∣ ≲ ε for all aℓ−1 ∈ A using a test
based on (implicitly maintained) confidence sets. If the test fails, this indicates that distribution shift
has occurred, and the algorithm adds the pair (xℓ−1, aℓ−1) to the core-set Cℓ and recurses on layer ℓ via
RVFSℓ.

2. If all tests above pass, this indicates that V̂h+1, . . . , V̂H are accurate, and no distribution shift has
occurred. In this case, the algorithm fits V̂h by collecting Monte-Carlo rollouts from all state-action
pairs in the core-set Ch with π̂ℓ(x) ∈ argmaxa∈APℓ[V̂ℓ+1](x, a) (cf. Line 16), and returns.

When the tests in Item 1 succeed for all layers h ∈ [H], the algorithm terminates and returns the estimated
value functions V̂1∶H ; in this case, the greedy policy π̂ℓ(x) ∈ argmaxa∈APℓ[V̂ℓ+1](x, a) is guaranteed to be near
optimal. The full version of RVFS in Algorithm 3 uses local simulator access to estimate the Bellman backups
Ph[V̂h+1](x, a) for different state-action pairs (x, a) (see Eq. (15) of Algorithm 3). These backups are used

6Informally, Ch represents a collection of state-action pairs (xh−1, ah−1) at layer h − 1 for which we want
E[∣V̂h(xh) − V ⋆h (xh)∣ ∣ xh−1 = xh−1,ah−1 = ah−1] ≤ ε for some small ε > 0.

9

Algorithm 2 RVFSh: Recursive Value Function Search (Informal version of Algorithm 3)
1: parameters: Value function class V, suboptimality ε ∈ (0,1), confidence δ ∈ (0,1).
2: input:

• Level h ∈ {0, . . . ,H}.
• Value function estimates V̂h+1∶H , confidence sets V̂h+1∶H , state-action collections Ch∶H .

3: Initialize parameters M , Ntest, Nreg, ε2reg, and β (see Algorithm 3 for parameter settings).
/* Test the fit for the estimated value functions V̂h+1∶H at future layers. */

4: for (xh−1, ah−1) ∈ Ch and ℓ =H, . . . , h + 1 do
5: for n = 1, . . . ,Ntest do
6: Draw xh ∼ Th−1(⋅ ∣ xh−1, ah−1), then draw xℓ−1 by rolling out with π̂h∶H , where5

∀τ ∈ [H], π̂τ(⋅) ∈ argmax
a∈A

Pτ [V̂τ+1](⋅, a). (4)

7: for aℓ−1 ∈ A do
/* Test fit; if test fails, re-fit value functions V̂h+1∶ℓ up to layer ℓ. */

8: if supf∈V̂ℓ
∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(xℓ−1, aℓ−1)∣ > ε + ε ⋅ β then

9: Cℓ ← Cℓ ∪ {(xℓ−1, aℓ−1)}.
10: for τ = ℓ, . . . , h + 1 do
11: (V̂τ ∶H , V̂h∶H ,Cτ ∶H) ← RVFSτ(V̂τ+1∶H , V̂h+1∶H ,Cτ ∶H ;V, ε, δ).
12: go to line 4.
13: if h = 0 then return: (V̂1∶H , ⋅, ⋅, ⋅, ⋅).

/* Re-fit V̂h and build a new confidence set. */

14: for (xh−1, ah−1) ∈ Ch do // Eπ̂h+1∶H [∑H
ℓ=h rℓ ∣ xh, a] can be estimated using local simulator and roll-outs.

15: Set Dh(xh−1, ah−1) ← ∅. For i = 1, . . . ,Nreg, sample xh ∼ Th−1(⋅ ∣ xh−1, ah−1) and update
Dh(xh−1, ah−1) ← Dh(xh−1, ah−1) ∪ {(xh,Eπ̂h∶H [∑H

ℓ=h rℓ ∣ xh])}.
16: Let V̂h ∶= argminf∈V̂ ∑(xh−1,ah−1)∈Ch ∑(xh,vh)∈Dh(xh−1,ah−1)(f(xh) − vh)2.
17: Compute value function confidence set:

V̂h ∶=
⎧⎪⎪⎨⎪⎪⎩
f ∈ V

RRRRRRRRRRRR
∑

(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,-)∈Dh(xh−1,ah−1)
(V̂h(xh) − f(xh))

2 ≤ ε2reg
⎫⎪⎪⎬⎪⎪⎭
.

18: return (V̂h∶H , V̂h∶H ,Ch∶H).

to (i) compute actions of the greedy policy that maximizes V̂1∶H via (e.g., Eq. (4)); (ii) generate trajectories
by rolling out from state-action pairs in the core-sets (Line 6); and (iii) perform the test in Item 1 (Line 8).

RVFS is inspired by the DMQ algorithm of Du et al. (2019b); Wang et al. (2021), which was originally introduced
in the context of online reinforcement learning with linearly realizable Q⋆. RVFS incorporates local simulator
access (most critically, via core-set construction) to allow for more general nonlinear function approximation
without restrictive statistical assumptions. Prior algorithms for RLLS have used core-sets of state-action
pairs in a similar fashion (Li et al., 2021; Yin et al., 2022; Weisz et al., 2022), but in a way that is tailored to
linear function approximation.

In what follows, we discuss various features of the algorithm in greater detail.

Bellman backup policies. Since RVFS works with state value functions instead of state-action value
functions, we need a way to extract policies from the former. The most natural way to extract a policy from
estimated value functions V̂1∶H ∈ V is as follows: for all h ∈ [H], define π̂h(x) ∈ argmaxa∈APh[V̂h+1](x, a).
In reality, we do not have access to Ph[V̂h+1](x, a) directly, so the full version of RVFS (Algorithm 3)
estimates this quantity on the fly using the local simulator using the following scheme (Algorithm 5 in
Appendix E): Given a state x, for each a, we sample K rewards rh ∼ Rh(x, a) and next-state transitions
xh+1 ∼ Th(⋅ ∣ x, a), then approximate Ph[V̂h+1](x, a) by the empirical mean. We remark that the use of these

10

Bellman backup policies is actually crucial in the analysis for RVFS; even if we were to work with estimated
state-action value functions Q̂1∶H instead, our analysis would require executing the Bellman backup policies
π̂h(x) ∈ argmaxa∈A Th[Q̂h+1](x, a) (instead of naively using π̂h(x) ∈ argmaxa∈A Q̂h(x, a)).

Invoking the algorithm. The base invocation of RVFS takes the form

V̂1∶H ← RVFS0(V̂1∶H = arbitrary, V̂1∶H = {Vh}Hh=1,C0∶H = {∅}
H
h=0, ;V, ε, δ).

Whenever this call returns, the greedy policy induced by V̂1∶H is guaranteed to be near-optimal. Naively,
the approximate Bellman backup policy induced by V̂1∶H (described above) is non-executable, and must be
computed by invoking the local simulator. To provide an end-to-end guarantee to learn an executable policy,
we give an outer-level algorithm, RVFS.bc (Algorithm 4, deferred to Appendix E for space), which invokes
RVFS0, then extracts an executable policy from V̂1∶H using behavior cloning. Subsequent recursive calls to
RVFS take the form

(V̂h∶H , V̂h∶H ,Ch∶H) ← RVFSh(V̂h+1∶H , V̂h+1∶H ,Ch∶H ;V, ε, δ).

For such a call, the arguments are:

• V̂h+1∶H : Value function estimates for subsequent layers.

• V̂h+1∶H : Value function confidence sets V̂h+1∶H ⊂ Vh+1∶H , which are used in the test on Line 14 to quantify
uncertainty on new state-action pairs and decide whether to expand the core-sets.

• Ch∶H : Core-sets for current and subsequent layers.

Importantly, the confidence sets V̂h+1∶H do not need to be explicitly maintained, and can be used implicitly
whenever a regression oracle for the value function class is available (discussed below).

Oracle-efficiency. RVFS is computationally efficient in the sense that it reduces to convex optimization
over the value function class V. In particular, the only computationally intensive steps in the algorithm are
(i) the regression step in Line 16, and (ii) the test in Line 8 involving the confidence set V̂ℓ. For the latter,
we do not explicitly need to maintain V̂ℓ, as the optimization problem over this set in Line 8 (for the full
version of RVFS in Algorithm 3) reduces to solving argmaxV ∈V{±∑n

i=1 V (x̃(i)) ∣ ∑n
i=1(V (x(i)) − y(i))2 ≤ β2} for

a dataset {(x(i), x̃(i), y(i))}ni=1. This is convex optimization problem in function space, and in particular can
be implemented in a provably efficient fashion whenever V is linearly parameterized. We expect that the
problem can also be reduced to a square loss regression by adapting the techniques in Krishnamurthy et al.
(2017); Foster et al. (2018), but we do not pursue this here.

4.3 Main Result
We present the main guarantee for RVFS under the function approximation assumptions in Section 4.1.

Theorem 4.1 (Main guarantee for RVFS). Let ε, δ ∈ (0,1) be given, and suppose that Assumption 4.1
(pushforward coverability) holds with Cpush > 0. Further, suppose that one the following holds:

• Setup I: Assumptions 4.2 and 4.3 (V ⋆/π⋆-realizability) and Assumption 4.4 (∆-gap) hold, and
ε ≤ 6H ⋅∆.

• Setup II: Assumption 4.5 (V π-realizability) and Assumption 4.6 (π-realizability) hold.

Then, RVFS.bc(Π,V, ε, δ) (Algorithm 4) returns a policy π̂1∶H such that J(π⋆) − J(π̂1∶H) ≤ 2ε with probability
at least 1 − δ, and has total sample complexity bounded by

Õ (C8
pushH

23A ⋅ ε−13) .

Theorem 4.1 shows for the first time that sample- and computationally-efficient RL with local simulator access
is possible under pushforward coverability. In particular, RVFS is the first computationally efficient algorithm

11

for RL with local simulator access that supports nonlinear function approximation. The assumptions in
Theorem 4.1, while stronger than those in Section 3, are not known to enable sample-efficient RL without
simulator access. Nonetheless, understanding whether RVFS can be strengthened to support general coverability
or weaker function approximation is an important open problem.

We mention in passing that RVFS can be slightly modified to recover other existing sample complexity
guarantees for RL with linear function approximation and local simulator access (which do not require
pushforward coverability), including linear-Q⋆ realizability with gap (Li et al., 2021) and Qπ-realizability
(Yin et al., 2022); we leave a more general treatment for future work.

Connection to empirical algorithms. RVFS bears some similarity to Monte-Carlo Tree Search (MCTS)
(Coulom, 2006; Kocsis and Szepesvári, 2006) and AlphaZero (Silver et al., 2018), which perform planning with
local simulator. Informally, MCTS can be viewed as a form of breadth-first search over the state space (where
each node represents a state at a given layer), and AlphaZero is a particular instantiation of a MCTS that
leverages value function approximation (through a class V that aims to approximate V ⋆) to accommodate
stochastic environments and allow for generalization across states. Compared to RVFS, MCTS and AlphaZero
perform exploration via simple bandit-style heuristics, and are not explicitly designed to handle distribution
shifts that arise in settings where actions have long-term downstream effects. RVFS may be viewed as a
provable counterpart that uses function approximation to address distribution shift in a principled fashion (in
particular, through the use of confidence sets and the test in Line 14).7

RVFS also has some resemblance to the Go-Explore algorithm of Ecoffet et al. (2019, 2021) Like RVFS, Go-
Explore makes use of core-sets of informative state-action pairs to guide exploration, and uses imitation
learning to extract an executable policy after the exploration phase completes. However, Go-Explore uses an
ad-hoc, domain specific approach to building the core set, and does not use function approximation in the
exploration phase; such a strategy is unlikely to succeed in more challenging environments where the effective
horizon is longer or less domain-specific information is available a-priori.

In light of these connections, we are optimistic that the techniques in RVFS—in particular, using value function
approximation to guide systematic exploration—can help to inform the design of practical algorithms for
learning and planning with local simulators.

4.4 Applying RVFS to Exogenous Block MDPs
We now apply RVFS to the Exogenous Block MDP (ExBMDP) model introduced in Section 3.3. ExB-
MDPs satisfy coverability (Assumption 3.2), but do not satisfy the pushforward coverability assumption
(Assumption 4.1) required by RVFS in general. However, it turns out that ExBMDPs do satisfy pushforward
coverability when the exogenous noise process is weakly correlated across time; we refer to this new statistical
assumption as the weak correlation condition.

Assumption 4.7 (Weak correlation condition). For the underlying ExBMDPM, there is a constant Cexo ≥ 1
such that for all h ∈ [H − 1] and (ξ, ξ′) ∈ Ξh−1 ×Ξh, we have8

P[ξh = ξ,ξh+1 = ξ′] ≤ Cexo ⋅ P[ξh = ξ] ⋅ P[ξh+1 = ξ′].

The weak correlation property asserts that the joint law for the exogenous noise variables ξh and ξh+1 is at
most a multiplicative factor Cexo ≥ 1 larger than the corresponding product distribution obtained by sampling
ξh and ξh+1 independently from their marginals. This setting strictly generalizes the (non-exogenous) Block
MDP model (Krishnamurthy et al., 2016; Du et al., 2019a; Misra et al., 2019; Zhang et al., 2022; Mhammedi
et al., 2023), by allowing for arbitrary stochastic dynamics for the endogenous state and an arbitrary emission
process, but requires that temporal correlations in the exogenous noise decay over time.

7We note in passing that in the context of tree search, the pushforward coverability assumption (Assumption 4.1) may be
viewed as the stochastic analogue of branching factor.

8Throughout this paper, when considering the law for the exogenous variables ξ1, . . . ,ξH , we write P[⋅] instead of Pπ[⋅] to
emphasize that the law is independent of the agent’s policy.

12

We show that under Assumption 4.7, pushforward coverability is satisfied with Cpush ≤ Cexo ⋅ SA (Lemma J.3
in Appendix J.1). In addition, V ⋆-realizability is implied by decoder realizability (Lemma 3.1). Thus, by
applying Theorem 4.1 (Setup I), we conclude that RVFS efficiently learns a near-optimal policy for any
weakly correlated ExBMDP for which the optimal value function has ∆-gap.

An improved algorithm for ExBMDPs: RVFSexo. At first glance, removing the gap assumption for RVFS
in ExBMDPs seems difficult: The V π-realizability assumption required to invoke Theorem 4.1 (Setup II) is
not satisfied by ExBMDPs, as decoder realizability only implies V π realizability for endogenous policies π.9

In spite of this, we now show that with a slight modification, RVFS can efficiently learn any weakly correlated
ExBMDP under decoder realizability alone (without gap or V π-realizability).

Our new variant of RVFS, RVFSexo, is presented in Algorithm 6 (deferred to Appendix E for space). The
algorithm is almost identical to RVFS (Algorithm 3), with the main difference being that we use an additional
randomized rounding step to compute the policies π̂1∶H from the learned value functions V̂1∶H . In particular,
instead of directly defining the policies π̂1∶H based on the bellman backups Ph[V̂h+1] as in Eq. (15), RVFSexo

targets a “rounded” version of the backup given by

ε ⋅ ⌈Ph[V̂h+1](x, a)/ε + ζh⌉, (5)

where ε ∈ (0,1) is a rounding parameter and ζ1, . . . ,ζH are i.i.d. random variables sampled uniformly at
random from the interval [0, 1/2] (at the beginning of the algorithm’s execution). Concretely, RVFSexo estimates
the bellman backup Ph[V̂h+1](x, a) in Eq. (5) using the local simulator (as in Eq. (15) of Algorithm 3), and
defines its policies via

π̂h(⋅) ∈ argmax
a∈A

⌈Ph[V̂h+1](⋅, a)/ε + ζh⌉. (6)

This rounding scheme, which quantizes the Bellman backup into ε−1 bins with a random offset, is designed
to emulate certain properties implied by the ∆-gap assumption (Assumption 4.4). Specifically, we show
that with constant probability over the draw of ζ1∶H , the policy π̂ in (6) “snaps” on to an endogenous policy
π. This means that for RVFSexo to succeed (with constant probability), it suffices to pass it a class V that
realizes the value functions (V π

h) for endogenous policies π ∈ ΠS. Fortunately, such a function class can be
constructed explicitly under decoder realizability (Assumption 3.3).

Lemma 4.1 (Efroni et al. (2022a)). For the ExBMDP setting, under Assumption 3.3, the function class
Vh ∶= {x↦ f(ϕ(x)) ∶ f ∈ [0,H]S , ϕ ∈ Φ} is such that V π

h ∈ Vh for all endogenous policies π. Furthermore, the
policy class Πh ∶= {π(⋅) ∈ argmaxa∈A f(ϕ(⋅), a) ∶ f ∈ [0,H]S×A, ϕ ∈ Φ} contains all endogenous policies.

A small technical challenge with the scheme above is that it is only guaranteed to succeed with constant proba-
bility over the draw of the rounding parameters ζ1, . . . ,ζH . To address this, we provide an outer-level algorithm,
RVFSexo.bc (Algorithm 7, deferred to Appendix E for space), which performs confidence boosting by invoking
RVFSexo multiple times independently, and extracts a high-quality executable policy using behavior cloning.

Main result. We now state the main guarantee for RVFSexo (the proof is in Appendix J).

Theorem 4.2 (Main guarantee of RVFSexo for EXBMDPs). Consider the ExBMDP setting. Suppose the
decoder class Φ satisfies Assumption 3.3, and that Assumption 4.7 holds with Cexo > 0. Let ε, δ ∈ (0,1) be
given, and let Vh and Πh be as in Lemma 4.1. Then RVFSexo.bc(Π,V1∶H , ε, ζ1∶H , δ) (Algorithm 7) produces a
policy π̂1∶H such that J(π⋆) − J(π̂1∶H) ≤ ε, and has total sample complexity

Õ (C8
exoS

8H36A9 ⋅ ε−26) .

This result shows for the first time that sample- and computationally-efficient learning is possible for ExBMDPs
beyond deterministic or factored settings (Efroni et al., 2022b,a).

9We say that a policy π is endogenous if it does not depend on exogenous noise, in the sense that π(xh) is a measurable
function of ϕ⋆(xh).

13

We mention in passing that our use of randomized rounding to emulate certain consequences of the ∆-gap
assumption leverages the fact that ExBMDPs have a finite number of (endogenous) latent states. It is unclear
if this technique can be used when the (latent) state space is large or infinite.

5 Conclusion and Open Problems
Our results show that online RL with local simulator access can enable powerful sample complexity guarantees
for learning with general value function approximation. Interesting open problems and directions for future
research include:

• Is it true that value function realizability and coverability are not sufficient for sample-efficient learning
in the online RL model? Combined with our results, this would imply a new separation between RLLS
and online RL. More broadly, it would be interesting to develop a unified understanding for precisely
when local simulator access can lead to statistical benefits over fully online RL, and to characterize the
statistical complexity for this framework.

• The RVFS algorithm is computationally efficient, but requires stronger statistical assumptions than our
inefficient algorithms. Closing this gap with an efficient algorithm is an important but challenging open
problem.

In addition, we are excited to explore the empirical performance of exploration schemes inspired by RVFS.

14

Acknowledgements
Part of this work was done while ZM was at MIT. ZM and AR acknowledge support from the ONR through
awards N00014-20-1-2336 and N00014-20-1-2394, and ARO through award W911NF-21-1-0328.

References
Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming the

monster: A fast and simple algorithm for contextual bandits. In International Conference on Machine
Learning, pages 1638–1646, 2014.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex
Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot hand.
arXiv preprint arXiv:1910.07113, 2019.

Philip Amortila, Nan Jiang, Dhruv Madeka, and Dean P Foster. A few expert queries suffices for sample-
efficient rl with resets and linear value approximation. Advances in Neural Information Processing Systems,
35:29637–29648, 2022.

Philip Amortila, Dylan J Foster, Nan Jiang, Ayush Sekhari, and Tengyang Xie. Harnessing density ratios for
online reinforcement learning. International Conference on Learning Representations (ICLR), 2024a.

Philip Amortila, Dylan J Foster, and Akshay Krishnamurthy. Scalable online exploration via coverability.
arXiv preprint arXiv:2403.06571, 2024b.

Szilárd Aradi. Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE
Transactions on Intelligent Transportation Systems, 23(2):740–759, 2020.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi, Zhao-
han Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. In
International conference on machine learning, pages 507–517. PMLR, 2020.

James Bagnell, Sham M Kakade, Jeff Schneider, and Andrew Ng. Policy search by dynamic programming.
Advances in neural information processing systems, 16, 2003.

Marc Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness using atari 2600
games. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, pages 864–871, 2012.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, pages 1042–1051. PMLR, 2019.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pages 72–83. Springer, 2006.

Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire.
On oracle-efficient PAC RL with rich observations. In Advances in neural information processing systems,
pages 1422–1432, 2018.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford. Provably
efficient RL with rich observations via latent state decoding. In International Conference on Machine
Learning, pages 1665–1674. PMLR, 2019a.

15

Simon S Du, Yuping Luo, Ruosong Wang, and Hanrui Zhang. Provably efficient Q-learning with function
approximation via distribution shift error checking oracle. In Advances in Neural Information Processing
Systems, pages 8060–8070, 2019b.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient for sample
efficient reinforcement learning? In International Conference on Learning Representations, 2020.

Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong Wang.
Bilinear classes: A structural framework for provable generalization in RL. International Conference on
Machine Learning, 2021.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new approach
for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then explore.
Nature, 590(7847):580–586, 2021.

Yonathan Efroni, Dylan J Foster, Dipendra Misra, Akshay Krishnamurthy, and John Langford. Sample-
efficient reinforcement learning in the presence of exogenous information. In Conference on Learning
Theory, pages 5062–5127. PMLR, 2022a.

Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Provably
filtering exogenous distractors using multistep inverse dynamics. In International Conference on Learning
Representations, 2022b.

Dylan J Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, and Robert E. Schapire. Practical contextual
bandits with regression oracles. International Conference on Machine Learning, 2018.

Dylan J Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-dependent complexity of
contextual bandits and reinforcement learning: A disagreement-based perspective. Conference on Learning
Theory (COLT), 2020.

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of interactive
decision making. arXiv preprint arXiv:2112.13487, 2021.

Dylan J Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline reinforcement learning:
Fundamental barriers for value function approximation. In Conference on Learning Theory, pages 3489–3489.
PMLR, 2022.

Zhaohan Guo, Shantanu Thakoor, Miruna Pîslar, Bernardo Avila Pires, Florent Altché, Corentin Tallec,
Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, et al. Byol-explore: Exploration by
bootstrapped prediction. Advances in neural information processing systems, 35:31855–31870, 2022.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

Audrey Huang, Jinglin Chen, and Nan Jiang. Reinforcement learning in low-rank mdps with density features.
International Conference on Machine Learning (ICML), 2023.

Riashat Islam, Manan Tomar, Alex Lamb, Yonathan Efroni, Hongyu Zang, Aniket Didolkar, Dipendra Misra,
Xin Li, Harm van Seijen, Remi Tachet des Combes, et al. Agent-controller representations: Principled
offline rl with rich exogenous information. International Conference on Machine Learning (ICML), 2023.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contextual
decision processes with low Bellman rank are PAC-learnable. In International Conference on Machine
Learning, pages 1704–1713, 2017.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of RL problems,
and sample-efficient algorithms. Neural Information Processing Systems, 2021.

16

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of London,
University College London (United Kingdom), 2003.

Michael Kearns and Satinder Singh. Finite-sample convergence rates for q-learning and indirect algorithms.
Advances in neural information processing systems, 11, 1998.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference on machine
learning, pages 282–293. Springer, 2006.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforcement learning with rich observations.
In Advances in Neural Information Processing Systems, pages 1840–1848, 2016.

Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John Langford. Active learning
for cost-sensitive classification. In International Conference on Machine Learning, pages 1915–1924, 2017.

Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J Foster,
Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery of control-
endogenous latent states with multi-step inverse models. Transactions on Machine Learning Research,
2023.

Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations in bandits
and in rl with a generative model. In International Conference on Machine Learning, pages 5662–5670.
PMLR, 2020.

Gen Li, Yuxin Chen, Yuejie Chi, Yuantao Gu, and Yuting Wei. Sample-efficient reinforcement learning is
feasible for linearly realizable mdps with limited revisiting. Advances in Neural Information Processing
Systems, 34:16671–16685, 2021.

Qinghua Liu, Praneeth Netrapalli, Csaba Szepesvari, and Chi Jin. Optimistic mle: A generic model-based
algorithm for partially observable sequential decision making. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pages 363–376, 2023.

Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. Representation learning with multi-step inverse
kinematics: An efficient and optimal approach to rich-observation rl. International Conference on Machine
Learning (ICML), 2023.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state abstraction and
provably efficient rich-observation reinforcement learning. arXiv preprint arXiv:1911.05815, 2019.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state abstraction and
provably efficient rich-observation reinforcement learning. In International conference on machine learning,
pages 6961–6971. PMLR, 2020.

Mohammed Abu Qassem, Iyad Abuhadrous, and Hatem Elaydi. Modeling and simulation of 5 dof educational
robot arm. In 2010 2nd International Conference on Advanced Computer Control, volume 5, pages 569–574.
IEEE, 2010.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages 661–668. JMLR Workshop and
Conference Proceedings, 2010.

Tim Salimans and Richard Chen. Learning montezuma’s revenge from a single demonstration. arXiv preprint
arXiv:1812.03381, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897. PMLR, 2015.

17

Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and sample complexities
for solving markov decision processes with a generative model. Advances in Neural Information Processing
Systems, 31, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690,
2018.

Arash Tavakoli, Vitaly Levdik, Riashat Islam, Christopher M Smith, and Petar Kormushev. Exploring restart
distributions. arXiv preprint arXiv:1811.11298, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE, 2012.

Yuanhao Wang, Ruosong Wang, and Sham M Kakade. An exponential lower bound for linearly-realizable
MDPs with constant suboptimality gap. Neural Information Processing Systems (NeurIPS), 2021.

Gellert Weisz, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang, and Csaba Szepesvári.
On query-efficient planning in mdps under linear realizability of the optimal state-value function. In
Conference on Learning Theory, pages 4355–4385. PMLR, 2021a.

Gellért Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds for planning in MDPs
with linearly-realizable optimal action-value functions. In Algorithmic Learning Theory, pages 1237–1264.
PMLR, 2021b.

Gellért Weisz, András György, Tadashi Kozuno, and Csaba Szepesvári. Confident approximate policy iteration
for efficient local planning in qπ-realizable mdps. Advances in Neural Information Processing Systems, 35:
25547–25559, 2022.

Gellért Weisz, András György, and Csaba Szepesvári. Online rl in linearly qπ-realizable mdps is as easy as in
linear mdps if you learn what to ignore. arXiv preprint arXiv:2310.07811, 2023.

Zheng Wen and Benjamin Van Roy. Efficient reinforcement learning in deterministic systems with value
function generalization. Mathematics of Operations Research, 42(3):762–782, 2017.

Tengyang Xie and Nan Jiang. Batch value-function approximation with only realizability. In International
Conference on Machine Learning, pages 11404–11413. PMLR, 2021.

Tengyang Xie, Dylan J Foster, Yu Bai, Nan Jiang, and Sham M Kakade. The role of coverage in online
reinforcement learning. In The Eleventh International Conference on Learning Representations, 2023.

Lin Yang and Mengdi Wang. Sample-optimal parametric Q-learning using linearly additive features. In
International Conference on Machine Learning, pages 6995–7004. PMLR, 2019.

Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári. Efficient local planning
with linear function approximation. In International Conference on Algorithmic Learning Theory, pages
1165–1192. PMLR, 2022.

Dong Yin, Sridhar Thiagarajan, Nevena Lazic, Nived Rajaraman, Botao Hao, and Csaba Szepesvari. Sample
efficient deep reinforcement learning via local planning. arXiv preprint arXiv:2301.12579, 2023.

18

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near optimal policies
with low inherent bellman error. In International Conference on Machine Learning, pages 10978–10989.
PMLR, 2020.

Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh Agarwal, and Wen Sun. Efficient
reinforcement learning in block mdps: A model-free representation learning approach. In International
Conference on Machine Learning, pages 26517–26547. PMLR, 2022.

19

Contents of Appendix
A Additional Related Work 21

B Helper Lemmas 23
B.1 Concentration and Probability . 23
B.2 Regression . 23
B.3 Reinforcement Learning . 25

I Proofs for SimGolf (Section 3) 27

C Preliminary Lemmas for Proof of Theorem 3.1 27

D Proof of Theorem 3.1 29

II Proofs for RVFS (Section 4) 31

E Full Version of RVFS 31
E.1 RVFS Pseudocode . 33
E.2 RVFSexo Pseudocode . 35

F Organization 37

G Overview of Analysis and Preliminaries 37
G.1 Benchmark Policy Class and Randomized Policies . 37
G.2 Additional Preliminaries . 39

H Guarantee under V π-Realizability (Proof of Theorem 4.1, Setup II) 39
H.1 Analysis: Proof of Theorem 4.1 (Setup II) . 39
H.2 Proof of Lemma H.1 (Number of Test Failures) . 41
H.3 Proof of Lemma H.2 (Consequence of Passing the Tests) . 43
H.4 Proof of Lemma H.3 (Value Function Regression Guarantee) 46
H.5 Proof of Lemma H.4 (Guarantee for Confidence Sets) . 48
H.6 Proof of Theorem H.1 (Main Guarantee of RVFS) . 50
H.7 Proof of Theorem H.2 (Guarantee of RVFS.bc) . 51

I Guarantee under V ⋆-Realizability (Proof of Theorem 4.1, Setup I) 52
I.1 Analysis: Proof of Theorem 4.1 (Setup I) . 53
I.2 Proof of Lemma I.1 (Relaxed V π-Realizability under Gap) . 54

J Guarantee for Weakly Correlated ExBMDPs (Proof of Theorem 4.2) 55
J.1 Analysis: Proof of Theorem 4.2 . 55
J.2 Proof of Lemma J.1 (Endogenous Benchmark Policies) . 59
J.3 Proof of Lemma J.2 (Snapping Probability) . 60
J.4 Proof of Lemma J.3 (Coverability in Weakly Correlated ExBMDP) 61
J.5 Proof of Lemma J.6 (Confidence Sets) . 62
J.6 Proof of Lemma J.7 (Main Guarantee of RVFSexo) . 64

K Additional Technical Lemmas 65

L BehaviorCloning Algorithm and Analysis 68

20

A Additional Related Work
Local simulators: Theoretical research. RL with local simulators has received extensive interest in
the context of linear function approximation. Most notably, Weisz et al. (2021a) show that reinforcement
learning with linear V ⋆ is tractable with local simulator access, and Li et al. (2021) show that RL with linear
Q⋆ and a state-action gap is tractable; online RL is known to be intractable under the same assumptions
(Weisz et al., 2021a; Wang et al., 2021). Amortila et al. (2022) show that the gap assumption can be removed
if a small number of expert queries are available. Also of note are the works of Yin et al. (2022); Weisz et al.
(2022), which give computationally efficient algorithms under linear Qπ-realizability for all π; this setting is
known to be tractable in the online RL model (Weisz et al., 2023), but computationally efficient algorithms
are currently only known for RLLS.

Global simulators—in which the agent can query arbitrary state-action pairs and observe next state transitions—
have also received theoretical investigation, but like local simulators, results are largely restricted to tabular
reinforcement learning and linear models (Kearns and Singh, 1998; Kakade, 2003; Sidford et al., 2018; Du
et al., 2020; Yang and Wang, 2019; Lattimore et al., 2020).

Local simulators: Empirical research. The Go-Explore algorithm (Ecoffet et al., 2019, 2021) uses
local simulator access to achieve state-of-the-art performance for the Atari games Montezuma’s Revenge and
Pitfall—both notoriously difficult games that require systematic exploration. To the best of our knowledge,
the performance of Go-Explore on these tasks has yet to be matched by online reinforcement learning; the
performing agents (Badia et al., 2020; Guo et al., 2022) are roughly a factor of four worse in terms of
cumulative reward. Interestingly, like RVFS, Go-Explore makes use of core sets of informative state-action
pairs to guide exploration. However, Go-Explore uses an ad-hoc, domain specific approach to designing the
core set, and does not use function approximation to drive exploration.

Recent work of Yin et al. (2023) provides an empirical framework for online RL with local planning that
can take advantage of deep neural function approximation, and is inspired by the theoretical works in Weisz
et al. (2021a); Li et al. (2021); Yin et al. (2022); Weisz et al. (2022). This approach does not have provable
guarantees, but achieves super-human performance at Montezuma’s Revenge.

Other notable empirical works that incorporate local simulator access, as highlighted by Yin et al. (2023),
include Schulman et al. (2015); Salimans and Chen (2018); Tavakoli et al. (2018).

Planning. RL with local simulator access is a convenient abstraction for the problem of planning : Given a
known (e.g., learned) model, compute an optimal policy. Planning with a learned model is an important task
in theory (Foster et al., 2021; Liu et al., 2023) and practice (e.g., MuZero (Schrittwieser et al., 2020)). Since
the model is known, computing an optimal policy is a purely computational problem, not a statistical problem.
Nonetheless, for planning problems in large state spaces, where enumerating over all states is undesirable,
algorithms for online RL with local simulator access can be directly applied, treating the model as if it
were the environment the agent is interacting with. Here, any computationally efficient RLLS algorithm
immediately yields an efficient algorithm for planning.

Empirically, Monte-Carlo Tree Search (Coulom, 2006; Kocsis and Szepesvári, 2006) is a successful paradigm
for planning, acting as a key component in AlphaGo (Silver et al., 2016) and AlphaZero (Silver et al.,
2018).10 Viewed as a planning algorithm, a potential advantage of RVFS is that it is well suited to stochastic
environments, and provides a principled way to use estimated (neural) value function estimates to guide
exploration.

Coverability. Xie et al. (2023) introduced coverability as a structural parameter for online reinforcement
leanring, inspired by connections between online and offline RL. Existing guarantees for the online RL frame-
work based on coverability require either Bellman completeness (Xie et al., 2023), model-based realizability
(Amortila et al., 2024b), or weight function realizability (Amortila et al., 2024a,b)), and it is not currently
known whether value function realizability is sufficient in this framework.

10Compare to our work, a small difference is that these works are not concerned with producing executable policies, c.f.
Definition 2.1.

21

Exogenous Block MDPs. Our results in Section 3.3 (Corollary 3.1) show that general Exogenous Block
MDPs are learnable with local simulator access. Prior work, on learning EXBMDPs in the online RL model
requires additional assumptions:

• Deterministic ExBMDP (Efroni et al., 2022b). In this setting, the latent transition distribution T endo

is assumed to be deterministic. In this case, it suffices to learn open-loop policies (i.e., policies that
play a deterministic sequence of actions). This avoids compounding errors due to learning imperfect
decoders that depend on the exogenous noise, making this setting much less challenging than the general
ExBMDP setting.

• Factored ExMDP (Efroni et al., 2022a). This is an ExBMDP setting with a restrictive structure in
which the observation is a d-dimensional vector and the latent state is a k-dimensional subset of the
observed coordinates. This structure prevents the setting from subsuming the basic (non-exogenous)
Block MDP framework, and makes it possible to learn decoders that act only on the endogenous state,
preventing compounding errors.

• Bellman completeness. Xie et al. (2023) observed that ExBMDPs admit low coverability, but their
algorithm requires Bellman completeness, which is not satisfied by ExBMDPs (see Efroni et al. (2022b);
Islam et al. (2023)).

22

B Helper Lemmas
This section of the appendix contains supporting lemmas used within the proofs of our main results.

B.1 Concentration and Probability
Lemma B.1. Let δ ∈ (0,1) and H ≥ 1 be given. If a sequence of events E1, . . . ,EH satisfies P[Eh ∣
E1, . . . ,Eh−1] ≥ 1 − δ/H for all h ∈ [H], then

P[E1∶H] ≥ 1 − δ.

Proof of Lemma B.1. By the chain rule, we have

P[E1∶H] = ∏
h∈[H]

P[Eh ∣ E1, . . . ,Eh−1] ≥ ∏
h∈[H]

(1 − δ/H) = (1 − δ/H)H ≥ 1 − δ.

We make use of the following version of Freedman’s inequality, due to Agarwal et al. (2014, Lemma 9):

Lemma B.2. Let R > 0 be given and let w1, . . .wn be a sequence of real-valued random variables adapted
to filtration H1,⋯,Hn. Assume that for all t ∈ [n], wi ≤ R and E[wi ∣ Hi−1] = 0. Define Sn ∶= ∑n

t=1wi and
Vn ∶= ∑n

t=1E[w2
i ∣ Hi−1]. Then, for any δ ∈ (0,1) and λ ∈ [0,1/R], with probability at least 1 − δ,

Sn ≤ λVn + log(1/δ)/λ.

We will also use the following lemma, which is a standard consequence of Freedman’s inequality.

Lemma B.3 (e.g., Foster et al. (2021)). Let (wt)t≤T be a sequence of random variables adapted to a filtration
(Ht)t≤T . If 0 ≤wt ≤ R almost surely, then with probability at least 1 − δ,

T

∑
t=1

wt ≤
3

2

T

∑
t=1

Et−1[wt] + 4R log(2δ−1),

and

T

∑
t=1

Et−1[wt] ≤ 2
T

∑
t=1

wt + 8R log(2δ−1).

B.2 Regression
Using Lemmas B.2 and B.3, we obtain the following concentration lemma, which will be used to prove
guarantees for square loss regression within our algorithms.

Lemma B.4. Let B > 0 and n ∈ N be given, and let Y be an abstract set. Further, let Q ⊆ {g ∶ Y → [0,B]} be
a finite function class and y1, . . . ,yn be a sequence of random variables in Y adapted to filtration a H1,⋯,Hn.
Then, for any δ ∈ (0,1), with probability at least 1 − δ, we have

∀g ∈ Q, 1

2
∥g∥2 − 2B2 log(2∣Q∣/δ) ≤ ∥g∥2n ≤ 2∥g∥2 + 2B2 log(2∣Q∣/δ),

where ∥g∥2 ∶= ∑i∈[n]E[g(yi)2 ∣ Hi−1] and ∥g∥2n ∶= ∑n
i=1 g(yi)2.

Proof of Lemma B.4. Fix g ∈ Q. Applying Lemma B.2 with wi = g(yi)2 −E[g(yi)2 ∣ Hi−1], for all i ∈ [n],
and (R,λ) = (B2,1/B2), we get that with probability at least 1 − δ/(2∣Q∣):

∥g∥2n − ∥g∥2 ≤ λB2∥g∥2 + log(2∣Q∣/δ)/λ.

23

By substituting λ = B−2 and rearranging, we get

∥g∥2n ≤ 2∥g∥2 +B2 log(2∣Q∣/δ). (7)

Similarly, applying Lemma B.2 with wi = E[g(yi)2 ∣ Hi−1]−g(yi)2, for all i ∈ [n], and (R,λ) = (B2, 1/(2B2)),
we get that with probability at least 1 − δ/(2∣Q∣):

∥g∥2 − ∥g∥2n ≤ λB2∥g∥2 + log(2∣Q∣/δ)/λ.

By substituting λ = 2−1B−2 and rearranging, we get

∥g∥2n ≥
1

2
∥g∥2 − 2B2 log(2∣Q∣/δ).

Combining this with (7) and the union bound, we get the desired result.

With this lemma, we now prove the following key result for square loss regression.

Lemma B.5 (Generic regression guarantee). Let B > 0 and n ∈ N be given and Y be an abstract set. Further,
let F ⊆ {f ∶ Y → [0,B]} be a finite function class, and suppose that there is a function f⋆ ∈ F and a sequence
of random variables (y1,x1), . . . , (yn,xn) ∈ Y ×R such that for all i ∈ [n]:

• xi = f⋆(yi) + εi + bi;
• ∣bi∣ ≤ ξ;
• εi ∈ [−B,B]; and

• E[εi ∣ Fi] = 0, where Fi ∶= σ(y1∶i,ε1∶i−1,x1∶i−1,b1∶i−1).
Then, for f̂ ∈ argminf∈F ∑n

i=1(f(yi) −xi)2 and any δ ∈ (0,1), with probability at least 1 − δ/2,

∥f̂ − f⋆∥2n ≤ 4B2 log(2∣F∣/δ) + 4B
n

∑
i=1
∣bi∣,

where ∥f̂ − f⋆∥2n ∶= ∑n
i=1(f̂(yi) − f⋆(yi))2.

Proof of Lemma B.5. Fix δ ∈ (0,1) and let L̂n(f) ∶= ∑n
i=1(f(yi) − xi)2, for f ∈ F , and note that since

f̂ ∈ argminf∈F L̂n(f), we have

0 ≥ L̂n(f̂) − L̂n(f⋆) = ∇L̂n(f⋆)[f̂ − f⋆] + ∥f̂ − f⋆∥2n,

where ∇ denotes directional derivative. Rearranging, we get that

∥f̂ − f⋆∥2n ≤ −2∇L̂n(f⋆)[f̂ − f⋆] − ∥f̂ − f⋆∥2n,

= 4
n

∑
i=1
(xi − f⋆(yi))(f̂(yi) − f⋆(yi)) − ∥f̂ − f⋆∥2n,

≤ 4
n

∑
i=1
(εi + bi)(f̂(yi) − f⋆(yi)) − ∥f̂ − f⋆∥2n,

≤ 4
n

∑
i=1

εi ⋅ (f̂(yi) − f⋆(yi)) − ∥f̂ − f⋆∥2n
´¹¹¹¸¹¹¶

I

+4
n

∑
i=1

bi ⋅ (f̂(yi) − f⋆(yi))

´¹¹¸¹¹¹¶
II

. (8)

Bounding Term I. To bound Term I, we apply Lemma B.2 with wi = εi ⋅ (f̂(yi)−f⋆(yi)), R = B2, λ = 1/(8B2),
and Hi = F−i+1, and use

1. the union bound over f ∈ F ; and

24

2. the facts that E[yi ∣ F−i] = yi and E[εi ∣ F−i] = 0,
to get that with probability at least 1 − δ/2,

4
n

∑
i=1

εi ⋅ (f̂(yi) − f⋆(yi)) ≤ ∥f̂ − f⋆∥2n + 4B2 log(2∣F∣/δ).

By rearranging, we get that with probability at least 1 − δ/2,

Term I ≤ 4B2 log(2∣F∣/δ).

Bounding Term II. We now bound the second term in (8). For this, note that since ∥f̂ − f⋆∥∞ ≤ B, we have

Term II ≤ 4B
n

∑
i=1
∣bi∣.

This completes the proof.

B.3 Reinforcement Learning
Lemma B.6 (Performance Difference Lemma (e.g., Kakade (2003))). For any two policies π̂, π ∈ ΠS and
t ∈ [H], we have

Eπ [V π
t (xt) − V π̂

t (xt)] = Eπ [
H

∑
h=t

Qπ̂
h(xh,πh(xh)) −Qπ̂

h(xh, π̂h(xh))] .

In particular, applying this for t = 1 gives

J(π) − J(π̂) = Eπ [
H

∑
h=1

Qπ̂
t (xh,πh(xh)) −Qπ̂

h(xh, π̂h(xh))] .

Lemma B.7 (Potential lemma (Xie et al., 2023)). Fix h ∈ [H]. Suppose we have a sequence of functions
g(1), . . . , g(T) ∈ [0,B] and policies π(1), . . . , π(T) such that

∀t ∈ [T], ∑
i<t

Eπ(i)[(g(t)(xh))2] ≤ β2

for some β ≥ 0. Then under Assumption 4.1, we have

T

∑
t=1

Eπ(t)[g(t)(xh)] ≤ 2
√
β2CpushT log(2T) + 2BCpush,

and consequently

min
t∈[T]

Eπ(t)[g(t)(xh)] ≤ 2
√

β2Cpush log(2T)
T

+ 2BCpush

T
.

Proof of Lemma B.8. See proof of (Xie et al., 2023, Theorem 1).

The following result is a variant of the coverability-based potential argument given in Xie et al. (2023).

Lemma B.8 (Pushforward coverability potential lemma). Fix h ∈ [H]. Suppose we have a sequence of
functions g(1), . . . , g(T) ∈ [0,B] and state-action pairs (x(1), a(1)), . . . , (x(T), a(T)) such that

∀t ∈ [T], ∑
i<t

E[(g(t)(xh))2 ∣ xh−1 = x(i),ah−1 = a(i)] ≤ β2

25

for some β ≥ 0. Then under Assumption 4.1, we have

T

∑
t=1

E[g(t)(xh) ∣ xh−1 = x(t),ah−1 = a(t)] ≤ 2
√
β2CpushT log(2T) + 2BCpush,

and consequently

min
t∈[T]

E[g(t)(xh) ∣ xh−1 = x(t),ah−1 = a(t)] ≤ 2
√

β2Cpush log(2T)
T

+ 2BCpush

T
.

Proof of Lemma B.8. Define d(t)h (x) ∶= P[xh = x ∣ xh−1 = x(t),ah−1 = a(t)], and let d̃(t)h ∶= ∑i<t d(i). Let

τh(x) ∶= min{t ∣ d̃(t)h (x) ≥ Cpush ⋅ µh(x)}.

We have
T

∑
t=1

E[g(t)(xh) ∣ xh−1 = x(t),ah−1 = a(t)]

=
T

∑
t=1
∑
x∈X

d(t)h (x)g
(t)(x)

≤
T

∑
t=1
∑
x∈X

d(t)h (x)g
(t)(x)I{t ≥ τh(x)} +B

T

∑
t=1
∑
x∈X

d(t)h (x)I{t < τh(x)}.

From the definition of pushforward coverability, we can bound

T

∑
t=1
∑
x∈X

d(t)h (x)I{t < τh(x)} = ∑
x∈X

d̃
(τh(x))
h (x) ≤ 2Cpush ∑

x∈X
µh(x) = 2Cpush.

For the other term, we bound

T

∑
t=1
∑
x∈X

d(t)h (x)g
(t)(x)I{t ≥ τh(x)}

≤ (
T

∑
t=1
∑
x∈X

(d(t)h (x))2

d̃(t)h (x)
I{t ≥ τh(x)})

1/2
⋅ (

T

∑
t=1
∑
x∈X

d̃(t)h (x)(g
(t)
h (x))

2)
1/2

= (
T

∑
t=1
∑
x∈X

(d(t)h (x))2

d̃(t)h (x)
I{t ≥ τh(x)})

1/2
⋅ (

T

∑
t=1
∑
i<t

E[(g(t)(xh))2 ∣ xh−1 = x(i),ah−1 = a(i)])
1/2

≤ (
T

∑
t=1
∑
x∈X

(d(t)h (x))2

d̃(t)h (x)
I{t ≥ τh(x)})

1/2
⋅
√
β2T .

Finally, we have

T

∑
t=1
∑
x∈X

(d(t)h (x))2

d̃(t)h (x)
I{t ≥ τh(x)} ≤ 2

T

∑
t=1
∑
x∈X

(d(t)h (x))2

d̃(t)h (x) +Cpushµh(x)

≤ 2Cpush

T

∑
t=1
∑
x∈X

µh(x)
d(t)h (x)

d̃(t)h (x) +Cpushµh(x)

= 2Cpush ∑
x∈X

µh(x)
T

∑
t=1

d(t)h (x)
d̃(t)h (x) +Cpushµh(x)

= 4Cpush log(T + 1),

where the last line uses Lemma 4 of Xie et al. (2023).

26

Part I

Proofs for SimGolf (Section 3)
As described in Section 3.1, the main difference between SimGolf and GOLF lies in the construction of the
confidence sets. The most important new step in the proof of Theorem 3.1 is to show that the local simulator-
based confidence set construction in Line 10 is valid in the sense that the property Eq. (2) holds with high
probability. From here, the sample complexity bound follows by adapting the change-of-measure argument
based on coverability from Xie et al. (2023).

To this end, this part of the appendix is organized as follows. We first state and prove technical lemmas
concerning realizability (Lemma 3.1) and the confidence set construction (Lemma C.1 and Lemma C.2) in
Appendix C. Then, in Appendix D, we prove Theorem 3.1 as a consequence.

C Preliminary Lemmas for Proof of Theorem 3.1
For this section, we define

ℓ(t)h (g) ∶= (gh(x
(t)
h ,a(t)h) −

1

K

K

∑
k=1
(r(t,k)h +max

a∈A
gh+1(x(t,k)h+1 , a)))

2

and

ℓ(t)h (g) ∶= E
π(t)[(gh(xh,ah) − Th[gh+1](xh,ah))2],

where (x(t)h ,a(t)h ,r(t,k)h ,x(t,k)h+1) are as in Algorithm 1.

Lemma C.1. With probability at least 1 − δ, for all h ∈ [H], t ∈ [N], and g ∈ Q,

∑
i<t

ℓ(i)h (g) ≤ 3∑
i<t

Eπ(i)[(gh(xh,ah) − Th[gh+1](xh,ah))2] +
8N

K
+ 16 log(2HN ∣Q∣δ−1),

and

∑
i<t

Eπ(i)[(gh(xh,ah) − Th[gh+1](xh,ah))2] ≤ 4∑
i<t

ℓ(i)h (g) +
8N

K
+ 64 log(2HN ∣Q∣δ−1).

Proof of Lemma C.1. Let t ∈ [N] and h ∈ [H] be fixed. Let us denote z(t)h = {(r
(t,k)
h ,x(t,k)h+1)}k∈[K]. Define

a filtration

H(t) = σ(τ (1),z(1)1 , . . . ,z(1)H , . . . ,τ (t),z(t)1 , . . . ,z(t)H),

where τ (i) is the trajectory generated in the ith iteration of Algorithm 1 (see Line 7). Fix g ∈ Q. Observe
that ℓ(i)h (g) ∈ [0,4], so Lemma B.3 ensures that with probability at least 1 − δ,

∑
i<t

ℓ(i)h (g) ≤
3

2
∑
i<t

E[ℓ(i)h (g) ∣ H
(i−1)] + 16 log(2δ−1),

and

∑
i<t

E[ℓ(i)h (g) ∣ H
(i−1)] ≤ 2∑

i<t
ℓ(i)h (g) + 32 log(2δ

−1). (9)

27

By the AM-GM inequality, for all i < t, we can bound

E[ℓ(i)h (g) ∣ H
(i−1)]

= E
⎡⎢⎢⎢⎢⎣
(gh(x(i)h ,a(i)h) −

1

K

K

∑
k=1
(r(i,k)h +max

a∈A
gh+1(x(i,k)h+1 , a)))

2

∣ H(i−1)
⎤⎥⎥⎥⎥⎦

≤ 2E[(gh(x(i)h ,a(i)h) − Th[gh+1](x
(i)
h ,a(i)h))

2 ∣ H(i−1)]

+ 2E
⎡⎢⎢⎢⎢⎣
(Th[gh+1](x(i)h ,a(i)h) −

1

K

K

∑
k=1
(r(i,k)h +max

a∈A
gh+1(x(i,k)h+1 , a)))

2

∣ H(i−1)
⎤⎥⎥⎥⎥⎦
.

and

E[ℓ(i)h (g) ∣ H
(i−1)]

≥ 1

2
E[(gh(x(i)h ,a(i)h) − Th[gh+1](x

(i)
h ,a(i)h))

2 ∣ H(i−1)]

−E
⎡⎢⎢⎢⎢⎣
(Th[gh+1](x(i)h ,a(i)h) −

1

K

K

∑
k=1
(r(i,k)h +max

a∈A
gh+1(x(i,k)h+1 , a)))

2

∣ H(i−1)
⎤⎥⎥⎥⎥⎦
.

We have

E[(gh(x(i)h ,a(i)h) − Th[gh+1](x
(i)
h ,a(i)h))

2 ∣ H(i−1)] = Eπ(i)[(gh(xh,ah) − Th[gh+1](xh,ah))2]

and

E
⎡⎢⎢⎢⎢⎣
(Th[gh+1](x(i)h ,a(i)h) −

1

K

K

∑
k=1
(r(i,k)h +max

a∈A
gh+1(x(i,k)h+1 , a)))

2

∣ H(i−1)
⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣
E
⎡⎢⎢⎢⎢⎣
(Th[gh+1](xh,ah) −

1

K

K

∑
k=1
(r(i,k)h +max

a∈A
gh+1(x(i,k)h+1 , a)))

2

∣ xh = x(i)h ,ah = a(i)h
⎤⎥⎥⎥⎥⎦
∣ H(i−1)

⎤⎥⎥⎥⎥⎦
.

Since
E[r(i,k)h +max

a∈A
gh+1(x(i,k)h+1 , a) ∣ xh = x(i)h ,ah = a(i)h] = Th[gh+1](x

(i)
h ,a(i)h)

and {(r(i,k)h ,x(i,k)h+1)}k∈[K] are i.i.d. conditioned on (xh,ah) = (x(i)h ,a(i)h), we have,

E
⎡⎢⎢⎢⎢⎣
(Th[gh+1](xh,ah) −

1

K

K

∑
k=1
(r(i,k)h +max

a∈A
gh+1(x(i,k)h+1 , a)))

2

∣ xh = x(i)h ,ah = a(i)h
⎤⎥⎥⎥⎥⎦

= 1

K
E[(Th[gh+1](xh,ah) − (r(i,k)h +max

a∈A
gh+1(x(i,k)h , a)))

2

∣ xh = x(i)h ,ah = a(i)h]

≤ 4

K
,

so that

E
⎡⎢⎢⎢⎢⎣
(Th[gh+1](x(i)h ,a(i)h) −

1

K

K

∑
k=1
(r(i,k)h +max

a∈A
gh+1(x(i,k)h+1 , a)))

2

∣ H(i−1)
⎤⎥⎥⎥⎥⎦
≤ 4

K
.

Combining these bounds with (9) and rearranging thus gives

∑
i<t

ℓ(i)h (g) ≤ 3∑
i<t

Eπ(i)[(gh(xh,ah) − Th[gh+1](xh,ah))2] +
8N

K
+ 16 log(2δ−1),

28

and

∑
i<t

Eπ(i)[(gh(xh,ah) − Th[gh+1](xh,ah))2] ≤ 4∑
i<t

ℓ(i)h (g) +
8N

K
+ 64 log(2δ−1).

Taking a union bound yields the result.

Lemma C.2. Define βstat = 16 log(2HN ∣Q∣δ−1). Suppose we set K ≥ 8N
βstat

and β ≥ 2βstat. Then with
probability at least 1 − δ, for all t ∈ [N] and h ∈ H:

• Q⋆ ∈ Q(t).
• All g ∈ Q(t) satisfy

∑
i<t

Eπ(i)[(gh(xh,ah) − Th[gh+1](xh,ah))2] ≤ 9β.

Proof of Lemma C.2. Condition on the event in Lemma C.1. For any fixed t ∈ [N] and h ∈ [H], we have
that

∑
i<t

ℓ(i)h (Q
⋆) ≤ 3∑

i<t
Eπ(i)[(Q⋆h(xh,ah) − Th[Q⋆h+1](xh,ah))2] +

8N

K
+ 16 log(2HN ∣Q∣δ−1)

≤ 8N

K
+ 16 log(2HN ∣Q∣δ−1) ≤ 2βstat,

where the first inequality uses that Q⋆h = Th[Q⋆h+1] and the second inequality uses our choice for K. It follows
that Q⋆ ∈ Q(t) as long as β ≥ 2βstat.

To prove the second claim, we note that for all g ∈ Q(t), by construction,

∑
i<t

Eπ(i)[(gh(xh) − Th[gh+1](xh,ah))2] ≤ 4∑
i<t

ℓ(i)h (g) +
8N

K
+ 64 log(2HN ∣Q∣δ−1)

≤ 4∑
i<t

ℓ(i)h (g) + 5βstat ≤ 9β.

D Proof of Theorem 3.1
Proof of Theorem 3.1. From Lemma C.2, the parameter setting in the theorem statement ensures that
with probability at least 1 − δ, for all t ∈ [2 ..N], Q⋆ ∈ Q(t), and all g ∈ Q(t) satisfy

∑
i<t

Eπ(i)[(gh(xh) − Th[gh+1](xh,ah))2] ≤ 9β. (10)

for all h. Let us condition on this event going forward. First, note that since Q⋆ ∈ Q(t) for all t ∈ [2 ..N], we
have that

J(π⋆) ≤ E [max
a∈A

Q⋆1(x1, a)] ≤ sup
g∈Q(t)

E [max
a∈A

g1(x1, a)] . (11)

On the other hand, we have g(t) ∈ argmaxg∈Q(t) ∑s<tmaxa∈A g1(x(s)1 , a), and so since x(1)1 ,x(2)1 , . . . are i.i.d. and
any g ∈ Q(t) take values in [0,H], we have that by Hoeffding’s inequality, there is an event E of probability at
least 1 − δ under which

∀t ∈ [2 ..N],∀g ∈ Q, ∣E [max
a∈A

g1(x1, a)] −
1

t − 1∑s<t
max
a∈A

g1(x(s)1 , a)∣ ≤
√
(t − 1)−1 log(2N ∣Q∣/δ). (12)

29

This implies that under E , we have

∀t ∈ [2 ..N], sup
g∈Q(t)

E [max
a∈A

g1(x1, a)] ≤ sup
g∈Q(t)

1

t − 1∑s<t
max
a∈A

g1(x(s)1 , a) +
√
(t − 1)−1 log(2N ∣Q∣/δ),

= 1

t − 1∑s<t
max
a∈A

g(t)1 (x
(s)
1 , a) +

√
(t − 1)−1 log(2N ∣Q∣/δ),

≤ E [max
a∈A

g(t)1 (x1, a)] + 2
√
(t − 1)−1 log(2N ∣Q∣/δ), (13)

where in the last inequality we have used (12) with f = g(t). Thus, summing (13) for t = 2, . . .N and using
(11) gives that under E :

N

∑
t=2

J(π⋆) ≤
N

∑
t=2

E[g(t)1 (x1,a1)] + 4
√
N log(2N ∣Q∣/δ),

and so since J(π⋆) ≤H,
N

∑
t=1

J(π⋆) ≤
N

∑
t=1

E[g(t)1 (x1,a1)] + 4
√
N log(2N ∣Q∣/δ) +H. (14)

On the other hand, using that g(t)H+1 ≡ 0, we get

N

∑
t=1
(E [g(t)1 (x1,a1)] − J(π(t)))

≤
N

∑
t=1

H

∑
h=1

Eπ(t) [g(t)h (xh,ah) − rh −max
a∈A

g(t)h+1(xh+1, a)] ,

=
N

∑
t=1

H

∑
h=1

Eπ(t) [g(t)h (xh,ah) −E [rh +max
a∈A

g(t)h+1(xh+1, a) ∣ xh,ah]] , (law of total expectation)

=
N

∑
t=1

H

∑
h=1

Eπ(t) [g(t)h (xh,ah) − Th[g(t)h+1](xh,ah)] .

and so, by the potential lemma (Lemma B.7) and (10), we have

≤ 6H
√
CcovβN log(2N) + 2H2Ccov.

Combining this with (14), we obtain that with probability at least 1 − 2δ,

N

∑
t=1
(J(π⋆) − J(π(t))) ≤ 6H

√
CcovβN log(2N) + 4

√
N log(2N ∣Q∣/δ) + 3H2Ccov.

It follows that if N = Õ(H2Ccovβ/ε2), then the policy

π̂ ∈ unif(π(1), . . . , π(N))

returned by SimGolf satisfies, with probability at least 1 − δ:

J(π⋆) −E[J(π̂)] ≤ ε.

Sample complexity. We now bound the number of episodes. Note that that within an iteration t of
SimGolf, the local simulator is called KH times to update the confidence set, where K ≤ N/ log(2HN ∣Q∣/δ)).
Consequently, the total sample complexity is bounded by

HNK ≤ Õ(H5C2
cov log(∣Q∣/δ)/ε4).

30

Part II

Proofs for RVFS (Section 4)

E Full Version of RVFS

Algorithm 3 displays the full version of RVFS. Algorithm 4 contains an “outer-level” wrapper for RVFS, RVFS.bc,
which invokes RVFS and extracts an executable policy with imitation learning, and Algorithm 5 contains the
subroutine used within Algorithm 3 to approximate Bellman backups for value functions using local simulator
access. Additionally, we display the variant of RVFS for Exogenous Block MDPs, described in Section 4.4,
in Algorithms 6 and 7. Before diving into the proof, we first describe how the full version of the algorithm
differs from the informal version presented in the main body in greater detail.

Differences between full version (Algorithm 3) and informal version (Algorithm 2) of RVFS.
The main difference between Algorithm 2 and its full version in Algorithm 3 is that in the former we simply
assume access to quantities involving conditional expectations such as:

• The bellman backups Ph[V̂h+1], which are required to evaluate the actions of RVFS’s policies (see (4)),
and to perform the tests in Line 8; and

• The value functions Eπ̂h+1∶H [∑H
ℓ=h rτ ∣ xh = x,ah = a] in Line 15, which are needed in the regression

problem in Line 16.

These quantities are not available to the algorithm directly, but they can be estimated using the local
simulator. This is reflected in the full version of RVFS in Algorithm 3.

Extracting policies from value functions. Let us briefly comment in more detail on how Algorithm 3
extracts the policy π(t) from the optimistic value function f (t) ∈ V at iteration t. From the Bellman
equation, the ideal choice would be to set π(t)h (x) = argmaxa∈APh[f (t)h+1](x, a), but this requires knowledge
of the transition distribution. Instead, given parameters ε, δ ∈ (0,1), SimGolf invokes Algorithm 5 via
π(t)h (x) ∈ argmaxa∈A P̂h,ε,δ[f (t)h+1](x, a). The operator P̂h,ε,δ[f] (Algorithm 5), when given input (x, a) ∈ X ×A
and fh+1 ∶ X → R, uses the local simulator to generate Nsim ≥ 1 next states x(1)h+1, . . . ,x

(Nsim)
h+1

i.i.d.∼ Th(⋅ ∣ x, a) to
estimate the bellman back-up Ph[fh+1] via 1

Nsim
∑Nsim

i=1 (r
(i)
h + fh+1(x

(i)
h+1)), where r(1)h , . . . ,r

(Nsim)
h

i.i.d.∼ Rh(x, a).
The number of samples Nsim in Algorithm 5 is set as a function of (ε, δ) such that with probability at least
1 − δ, ∣P̂h,ε,δ[fh+1](x, a) − Ph[fh+1](x, a)∣ ≤ ε.

Invoking the algorithm. The base invocation of RVFS takes the form

V̂1∶H ← RVFS0(V̂1∶H = arbitrary, V̂1∶H = {V}Hh=1,C0∶H = {∅}
H
h=0,B0∶H = {∅}

H
h=0, t1∶H = {1}

H
h=1;⋯).

Whenever this call returns, the greedy policy induced by V̂1∶H is guaranteed to be near-optimal. Naively,
the policy induced by V̂1∶H is non-executable, and must be computed by invoking the local simulator through
Line 14. To provide an end-to-end guarantee to learn an executable policy, the outer-level algorithm, RVFS.bc
(Algorithm 4, invokes RVFS0, then extracts an executable policy from V̂1∶H using imitation learning.

Subsequent recursive calls take the form

(V̂h∶H , V̂h∶H ,Ch∶H ,Bh∶H , th∶H) ← RVFSh(V̂h+1∶H , V̂h+1∶H ,Ch∶H ,Bh∶H , th∶H ;V, ε, δ).

For such a call, the arguments above are:

• V̂h+1∶H : Value function estimates for subsequent layers.

• V̂h+1∶H : Value function confidence sets V̂h+1∶H ⊂ Vh+1∶H , which are used in the test on Line 14 to quantify
uncertainty on new state-action pairs and decide whether to expand the core-sets.

31

• Ch∶H : Core-sets for current and subsequent layers.

• Bh∶H : Buffers of tuples (xh−1, ah−1, V̂h, V̂h, th), which record relevant features of the algorithm’s state
whenever the test on Line 14 fails and a recursive call is performed.

• th∶H : Counters that track the number of times Algorithm 5 is called in the test on Line 14, which
facilitate tuning of confidence parameters.

Importantly, the confidence sets V̂h+1∶H do not need to be explicitly maintained, and can be invoked implicitly
whenever a regression oracle for the value function class is available (cf. discussion in Section 4). Likewise,
the buffers Bh∶H are only used in our analysis, and do not need to be explicitly maintained.

32

E.1 RVFS Pseudocode

Algorithm 3 RVFSh: Recursive Value Function Search
1: parameters: Value function class V, suboptimality ε ∈ (0,1), confidence δ ∈ (0,1).
2: input:

• Level h ∈ {0, . . . ,H}.
• Value function estimates V̂h+1∶H , confidence sets V̂h+1∶H , state-action collections Ch∶H , buffers Bh∶H ,

and counters th∶H .
/* Initialize parameters. */

3: Set M ← ⌈8ε−1CpushH⌉.
4: Set Ntest ← 28M2Hε−1 log(8M6H8ε−2δ−1), Nreg ← 28M2ε−1 log(8∣V∣2HM2δ−1),
5: Set Nest(k) ← 2N2

reg log(8ANregHk3/δ) and δ′ ← δ/(8M7N2
testH

8∣V∣).
6: Set ε2reg ←

9MH2 log(8M2H ∣V∣2/δ)
Nreg

+ 34MH3 log(8M6N2
testH

8/δ)
Ntest

.

7: Set β(t) ←
√

2 log1/δ′(8AM ∣V∣t2/δ).
/* Test the fit for the estimated value functions V̂h+1∶H at future layers. */

8: for (xh−1, ah−1) ∈ Ch do
9: for layer ℓ =H, . . . , h + 1 do

10: for n = 1, . . . ,Ntest do
11: Draw xh ∼ Th−1(⋅ ∣ xh−1, ah−1), then draw xℓ−1 by rolling out with π̂h∶H , where11

∀τ ∈ [H], π̂τ(⋅) ∈ argmax
a∈A

P̂τ,ε,δ′[V̂τ+1](⋅, a), with V̂H+1 ≡ 0. (15)

12: for aℓ−1 ∈ A do
/* Number of times P̂ℓ−1,ε,δ′ (Algorithm 5) is called in the test on Line 14. */

13: Update tℓ ← tℓ + 1.
/* Test fit; if test fails, re-fit value functions V̂h+1∶ℓ up to layer ℓ. */

14: if supf∈V̂ℓ
∣(P̂ℓ−1,ε,δ′[V̂ℓ] − P̂ℓ−1,ε,δ′[fℓ])(xℓ−1, aℓ−1)∣ > ε + ε ⋅ β(tℓ) then

15: Cℓ ← Cℓ ∪ {(xℓ−1, aℓ−1)} and Bℓ ← Bℓ ∪ {(xℓ−1, aℓ−1, V̂ℓ, V̂ℓ, tℓ)}.
16: for τ = ℓ, . . . , h + 1 do
17: (V̂τ ∶H , V̂τ ∶H ,Cτ ∶H ,Bτ ∶H , tτ ∶H) ← RVFSτ(V̂τ+1∶H , V̂τ+1∶H ,Cτ ∶H ,Bτ ∶H , tτ ∶H ;V, ε, δ).
18: go to line 8.
19: if h = 0 then return: (V̂1∶H , ⋅, ⋅, ⋅, ⋅).

/* Re-fit V̂h and build a new confidence set. */

20: for (xh−1, ah−1) ∈ Ch do
21: Set Dh(xh−1, ah−1) ← ∅.
22: for i = 1, . . . ,Nreg do
23: Sample xh ∼ Th−1(⋅ ∣ xh−1, ah−1).
24: Let V̂h(xh) be a Monte-Carlo estimate for Eπ̂h∶H [∑H

ℓ=h rℓ ∣ xh] computed by collecting Nest(∣Ch∣)
trajectories starting from xh and rolling out with π̂h∶H .

25: Update Dh(xh−1, ah−1) ← Dh(xh−1, ah−1) ∪ {(xh, V̂h(xh))}.
26: Let V̂h ∶= argminf∈V̂ ∑(xh−1,ah−1)∈Ch ∑(xh,vh)∈Dh(xh−1,ah−1)(f(xh) − vh)2.
27: Compute value function confidence set

V̂h ∶=
⎧⎪⎪⎨⎪⎪⎩
f ∈ V

RRRRRRRRRRRR
∑

(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,-)∈Dh(xh−1,ah−1)
(V̂h(xh) − f(xh))

2 ≤ ε2reg
⎫⎪⎪⎬⎪⎪⎭
. (16)

28: return (V̂h∶H , V̂h∶H ,Ch∶H ,Bh∶H , th∶H).

33

Algorithm 4 RVFS.bc: Learn an executable policy with RVFS via behavior cloning.
1: input: Value function class V, policy class Π, suboptimality ε ∈ (0,1), confidence δ ∈ (0,1).

/* Set parameters for RVFS. */

2: Set εRVFS ← εH−1/48.
3: Set V̂1∶H ← arbitrary, V̂1∶H ← V, C0∶H ← ∅, B0∶H ← ∅, and ti ← 0, for all i ∈ [0 ..H].

/* Set parameters for BehaviorCloning. */

4: Set M ← ⌈8ε−1RVFSCpushH⌉ and Ntest ← 28M2Hε−1RVFS log(80M6H8ε−2RVFSδ
−1).

5: Nreg ← 28M2ε−1RVFS log(80∣V∣2HM2δ−1) and δ′ = δ
40M7N2H8∣V∣ .

/* Get value functions from RVFS */

6: (V̂1∶H , ⋅, ⋅, ⋅, ⋅) ← RVFS0(V̂1∶H , V̂1∶H ,C0∶H ,B0∶H , t0∶H ;V,Nreg,Ntest, εRVFS, δ/10).
/* Extract executable policy via BehaviorCloning algorithm for imitation learning. */

7: Define π̂RVFS
h (⋅) ∈ argmaxa∈A P̂h,εRVFS,δ′[V̂h+1](⋅, a).

8: Compute π̂1∶H ← BehaviorCloning(Π, ε, π̂RVFS
1∶H , δ/2)

9: return: π̂1∶H .

Algorithm 5 P̂h,ε,δ[f]: Estimate conditional expectation E[rh + f(xh+1) ∣ xh = ⋅,ah = ⋅].
1: parameters: Layer h, suboptimality ε ∈ (0,1), confidence δ ∈ (0,1), target function f .
2: input: (x, a) ∈ X ×A.
3: Set Nsim ∶= 2 log(1/δ)/ε2.
4: Set D ← ∅
5: for i = 1, . . . ,Nsim do
6: Sample rh ∼ Rh(x, a) and xh+1 ∼ Th(⋅ ∣ x, a). // Uses local simulator access.

7: Update D ← D ∪ {(rh,xh+1)}.
8: return: N−1sim ⋅ ∑(r,x)∈D(r + f(x)).

34

E.2 RVFSexo Pseudocode

Algorithm 6 RVFSexoh : Recursive Value Function Search for Exogenous Block MDPs
1: parameters: Value function class V , suboptimality ε ∈ (0, 1), seeds ζ1∶H ∈ (0, 1), confidence δ ∈ (0, 1).
2: input: Level h ∈ [0 ..H], value function estimates V̂h+1∶H , confidence sets V̂h+1∶H , state-action

collections Ch∶H , and buffers Bh∶H , and counters th∶H .
/* Initialize parameters. */

3: Set M ← ⌈8ε−2CexoSAH⌉.
4: Set Ntest ← 28M2Hε−2 log(8M6H8ε−2δ−1), Nreg ← 28M2ε−2 log(8∣V∣HM2δ−1).
5: Set Nest(k) ← 2N2

reg log(8ANregHk3/δ) and δ′ ← δ/(4M7N2
testH

8∣V∣).
6: Set ε2reg ←

9MH2 log(8M2H ∣V∣/δ)
Nreg

+ 34MH3 log(8M6N2
testH

8/δ)
Ntest

.

7: Set β(t) ←
√

log1/δ′(8MA∣V∣t2/δ).
/* Test the fit for the estimated value functions V̂h+1∶H at future layers. */

8: for (xh−1, ah−1) ∈ Ch do
9: for layer ℓ =H, . . . , h + 1 do

10: for n = 1, . . . ,Ntest do
11: Draw xh ∼ Th−1(⋅ ∣ xh−1, ah−1), then draw xℓ−1 by rolling out with π̂h+1∶H , where

∀τ ∈ [H], π̂τ(⋅) ∈ argmax
a∈A

⌈P̂τ,ε2,δ′[V̂τ+1](⋅, a) ⋅ ε−1 + ζτ ⌉, with V̂H+1 ≡ 0.

12: for aℓ−1 ∈ A do
13: Update tℓ ← tℓ + 1.

/* Test fit; if test fails, re-fit value functions V̂h+1∶ℓ up to layer ℓ. */

14: if supf∈V̂ℓ
∣(P̂ℓ−1,ε2,δ′[V̂ℓ] − P̂ℓ−1,ε2,δ′[fℓ])(xℓ−1, aℓ−1)∣ > ε2 + ε2 ⋅ β(tℓ) then

15: Cℓ ← Cℓ ∪ {(xℓ−1, aℓ−1)} and Bℓ ← Bℓ ∪ {(xℓ−1, aℓ−1, V̂ℓ, V̂ℓ, tℓ)}.
16: for τ = ℓ, . . . , h + 1 do
17: (V̂τ ∶H , V̂τ ∶H ,Cτ ∶H ,Bτ ∶H , tτ ∶H) ← RVFSexoτ (V̂τ+1∶H , V̂τ+1∶H ,Cτ ∶H ,Bτ ∶H , tτ ∶H ;V, ε, ζ1∶H , δ).
18: go to line 8.
19: if h = 0 then return (V̂1∶H , ⋅, ⋅, ⋅, ⋅).

/* Re-fit V̂h and build a new confidence set. */

20: for (xh−1, ah−1) ∈ Ch do
21: Set Dh(xh−1, ah−1) ← ∅.
22: for i = 1, . . . ,Nreg do
23: Sample xh ∼ Th−1(⋅ ∣ xh−1, ah−1).
24: For each a ∈ A, let V̂h(xh) be a Monte-Carlo estimate for Eπ̂h∶H [∑H

ℓ=h rℓ ∣ xh] computed by collecting
Nest(∣Ch∣) trajectories starting from xh and rolling out with π̂h∶H .

25: Update D(xh−1, ah−1) ← D(xh−1, ah−1) ∪ {(xh, V̂h(xh))}.
26: Let V̂h ∶= argminf∈Vh

∑(xh−1,ah−1)∈Ch ∑(xh,vh)∈Dh(xh−1,ah−1)(f(xh) − vh)2.
27: Compute value function confidence set

V̂h ∶=
⎧⎪⎪⎨⎪⎪⎩
f ∈ Vh

RRRRRRRRRRRR
∑

(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,-)∈Dh(xh−1,ah−1)
(V̂h(xh) − f(xh))

2 ≤ ε2reg
⎫⎪⎪⎬⎪⎪⎭
. (17)

28: return (V̂h∶H , V̂h∶H ,Ch∶H ,Bh∶H , th∶H).

35

Algorithm 7 RVFSexo.bc: Learn an executable policy with RVFSexo via imitation learning.
1: input: Decoder class Φ, suboptimality ε ∈ (0,1), confidence δ ∈ (0,1).

/* Set parameters for RVFS and define the value function and policy classes. */

2: Set εRVFS ← εH−1/48.
3: Set V = V1∶H , where Vh = {x↦ f(ϕ(x)) ∶ f ∈ [0,H]S , ϕ ∈ Φ}, ∀h ∈ [H].
4: Set Π = Π1∶H , where Πh = {π(⋅) ∈ argmaxa∈A f(ϕ(⋅), a) ∶ f ∈ [0,H]S×A, ϕ ∈ Φ}, ∀h ∈ [H].

/* Set parameters for BehaviorCloning. */

5: Set Nbc ← 8H2 log(4H ∣Π∣/δ)/ε, Nboost ← log(1/δ)/ log(24SAHε), Neval ← 162ε−2 log(2Nboost/δ).
6: Set M ← ⌈8ε−1RVFSSACcovH⌉, Ntest ← 28M2Hε−1RVFS log(80M6H8Nboostε

−2
RVFSδ

−1), and δ′ = δ
40M7N2H8∣V∣Nboost

.
7: Set Nreg ← 28M2ε−1RVFS log(80∣Φ∣2HM2Nboostδ

−1).
8: Set V̂1∶H ← arbitrary, V̂1∶H ← V, C0∶H ← ∅, B0∶H ← ∅, iopt = 1, and Jmax = 0.

/* Repeatedly invoke RVFSexo and extract policy with BehaviorCloning to boost confidence. */

9: for i = 1, . . . ,Nboost do
/* Invoke RVFSexo. */

10: (V̂ (i)
1∶H , ⋅, ⋅, ⋅, ⋅) ← RVFSexo0 (V̂1∶H , V̂1∶H ,C0∶H ,B0∶H ;V,Nreg,Ntest, εRVFS, δ/(10Nboost)).

/* Imitation learning with BehaviorCloning. */

11: Define π̂RVFS
h (⋅) ∈ argmaxa∈A P̂h,εRVFS,δ′[V̂ (i)

h+1](⋅, a).
12: Compute π̂(i)1∶H ← BehaviorCloning(Π, ε, π̂RVFS

1∶H , δ/(2Nboost)).
/* Evaluate current policy. */

13: v = 0.
14: for = 1, . . . ,Neval do
15: Sample trajectory (x1,a1,r1, . . . ,xH ,aH ,rH) by executing π̂(i)1∶H .
16: Set v ← v +∑H

h=1 rh.
17: Set Ĵ(π̂(i)1∶H) ← v/Neval.
18: if Ĵ(π̂(i)1∶H) > Jmax then
19: Set iopt = i.
20: Set Jmax = Ĵ(π̂(i)1∶H).
21: return: π̂1∶H = π̂(iopt)1∶H .

36

F Organization
This remainder of Part II of the appendix contains the proofs for the main results concerning the RVFS
algorithm (Theorem 4.1 and Theorem 4.2).

• First, in Appendix G we give a brief overview of the analysis and introduce a restricted set of benchmark
policies which will be used throughout the proofs for Theorem 4.1 and Theorem 4.2. The benchmark
policy class is central to the regret decomposition for RVFS, and facilitates an analysis that does not
require optimism.

• In Appendix H, we prove Theorem 4.1 under Setup II (V π-realizability). This constitutes the main
technical development for Theorem 4.1. The central technical results proven here are Theorem H.1,
Theorem H.2 and which generalize Theorem 4.1.

• In Appendix I, we prove Theorem 4.1 under Setup I (V ⋆-realizability), as a straightforward consequence
of the tools developed in Appendix H (Theorem H.1 and Theorem H.2).

• Finally, in Appendix J, we prove Theorem 4.2 (analysis of RVFSexo for the ExBMDP problem). This
analysis has a similar structure to the proof of Theorem 4.1 under Setup II in Appendix H, and builds
on the same analysis techniques, but requires specialized arguments due to extra technical challenges in
the ExBMDP setting.

• Appendix L gives a self-contained presentation of the BehaviorCloning algorithm for imitation learning,
which is used within RVFS.bc and RVFSexo.bc.

G Overview of Analysis and Preliminaries
In this section, we present some notation, technical tools, and preliminary results we require for the analysis
of RVFS in the settings we described in Section 4. We start by defining a set of restricted benchmark policies
used in the regret decomposition for RVFS.

G.1 Benchmark Policy Class and Randomized Policies
As described above, central to our analysis is a set of O(ε)-suboptimal policies against which we benchmark
the policies returned RVFS, which emulate certain consequences of the ∆-gap assumption (Assumption 4.4).
Before introducing this concept formally, we first define the notion of a randomized policy.

Induced stochastic policies. Given an arbitrary collection of independent random variables Q̃ =
(Q̃h(x, a))(h,x,a)∈[H]×X×A, we say that a policy π is induced by Q̃ if π satisfies

∀h ∈ [H],∀x ∈ X , πh(x) ∈ argmax
a′∈A

Q̃h(x, a′), (18)

where we use the bold notation πh(x) as shorthand for the random variable ah ∼ πh(x) ∈ ∆(A); in other
words, for each x ∈ X , πh(x) ∈ ∆(A) is the distribution induced by sampling Qh(x, ⋅) and playing the action
πh(x) ∈ argmaxa′∈A Q̃h(x, a′). If there are ties in (18), we break them by picking the action with the smallest
index; we assume without loss of generality that actions in A are index from 1, . . . , ∣A∣.

Benchmark policy class. We now define the benchmark policy class as follows.

Definition G.1 (Benchmark policy class). For ε ∈ (0, 1), let Πε ⊆ ΠS be the set of stochastic policies such that
π ∈ Πε if and only if there exists a collection of independent random variables Q̃ = (Q̃h(x, a))(h,x,a)∈[H]×X×A
in [0,H] such that:

• π is induced by Q̃ (i.e. Eq. (18) is satisfied); and

• For all (h,x, a) ∈ [H] × X ×A, we have ∣(Q̃h −Qπ
h)(x, a)∣ ≤ ε, almost surely under the draw of Q̃.

37

Intuitively, the set Πε contains the set of all (stochastic) policies corresponding to (randomized) state-action
value functions that are point-wise O(ε) close to Q⋆. We formalize this claim in the next lemma.

Lemma G.1 (Suboptimality of benchmark policies). Let ε ∈ (0, 1) be given. Let π̃ ∈ Πε be a stochastic policy
induced by a collection of (independent) random state-action value functions (Q̃h(x, a))(h,x,a)∈[H]×X×A ⊂ [0,H]
such that for all h ∈ [H] and all (x, a) ∈ X ×A:

∣Q̃h(x, a) −Qπ̃
h(x, a)∣ ≤ ε almost surely, and π̃h(x) ∈ argmax

a′∈A
Q̃h(x, a′).

Then, for all h ∈ [H],

∀x ∈ X , V ⋆h (x) ≤ V π̃
h (x) + 3Hε. (19)

Proof of Lemma G.1. Using backward induction over ℓ =H, . . . ,1, we start by showing that all ℓ:

∀(x, a) ∈ X ×A, Q⋆ℓ (x, a) ≤ Q̃ℓ(x, a) + 2ε ⋅ (H − ℓ + 1). (20)

almost surely. We then instantiate this with ℓ = 1 and use the fact that ∥Q̃h −Qπ̃
h∥∞ ≤ ε to get the desired

result.

Base case [ℓ = H]. By definition of the state-action value function, we have, for all π ∈ ΠS, Q⋆H ≡ Qπ
H .

Thus, since sup(x,a)∈X×A ∣(Q̃H −Qπ̃
H)(x, a)∣ ≤ ε almost surely (by definition of Q̃1∶H), we get that

∀(x, a) ∈ X ×A, ∣Q̃H(x, a) −Q⋆H(x, a)∣ ≤ ε,

almost surely. This implies (19) for ℓ =H.

General case [ℓ < h]. Fix h ∈ [H − 1] and suppose that (20) holds for all ℓ ∈ [h + 1, . . . ,H] almost surely.
We show that it holds for ℓ = h almost surely. Fix (x, a) ∈ X ×A. We have

Q⋆h(x, a) − Q̃h(x, a) = Th[Q⋆h+1](x, a) − Th[Q̃h+1](x, a) + Th[Q̃h+1](x, a) − Q̃h(x, a),
≤ 2ε ⋅ (H − h) + Th[Q̃h+1](x, a) − Q̃h(x, a), (21)

almost surely, where the last step follows by the induction hypothesis. We now bound Th[Q̃h+1](x, a)−Q̃h(x, a).
We have, almost surely, that

Th[Q̃h+1](x, a) − Q̃h(x, a) = Th[Q̃h+1](x, a) − Ph[V π̃
h+1](x, a) + Ph[V π̃

h+1](x, a) − Q̃h(x, a),
= Th[Q̃h+1](x, a) − Ph[V π̃

h+1](x, a) +Qπ̃
h(x, a) − Q̃h(x, a),

= Th[Q̃h+1](x, a) − Ph[V π̃
h+1](x, a) + ε, (by the assumption on Q̃h)

= E [max
a′∈A

Q̃h+1(xh+1, a′) −Qπ̃
h+1(xh+1, π̃h+1(xh+1)) ∣ xh = x,ah = a] + ε,

= E [Q̃h+1(xh+1, π̃h+1(xh+1)) −Qπ̃
h+1(xh+1, π̃h+1(xh+1)) ∣ xh = x,ah = a] + ε,

≤ 2ε, (22)

where the penultimate inequality follows by the definition of π̃h+1, and the last inequality follows by the fact
that ∥Q̃h+1 −Qπ̃

h+1∥∞ ≤ ε almost surely, by assumption. Plugging (22) into (21) completes the induction, and
so we have that

∀(x, a) ∈ X ×A, Q⋆1(x, a) ≤ Q̃1(x, a) ≤ 2Hε.

In particular, taking the max over a on both sides and using the definition of π̃, we get that

∀x ∈ X , V ⋆1 (x) ≤ Q̃1(x, π̃1(x)) ≤ 2Hε,

38

almost surely. Combining this with the fact that Q̃1(x, π̃1(x)) ≤ Qπ̃
1 (x, π̃1(x)) + ε, almost surely (since

∥Q̃1 −Qπ̃
1 ∥∞ ≤ ε almost surely by assumption) implies that

V ⋆1 (x) ≤ Qπ
1 (x, π̃1(x)) + 2Hε + ε.

Taking expectation over π̃1(x) and bounding 2Hε + ε by 3Hε leads to the desired result.

G.2 Additional Preliminaries
The following lemma gives a guarantee for the Bellman backup approximation algorithm P̂ (Algorithm 5)
that is tailored to the analysis of RVFS.

Lemma G.2. Let ε, δ, δ′ ∈ (0,1), B > 0, and h ∈ [H], be given and let V be a finite function class. For any
sequence (xi)i≥1 ⊂ X of state action pairs, the outputs (P̂h,ε,δ′[f](xi, a))i≥1,a∈A of Algorithm 5 satisfy, with
probability at least 1 − δ,

∀i ≥ 1,∀f ∈ V,∀a ∈ A, ∣P̂h,ε,δ′[f](xi, a) − Ph[f](xi, a)∣ ≤ ε ⋅
√

2 log1/δ′(2Ai2∣V∣/δ).

Proof of Lemma G.2. By Hoeffding’s inequality (Hoeffding, 1963) and the union bound over a ∈ A and
f ∈ V, we have that for any i ≥ 1, with probability at least 1 − δ/(2i2),

∀f ∈ V,∀a ∈ A, ∣P̂h,ε,δ′[f](xi, a) − Ph[f](xi, a)∣ ≤ ε ⋅
√

2 log1/δ′(2Ai2∣V∣/δ).

The desired result follows by the union bound over i ≥ 1 and the fact that ∑i≥1 1/i2 = π2/6 ≤ 2.

H Guarantee under V π-Realizability (Proof of Theorem 4.1, Setup
II)

In this section, we prove Theorem 4.1 under Setup II. First, in Appendix H.1 we state a number of
supporting technical lemmas, then use them to prove a more general version of Theorem 4.1, Theorem H.2,
which holds under a weaker realizability assumption (informally, V π-realizability only for near-optimal policies
π); Theorem 4.1 follows as an immediate consequence. The remainder of the section (Appendix H.2 through
to Appendix H.6) contains the proofs for the intermediate results.

H.1 Analysis: Proof of Theorem 4.1 (Setup II)
We analyze RVFS in the setting of Theorem 4.1 (Setup II), where we have a function class V satisfying V π-
realizability (Assumption 4.5). We will actually show that the conclusion of Theorem 4.1 holds under a weaker
function approximation setup we refer to as relaxed V π-realizability : instead of requiring V π-realizability for
all π ∈ ΠS, we only require it for policies π in the set of near-optimal policies corresponding to the benchmark
policy class Πεreal for some εreal > 0 (Πε is defined in Appendix G).

Assumption H.1 (Relaxed V π-realizability). For εreal > 0 and all π ∈ Πεreal and h ∈ [H], we have
V π
h (x) ∈ V ⊆ {f ∶ X → [0,H]}.

We will analyze RVFS under Assumption H.1 and Assumption 4.1. However, it turns out that all of the main
results for RVFS can be derived under this assumption: As we will see in Appendix I in the sequel, when
the ∆-gap assumption (Assumption 4.4) is satisfied, then Πεreal = {π⋆} for all εreal <∆, allowing us to prove
Theorem 4.1 under Setup I as a special case of relaxed V π-realizability. Our analysis for the ExBMDP
setting in Appendix J requires more work, but uses that for ExBMDPs, Assumption H.1 is satisfied for a
subset of Πεreal corresponding to endogenous policies.

39

We begin with our analysis under Setup II by bounding the number of times the test in Line 14 fails. Since
the sizes of the core sets C1∶H in RVFS are directly related to the number of test failures, the next result, which
bounds ∣Ch∣ for h ∈ [H], allows us to show that RVFS terminates in polynomial iterations with high probability.
The proof is in Appendix H.2.

Lemma H.1 (Bounding the number of test failures). Let δ, ε ∈ (0,1) be given, and suppose that Assump-
tion 4.1 (pushforward coverability) holds with parameter Cpush > 0. Further, let f ∈ V, be given, where V
is an arbitrary function class. Then there is an event E of probability at least 1 − δ under which any call
RVFS0(f,V1∶H ,∅,∅,0;V, ε, δ) (Algorithm 3) terminates, and throughout the execution of RVFS0, we have

∀h ∈ [H], ∣Ch∣ ≤ ⌈8ε−1CpushH⌉. (23)

In particular, Lemma H.1 ensures that with high probability, every call to RVFSh (made recursively via the
call to RVFS0) terminates in polynomial iterations. When RVFSh terminates, all the tests in Line 14 must have
passed for all ℓ > h. Using this and a standard concentration argument, we get the following guarantee for the
estimated value functions and confidence sets returned by each call to RVFSh. The proof is in Appendix H.3.

Lemma H.2 (Consequence of passing the tests). Let h ∈ [0 ..H] and ε, δ ∈ (0, 1) be given and consider a call
to RVFS0 in the setting of Lemma H.1. Further, let E be the event of Lemma H.1. There exists an event E ′h of
probability at least 1− δ/H such that under E ∩ E ′h, if a call to RVFSh within the execution of RVFS0 terminates
and returns (V̂h∶H , V̂h∶H ,Ch∶H ,Bh∶H , th∶H), then for any (xh−1, ah−1) ∈ Ch and ℓ ∈ [h + 1 ..H + 1]:

Pπ̂

⎡⎢⎢⎢⎢⎣
sup
f∈V̂ℓ

max
a∈A
∣Pℓ−1[V̂ℓ] − Pℓ−1[fℓ](xℓ−1, a)∣ > 3ε ∣ xh−1 = xh−1,ah−1 = ah−1

⎤⎥⎥⎥⎥⎦
≤ 4 log(8M6N2

testH
8/δ)

Ntest
, (24)

where (π̂τ)τ≥h is the stochastic policy induced by V̂h∶H and M and Ntest are defined as in Algorithm 3.

We now give a guarantee for the estimated value functions V̂1∶H computed within RVFS in Line 26 (the proof
is in Appendix H.4).

Lemma H.3 (Value function regression guarantee). Let h ∈ [0 ..H] and δ, ε′ ∈ (0, 1) be given, and consider a
call to RVFS0 in the setting of Lemma H.1. Further, let Π′ ⊆ ΠS be a finite policy class such that the class V
realizes the value functions V π for π ∈ Π′ (i.e. V satisfies Assumption H.1 with Πεreal replaced by Π′). Then,
there is an event E ′′h of probability at least 1 − δ/H under which for all k ≥ 1, if

1. RVFSh gets called for the kth time during the execution of RVFS0; and

2. this kth call terminates and returns (V̂h∶H , V̂h∶H ,Ch∶H ,Bh∶H , th∶H),
then if (π̂τ)τ≥h is the policy induced by V̂h∶H and Nreg is set as in Algorithm 3, we have that for all π ∈ Π′,

∑
(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,−)∈Dh(xh−1,ah−1)
(V̂h(xh) − V π

h (xh))
2

≤ 9kH2 log(8k2H ∣Π′∣∣V∣/δ)
Nreg

+ 8H2 ∑
(xh−1,ah−1)∈Ch

H

∑
τ=h

Eπ̂ [Dtv(π̂τ(xτ), πτ(xτ)) ∣ xh−1 = xh−1,ah−1 = ah−1] ,

where the datasets {Dh(x, a) ∶ (x, a) ∈ Ch} are as in the definition of V̂h in (16).

Next, we use this result to show that the confidence sets V̂1∶H returned by RVFS0 are “valid” in the sense that
they contain a value function (V π̃

h) corresponding to a near-optimal stochastic policy π̃ in the benchmark
class Π4ε. In the sequel, we use this fact to substitute V π̃

ℓ for fℓ in Eq. (24) and bound the suboptimality of
the learned policy π̂.

Lemma H.4 (Confidence sets). Let ε, δ ∈ (0,1) be given and suppose that Assumption 4.1 (pushforward
coverability) holds with parameter Cpush > 0 . Let f ∈ V be arbitrary, and suppose that V satisfies Assump-
tion H.1 with εreal = 4ε. Then, there is an event E ′′′ of probability at least 1 − 3δ under which a call to
RVFS0(f,V,∅,∅,0;V, ε, δ) (Algorithm 3) terminates and returns tuple (V̂1∶H , V̂1∶H ,C1∶H ,B1∶H , t1∶H) such that

∀h ∈ [H], V π̃
h ∈ V̂h,

40

where π̃1∶H ∈ ΠS is the stochastic policy defined recursively via

∀x ∈ X , π̃τ(x) ∈ argmax
a∈A

{ Q̂τ(x, a), if ∥Q̂τ(x, ⋅) − Pτ [V π̃
τ+1](x, ⋅)∥∞ ≤ 4ε,

Pτ [V π̃
τ+1](x, a), otherwise,

for τ =H, . . . ,1, (25)

where Q̂τ(x, a) ∶= P̂τ,ε,δ′[V̂τ+1](x, a) is a realization of the stochastic output of the P̂ operator in Algorithm 5
given input (x, a), and δ′ is as in Algorithm 3. Furtherore, we have π̃ ∈ Π4ε.

The proof of the lemma is in Appendix H.5.

Equipped with the preceding lemmas, we now state the main technical result of this section, Theorem H.1, a
generalization of Theorem 4.1 which holds under relaxed V π-realizability (Assumption H.1). The proof is in
Appendix H.6.

Theorem H.1 (Guarantee for RVFS under relaxed V π-realizability). Let δ, ε ∈ (0,1) be given, and suppose
that Assumption 4.1 (pushforward coverability) holds with parameter Cpush > 0. Let f ∈ V be arbitrary,
and assume that V that satisfies Assumption H.1 with εreal = 4ε. Then, with probability at least 1 − 5δ,
RVFS0(f,V,∅,∅,0;V, ε, δ) (Algorithm 3) terminates and returns value functions V̂1∶H that satisfy

∀h ∈ [H], Eπ̂[Dtv(π̂h(xh), π̃h(xh))] ≤
ε

4H3Cpush
,

where π̂h(x) ∈ argmaxa∈A P̂h,ε,δ′[V̂h+1](x, a) for all h ∈ [H], with π̃ ∈ Π4ε defined as in Lemma H.4 and δ′

defined as in Algorithm 3. Furthermore, the number of episodes is bounded by

Õ(C8
pushH

10A ⋅ ε−13).

Next, we state a guarantee for the outer-level algorithm, RVFS.bc, under relaxed V π-realizability. Recall that
RVFS.bc invokes RVFS0, then extracts an executable policy by applying the BehaviorCloning algorithm (see
Appendix L), with the “expert” policy set to be the output of RVFS.

Theorem H.2 (Main guarantee of RVFS.bc). Let δ, ε ∈ (0,1) be given, and define εRVFS = εH−1/48. Suppose
that

• Assumption 4.1 (pushforward coverability) holds with parameter Cpush > 0;
• the function class V satisfies Assumption H.1 with εreal = 1 (i.e. all π-realizability); and

• the policy class Π satisfies Assumption 4.3.

Then, with probability at least 1 − δ, π̂1∶H = RVFS.bc(Π,V, ε, δ) (Algorithm 4) satisfies

J(π⋆) − J(π̂1∶H) ≤ ε. (26)

Furthermore, the total number sample complexity in the RLLS framework is bounded by

Õ (C8
pushH

23Aϵ−13) .

The proof is in Appendix H.7. Note that Theorem H.2 is a restatement of Theorem 4.1 in Setup II (restated
for convenience). As a result, Theorem 4.1 is an immediate corollary.

Proof of Theorem 4.1. The result follows from Theorem H.2, since Assumption 4.5 is stronger than
Assumption H.1.

H.2 Proof of Lemma H.1 (Number of Test Failures)
Proof of Lemma H.1. Fix h ∈ [H]. We note that the size of Ch corresponds to the number of times the
test in Line 14 fails for ℓ = h throughout the execution of RVFS0(f,V,∅,∅;V, ε, δ).

41

Let M ∶= ⌈8ε−1CpushH⌉ denote the desired upper bound on ∣Ch∣. Suppose that the test in Line 14 fails at least
twice for ℓ = h (if the test fails at most twice, then ∣Ch∣ ≤ 2 and so (23) holds for ℓ = h trivially), and let

(x(1)h−1, a
(1)
h−1, V̂

(1)
h , V̂(1)h , t(1)h), (x

(2)
h−1, a

(2)
h−1, V̂

(2)
h , V̂(2)h , t(2)h), . . .

denote the elements of the set Bh in the order at which they are added to the latter in Line 15 of Algorithm 3.
Note that ∣Bh∣ = ∣Ch∣. Note also that t(i)h represents the number of times the subroutine P̂h−1,ε,δ′ has been called
in the test of Line 14 throughout the execution of RVFS0 and up to the time the test failed for (x(i)h−1, a

(i)
h−1).

We will use this fact in a concentration argument in the sequel.

By definition of (V̂(i)h) and Lemma B.4 (Freedman’s inequality) instantiated with

• Q = {V̂ (i)
h − fh ∶ f ∈ V̂

(i)
h };

• yh = xh;

• B =H; and

• n = Nreg ⋅ i;
and the union bound over i ∈ [M ∧ ∣Ch∣], we get that there is an event Eh of probability at least 1 − δ/(2H)
under which

∀i ∈ [M ∧ ∣Ch∣],∀f ∈ V̂(i)h , ∑
j<i

E[(V̂ (i)
h (xh) − fh(xh))2 ∣ xh−1 = x(j)h−1,ah−1 = a(j)h−1]

≤ ε̃2reg ∶= 2ε2reg +
4H2 log(4MH ∣V∣/δ)

Nreg
. (27)

Now, define f (i)h ∈ argmax
f∈V̂(i)

h

∣E [V̂ (i)
h (xh) − fh(xh) ∣ xh−1 = x(i)h−1,ah−1 = a(i)h−1]∣. From (27), we have that

under Eh:

∀i ∈ [M ∧ ∣Ch∣], ∑
j<i

E[(V̂ (i)
h (xh) − f (i)h (xh))2 ∣ xh−1 = x(j)h−1,ah−1 = a(j)h−1] ≤ ε̃

2
reg. (28)

We now use this to bound the number of times the test in Line 14 fails for ℓ = h. Suppose for the sake of
contradiction that the test fails at least N times for some N ≥M (i.e. ∣Ch∣ = N ≥M). Conditioned on Eh, we
have by Lemma B.8 and Eq. (28),

min
i∈[M]

sup
f∈V̂(i)

h

∣E [V̂ (i)
h (xh) − fh(xh) ∣ xh−1 = x(i)h−1,ah−1 = a(i)h−1]∣

= min
i∈[M]

∣E [V̂ (i)
h (xh) − f (i)h (xh) ∣ xh−1 = x(i)h−1,ah−1 = a(i)h−1]∣ ,

≤ 2(Cpush

M2
Mε̃2reg log(2M))

1/2
+ 2CpushH

M
.

Now, substituting the expression of ε̃2reg in (27) and using the definition of ε2reg in Line 6 of Algorithm 3, we
get

= 2(Cpush

M
⋅ (2ε2reg +

4MH2 log(4MH ∣V∣/δ)
Nreg

))
1/2
+ 2CpushH

M
,

≤ 2(Cpush

M
⋅ (22MH2 log(8M2H ∣V∣2/δ)

Nreg
+ 68MH3 log(8M6N2

testH
8/δ)

Ntest
))

1/2
+ 2CpushH

M
,

≤ ε, (29)

where the last inequality uses that M = ⌈8ε−1CpushH⌉ and

Nreg = 28M2ε−1 log(8∣V∣2HM2δ−1) and Ntest = 28M2Hε−1 log(8M6H8ε−2δ−1);

42

see Line 5 of Algorithm 3.

On the other hand, by Lemma G.2, there is an event E ′h of probability at least 1 − δ/(2MH) under which for
all f ∈ V, all i ∈ [M], and δ′ as in Algorithm 3:

∣P̂h−1,ε,δ′[V̂ (i)
h](x

(i)
h−1, a

(i)
h−1) − P̂h−1,ε,δ′[fh](x(i)h−1, a

(i)
h−1)∣

≤ ∣Ph−1[V̂ (i)
h − fh](x

(i)
h−1, a

(i)
h−1)∣ + ε ⋅

√
2 log1/δ′(4MAH ∣V∣(t(i)h)2/δ),

= ∣Ph−1[V̂ (i)
h − fh](x

(i)
h−1, a

(i)
h−1)∣ + ε ⋅ β(t

(i)
h), (30)

where β(t(i)h) is as in Algorithm 3. Thus, under E ′h, the test in Line 14 fails for ℓ = h at least M times only if

∀i ∈ [M], ε < sup
f∈V̂(i)

h

∣(P̂h−1,ε,δ′[V̂ (i)
h] − P̂h−1,ε,δ′[fh])(x(i)h−1, a

(i)
h−1)∣

− ε ⋅ β(t(i)h),
≤ sup

f∈V̂(i)
h

∣E [V̂ (i)
h (xh) − fh(xh) ∣ xh−1 = x(i)h−1,ah−1 = a(i)h−1]∣ (by (30)),

< sup
f∈V̂(i)

h

∣E [V̂ (i)
h (xh) − fh(xh) ∣ xh−1 = x(i)h−1,ah−1 = a(i)h−1]∣ .

Unless N <M , this is a contradiction to Eq. (29). We conclude that under the event Eh ∩ E ′h, the test in Line
14 fails at most N <M = ⌈8ε−1CpushH⌉ times for ℓ = h, and so under E1 ∩ E ′1 ∩ ⋅ ⋅ ⋅ ∩ EH ∩ EH , we have

∀h ∈ [H], ∣Ch∣ ≤ ⌈8ε−1CpushH⌉.

By the union bound, we have P[E1 ∩ E ′1 ∩ ⋅ ⋅ ⋅ ∩ EH ∩ E ′H] ≥ 1 − δ, which completes the proof.

H.3 Proof of Lemma H.2 (Consequence of Passing the Tests)
Proof of Lemma H.2. Let h ∈ [H] be given. Fix ℓ ∈ [h + 1 ..H] and let x(1)ℓ−1,x

(2)
ℓ−1, . . . denote the sequence

of states used in the tests of Line 14 throughout the execution of RVFS0; we assume that the sequence is
ordered in the sense that if i < j, then x(i)ℓ−1 is used in the test of Line 14 before x(j)ℓ−1. Let Tℓ ∈ N ∪ {+∞}
be the random variable representing the total number of times the operator P̂ℓ−1,ε,δ′ is invoked in Line 14
throughout the execution of RVFS0 (Tℓ is also the random length of the sequence x(1)ℓ−1,x

(2)
ℓ−1, . . . ; if RVFS0

terminates, then Tℓ is finite. The first step of the proof will be to show that under the event E of Lemma H.1,
Tℓ is no larger than M3NtestH

3 at any point during the execution of RVFS0. This will help us establish key
concentration results, leading to the desired inequality (24).

Bounding Tℓ under E. First, note that under the event E of Lemma H.1, we have that for any τ ∈ [H],

∣Cτ ∣ ≤M ∶= ⌈8ε−1CpushH⌉, (31)

and so RVFSτ gets called at most M times throughout the execution of RVFS0. For the rest of this paragraph,
we condition on E and fix τ ∈ [0 ..H]. Within any given call to RVFSτ (throughout the execution of RVFS0),
the operator P̂ℓ−1,ε,δ′ is invoked at most

∣Cτ ∣NtestH
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Due to the for-loops in Line 8, Line 9, & Line 10

× HM
±

Number of times RVFSτ returns to Line 8 (see below)

≤M2NtestH
2

times. This is because the for-loop in Line 8 of RVFSτ resumes whenever a test in Line 14 fails for one of the
layers τ + 1, . . . ,H (see Line 18) once the recursive calls return, and the total number of test failures across
all these layers is bounded by HM (by (31)). Now, since RVFSτ gets called at most M times throughout the
execution of RVFS0 (as argued in the prequel), the total number of times the operator P̂ℓ−1,ε,δ′ is invoked in
Line 14 within RVFSτ is at most

M3NtestH
2.

43

Finally, the total number of times the operator P̂ℓ−1,ε,δ′ is called in Line 14 throughout the execution of
RVFS0 is at most H times larger (accounting for the contributions from RVFSτ for all τ ∈ [H]); that is, it is at
most M3NtestH

3. We conclude that the random variable Tℓ satisfies

Tℓ ≤M3NtestH
3 (32)

under E .

Specifying E ′h. In this paragraph, we no longer condition on E . We will specify the event E ′h in the lemma
statement. Let δ′ be defined as in Algorithm 3. By Lemma G.2, we have that there is an event E ′h,ℓ of
probability at least 1 − δ/(2H2) under which:

∀i ∈ [Tℓ],∀aℓ−1 ∈ A ∶ sup
f∈V̂ℓ

∣(P̂ℓ−1,ε,δ′[V̂ℓ] − P̂ℓ−1,ε,δ′[fℓ])(x(i)ℓ−1, aℓ−1)∣ − ε − ε ⋅ β(Tℓ)

= sup
f∈V̂ℓ

∣(P̂ℓ−1,ε,δ′[V̂ℓ] − P̂ℓ−1,ε,δ′[fℓ])(x(i)ℓ−1, aℓ−1)∣ − ε − ε ⋅
√

2 log1/δ′(8AH2M ∣V∣T 2
ℓ /δ),

≥ sup
f∈V̂ℓ

∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(x(i)ℓ−1, aℓ−1)∣ − ε − ε ⋅
√

2 log1/δ′(8AH2M ∣V∣T 2
ℓ /δ)

− ε ⋅
√

2 log1/δ′(4AH2M ∣V∣i2/δ), (Lemma G.2)

≥ sup
f∈V̂ℓ

∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(x(i)ℓ−1, aℓ−1)∣ − ε − 2ε ⋅
√

2 log1/δ′(8AH2M ∣V∣T 2
ℓ /δ). (33)

On the other hand, for k ∈ [Tℓ −Ntest + 1], we have by Lemma B.4 (Freedman’s inequality) instantiated with

• n = Ntest and yi = I{supf∈V̂ℓ
maxa∈A ∣(Pℓ−1[V̂ℓ] − Pℓ−1)[fℓ](x(k+i)ℓ−1 , a)∣ > 3ε}, for all i ∈ [Ntest];

• Q = {id};
• B = 1; and

• λ = 1;
that there is an event E ′′h,ℓ,k of probability at least 1 − δ/(4k2H2) under which

∑
0≤i<Ntest

P
⎡⎢⎢⎢⎢⎣
sup
f∈V̂ℓ

max
a∈A
∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(x(k+i)ℓ−1 , a)∣ > 3ε

⎤⎥⎥⎥⎥⎦

≤ 4 log(8H2T 2
ℓ /δ) + ∑

0≤i<Ntest

I
⎧⎪⎪⎨⎪⎪⎩

sup
f∈V̂ℓ,a∈A

∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(x(k+i)ℓ−1 , a)∣ > 3ϵ
⎫⎪⎪⎬⎪⎪⎭
.

Now, let E ′′h,ℓ ∶= ⋂k∈[Tℓ−Ntest+1] E ′′h,ℓ,k. By the union bound and the fact that ∑k≥1 1/k2 = π2/6 ≤ 2, we have
that P[E ′′h,ℓ] ≥ 1 − δ/(2H2). Furthermore, under E ′′h,ℓ, we have

∀k ∈ [Tℓ −Ntest + 1],

∑
0≤i<Ntest

P
⎡⎢⎢⎢⎢⎣
sup
f∈V̂ℓ

max
a∈A
∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(x(k+i)ℓ−1 , a)∣ > 3ε

⎤⎥⎥⎥⎥⎦

≤ 4 log(8H2T 2
ℓ /δ) + ∑

0≤i<Ntest

I
⎧⎪⎪⎨⎪⎪⎩

sup
f∈V̂ℓ,a∈A

∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(x(k+i)ℓ−1 , a)∣ > 3ϵ
⎫⎪⎪⎬⎪⎪⎭
. (34)

We define E ′h ∶= E ′h,1 ∩E ′′h,1 ∩ ⋅ ⋅ ⋅ ∩ E ′h,H ∩E ′′h,H . Note that by the union bound, we have P[E ′h] ≥ 1− δ
H

as desired.

44

Termination of RVFSh under E ∩ E ′h. We now show that under E ∩ E ′h, if RVFSh terminates, its output
satisfies (24). For the rest of the proof, we condition on E ∩ E ′h. Suppose that RVFSh terminates and returns
(V̂h∶H , V̂h∶H ,Ch∶H ,Bh∶H , th∶H). In this case, the value function V̂ℓ must have passed the tests in Line 14 for all
(xh−1, ah−1) ∈ Ch, n ∈ Ntest, and aℓ−1 ∈ A. Fix (xh−1, ah−1) ∈ Ch and let k ∈ [Tℓ −Ntest ⋅A + 1] be such that
(xk+j

ℓ−1)j∈[0..Ntest−1] represents a subsequence of states that pass the tests in Line 14 at layer ℓ for (xh−1, ah−1)
within the call to RVFSh. The fact that the sequence (x(i)ℓ−1)i≥1 is ordered (see definition in the first paragraph
of this proof) and that (xk+j

ℓ−1)j∈[0..Ntest−1] pass the tests imply that

1. The states (x(k+i)ℓ−1)i∈[0..Ntest−1] at layer ℓ − 1 are i.i.d., and are obtained by rolling out with π̂h∶H starting
from (xh−1, ah−1); and

2. The test in Line 14 succeeds for all (x(k+j)ℓ−1)j∈[0..Ntest−1]; that is

∀j ∈ [0 ..Ntest − 1],∀aℓ−1 ∈ A, sup
f∈V̂ℓ

∣(P̂ℓ−1,ε,δ′[V̂ℓ] − P̂ℓ−1,ε,δ′[fℓ])(x(k+j)ℓ−1 , aℓ−1)∣

≤ ε + ε ⋅ β(k + j),

≤ ε + ε ⋅
√

2 log1/δ′(8AM ∣V∣(k + j)2/δ),

≤ ε + ε ⋅
√

2 log1/δ′(8AM ∣V∣T 2
ℓ /δ).

This implies that

∀i ∈ [0 ..Ntest − 1],∀aℓ−1 ∈ A ∶
sup
f∈V̂ℓ

∣Pℓ−1[V̂ℓ − fℓ](x(k+i)ℓ−1 , aℓ−1)∣ − 3ε

≤ sup
f∈V̂ℓ

∣Pℓ−1[V̂ℓ − fℓ](x(k+i)ℓ−1 , aℓ−1)∣ − ε − 2ε ⋅
√

2 log1/δ′(4AMH2∣V∣T 2
ℓ δ), (35)

(33)
≤ sup

f∈V̂ℓ

∣(P̂ℓ−1,ε,δ′[V̂ℓ] − P̂ℓ−1,ε,δ′[fℓ])(x(k+i)ℓ−1 , aℓ−1)∣ − ε − ε ⋅
√

2 log1/δ′(4AMH2∣V∣T 2
ℓ /δ),

≤ 0. (by Item 2) (36)

where (35) follows by (32) and the choice of δ′ in Algorithm 3.

Now, by Item 1, we have that x(k+i)ℓ−1 has probability law Pπ̂h∶H [⋅ ∣ xh−1 = xh−1,ah−1 = ah−1] for all i ∈
[0 ..Ntest − 1], and so by (34), we have:

Pπ̂

⎡⎢⎢⎢⎢⎣
sup
f∈V̂ℓ

max
a∈A
∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(xℓ−1, a)∣ > 3ε ∣ xh−1 = xh−1,ah−1 = ah−1

⎤⎥⎥⎥⎥⎦

≤ 4 log(8H2T 2
ℓ /δ)

Ntest
+ 1

Ntest
∑

0≤i<Ntest

I
⎧⎪⎪⎨⎪⎪⎩

sup
f∈V̂ℓ,a∈A

∣Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(x(k+i)ℓ−1 , a)∣ > 3ϵ
⎫⎪⎪⎬⎪⎪⎭
,

≤ 4 log(8M6N2
testH

8/δ)
Ntest

(using (32) and the fact that all the tests pass, i.e. (36)).

Concluding. We have established that under E ∩E ′h, we have for all ℓ ∈ [h+ 1 ..H] and all (xh−1, ah−1) ∈ Ch:

Pπ̂

⎡⎢⎢⎢⎢⎣
sup
f∈V̂ℓ

max
a∈A
∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(xℓ−1, a)∣ > 3ε ∣ xh−1 = xh−1,ah−1 = ah−1

⎤⎥⎥⎥⎥⎦
≤ 4 log(8M6N2

testH
8/δ)

Ntest
,

Furthermore, we have P[E ′h] ≥ 1 − δ/H. This completes the proof.

45

H.4 Proof of Lemma H.3 (Value Function Regression Guarantee)
Proof of Lemma H.3. Fix π ∈ Π′ ⊆ ΠS and k ≥ 1, and consider the kth call to RVFSh as per the lemma
statement, and let Sk be the state of RVFS0 during the kth call to RVFSh and immediately before Line 20,
i.e. immediately before gathering data for the regression step in RVFSh.

Relating the regression targets to V π̂
h . Observe that V̂h is the least-squares solution of the objective in

Line 26, where the targets are empirical estimates of V π̂
h . In particular, if we let {Dh(x, a) ∶ (x, a) ∈ Ch} be

the datasets in the definition of V̂h in (16), then for any (xh−1, ah−1) ∈ Ch and (xh, vh) ∈ Dh(xh−1, ah−1), the
target vh satisfies

vh = V̂h(xh),

where V̂h(xh) is an empirical estimate of V π̂
h (xh) obtained by sampling Nest(∣Ch∣) = Nest(k) episodes (for

Nest(⋅) defined as in Algorithm 3) by rolling out with π̂ after starting from xh and playing action a at layer
h; note that ∣Ch∣ = k because we are considering the kth call to RVFSh. Thus, by Hoeffding’s inequality and
the union bound over (xh−1, ah−1) ∈ Ch and (xh,−) ∈ Dh(xh−1, ah−1), there is an event E ′′h,k(Sk) of probability
at least 1 − δ/(8k2H) under which

∀(xh−1, ah−1) ∈ Ch,∀(xh,−) ∈ Dh(xh−1, ah−1) ∶

∣V π̂
h (xh) − V̂h(xh)∣ ≤H

¿
ÁÁÀ2 log(8∣Ch∣NregHk2/δ)

Nest(k)
≤H
¿
ÁÁÀ2 log(8NregHk3/δ)

Nest(k)
, (37)

where Nreg is as in Line 5, and the last inequality follows by ∣Ch∣ ≤ k since we are considering the kth call to
RVFSh. Thus, under E ′′h,k, we have

∀(xh−1, ah−1) ∈ Ch,∀(xh, vh) ∈ Dh(xh−1, ah−1) ∶

∣V π̂
h (xh) − vh∣ = ∣V π̂

h (xh) − V̂h(xh)∣ ≤H
¿
ÁÁÀ2 log(8NregHk3/δ)

Nest(k)
≤ H

Nreg
, (38)

where the second-to-last inequality is by (37) and the last inequality follows by the choice of Nest in
Algorithm 3.

Bounding the discrepancy V π̂
h −V π

h . On the other hand, by the performance difference lemma, the value
function V π̂

h satisfies:

∀x ∈ X , ∣V π̂
h (x) − V π

h (x)∣ ≤
H

∑
τ=h

Eπ̂[∣Qπ
τ (xτ ,πτ(xτ)) −Qπ

τ (xτ , π̂τ(xτ))∣ ∣ xh = x],

≤H
H

∑
τ=h

Eπ̂[Dtv(π̂τ(xτ), πτ(xτ)) ∣ xh = x]. (39)

Now, let (x(1)h−1, a
(1)
h−1), (x

(2)
h−1, a

(2)
h−1), . . . denote the elements of Ch in the order in which they are added to the

latter in Line 15. By Lemma B.2 (Freedman’s inequality) instantiated with

• n = Nreg ⋅ k.

• wi = ∣V π
h (x

(i)
h) − V π̂

h (x
(i)
h)∣ − E[∣V π

h (xh) − V π̂
h (xh)∣ ∣ xh−1 = x(j)h−1,ah−1 = a(j)h−1], for all i ∈ [n] and

j = ⌊i/Nreg⌋ + 1, where x
(Nreg ⋅j)
h , . . . ,x

(Nreg ⋅j+Nreg−1)
h

i.i.d.∼ Th(⋅ ∣ xh−1 = x(j)h−1,ah−1 = a(j)h−1);
• Hi = σ(x(1)h , . . .x(i−1)h), for all i ∈ [n];
• R =H; and

• λ = 1/H;

46

we get that there is an event Ẽ ′′h,k,π(Sk) of probability at least 1 − δ/(8k2H ∣Π′∣) under which:

∑
(xh−1,ah−1)∈Dh

∑
(xh,−)∈Dh(xh−1,ah−1)

∣V π
h (xh) − V π̂

h (xh)∣

= 2Nreg ∑
(xh−1,ah−1)∈Dh

E [∣V π
h (xh) − V π̂

h (xh)∣ ∣ xh−1 = xh−1,ah−1 = ah−1] +H log(8k2∣Π′∣H/δ),

≤ 2HNreg ∑
(xh−1,ah−1)∈Dh

H

∑
τ=h

Eπ̂ [Dtv(π̂τ(xτ), πτ(xτ)) ∣ xh−1 = xh−1,ah−1 = ah−1] +H log(8k2∣Π′∣H/δ), (40)

where the last inequality follows by (39) and the law of total expectation.

Regression guarantee. Since π ∈ Π′ ⊆ ΠS and Assumption H.1 holds, Lemma B.5 (regression guarantee)
instantiated with

• f⋆(x) = V π
h (x);

• B =H;

• bi = vh − V π
h (xh) (where vh ∶=maxa∈A Q̂h(xh, a)); and

• ξ =H;

implies that there is an event Ĕ ′′h,k,π(Sk) of probability at least 1 − δ/(4k2H ∣Π′∣) under which we have:

∑
(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,−)∈Dh(xh−1,ah−1)
(V̂h(xh) − V π

h (xh))
2

≤ 4kH2 log(4k2H ∣Π′∣∣V∣/δ)
Nreg

+ 4H

Nreg
∑

(xh−1,ah−1)∈Ch
∑

(xh,vh)∈Dh(xh−1,ah−1)
∣V π

h (xh) − vh∣,

≤ 4kH2 log(4k2H ∣Π′∣∣V∣/δ)
Nreg

+ 4H

Nreg
∑

(xh−1,ah−1)∈Ch
∑

(xh,vh)∈Dh(xh−1,ah−1)
∣V π̂

h (xh) − vh∣

+ 4H

Nreg
∑

(xh−1,ah−1)∈Ch
∑

(xh,vh)∈Dh(xh−1,ah−1)
∣V π

h (xh) − V π̂
h (xh)∣, (41)

where the last step follows by the triangle inequality. Thus, by plugging (40) and (38) into (41), we get that
under E ′′h,k(Sk) ∩ Ẽ ′′h,k,π(Sk) ∩ Ĕ ′′h,k,π(Sk):

∑
(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,−)∈Dh(xh−1,ah−1)
(V̂h(xh) − V π

h (xh))
2

≤ 9kH2 log(8k2H ∣Π′∣∣V∣/δ)
Nreg

+ 8H2 ∑
(xh−1,ah−1)∈Ch

H

∑
τ=h

Eπ̂ [Dtv(π̂τ(xτ), πτ(xτ)) ∣ xh−1 = xh−1,ah−1 = ah−1] .

(42)

Applying the union bound to conclude. Let Sk be the random state of RVFS0 during the kth call to
RVFSh and immediately before Line 20, i.e. immediately before gathering data for the regression step in RVFSh.
Further, let S+k be the random state of RVFS0 during the kth call to RVFSh and immediately before Line 26,
i.e. immediately before the regression step in RVFSh. If RVFS0 terminates before the kth call to RVFSh, we use the
convention that Sk = S+k = t, where t denotes a terminal state, and define E ′′h,k(t) = Ẽ ′′h,k,π(t) = Ĕ ′′h,k,π(t) = {t}.
Further, we define

E ′′h ∶=
⎧⎪⎪⎨⎪⎪⎩
∏

k∈N,π∈Π′
I{S+k ∈ E ′′h,k(Sk) ∩ Ẽ ′′h,k,π(Sk) ∩ Ĕ ′′h,k,π(Sk)} = 1

⎫⎪⎪⎬⎪⎪⎭
.

47

Note that by the argument in the sequel and the union bound, we have that

∀k ≥ 1,∀Sk, P[S+k ∈ E ′′h,k(Sk) ∩ Ẽ ′′h,k,π(Sk) ∩ Ĕ ′′h,k,π(Sk)] ≥ 1 −
δ

2k2H
, (43)

where Sk denotes the state of RVFS0 during the kth call to RVFSh and immediately before Line 20. By letting
S ′1,S

′
2, . . . denote an identical, independent copy of the sequence S1,S2, . . . , we have by the chain rule:

P[E ′′h] = ES′1,S′2,... [∏
k≥1

P[S+k ∈ E ′′h,k(Sk) ∩ Ẽ ′′h,k,π(Sk) ∩ Ĕ ′′h,k,π(Sk) ∣ Sk = S ′k]] ,

≥ ∏
k≥1
(1 − δ

2k2H
) , (by (43))

≥ 1 − δ

H
, (44)

where the last inequality follows from the fact that for any sequence x1, x2, ⋅ ⋅ ⋅ ∈ (0, 1), we have ∏k≥1(1−xk) ≥
1 −∑k≥1 xk. Combining (44) with (42) implies that E ′′h gives the desired result.

H.5 Proof of Lemma H.4 (Guarantee for Confidence Sets)
To prove Lemma H.4, we need one additional result pertaining to the order in which the instances (RVFSh)h∈[H]
are called.

Lemma H.5. Let h ∈ [0 ..H] be given, and consider the setting of Lemma H.4. Further, consider a call to
RVFS0(f,V,∅,∅;V, ε, δ) that terminates, and let h ∈ [H] be any layer such that RVFSh is called during the
execution of RVFS0. Then, after the last call to RVFSh terminates, no instance of RVFS in (RVFSτ)τ>h is called
before RVFS0 terminates.

Proof of Lemma H.5. Suppose there is an instance of RVFS in (RVFSτ)τ>h that is called after the last call
to RVFSh terminates. Let τ > h be the lowest layer where RVFSτ is called after the last call to RVFSh terminates.
Let RVFSlastτ denote the corresponding instance of RVFSτ . Further, let ℓ < τ be such that RVFSℓ is the parent
instance of RVFSlastτ (i.e. the instance that called RVFSlastτ). Note that we cannot have ℓ = h as this would
imply that an instance of RVFSh terminates after RVFSlastτ , and we have assumed that RVFSlastτ terminates
after the last call RVFSh. It is also not possible to have ℓ > h as this would imply that τ is not the lowest
layer where RVFSτ is called after the last call to RVFSh terminates. Thus, we must have that ℓ < h. Now, the
for-loop in Line 16 ensures that that there is an instance of RVFSh that is called after RVFSlastτ terminates and
before RVFSℓ does. This contradicts the assumption that RVFSlastτ is called after the last call to RVFSh.

Proof of Lemma H.4. We start by showing that π̃ ∈ Π4ε by constructing the corresponding collection of
random state-action value functions (Q̃h(x, a))(h,x,a)∈[H]×X×A ⊂ [0,H] in the definition of Π4ε. In particular,
for (h,x, a) ∈ [H] × X ×A, we define

Q̃h(x, a) = {
Q̂h(x, a), if ∥Q̂h(x, ⋅) − Ph[V π̃

h+1](x, ⋅)∥∞ ≤ 4ε,
Ph[V π̃

h+1](x, a), otherwise,
for h =H, . . . ,1.

where Q̂τ(x, a) ∶= P̂τ,ε,δ′[V̂τ+1](x, a). Note that Q̃h(x, a) only depends on the randomness of P̂h,ε,δ′[V̂h+1](x, a),
and so (Q̃h(x, a))(h,x,a)∈[H]×X×A are independent random variables. Furthermore, since Ph[V π̃

h+1] ≡ Qπ̃
h, we

have that

∀(x, a) ∈ X ×A, ∥Q̃h(x, a) −Qπ̃
h(x, a)∥ ≤ 4ε.

Finally, since π̃h(⋅) ∈ argmaxa∈A Q̃h(⋅, a), we have that π̃ ∈ Π4ε.

48

We show V π̃
h ∈ V̂h. We prove that V π̃

h ∈ V̂h, for all h ∈ [H], under the event E ′′′ ∶= E ∩ E ′1 ∩ E ′′1 ∩ ⋅ ⋅ ⋅ ∩
E ′H ∩ E ′′H , where E , (E ′h), and (E ′′h) are the events defined in Lemma H.1, Lemma H.2, and Lemma H.3,
respectively. Throughout, we condition on E ′′′. First, note that by Lemma H.1, RVFS0 terminates. Let
(V̂1∶H , V̂1∶H ,C1∶H ,B1∶H , t1∶H) be the tuple it returns.

We will show via backwards induction over ℓ =H + 1, . . . ,1, that

V π̃
ℓ ∈ V̂ℓ, (45)

where π̃1∶H is the stochastic policy defined recursively via

π̃τ(x) ∈ argmax
a∈A

{ Q̂τ(x, a) ∶= P̂τ,ε,δ′[V̂τ+1](x, a), if ∥Q̂τ(x, ⋅) − Pτ [V π̃
τ+1](x, ⋅)∥∞ ≤ 4ε,

Pτ [V π̃
τ+1](x, a), otherwise,

for τ =H, . . . ,1,

where Q̂τ(x, a) ∶= P̂τ,ε,δ′[V̂τ+1](x, a).

Base case [ℓ =H + 1]. This holds trivially because V π
H+1 ≡ 0 for any π ∈ ΠS by convention.

General case [ℓ ≤ H]. Fix h ∈ [H] and suppose that (45) holds for all ℓ ∈ [h + 1 ..H + 1]. We show as a
consequence that (45) holds for ℓ = h. First, note that if RVFSh is never called during the execution of RVFS0,
then V̂h = V, and so (45) trivially holds for ℓ = h under Assumption H.1 with εreal = 4ε.
Now, suppose that RVFSh is called at least once, and let (V̂ +h∶H , V̂+h∶H ,C+h∶H ,B+h∶H , t+h∶H) be the output of the
last call to RVFSh during the execution of RVFS0. We claim that

(V̂ +h∶H , V̂+h∶H ,C+h∶H) = (V̂h∶H , V̂h∶H ,Ch∶H). (46)

To see this, first note that the for-loop in Line 16 ensures that no instance of (RVFSτ)τ>h can be called after
the last call to RVFSh (by Lemma H.5). Thus, the estimated value functions, confidence sets, and core sets for
layers h + 1, . . . ,H remain unchanged after the last call to RVFSh; that is, (46) holds. Thus, by Lemma H.2,
and since we are conditioning on E ′h+1∶H , we have that for all (xh−1, ah−1) ∈ Ch and ℓ ∈ [h + 1 ..H + 1]:

Pπ̂

⎡⎢⎢⎢⎢⎣
sup
f∈V̂ℓ

max
a∈A
∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(xℓ−1, a)∣ > 3ε ∣ xh−1 = xh−1,ah−1 = ah−1

⎤⎥⎥⎥⎥⎦
≤ 4 log(8M6N2

testH
8/δ)

Ntest
, (47)

where M = ⌈8ε−1CpushH⌉. Now, by the induction hypothesis, we have V π̃
ℓ ∈ V̂ℓ, and so substituting V π̃

ℓ for fℓ
in (47), we get that for all (xh−1, ah−1) ∈ Ch and ℓ ∈ [h + 1 ..H + 1]:

Pπ̂[max
a∈A
∣(Pℓ−1[V̂ℓ] − Pℓ−1[V π̃

ℓ])(xℓ−1, a)∣ > 3ε ∣ xh−1 = xh−1,ah−1 = ah−1] ≤
4 log(8M6N2

testH
8/δ)

Ntest
.

Therefore, by Lemma K.1 (instantiated with µ[⋅] = Pπ̂[⋅ ∣ xh−1 = xh−1,ah−1 = ah−1], τ = ℓ − 1, and Vτ+1 = V π̃
ℓ),

we have that (xh−1, ah−1) ∈ Ch and ℓ ∈ [h + 1 ..H + 1]:

Eπ̂[Dtv(π̂ℓ−1(xℓ−1), π̃ℓ−1(xℓ−1)) ∣ xh−1 = xh−1,ah−1 = ah−1] ≤
4 log(8M6N2

testH
8/δ)

Ntest
+ δ′, (48)

where δ′ is as in Algorithm 3.

Applying the regression guarantee to conclude the induction. Note that π̃ ∈ Π′, where Π′ ⊂ ΠS

is the set of stochastic policies such that π ∈ Π′ if and only if there exists V1∶H ∈ V such that π is defined
recursively as

πτ(x) ∈ argmax
a∈A

{ Qτ(x, a) ∶= P̂τ,ε,δ′[Vτ+1](x, a), if ∥Qτ(x, ⋅) − Pτ [V π
τ+1](x, ⋅)∥∞ ≤ 4ε,

Pτ [V π
τ+1](x, a), otherwise,

49

for τ =H, . . . , 1, where Qτ(x, a) ∶= P̂τ,ε,δ′[Vτ+1](x, a). The policy class Π′ is finite and ∣Π′∣ ≤ ∣V∣. Furthermore,
we have Π′ ⊆ Π4ε as shown at the beginning of this proof. Therefore, if we let {Dh(x, a) ∶ (x, a) ∈ Ch} be the
datasets in the definition of V̂h in (16), we have by Lemma H.3 (under Assumption H.1 with εreal = 4ε) and
the conditioning on E ′′h+1∶H and E :

∑
(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,−)∈Dh(xh−1,ah−1)
(V̂h(xh) − V π̃

h (xh))
2

≤ 9∣Ch∣H2 log(8∣Ch∣2H ∣V∣2/δ)
Nreg

+ 8H2 ∑
(xh−1,ah−1)∈Ch

H

∑
τ=h

Eπ̂ [Dtv(π̂τ(xτ), π̃τ(xτ)) ∣ xh−1 = xh−1,ah−1ah−1] ,

≤ 9MH2 log(8M2H ∣V∣2/δ)
Nreg

+ 8H2 ∑
(xh−1,ah−1)∈Ch

H

∑
τ=h

Eπ̂ [Dtv(π̂τ(xτ), π̃τ(xτ)) ∣ xh−1 = xh−1,ah−1 = ah−1] ,

(49)

where the last inequality follows by the fact that ∣Ch∣ ≤M under E . Combining (49) with (48), implies that

∑
(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,−)∈Dh(xh−1,ah−1)
(V̂h(xh) − V π̃

h (xh))
2

≤ 9MH2 log(8M2H ∣V∣2/δ)
Nreg

+ 8MH3 ⋅ 4 log(8M
6N2

testH
8/δ)

Ntest
+ 8MH3δ′,

= 9MH2 log(8M2H ∣V∣2/δ)
Nreg

+ 8MH3 ⋅ 4 log(8M
6N2

testH
8/δ)

Ntest
+ 8MH3 δ

4M7N2
testH

8∣V∣ ,

≤ ε2reg, (50)

where the last inequality follows by the fact that δ ∈ (0,1) and the definition of ε2reg in Algorithm 3. By the
definition of V̂h in (16), (50) implies that V π̃

h ∈ V̂h, which completes the induction.

H.6 Proof of Theorem H.1 (Main Guarantee of RVFS)

Proof of Theorem H.1. We condition on the event Ẽ ∶= E ∩ E ′′′ ∩ E ′1 ∩ ⋅ ⋅ ⋅ ∩ E ′H , where E , E ′′′, and (E ′h) are
the events in Lemma H.1, Lemma H.4, and Lemma H.2, respectively. Note that by the union bound, we have
P[Ẽ] ≥ 1 − 5δ. By Lemma H.2, we have that

∀h ∈ [H], Pπ̂

⎡⎢⎢⎢⎢⎣
sup
f∈V̂h

max
a∈A
∣(Ph−1[V̂h] − Ph−1[fh])(xh−1, a)∣ > 3ε

⎤⎥⎥⎥⎥⎦
≤ 4 log(8M6N2

testH
8/δ)

Ntest
, (51)

where M = ⌈8ε−1CpushH⌉ and Ntest = 28M2Hε−1 log(8M6H8ε−2δ−1). On the other hand, by Lemma H.4, we
have

∀h ∈ [H], V π̃
h ∈ V̂h.

Thus, substituting V π̃
h for fh in (51) we get that for all h ∈ [H + 1].

Pπ̂[max
a∈A
∣(Ph−1[V̂h] − Ph−1[V π̃

h])(xh−1, a)∣ > 3ε] ≤
4 log(8M6N2

testH
8/δ)

Ntest
.

This together with Lemma K.1, instantiated with µ[⋅] = Pπ̂[⋅]; τ = h − 1; Vτ+1 = V π̃
h ; and δ = δ′ (with δ′ as in

Algorithm 3), translates to:

∀h ∈ [H], Eπ̂[Dtv(π̂h(xh), π̃h(xh))] ≤
4 log(8M6N2

testH
8/δ)

Ntest
+ δ′,

= 4 log(8M6N2
testH

8/δ)
Ntest

+ δ

4M7N2
testH

8∣V∣ ,

≤ ε

4H3Cpush
,

50

where the last step follows from the fact that Ntest = 28M2Hε−1 log(8M6H8ε−2δ−1) (with M as in Line 3).

Bounding the sample complexity. We now bound the number of episodes used by Algorithm 3 under
the event Ẽ . First, we fix h ∈ [H], and focus on the number of episodes used within a to call RVFSh, excluding
any episodes used by any subsequent calls to RVFSτ for τ > h. We start by counting the number of episodes
used to test the fit of the estimated value functions V̂h+1∶H . Starting from Line 8, there are for-loops over
(xh−1, ah−1) ∈ Ch, ℓ = H, . . . , h + 1, and n ∈ [Ntest] to collect partial episodes using the learned policy π̂ in
Algorithm 3, where Ntest = 28M2Hε−1 log(8M6H8ε−2δ−1) and M = ⌈8ε−1CpushH⌉. Note that executing π̂
requires the local simulator and uses Nsim = 2 log(4M7N2

testH
2∣V∣/δ)/ε2 local simulator queries to output

an action at each layer (since Algorithm 3 calls Algorithm 5 with confidence level δ′ = δ/(8M7N2
testH

8∣V∣)).
Also, note that whenever a test fails in Line 14 and the recursive RVFS calls return, the for-loop in Line 8
resumes. We also know (by Lemma H.1) that the number of times the test fails in Line 14 is at most M .
Thus, the number of times the for-loop in Line 8 resumes is bounded by HM ; here, H accounts for possible
test failures across all layers τ ∈ [h + 1 ..H]. Thus, the total sample complexity required to generate episodes
between lines Line 8 and Line 11 is bounded by

episodes for roll-outs ≤ MH
±

of times Line 8 resumes

⋅ MH2NtestNsim
´¹¹¹¸¹¹¶

Sample complexity in case of no test failures

. (52)

Note that the test in Line 14 also uses episodes because it calls the operator P̂ for every a ∈ A. Thus, the
number of episodes used for the test in Line 14 is bounded by

episodes for the tests ≤ MH
±

of times Line 8 resumes

⋅ MHANtestNsim
´¹¹¸¹¹¹¶

Sample complexity for Line 14

. (53)

We now count the number of episodes used to re-fit the value function in Line 16 and onwards. Note that
starting from Line 16, there are for-loops over (xh−1, ah−1) ∈ Ch and i ∈ [Nreg] to generate A ⋅Nest(∣Ch∣) ≤
A ⋅Nest(M) partial episodes using π̂, where Nest(k) = 2N2

reg log(8ANregHk3/δ) is defined as in Algorithm 3.
Since π̂ uses the local simulator and requires Nest samples (see Algorithm 5) to output an action at each
layer, the number of episodes used to refit the value function is bounded by

episodes for V -refitting ≤MNregANest(M)HNsim. (54)

Therefore, by (52), (53), and (54), the number of episodes used within a single call to RVFSh (not accounting
for episodes used by recursive calls to RVFSτ , for τ > h) is bounded by

episodes used locally within RVFSh ≤M2H(H +A)NtestNsim +MNregANest(M)HNsim. (55)

Finally, by Lemma H.1, RVFSh may be called at most M times throughout the execution of RVFS0. Using this
together with (55) and accounting for the number of episodes from all layers h ∈ [H], we get that the total
number of episodes is bounded by

M3H2(H +A)NtestNsim +M2H2NregANest(M)Nsim.

Substituting the expressions of M , Ntest, Nest, Nsim, and Nreg from Algorithm 3 and Algorithm 5, we obtain
the desired number of episodes, which concludes the proof.

H.7 Proof of Theorem H.2 (Guarantee of RVFS.bc)

Proof of Theorem H.2. Let V̂1∶H be the value function estimates produced by RVFS0 within Algorithm 4,
and let π̂RVFS

h (⋅) ∈ argmaxa∈A P̂h,εRVFS,δ′[V̂h+1](⋅, a), for all h ∈ [H] with V̂H+1 ≡ 0 with εRVFS and δ′ as in
Algorithm 4. Further, let and let π̃1∶H ∈ ΠS be the stochastic policy defined recursively via

∀x ∈ X , π̃τ(x) ∈ argmax
a∈A

{ Q̂τ(x, a), if ∥Q̂τ(x, ⋅) − Pτ [V π̃
τ+1](x, ⋅)∥∞ ≤ 4εRVFS,

Pτ [V π̃
τ+1](x, a), otherwise,

(56)

51

for τ =H, . . . ,1, where Q̂τ(x, a) ∶= P̂τ,εRVFS,δ′[V̂τ+1](x, a). By Theorem H.1, there is an event Ẽ of probability
at least 1 − δ/2 under which:

π̃ ∈ Π4εRVFS , (57)
and

∀h ∈ [H], Eπ̂RVFS

[Dtv(π̂RVFS
h (xh), π̃h(xh))] ≤

εRVFS
4H3Cpush

≤ ε

4H2
, (58)

where the last inequality follows by the choice of εRVFS in Algorithm 4.

For the rest of the proof, we condition on Ẽ . By (57), (61), and Proposition L.1 instantiated with εmis = 0
(due to all π-realizability), we have that there is an event Ẽ ′ of probability at least 1 − δ/2 under which the
policy π̂1∶H produced by BehaviorCloning ensures that

J(π̂RVFS
1∶H) − J(π̂1∶H) ≤

ε

2
. (59)

Now, by Lemma B.6 (the performance difference lemma), we have for π̃ as in (56):

J(π̃) − J(π̂RVFS
1∶H) =

H

∑
h=1

Eπ̂RVFS

[Qπ̃
h(xh, π̃h(xh)) −Qπ̃

h(xh, π̂
RVFS
h (xh))],

≤H
H

∑
h=1

Eπ̂RVFS

[Dtv(π̂RVFS
h (xh), π̃h(xh))],

and so by (61), we have

J(π̃) − J(π̂RVFS
1∶H) ≤ ε/4. (60)

Finally, since π̃ ∈ Π4εRVFS (see (57)), we have by Lemma G.1,

J(π⋆) − J(π̃) ≤ 12HεRVFS ≤ ε/4,

where the last inequality follows by the choice εRVFS in Algorithm 4. Combining this with (59) and (60), we
conclude that under Ẽ ∩ Ẽ ′:

J(π⋆) − J(π̂1∶H) ≤ ε.

By the union bound, we have P[Ẽ ∩ Ẽ ′] ≥ 1 − δ, and so the desired suboptimality guarantee in (26) holds with
probability at least 1 − δ.

Bounding the sample complexity. The sample complexity is dominated by the call to RVFS0 within
RVFS.bc (Algorithm 4). Since RVFS.bc calls RVFS0 with ε = εRVFS = εH−1/48, we conclude from Theorem H.1
that the total sample complexity is bounded by

Õ (C8
pushH

23A ⋅ ε−13) .

I Guarantee under V ⋆-Realizability (Proof of Theorem 4.1, Setup I)
In this section, we prove Theorem 4.1 under Setup I (V ⋆/π⋆-realizability (Assumptions 4.2 and 4.3) and
∆-gap (Assumption 4.4)). We prove this result as a consequence of the more general results (Theorem H.2)
in Appendix H by appealing to the relaxed V π-realizability condition in Assumption H.1.

52

I.1 Analysis: Proof of Theorem 4.1 (Setup I)
We begin by showing that Assumption 4.2 and Assumption 4.4 together imply that Assumption H.1 holds for
any εreal ≤∆/2; we prove this by showing that the benchmark policy class Πε′ (Appendix G.1) reduces to
{π⋆} when ε′ ≤∆/2.
Lemma I.1. Assume that V satisfies Assumption 4.2 (V ⋆-realizability), and that Assumption 4.4 (gap) holds
with ∆ > 0. Then, for all ε′ ≤∆/2, we have Πε′ = {π⋆} and V satisfies Assumption H.1 with εreal = ε′.
Informally Lemma I.1, whose proof is in Appendix I.2, states that under Assumption 4.2, Assumption 4.4
with ∆ > 0, and Assumption 4.1 (pushforward coverability) with Cpush > 0, we are essentially in the setting of
Theorem H.1 (guarantee of RVFS under relaxed V π-realizability), as long as we choose εreal ≤ ∆/2. With this,
we now state and prove a central guarantee for RVFS under V ⋆-realizability with a gap.

Lemma I.2 (Intermediate guarantee for RVFS under Setup I). Let δ ∈ (0,1) be given, and suppose that:

• Assumption 4.1 (pushforward coverability) holds with parameter Cpush > 0;
• Assumption 4.4 (gap) holds with parameter ∆ > 0;
• The function class V satisfies Assumption 4.2 (V ⋆-realizability).

Then, for any f ∈ V and ε ∈ (0,∆/8), with probability at least 1 − δ, RVFS0(f,V,∅,∅;V, ε, δ) (Algorithm 3)
terminates and returns value functions V̂1∶H that satisfy

∀h ∈ [H], Pπ̂[π̂h(xh) ≠ π⋆h(xh)] ≤
ε

4CpushH3
,

where π̂h(x) ∈ argmaxa∈A P̂τ,ε,δ′[V̂h+1](x, a), for all h ∈ [H], with δ′ is defined as in Algorithm 3.

Proof of Lemma I.2. From Lemma I.1, we have that Π4ε = {π⋆}, and so Theorem H.1 implies that with
probability at least 1 − δ,

∀h ∈ [H], ε

4CpushH3
≥ Eπ̂[Dtv(π̂h(xh), π⋆h(xh)] = Pπ̂[π̂h(xh) ≠ π⋆h(xh)],

where the equality follows by the fact that π⋆ is deterministic.

From here, Theorem 4.1 follows swiftly as a consequence.

Proof of Theorem 4.1 (Setup I). Let V̂1∶H be the value function estimates produced by RVFS0 within
Algorithm 4, and let π̂RVFS

h (⋅) ∈ argmaxa∈A P̂h,εRVFS,δ′[V̂h+1](⋅, a), for all h ∈ [H] with V̂H+1 ≡ 0 with εRVFS and
δ′ as in Algorithm 4. By Lemma I.2, there is an event Ẽ of probability at least 1 − δ/2 under which:

Pπ̂[π̂h(xh) ≠ π⋆h(xh)] ≤
εRVFS

4H3Cpush
≤ ε

4H2
, (61)

where the last inequality follows by the choice of εRVFS in Algorithm 4.

For the rest of the proof, we condition on Ẽ . By (61) and Assumption 4.3 (π⋆-realizability), the policy π̂RVFS
1∶H

returned by RVFS0 satisfies the condition in Proposition L.1 with εmis = ε/(4CpushH
3). Thus, by Proposition L.1,

there is an event Ẽ ′ of probability at least 1 − δ/2 under which the policies π̂1∶H produced by RVFS.bc satisfy

J(π̂RVFS
1∶H) − J(π̂1∶H) ≤

ε

H
+ ε

2
≤ 3ε

2
.

We now condition on Ẽ ∩ Ẽ ′. By Lemma B.6 (performance difference lemma), we have

J(π⋆) − J(π̂RVFS
1∶H) =

H

∑
h=1

Eπ̂RVFS

[Qπ⋆
h (xh, π

⋆
h(xh)) −Qπ⋆

h (xh, π̂
RVFS
h (xh))],

≤H
H

∑
h=1

Pπ̂[π̂h(xh) ≠ π⋆h(xh)],

≤ ε/(4H),

53

where the last inequality follows by (61).

Finally, by the union bound, we have P[Ẽ ∩ Ẽ ′] ≥ 1 − δ, and so the desired suboptimality guarantee in (26)
holds with probability at least 1 − δ.

Bounding the sample complexity. The sample complexity is dominated by the call to RVFS0 within
RVFS.bc (Algorithm 4). Since RVFS.bc calls RVFS0 with ε = εRVFS = εH−1/48, we conclude from Theorem H.1
that the total number of episodes is bounded by

Õ (C8
pushH

23A ⋅ ε−13) .

I.2 Proof of Lemma I.1 (Relaxed V π-Realizability under Gap)

Proof of Lemma I.1. Fix ε′ ∈ (0,1) and π ∈ Πε′ . Let (Q̃h(x, a))(h,x,a)∈[H]×X×A be independent random
variables such that

∀h ∈ [H], πh(⋅) ∈ argmax
a′∈A

Q̃h(⋅, a′) and ∥Q̃h −Qπ
h∥∞ ≤ ε′, almost surely.

Such a collection of random state-action value functions (Q̃h(x, a))(h,x,a)∈[H]×X×A is guaranteed to exist for
pi by the definition of Πε′ . We will show via backward induction over ℓ =H + 1, . . . ,1 that

∀x ∈ Xℓ, πℓ(x) = π⋆ℓ (x) (62)

almost surely, with the convention that πH+1 ≡ π⋆H+1 ≡ πunif. This convention makes the base case, ℓ =H + 1,
hold trivially.

Now, we consider the general case. Fix h ∈ [H] and suppose that (62) holds for all ℓ ∈ [h+ 1 ..H + 1]. We will
show that it holds for ℓ = h.

Thanks to the induction hypothesis, we have for all x ∈ Xh+1 and a ∈ A:

V π
h+1(x) = V ⋆h+1(x),

and so

Qπ
h ≡ Ph[V π

h+1] ≡ Ph[V ⋆h+1] = V ⋆h . (63)

Fix x ∈ X . We will show that πh(x) = π⋆h(x) almost surely. Note that thanks to (63), the fact that
∥Q̃h − Th[Qπ

h+1]∥∞ ≤ ε′ almost surely, implies that

∥Q̃h −Q⋆h∥∞ ≤ ε′,

almost surely. Using this, we have, almost surely

Q⋆h(x,πh(x)) ≥ Q̃h(x,πh(x)) − ε′,
≥ Q̃h(x,π⋆h(x)) − ε′,
≥ Q⋆h(x,π⋆h(x)) − 2ε′ = Q⋆h(x,π⋆h(x)) −∆. (64)

On the other hand, if πh(x) ≠ π⋆h(x), then

Q⋆h(x,πh(x)) < Q⋆h(x,π⋆h(x)) −∆,

which would contradict (64). Thus, πh(x) = π⋆h(x), which concludes the induction and shows that π ≡ π⋆.
We conclude that Πε′ = {π⋆}.

54

J Guarantee for Weakly Correlated ExBMDPs (Proof of Theorem
4.2)

In this section, we prove Theorem 4.2, the main guarantee for RVFSexo. First, in Appendix J.1 we state a
number of supporting technical lemmas and use them to prove Theorem 4.2. The remainder of the section
(Appendix J.2 through Appendix J.6) contains the proofs for the intermediate results.

J.1 Analysis: Proof of Theorem 4.2
Recall that the the V π-realizability assumption required by RVFS for Theorem 4.1 is not satisfied in ExBMDPs,
as the value functions for policies that act on the exogenous noise variables cannot be realized as a function
of the true decoder ϕ⋆. In RVFSexo, we address this issue by applying the randomized rounding technique in
Line 11 to the learned value functions. The crux of the analysis will be to show that for an appropriate choice
of the rounding parameters ζ1∶H , the policies produced by RVFSexo are endogenous in the sense that we can
write π(x) = π(ϕ⋆(x)) for all x ∈ X . This will allow us to leverage the decoder realizability (Assumption 3.3),
which implies that the function class V = V1∶H given by

Vh ∶= {x↦ f(ϕ(x)) ∶ f ∈ [0,H]S , ϕ ∈ Φ}, (65)

satisfies V π-realizability for all endogenous policies π.

In what follows, we first motivate the randomized rounding approach in RVFSexo in detail and prove that it
succeeds, then use this result to proceed with an analysis similar to that of Theorem 4.1 (Setup II), re-using
many of the technical tools developed for Theorem 4.1.

J.1.1 Randomized Rounding for Endogeneity

Naively, to ensure that the policies we execute are endogenous, it would seem that we require knowledge of
the true decoder ϕ⋆. Alas, knowing ϕ⋆ trivializes the ExBMDP problem by reducing it to the tabular setting.
To avoid requiring knowledge of ϕ⋆, we apply a randomized rounding to the policies learned by RVFSexo to
ensure their endogeneity.

Let ε > 0 be fixed going forward. Recall that compared to RVFS, RVFSexo (Algorithm 6) takes an additional
input ζ1∶H ⊂ (0,1/2) and executes the following coarsened policies:

π̂h(⋅) ∈ argmax
a∈A

⌈P̂h,ε,δ[V̂h+1](⋅, a)/ε + ζh⌉.

The rounding parameters ζ1∶H , which can be thought of as an offset, are chosen randomly; this will be
elucidated in the sequel.

Following a similar analysis to Appendix H (Setup II), we can associate a near-optimal benchmark policy
π̃ ∈ Π2ε with π̂ in order to emulate certain properties of the ∆-gap assumption. In particular, generalizing
the construction in Eq. (25), we define a near-optimal benchmark policy π̃ recursively via:

∀x ∈ X , π̃τ(x; ζ1∶H , ε, δ) ∈ argmax
a∈A

{ ⌈Q̂τ(x, a)/ε + ζτ ⌉, if ∥Q̂τ(x, ⋅) − Pτ [V π̃
τ+1](x, ⋅)∥∞ ≤ 4ε2,

⌈Pτ [V π̃
τ+1](x, a)/ε + ζτ ⌉, otherwise,

(66)

for τ =H, . . . ,1, where Q̂τ(⋅, a) ∶= P̂τ,ε,δ[V̂τ+1](⋅, a).
Naively, to use the benchmark policy π̃ within the analysis based on relaxed V π-realizability (Assumption H.1)
in Appendix H , we would require the function class V to realize (V π̃

h). However, as argued earlier, this is
not feasible unless π̃ is an endogenous policy. Fortunately, it turns out that if ζ1∶H (the additional input to
RVFSexo) are drawn randomly from uniform distribution over [0,1/2], then with constant probability, π̃ is
indeed endogenous. What’s more, under such an event, and for all possible choices of (V̂h) in (66) uniformly,
π̃ “snaps” onto the stochastic endogenous policy π̄(⋅; ζ1∶H , ε) defined recursively as follows:

π̄h(⋅; ζ1∶H , ε) ∈ argmax
a∈A

⌈Ph[V π̄
h+1](x, a)/ε + ζh⌉, (67)

55

for h = H, . . . ,1. Informally, this happens because, as long as ζ1∶H ⊂ (0,1/2) avoid certain pathological
locations in (0,1/2), the coarsened state-action value functions ε ⋅ ⌈Pτ [V π̄

τ+1](x, a)/ε + ζh⌉ defining π̄ exhibit
a “gap” of order Θ(ε2) separating optimal actions from the rest. This “snapping” behavior is analogous to
what happens in Setup I with V ⋆-realizability and ∆-gap, where Πε reduces to {π⋆} for all ε < ∆/2 (see
Lemma I.1). We formalize these claims in the next two lemmas. We start by showing that π̄ is endogenous
and that π̄ ∈ Π2ε. The proof is in Appendix J.2.

Lemma J.1 (Endogenous Benchmark policies). For any δ ∈ (0,1), ε ∈ (0,1/2), and ζ1∶H ⊂ (0,1/2), the
stochastic policy π̄(⋅; ζ1∶H , ε) defined in Eq. (67) is endogenous, and we have π̄(⋅; ζ1∶H , ε) ∈ Π2ε.

Next, we show that π̃ “snaps” onto π̄ for the certain choices of ζ1∶H . The proof is in Appendix J.3.

Lemma J.2 (Snapping probability). Let δ ∈ (0, 1), ε ∈ (0, 1/2) be given, and Pζ denote the probability law of
ζ1, . . . ,ζH ∼ unif([0,1/2]). Then, there is an event Erand of probability at least 1 − 24SAHε under ζ1∶H ∼ Pζ

such that for all Ṽ ∈ (X × [H] → [0,H]) simultaneously,

∀h ∈ [H], π̃h(⋅; Ṽ ,ζ1∶H , ε, δ) = π̄h(⋅;ζ1∶H , ε),

where π̃h(⋅; Ṽ ,ζ1∶H , ε, δ) is defined as in (66) with V̂ = Ṽ , and π̄ is defined as in (67).

The lemma together, with Lemma J.1, implies that with constant probability under Pζ , the benchmark
policies (π̃h) used in the analysis of RVFSexo are endogenous and satisfy π̃ ∈ Π2ε.

J.1.2 Pushforward Coverability

In order to proceed with the analysis strategy in Appendix H, we need to verify that pushforward coverability is
satisfied for ExBMDPs under the weak correlation assumption. We do so in the next lemma; see Appendix J.4
for a proof.

Lemma J.3 (Pushforward coverability). A weakly correlated ExBMDP with constant Cexo (see Assump-
tion 4.7) satisfies Cpush-pushforward coverability (Assumption 4.1) with Cpush = Cexo ⋅ SA, where S ∈ N is the
number of endogenous states.

Equipped with the preceding lemmas, we proceed with an analysis similar to the approach for Theorem 4.1
(Setup II) in Appendix H. In what follows, we state a number of technical lemmas that apply the relevant
results from Appendix H to the ExBMDP setting we consider here.

J.1.3 Bounding the Number of Test Failures

Since the size of the core sets C1∶H in RVFSexo is directly proportional to the number of test failures, the
next result, which bounds ∣Ch∣ for all h ∈ [H], allows us to show that RVFSexo (Algorithm 6) terminates in a
polynomial number of iterations.

Lemma J.4 (Bounding the number of test failures). Let δ, ε ∈ (0,1) and ζ1∶H ∈ [0,1/2] be given, and
suppose that Assumption 4.7 (weak correlation) holds with Cexo > 0. Let f ∈ V, be given, where V is an
arbitrary function class. Then, there is an event E of probability at least 1 − δ under which the call to
RVFSexo0 (f,VH ,∅,∅, 0;V, ε, ζ1∶H , δ) (Algorithm 6) terminates, and throughout the execution of RVFSexo0 , we have

∣Ch∣ ≤ ⌈8ε−2CexoSAH⌉.

Proof of Lemma J.4. The results follows from Lemma J.3 and Lemma H.1.

J.1.4 Value Function Regression Guarantee

We next give a guarantee for the estimated value functions V̂1∶H computed within RVFSexo in Line 26 of
Algorithm 6.

56

Lemma J.5 (Value function regression guarantee). Let h ∈ [0 ..H], δ, ε ∈ (0,1), and ζ1∶H ∈ [0,1/2] be given,
and consider a call to RVFSexo0 in the setting of Lemma J.4. Further, let V be defined as in Eq. (65), and
assume that Φ satisfies Assumption 3.3. Then, for any endogenous policy π in ΠS, there is an event E ′′h of
probability at least 1 − δ/H under which for any k ≥ 1, if

• RVFSexoh gets called for the kth time during the execution of RVFSexo0 ; and

• this kth call terminates and returns (V̂h∶H , V̂h∶H ,Ch∶H ,Bh∶H , th∶H),
then if (π̂τ)τ≥h is the policy induced by V̂h∶H and Nreg is set as in Algorithm 6, we have

∑
(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,−)∈Dh(xh−1,ah−1)
(V̂h(xh) − V π

h (xh))
2

≤ 9kH2 log(8k2H ∣V∣/δ)
Nreg

+ 8H2 ∑
(xh−1,ah−1)∈Ch

H

∑
τ=h

Eπ̂ [Dtv(π̂τ(xτ), πτ(xτ)) ∣ xh−1 = xh−1,ah−1 = ah−1] ,

where the datasets {Dh(x, a) ∶ (x, a) ∈ Ch} are as in the definition of V̂h in (17).

Proof of Lemma J.5. Since Φ satisfies Assumption 3.3, the function class V = V1∶H satisfies V π-realizability
for all endogenous policies π (see Lemma 3.1). Thus, the proof of Lemma J.5 follows from that of Lemma H.3
(see Appendix H.4).

J.1.5 Confidence Sets

We now state a version of the confidence set validity lemma (Lemma H.4) that supports the ExBMDP setting.

Lemma J.6 (Confidence sets). Let ε ∈ (0,1/2) and ζ1∶H ⊂ [0,1/2] be given, and suppose that

• Assumption 4.7 holds with Cexo > 0;
• The decoder class Φ satisfies Assumption 3.3;

• ζ1∶H ∈ Erand, where Erand is the event in Lemma J.2.

Let f ∈ V be arbitrary. There is an event E ′′′ of probability at least 1−3δ under which a call to RVFSexo0 (f,V,∅,∅, 0;V, ε, ζ1∶H , δ)
terminates and returns tuple (V̂1∶H , V̂1∶H ,C1∶H ,B1∶H , t1∶H) such that

∀h ∈ [H], V π̄
h ∈ V̂h,

where π̄1∶H is the policy defined recursively via

π̄τ(x) ∈ argmax
a∈A

⌈Pτ [V π̄
τ+1](x, a)/ε + ζh⌉, for τ =H, . . . ,1. (68)

While the proof of this lemma is very similar to that of Lemma H.4, we need a dedicated treatment to handle
the rounding in RVFSexo. The fully proof of Lemma J.8 is in Appendix H.5.

J.1.6 Main Guarantee for RVFSexo

We now state the central technical guarantee for RVFSexo, Lemma J.7, which shows that the base invocation
of the algorithm returns a set of value functions V̂1∶H that induce a near-optimal policy π̂, as long as the
randomized rounding parameters ζ1∶H satisfy ζ1∶H ∈ Erand, where Erand is the success event in Lemma J.2. The
proof of the theorem is in Appendix J.6.

Lemma J.7 (Main guarantee for RVFSexo). Let δ, ε ∈ (0,1) and ζ1∶H ⊂ [0, 12] be given, and suppose that

• Assumption 4.7 holds with Cexo > 0;
• The decoder class Φ satisfies Assumption 3.3;

57

• ζ1∶H ∈ Erand, where Erand is the event in Lemma J.2.

Then, for any f ∈ V, with probability at least 1− 5δ, a call to RVFSexo0 (f,VH ,∅,∅, 0;V, ε, ζ1∶H , δ) (Algorithm 6)
terminates and returns value functions V̂1∶H such that

∀h ∈ [H], Pπ̂[π̂h(xh) ≠ π̄h(xh)] ≤
ε2

4H3SACexo
,

where π̂h(x) ∈ argmaxa∈A⌈P̂h,ε,δ′[V̂h+1](x, a)/ε + ζh⌉, for all h ∈ [H], π̄ is defined as in Eq. (67), and δ′ is
defined as in Algorithm 6. Furthermore, the number of episodes used by RVFSexo0 is bounded by

Õ (C8
exoS

8H10A9 ⋅ ε−26) .

J.1.7 Concluding: Main Guarantee for RVFSexo.bc

To conclude, we prove Theorem 4.2, which shows that RVFSexo.bc succeeds with high probability. Recall that
RVFSexo.bc (i) invokes RVFSexo multiple times for random samples ζ1∶H to ensure that the success event for
Lemma J.7 occurs for at least one invocation, and (ii) extracts an executable policy using behavior cloning.
Regarding the former point, note that the probability of the success event of Lemma J.2 can be boosted by
sampling i.i.d. ζ(1)1∶H , . . . ,ζ(n)1∶H ∼ Pζ inputs to RVFSexo for n ≥ 1; as long as n is polynomially large, with high
probability at least one of the inputs ζ(1)1∶H , . . . ,ζ(n)1∶H will satisfy the conclusion of Lemma J.2. Thus, it suffices
to pick the policy with the highest value function among the different calls to RVFSexo. Using this, we prove
Theorem 4.2.

Proof of Theorem 4.2. Recall that Algorithm 7 picks the final policy π̂
(iopt)
1∶H based on empirical value

function estimates. In particular, for every i ∈ [Nboost] (with Nboost as in Algorithm 7), the estimate Ĵ(π̂(i)1∶H)
for J(π̂(i)1∶H) is computed using Neval episodes. Thus, by Hoeffding’s inequality and the union bound, we have
that there is an event Ĕ of probability at least 1 − δ/4 under which

∀i ∈ [Nboost], ∣J(π̂(i)1∶H) − Ĵ(π̂
(i)
1∶H)∣ ≤

√
2 log(2Nboost/δ)/Neval.

Therefore, by definition of iopt in Algorithm 7, we have that under Ĕ :

∀i ∈ [Nboost], J(π̂(i)1∶H) ≤ J(π̂
(iopt)
1∶H) +

√
2 log(2Nboost/δ)/Neval,

≤ J(π̂(iopt)1∶H) + ε/8, (69)

where the last inequality follows by the choice of Neval in Algorithm 7. On the other hand, by Lemma J.2,
there is an event Esuccess of Pζ-probability at least

1 − (24SAHε)Nboost ≥ 1 − δ/4 (by the choice of Nboost in Algorithm 7)

under which there exists j ∈ [Nboost] such that ζ(j)1∶H ∈ Erand, where Erand is defined as in Lemma J.2. In what
follows, we condition on the event Esuccess and let j ∈ [Nboost] be such that ζ(j)1∶H ∈ Erand. Further, we use π̂RVFS

1∶H
to denote the policy returned by the instance of RVFSexo that is used by RVFSexo.bc to learn π̂(j)1∶H .

By Proposition L.1 (instantiated with εmis = 0), there is an event Ẽ ′ of probability at least 1− δ/4 under which
the policy π̂(j) produced by BehaviorCloning satisfies

J(π̂RVFS
1∶H) − J(π̂(j)1∶H) ≤

ε

2
. (70)

By Lemma J.7 and the fact that ζ(j)1∶H ∈ Erand, there is an event Ẽ of probability at least 1 − δ/2 under which:

∀h ∈ [H], ∀h ∈ [H], Pπ̂[π̂h(xh) ≠ π̄h(xh)] ≤
ε2RVFS

4H3SACexo
≤ ε

4H2
, (71)

where π̄(⋅) ∶= π̄(⋅;ζ(j)1∶H , εRVFS) which is defined in (67).

58

Moving forward, we condition on Ĕ ∩ Ẽ ∩ Ẽ ′. By Lemma B.6 (the performance difference lemma), we have

J(π̄) − J(π̂RVFS
1∶H) =

H

∑
h=1

Eπ̂RVFS

[Qπ̃
h(xh, π̄h(xh)) −Qπ̄

h(xh, π̂
RVFS
h (xh))],

≤H
H

∑
h=1

Pπ̂[π̂h(xh) ≠ π̄h(xh)],

≤ ε/4, (72)

where the last inequality follows by (71). Now, by Lemma J.1, we have π̄ ∈ Π2εRVFS , and so by Lemma G.1,

J(π⋆) − J(π̄) ≤ 6HεRVFS ≤ ε/8, (73)

where the last inequality follows by the choice of εRVFS in Algorithm 7. Combining (73) with (69), (70), and
(72), we get that

J(π⋆) − J(π̂1∶H) = J(π⋆) − J(π̂(iopt)1∶H) ≤ ε.

Finally, by the union bound, we have P[Ĕ ∩ Ẽ ∩ Ẽ ′] ≥ 1 − δ, and so the desired suboptimality guarantee holds
with probability at least 1 − δ.

Bounding the sample complexity. The sample complexity is dominated by the calls to RVFSexo0 within
RVFSexo.bc (Algorithm 7). Since RVFSexo.bc calls RVFSexo0 with suboptimality parameter εRVFS = εH−1/48, we
get by Lemma J.7 that the total sample complexity is bounded by

Õ (C8
exoS

8H36A9 ⋅ ε−26) .

J.2 Proof of Lemma J.1 (Endogenous Benchmark Policies)
Proof of Lemma J.1. Fix δ ∈ (0, 1), ε ∈ (0, 1/2), and ζ ′1∶H ⊂ [0, 1/2]. We show via backward induction over
ℓ =H + 1, . . . ,1 that π̄τ(⋅; ζ ′1∶H , ε) is endogenous for all τ ∈ [ℓ ..H + 1], with the convention that π̄H+1 = πunif.
The base case holds trivially by convention.

Fix h ∈ [H] and suppose that the induction hypothesis holds for all ℓ ∈ [h + 1 ..H + 1]. We show that it holds
for ℓ = h. First, by the induction hypothesis, π̄ℓ(⋅; ζ ′1∶H , ε) is endogenous for all ℓ ∈ [h + 1 ..H]. Thus, there
exists a function fh+1 ∶ S → [0,H − h] such that

V π̄
h+1(x′) = fh+1(ϕ⋆(x′)), ∀x′ ∈ X .

Therefore, we have for all (x, a) ∈ X ×A:

Ph[V π̄
h+1](x, a) = rh(x, a) +E[fh+1(ϕ⋆(xh+1)) ∣ xh = x,ah = a],

= rh(x, a) +E[fh+1(sh+1) ∣ xh = x,ah = a],
= rh(x, a) +E[fh+1(sh+1) ∣ sh = ϕ⋆(x),ah = a], (74)

where the last equality follows by the ExBMDP transition structure. Eq. (74) together with the fact that the
rewards are endogenous (by assumption) implies that there exists gh ∶ S × A → [0,H − h + 1] such that

∀(x, a) ∈ X ×A, Ph[V π̄
h+1](x, a) = gh(ϕ⋆(x), a),

which in turn implies that x ↦ ⌈Ph[V π̄
h+1](x, a)/ε + ζ ′h⌉ is only a function of x through ϕ⋆(x) for all a ∈ A.

Thus, π̄h is an endogenous policy and the induction is completed.

For the second claim, observe that for the functions Q̃1,⋯, Q̃H ∈ [0,H]X×A defined as

∀h ∈ [H],∀(x, a) ∈ X ×A, Q̃h(x, a) = ε ⋅ ⌈Ph[V π̄
h+1](x, a)/ε + ζ ′h⌉,

59

we have

∀h ∈ [H], π̄h(⋅; ζ ′1∶H , ε) ∈ argmax
a∈A

Q̃h(⋅, a) and ∥Q̃h −Qπ̄
h∥∞ ≤ 2ε,

which implies that π̄(⋅; ζ ′1∶H , ε) ∈ Π2ε.

J.3 Proof of Lemma J.2 (Snapping Probability)

Proof of Lemma J.2. Fix ε ∈ (0,1) and δ ∈ (0,1/2). For τ ≤ ℓ ∈ [H], let Pζ
τ ∶ℓ denote the probability law

of ζτ , . . . ,ζℓ. We also use the shorthand Pζ
τ for Pζ

τ ∶τ , for all τ ∈ [H]. We show via backward induction over
ℓ =H + 1, . . . , 1 that there exists an event Eℓ of Pζ

ℓ∶H -probability at least 1− 24SA(H − ℓ+ 1)ε under which for
all Ṽ ∈ (X × [H] → [0,H]):

∀τ ∈ [ℓ ..H], π̃τ(⋅; Ṽ ,ζ1∶H , ε, δ) = π̄τ(⋅;ζ1∶H , ε),

with the convention that π̄H+1 ≡ π̃H+1 ≡ πunif. We then set Erand = E1.
The base case follows trivially by convention.

We now proceed with the inductive step. Fix h ∈ [H] and suppose that the induction hypothesis holds for all
ℓ ∈ [h + 1 ..H]. We show that it holds for ℓ = h. Throughout, we condition on Eh+1. By definition of Eh+1, we
have for all Ṽ ∈ (X × [H] → [0,H]):

∀ℓ ∈ [h + 1 ..H], π̄ℓ(⋅;ζ1∶H , ε) = π̃ℓ(⋅; Ṽ ,ζ1∶H , ε, δ).

This implies that for all Ṽ ∈ (X × [H] → [0,H]):

∀x ∈ X , π̃h(x; Ṽ ,ζ1∶H , ε, δ) ∈ argmax
a∈A

{ ⌈Q̂h(x, a)/ε + ζh⌉, if ∥Q̂h(x, ⋅) − Ph[V π̄
h+1](x, ⋅)∥∞ ≤ 4ε2,

⌈Ph[V π̄
h+1](x, a)/ε + ζh⌉, otherwise,

by the definition of π̃h in (66), where Q̂h(⋅, a) ∶= P̂h,ε,δ[Ṽh+1](⋅, a). From this, we see that to prove
π̃h(⋅; Ṽ ,ζ1∶H , ε, δ) = π̄h(⋅;ζ1∶H , ε) for all Ṽ , it suffices to show that for all x ∈ X and Ṽ ,

argmax
a∈A

⌈Q̂h(x, a)/ε + ζh⌉ = argmax
a∈A

⌈Ph[V π̄
h+1](x, a)/ε + ζh⌉, whenever ∣Q̂h(x, a) − Ph[V π̄

h+1](x, a)∣ ≤ 4ε2.

Observe that a sufficient condition for this to hold is that

∀x ∈ X ,∀a ∈ A,∀δ ∈ [−4ε2,4ε2], ⌈(Ph[V π̄
h+1](x, a) + δ) ⋅ ε−1 + ζh⌉ = ⌈Ph[V π̄

h+1](x, a) ⋅ ε−1 + ζh⌉, (75)

where δ represents all the possible values that the difference Q̂h(x, a) − Ph[V π̄
h+1](x, a) is allowed to take. By

Lemma J.1, we know that π̄ is endogenous, and so there exists a function gh ∶ S ×A → [0,H −h+ 1] such that

∀x ∈ X , a ∈ A, Ph[V π̄
h+1](x, a) = gh(ϕ⋆(x), a).

Toward proving Eq. (75), observe that for any (s, a) ∈ S ∈ A, if ζh is such that

gh(s, a)/ε + ζh + 4ε ≤ ⌈gh(s, a)/ε + ζh⌉,
and gh(s, a)/ε + ζh − 4ε > ⌈gh(s, a)/ε + ζh⌉ − 1,

(76)

then, for all δ ∈ [−4ε2,4ε2] and all x ∈ X such that ϕ⋆(x) = s, we have

⌈(Ph[V π̄
h+1](x, a) + δ)/ε + ζh⌉ = ⌈(gh(s, a) + δ)/ε + ζh⌉ = ⌈gh(s, a)/ε + ζh⌉ = ⌈Ph[V π̄

h+1](x, a)/ε + ζh⌉.

Therefore, if we let Eh(s, a) denote the event in (76), then under ⋂(s,a)∈S×A Eh(s, a), the desired condition in
(75) holds. At this point, setting Eh = (⋂(s,a)∈S×A Eh(s, a)) ∩ Eh+1 would complete the induction as long as

60

Pζ
h∶H[Eh] ≥ 1 − 24SA(H − h + 1)ε. We now show that this is indeed the case by bounding the probability of

the event ⋂(s,a)∈S×A Eh(s, a). By the union bound, we have

Pζ
h∶H

⎡⎢⎢⎢⎢⎣
⋂

(s,a)∈S×A
Eh(s, a) ∣ Eh+1

⎤⎥⎥⎥⎥⎦
≥ 1 − ∑

(s,a)∈S×A
Pζ
h∶H [Eh(s, a)

c ∣ Eh+1] , (77)

where Eh(s, a)c denotes the complement of Eh(s, a). We now bound the probability

Pζ
h∶H [Eh(s, a)

c ∣ Eh+1] .
Fix (s, a) ∈ S ×A. We have that ζh ∈ E(s, a)c if and only if

gh(s, a)/ε + ζh + 4ε > ⌈gh(s, a)/ε + ζh⌉,
or gh(s, a)/ε + ζh − 4ε ≤ ⌈gh(s, a)/ε + ζh⌉ − 1.

(78)

Now, since ζh ∈ [0, 1/2], Lemma K.3 (instantiated with (x, ζ, ν) = (gh(s, a)/ε,ζh, 4ε)) implies that (78) holds
only if

⌈gh(s, a)/ε⌉ − 4ε ≤ gh(s, a)/ε + ζh ≤ ⌈gh(s, a)/ε⌉ + 4ε or 0 ≤ ζh ≤ 4ε. (79)

Further, note that since ζh is uniformly distributed over [0, 1/2], the Pζ
h-probability of the event in (79) is at

most the sum of the lengths of the intervals

[⌈gh(s, a)/ε⌉ − gh(s, a)/ε − 4ε, ⌈gh(s, a)/ε⌉ − gh(s, a)/ε + 4ε] and [0,4ε],
multiplied by 2, which is equal to 24ε. Therefore, we have

Pζ
h∶H [Eh(s, a)

c ∣ Eh+1]
≤ Pζ

h [⌈gh(s, a)/ε⌉ − 4ε ≤ gh(s, a)/ε + ζh ≤ ⌈gh(s, a)/ε⌉ + 4ε or 0 ≤ ζh ≤ 4ε] ≤ 24ε.
Combining this with (77), we obtain

Pζ
h∶H

⎡⎢⎢⎢⎢⎣
⋂

(s,a)∈S×A
Eh(s, a) ∣ Eh+1

⎤⎥⎥⎥⎥⎦
≥ 1 − ∑

(s,a)∈S×A
Pζ
h∶H [Eh(s, a)

c ∣ Eh+1] ≥ 1 − 24SAε.

Thus, by setting Eh = (⋂(s,a)∈S×A Eh(s, a)) ∩ Eh+1, we get that

Pζ
h∶H[Eh] ≥ P

ζ
h+1∶H[Eh+1] ⋅ P

ζ
h∶H[Eh ∣ Eh+1] ≥ (1 − 24SA(H − h)ε)(1 − 24SAε),

≥ 1 − 24SA(H − h + 1)ε,
which completes the induction.

J.4 Proof of Lemma J.3 (Coverability in Weakly Correlated ExBMDP)
Proof of Lemma J.3. Fix h ∈ [2 ..H] and define the measure µ as

µ(x) ∶= ∑
ξ′∈Ξ

q(x′ ∣ (ϕ⋆h(x′), ξ′)) ⋅ P[ξh = ξ′] ⋅ P[sh = ϕ⋆h(x′) ∣ sh−1 = ϕ⋆h−1(x),ah−1 = a],

for all h ∈ [H] and x ∈ X . We show that µ satisfies Assumption 4.1 with Cpush = Cexo ⋅ SA. First, note that µ
is indeed a probability measure over X . Fix (x, a, x′) ∈ X ×A ×X . We have

P[xh = x′ ∣ xh−1 = x,ah−1 = a]

= P[xh = x′,xh−1 = x ∣ ah−1 = a]
P[xh−1 = x ∣ ah−1 = a]

,

= P[xh = x′,xh−1 = x ∣ ah−1 = a]
P[xh−1 = x]

,

= ∑ξ,ξ′∈Ξ q(x′ ∣ (ϕ⋆h(x′), ξ′)) ⋅ q(x ∣ (ϕ⋆h−1(x), ξ)) ⋅ P[sh = ϕ⋆h(x′),ξh = ξ′,sh−1 = ϕ⋆h−1(x),ξh−1 = ξ ∣ ah−1 = a]
∑ξ∈Ξ q(x ∣ (ϕ⋆h−1(x), ξ)) ⋅ P[sh−1 = ϕ⋆h−1(x),ξh−1 = ξ]

,

61

and so by the ExBMDP structure:

= ∑ξ,ξ′∈Ξ q(x′ ∣ (ϕ⋆h(x′), ξ′)) ⋅ q(x ∣ (ϕ⋆h−1(x), ξ)) ⋅ P[ξh = ξ′,ξh−1 = ξ] ⋅ P[sh = ϕ⋆h(x′) ∣ sh−1 = ϕ⋆h−1(x),ah−1 = a]
∑ξ∈Ξ q(x ∣ (ϕ⋆h(x), ξ)) ⋅ P[ξh−1 = ξ]

,

and by Assumption 4.7

≤ Cexo
∑ξ,ξ′∈Ξ q(x′ ∣ (ϕ⋆h(x′), ξ′)) ⋅ q(x ∣ (ϕ⋆h−1(x), ξ)) ⋅ P[ξh = ξ′] ⋅ P[ξh−1 = ξ] ⋅ P[sh = ϕ⋆h(x′) ∣ sh−1 = ϕ⋆h−1(x),ah−1 = a]

∑ξ∈Ξ q(x ∣ (ϕ⋆h(x), ξ)) ⋅ P[ξh−1 = ξ]
,

= Cexo ∑
ξ′∈Ξ

q(x′ ∣ (ϕ⋆h(x′), ξ′)) ⋅ P[ξh = ξ′] ⋅ P[sh = ϕ⋆h(x′) ∣ sh−1 = ϕ⋆h−1(x),ah−1 = a],

= CexoSA ⋅ µ(x′),

This completes the proof.

J.5 Proof of Lemma J.6 (Confidence Sets)
To prove Lemma J.6, we need the following consequence of tests in Line 14 passing for all ℓ ∈ [h + 1 ..H].
Lemma J.8 (Consequence of passed tests). Let h ∈ [0 ..H], ε > 0, and ζ1∶H ∈ [0,1/2] be given and consider
a call to RVFSexo0 (Algorithm 6) in the setting of Lemma J.4. Further, let E be the event of Lemma J.4.
There exists an event E ′h of probability at least 1 − δ/H such that under E ∩ E ′h, if a call to RVFSexoh during the
execution of RVFSexo0 terminates and returns (V̂h∶H , V̂h∶H ,Ch∶H ,Bh∶H , th∶H), then for any (xh−1, ah−1) ∈ Ch and
ℓ ∈ [h + 1 ..H + 1]:

Pπ̂

⎡⎢⎢⎢⎢⎣
sup
f∈V̂ℓ

max
a∈A
∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(xℓ−1, a)∣ > 3ε2 ∣ xh−1 = xh−1,ah−1 = ah−1

⎤⎥⎥⎥⎥⎦
≤ 4 log(8M6N2

testH
8/δ)

Ntest
,

where (π̂τ)τ≥h ⊂ ΠS, M , and Ntest are as in RVFSexoh (Algorithm 6).

Proof of Lemma J.8. This is just a restatement of Lemma H.2, and the proof is exactly the same as the
latter.

We will also use Lemma H.5; even though this result is stated in section for the V π-realizable setting, it is
also applicable to the ExBMDP variant of RVFS as it merely says something about the order in which the
(RVFSexoh) instances are called. With this, we now prove Lemma J.6.

Proof of Lemma J.6. The proof is very similar to that of Lemma H.2, with differences to account for the
“coarsening” of the learned and benchmark policies.

We prove the desired result for E ′′′ ∶= E ∩ E ′1 ∩ E ′′1 ∩ ⋅ ⋅ ⋅ ∩ E ′H ∩ E ′′H , where E , (E ′h), and (E ′′h) are the events in
Lemma J.4, Lemma J.8, and Lemma J.5, respectively. Throughout, we condition on E ′′′. First, note that by
Lemma J.4, RVFSexo0 terminates. Let (V̂1∶H , V̂1∶H ,C1∶H ,B1∶H , t1∶H) be its returned tuple.

We show via backward induction over ℓ =H + 1, . . . ,1, that

V π̃
ℓ ∈ V̂ℓ, (80)

where π̃1∶H is the stochastic policy defined recursively via

∀x ∈ X , π̃τ(x; ζ1∶H , ε, δ) ∈ argmax
a∈A

{ ⌈Q̂τ(x, a)/ε + ζτ ⌉, if ∥Q̂τ(x, ⋅) − Pτ [V π̃
τ+1](x, ⋅)∥∞ ≤ 4ε2,

⌈Pτ [V π̃
τ+1](x, a)/ε + ζτ ⌉, otherwise,

for τ = H, . . . ,1, where Q̂τ(⋅, a) ∶= P̂τ,ε,δ[V̂τ+1](⋅, a). Note that since ζ1∶H ∈ Erand (for Erand is defined in
Lemma J.2), we have π̃ ≡ π̄, where π̄ is as in (68). Thus, instantiating the induction hypothesis with ℓ = h
and using the definition of the confidence sets (V̂ℓ) in (17) together with V π̃

h ≡ V π̄
h (since π̃ ≡ π̄) implies the

desired result.

62

Base case [ℓ =H + 1]. Holds trivially since V π
H+1 ≡ 0 for any π ∈ ΠS by convention.

General case [ℓ ≤ H]. Fix h ∈ [H] and suppose that (80) holds for all ℓ ∈ [h + 1 ..H + 1]. We show that
this remains true for ℓ = h. First, note that if RVFSexoh is never called during the execution of RVFSexo0 , then
V̂h = Vh, and so (80) holds for ℓ = h, since π̃ = π̄ is endogenous under ζ1∶H ∈ Erand, where Erand is the event in
Lemma J.2.

Now, suppose that RVFSexoh is called at least once, and let (V̂ +h∶H , V̂+h∶H ,C+h∶H ,B+h∶H , t+h∶H) be the output of the
last call to RVFSexoh throughout the execution of RVFSexo0 . Next, we show that

(V̂ +h∶H , V̂+h∶H ,C+h∶H) = (V̂h∶H , V̂h∶H ,Ch∶H). (81)

The for-loop in Line 16 ensures that no instance of (RVFSexoτ)τ>h can be called after the last call to RVFSexoh

(see Lemma H.5). Thus, the estimated value functions, confidence sets, and core sets for layers h + 1, . . . ,H
remain unchanged after the last call to RVFSexoh ; that is, (81) holds. Thus, by Lemma J.8, and since we are
conditioning on E ′h+1∶H , we have that for all (xh−1, ah−1) ∈ Ch and ℓ ∈ [h + 1 ..H + 1]:

Pπ̂

⎡⎢⎢⎢⎢⎣
sup
f∈V̂ℓ

max
a∈A
∣(Pℓ−1[V̂ℓ] − Pℓ−1[fℓ])(xℓ−1, a)∣ > 3ε2 ∣ xh−1 = xh−1,ah−1 = ah−1

⎤⎥⎥⎥⎥⎦
≤ 4 log(8M6N2

testH
8/δ)

Ntest
. (82)

Now, by the induction hypothesis, we have V π̃
ℓ ∈ V̂ℓ, and so substituting V π̃

ℓ for fℓ in (82), we get that for all
(xh−1, ah−1) ∈ Ch and ℓ ∈ [h + 1 ..H + 1]:

Pπ̂[max
a∈A
∣(Pℓ−1[V̂ℓ] − Pℓ−1[V π̃

ℓ])(xℓ−1, a)∣ > 3ε2 ∣ xh−1 = xh−1,ah−1 = ah−1] ≤
4 log(8M6N2

testH
8/δ)

Ntest
.

Therefore, by Lemma K.2 (instantiated with µ[⋅] = Pπ̂[⋅ ∣ xh−1 = xh−1,ah−1 = ah−1], τ = ℓ − 1, ε′ = ε2, and
Vτ+1 = V π̃

ℓ), we have that for all (xh−1, ah−1) ∈ Ch and ℓ ∈ [h + 1 ..H + 1]:

Eπ̂[Dtv(π̂ℓ−1(xℓ−1), π̃ℓ−1(xℓ−1)) ∣ xh−1 = xh−1,ah−1 = ah−1] ≤
4 log(8M6N2

testH
8/δ)

Ntest
+ δ′. (83)

Now, since π̄(⋅; ζ1∶H , ε) is endogenous and π̃ ≡ π̄ (thanks to ζ1∶H ∈ Erand), Lemma J.5 (applied with π = π̄) and
the conditioning on E ′′h+1∶H imply that:

∑
(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,−)∈Dh(xh−1,ah−1)
(V̂h(xh) − V π̃

h (xh))
2

≤ 9kH2 log(8k2H ∣V∣/δ)
Nreg

+ 8H2 ∑
(xh−1,ah−1)∈Ch

H

∑
τ=h

Eπ̂ [Dtv(π̂τ(xτ), π̃τ(xτ)) ∣ xh−1 = xh−1,ah−1 = ah−1] , (84)

where the datasets {Dh(x, a) ∶ (x, a) ∈ Ch} are as in the definition of V̂h in (17). Combining (84) with (83),
we conclude that

∑
(xh−1,ah−1)∈Ch

1

Nreg
∑

(xh,−)∈Dh(xh−1,ah−1)
(V̂h(xh) − V π̃

h (xh))
2

≤ 9MH2 log(8M2H ∣V∣/δ)
Nreg

+ 8MH3 ⋅ 4 log(8M
6N2

testH
8/δ)

Ntest
+ 8MH3δ′,

= 9MH2 log(8M2H ∣V∣/δ)
Nreg

+ 8MH3 ⋅ 4 log(8M
6N2

testH
8/δ)

Ntest
+ 8MH3 δ

4M7N2
testH

8∣V∣ ,

≤ ε2reg, (85)

where we have used that ∣Ch∣ ≤M . By the definition of V̂h in (17), (85) implies that V π̃
h ∈ V̂h, which completes

the induction.

63

J.6 Proof of Lemma J.7 (Main Guarantee of RVFSexo)

Proof of Lemma J.7. We condition on the event Ẽ ∶= E ∩ E ′′′ ∩ E ′1 ∩ ⋅ ⋅ ⋅ ∩ E ′H , where E , E ′′′, and (E ′h) are
the events in Lemma J.4, Lemma J.6, and Lemma J.8, respectively. Note that by the union bound, we have
P[Ẽ] ≥ 1 − 5δ. By Lemma J.6, we have that

∀h ∈ [H], Pπ̂

⎡⎢⎢⎢⎢⎣
sup
f∈V̂h

max
a∈A
∣(Ph−1[V̂h] − Ph−1[fh])(xh−1, a)∣ > 3ε2

⎤⎥⎥⎥⎥⎦
≤ 4 log(8M6N2

testH
8/δ)

Ntest
, (86)

where M = ⌈8ε−2CexoSAH⌉ and Ntest = 28M2Hε−2 log(8M6H8ε−2δ−1). On the other hand, by Lemma J.6,
we have

∀h ∈ [H], V π̃
h ∈ V̂h.

Thus, substituting V π̃
h for fh in (86) we get that for all h ∈ [H + 1].

Pπ̂[max
a∈A
∣(Ph−1[V̂h] − Ph−1[V π̃

h])(xh−1, a)∣ > 3ε2] ≤
4 log(8M6N2

testH
8/δ)

Ntest
.

This together with Lemma K.2, instantiated with µ[⋅] = Pπ̂[⋅]; τ = h − 1; Vτ+1 = V π̃
h ; and δ = δ′ (with δ′ as in

Algorithm 3), translates to:

∀h ∈ [H], Eπ̂[Dtv(π̃h(xh), π̂h(xh))] ≤
4 log(8M6N2

testH
8/δ)

Ntest
+ δ′,

= 4 log(8M6N2
testH

8/δ)
Ntest

+ δ

4M7N2
testH

8∣V∣ ,

≤ ε2

4H3SACexo
, (87)

where the last step follows from the fact that Ntest = 28M2Hε−2 log(8M6H8ε−2δ−1) (with M as in Line 3).
Now, since ζ1∶H ∈ Erand (by assumption), Lemma J.2 implies that π̃ ≡ π̄, where the latter is the deterministic
policy defined in (67). Thus, by (87), we have

∀h ∈ [H], Pπ̂[π̄h(xh) ≠ π̂h(xh)] = Eπ̂[Dtv(π̃h(xh), π̂h(xh))] ≤
ε2

4H3SACexo
,

where the first equality follows by the fact that P[π̄h(x) ≠ π̂h(x)] = Dtv(π̃h(x), π̂h(x)), for all x ∈ X , since
π̄h is deterministic.

Bounding the sample complexity. We now bound the number of episodes used by Algorithm 6 under Ẽ .
First, we fix h ∈ [H], and focus on the number of episodes used within a to call RVFSexoh ; excluding any episodes
used by any recursive calls to RVFSexoτ for τ > h. We start by counting the number of episodes used to test the
fit of the estimated value functions V̂h+1∶H . Starting from Line 8, there are for-loops over (xh−1, ah−1) ∈ Ch,
ℓ =H, . . . , h+ 1, and n ∈ [Ntest] to collected partial episodes using the learned policy π̂ in Algorithm 6, where
Ntest = 28M2Hε−2 log(8M6H8ε−2δ−1) and M = ⌈8ε−2CexoSAH⌉. Note that π̂ uses the local simulator and
requires Nsim = 2 log(4M7N2

testH
2∣V∣/δ)/ε2 samples to output an action at each layer (since Algorithm 6 calls

Algorithm 5 with confidence level δ′ = δ/(8M7N2
testH

8∣V∣)). Also, note that whenever a test fails in Line 14,
the for-loop in Line 8 resumes. We also know (by Lemma J.4) that the number of times the test fails in Line
14 is at most M . Thus, the number of times the for-loop in Line 8 resumes is bounded by HM ; here, H
accounts for test failures for all layers τ ∈ [h + 1 ..H]. Thus, the number of episodes required to between lines
Line 8 and Line 11 is bounded by

episodes for roll-outs ≤ MH
±

of times Line 8 resumes

⋅ MH2NtestNsim
´¹¹¹¸¹¹¶

Number of episodes in case of no test failures

. (88)

64

Note that the test in Line 14 also uses local simulator access because it calls the operator P̂ for every a ∈ A.
Thus, the number of episodes used for the test in Line 14 is bounded by

episodes for the tests ≤ MH
±

of times Line 8 resumes

⋅ MHANtestNsim
´¹¹¸¹¹¹¶

Number of episodes used in Line 14

. (89)

We now count the number of episodes used to re-fit the value function; Line 16 onwards. Note that starting
from Line 16, there are for-loops over (xh−1, ah−1) ∈ Ch and i ∈ [Nreg] to generate A ⋅Nest(∣Ch∣) ≤ A ⋅Nest(M)
partial episodes using π̂, where Nest(k) = 2N2

reg log(8ANregHk3/δ) is as in Algorithm 6. And, since π̂ uses
local simulator access and requires Nest samples (see Algorithm 5) to output an action at each layer, the
number of episodes used to refit the value function is bounded by

episodes for V -refitting ≤MNregANest(M)HNsim. (90)

Therefore, by (88), (89), and (90), the number of episodes used within a single call to RVFSexoh (not accounting
for episodes used by recursive calls to RVFSexoτ , for τ > h) is bounded by

episodes used locally within RVFSexoh ≤M2H(H +A)NtestNsim +MNregANest(M)HNsim. (91)

Finally, by Lemma J.4, RVFSexoh may be called at most M times throughout the execution of RVFSexo0 . Using
this together with (91) and accounting for the number of episodes from all layers h ∈ [H], we get that the
total number of episodes is bounded by

M3H2(H +A)NtestNsim +M2H2NregANest(M)Nsim.

Substituting the expressions of M , Ntest, Nest, Nsim, and Nreg from Algorithm 6 and Algorithm 5, we obtain
the desired number of episodes, which concludes the proof.

K Additional Technical Lemmas
Lemma K.1. Let τ ∈ [H] and ε, δ, ν ∈ (0, 1) be given. Consider two value functions Vτ+1, V̂τ+1 ∈ [0,H] and a
measure µ ∈∆(X) such that

Pxτ∼µ[I{max
a∈A
∣(Pτ [V̂τ+1] − Pτ [Vτ+1])(xτ , a)∣ > 3ε}] ≤ ν. (92)

Further, for x ∈ X , let π̂τ(x) ∈ argmaxa∈A Q̂τ(x, a) ∶= P̂τ,ε,δ[V̂τ+1](x, a) and inductively define a randomized
policy π̃ via

π̃τ(x) ∈ argmax
a∈A

{ Q̂τ(x, a), if ∥Q̂τ(x, ⋅) − Pτ [Vτ+1](x, ⋅)∥∞ ≤ 4ε,
Pτ [Vτ+1](x, a), otherwise.

Then, we have

Exτ∼µ[Dtv(π̂τ(xτ), π̃τ(xτ))] ≤ ν + δ.

Proof of Lemma K.1. In this proof, we let Pµ denote the probability law of xτ and PP denote the probability
law of P̂τ,ε,δ. Denote by E the Pµ-measurable event that maxa∈A ∣(Pτ [V̂τ+1] − Pτ [Vτ+1])(xτ , a)∣ ≤ 3ε. Fix
x ∈ E , and let Ex be the PP -measurable event that maxa∈A ∣P̂τ,ε,δ[V̂τ+1](x, a) − Pτ [Vτ+1](x, a)∣ ≤ 4ε. From

65

the definition of π̃τ , we have that

Dtv(π̂τ(x), π̃τ(x))

= 1

2
∑
a∈A
∣PP [π̂τ(x) = a] − PP [π̃τ(x) = a]∣ ,

= 1

2
∑
a∈A
∣PP[Ex]PP [π̂τ(x) = a ∣ Ex] + PP[Ecx]PP [π̂τ(x) = a ∣ Ecx] − PP[Ex]PP [π̃τ(x) = a ∣ Ex] − PP[Ecx]PP [π̃τ(x) = a ∣ Ecx]∣ ,

≤ 1

2
∑
a∈A

PP[Ex] ⋅ ∣PP [π̂τ(x) = a ∣ Ex] − PP [π̃τ(x) = a ∣ Ex]∣

+ ∑
a∈A

PP[Ecx] ⋅ ∣PP [π̂τ(x) = a ∣ Ecx] − PP [π̃τ(x) = a ∣ Ecx]∣ , (Jensen’s inequality)

and since PP [π̂τ(x) = a ∣ Ex] = PP [π̃τ(x) = a ∣ Ex] ∀a ∈ A, we have that

= 1

2
∑
a∈A

PP[Ecx] ⋅ ∣PP [π̂τ(x) = a ∣ Ecx] − PP [π̃τ(x) = a ∣ Ecx]∣ , ,

≤ PP [Ecx] ,

= PP [max
a∈A
∣P̂τ,ε,δ[V̂τ+1](x, a) − Pτ [Vτ+1](x, a)∣ > 4ε] ,

≤ PP [max
a∈A
∣P̂τ,ε,δ[V̂τ+1](x, a) − Pτ [V̂τ+1](x, a)∣ > ε] , (see below) (93)

≤ δ, (94)

where (93) follows from x ∈ E and the last inequality follows from Lemma G.2. Therefore, we have

Eµ[Dtv(π̂τ(xτ), π̃τ(xτ))] ≤ Pµ[E] ⋅Eµ[Dtv(π̂τ(xτ), π̃τ(xτ)) ∣ E] + Pµ[Ec],
≤ δ + ν,

where the first inequality follows by the fact that the total variation distance is bounded by 1, and the last
inequality follows by (92) and (94).

Lemma K.2. Let τ ∈ [H] and ε′, δ, ν ∈ (0,1), and ζ1∶H ∈ [0,1/2] be given. Further, consider two value
functions Vτ+1, V̂τ+1 ∈ [0,H] and measure µ ∈∆(X) such that

Pxτ∼µ[I{max
a∈A
∣(Pτ [V̂τ+1] − Pτ [Vτ+1])(xτ , a)∣ > 3ε′}] ≤ ν. (95)

Further, for x ∈ Xτ , let π̂τ(x) ∈ argmaxa∈A⌈Q̂τ(x, a)/ε′ + ζτ ⌉, where Q̂τ(x, a) ∶= P̂τ,ε′,δ[V̂τ+1](x, a), and
inductively define

π̃τ(x) ∈ argmax
a∈A

{ ⌈Q̂τ(x, a)/ε′ + ζτ ⌉, if ∥Q̂τ(x, ⋅) − Pτ [Vτ+1](x, ⋅)∥∞ ≤ 4ε′,
⌈Pτ [Vτ+1](x, a)/ε′ + ζτ ⌉, otherwise.

Then, we have

Exτ∼µ[Dtv(π̂τ(xτ), π̃τ(xτ))] ≤ ν + δ.

Proof of Lemma K.2. In this proof, we let Pµ denote the probability law of xτ and PP denote the probability
law of P̂τ,ε,δ. Denote by E be the Pµ-measurable event that maxa∈A ∣(Pτ [V̂τ+1] − Pτ [Vτ+1])(xτ , a)∣ ≤ 3ε′. Fix
x ∈ E , and let Ex be the PP -measurable event that maxa∈A ∣P̂τ,ε′,δ[V̂τ+1](x, a) − Pτ [Vτ+1](x, a)∣ ≤ 4ε′. From

66

the definition of π̃τ , we have that

Dtv(π̂τ(x), π̃τ(x))

= 1

2
∑
a∈A
∣PP [π̂τ(x) = a] − PP [π̃τ(x) = a]∣ ,

= 1

2
∑
a∈A
∣PP[Ex]PP [π̂τ(x) = a ∣ Ex] + PP[Ecx]PP [π̂τ(x) = a ∣ Ecx] − PP[Ex]PP [π̃τ(x) = a ∣ Ex] − PP[Ecx]PP [π̃τ(x) = a ∣ Ecx]∣ ,

≤ 1

2
∑
a∈A

PP[Ex] ⋅ ∣PP [π̂τ(x) = a ∣ Ex] − PP [π̃τ(x) = a ∣ Ex]∣

+ ∑
a∈A

PP[Ecx] ⋅ ∣PP [π̂τ(x) = a ∣ Ecx] − PP [π̃τ(x) = a ∣ Ecx]∣ , (Jensen’s inequality)

and since PP [π̂τ(x) = a ∣ Ex] = PP [π̃τ(x) = a ∣ Ex] ∀a ∈ A,

= 1

2
∑
a∈A

PP[Ecx] ⋅ ∣PP [π̂τ(x) = a ∣ Ecx] − PP [π̃τ(x) = a ∣ Ecx]∣ ,

≤ PP [Ecx] ,

= PP [max
a∈A
∣P̂τ,ε′,δ[V̂τ+1](x, a) − Pτ [Vτ+1](x, a)∣ > 4ε′] ,

≤ PP [max
a∈A
∣P̂τ,ε′,δ[V̂τ+1](x, a) − Pτ [V̂τ+1](x, a)∣ > ε′] , (see below) (96)

≤ δ, (97)

where (96) follows from x ∈ E and the last inequality follows from Lemma G.2. Therefore, we have

Exτ∼µ[Dtv(π̂τ(xτ), π̃τ(xτ))] ≤ Pµ[E] ⋅Exτ∼µ[Dtv(π̂τ(xτ), π̃τ(xτ)) ∣ E] + Pµ[Ec],
≤ δ + ν,

where the first inequality follows by the fact that the total variation is bounded by 1, and the last inequality
follows by (95) and (97).

Lemma K.3. Let x ∈ R and ν ∈ (0,1/2) be given. Further, let ζ ∈ (0,1/2). Then,

x + ζ + ν > ⌈x + ζ⌉ or x + ζ − ν ≤ ⌈x + ζ⌉ − 1,
only if

⌈x⌉ − ν ≤ x + ζ ≤ ⌈x⌉ + ν or ζ ≤ ν.

Proof of Lemma K.3. To prove the claim, it suffices to show the following items:

1. x + ζ + ν > ⌈x + ζ⌉ only if ⌈x⌉ ≥ x + ζ > ⌈x⌉ − ν; and

2. x + ζ − ν ≤ ⌈x + ζ⌉ − 1 only if ⌈x⌉ < x + ζ ≤ ⌈x⌉ + ν or ζ ≤ ν.

We start by showing the first item. We proceed by showing the contrapositive; that is, we will show that if
x + ζ ≤ ⌈x⌉ − ν or x + ζ > ⌈x⌉, then x + ζ + ν ≤ ⌈x + ζ⌉. Suppose that x + ζ ≤ ⌈x⌉ − ν. This, together with the
fact that ζ ≥ 0, implies that

⌈x + ζ⌉ = ⌈x⌉ ≥ x + ζ + ν.

Now, suppose that x + ζ > ⌈x⌉. Then, we have

⌈x + ζ⌉ ≥ ⌈x⌉ + 1 ≥ ⌈x⌉ + ζ + ν ≥ x + ζ + ν,

where the penultimate inequality follows by ζ, ν ∈ (0,1/2).

67

We now prove the second claim. Again, we proceed by showing the contrapositive; that is, we will show that
if {⌈x⌉ + ν < x + ζ or ⌈x⌉ ≥ x + ζ} and ζ > ν, then x + ζ − ν > ⌈x + ζ⌉ − 1.
Suppose that ⌈x⌉ + ν < x + ζ and ζ > ν. The first inequality together with ν ≥ 0 implies that ⌈x + ζ⌉ > ⌈x⌉. On
the other hand, since ζ ≤ 1/2, we have ⌈x + ζ⌉ ≤ ⌈x⌉ + 1, and so

⌈x + ζ⌉ − 1 = ⌈x⌉ < x + ζ − ν,

where the last inequality follows by the current assumption that ⌈x⌉ + ν < x + ζ.
Now, suppose that ⌈x⌉ ≥ x + ζ and that ζ > ν. Then, we have

⌈x + ζ⌉ ≤ ⌈x⌉ ≤ x + 1 < x + ζ − ν + 1, (98)

where the last inequality follows by ζ > ν. Rearranging (98) completes the proof.

L BehaviorCloning Algorithm and Analysis
In this section, we give a self-contained presentation and analysis for the standard behavior cloning algorithm
for imitation learning (e.g., Ross and Bagnell (2010)), displayed in Algorithm 8. Given access to trajectories
from an expert policy π̂1∶H (which may be non-executable in the sense of Definition 2.1) the algorithm learns
an executable policy πbc with similar performance. We use this scheme within RVFS.bc and RVFSexo.bc.

Algorithm 8 BehaviorCloning: Imitation Learning Algorithm.
1: input: Policy class Π ⊆ ΠS, expert policy π̂1∶H , suboptimality ε ∈ (0,1), and confidence δ ∈ (0,1).
2: Set Nbc = 16H2 log(∣Π∣/δ)/ε.
3: Set D ← ∅.
4: for i = 1, . . . ,Nbc do
5: Generate trajectory τ = ((x1,a1), . . . , (xH ,aH)) ∼ Pπ̂.
6: Update D ← D ∪ {τ}.
7: Compute πbc ∈ argminπ∈Π∑((x1,a1),...,(xH ,aH))∈D∑h∈[H] I{πh(xh) ≠ ah}.
8: Return πbc.

Proposition L.1. Let ε, δ ∈ (0,1) be given and let Π ⊆ ΠS and π̂1∶H be an expert policy such that

inf
π∈Π

H

∑
h=1

Pπ̂[π̂h(xh) ≠ πh(xh)] ≤ εmis. (99)

Then, the policy πbc
1∶H = BehaviorCloning(Π, ε, π̂1∶H , δ) returned by Algorithm 8 satisfies, with probability at

least 1 − δ,

J(π̂) − J(πbc) ≤ 4Hεmis + ε/2.

Proof of Proposition L.1. First, by the performance difference lemma, we have

E[V π̂
1 (x1)] −E[V πbc

1 (x1)] =
H

∑
h=1

Eπ̂[Qπbc

h (xh, π̂h(xh)) −Qπbc

h (xh,π
bc
h (xh))],

≤H
H

∑
h=1

Pπ̂[π̂h(xh) ≠ πbc
h (xh)]. (100)

We now bound the probability terms on the right-hand side. Fix h ∈ [H] and let D be the dataset in
Algorithm 8, which consists of Nbc i.i.d. trajectories ((x1,a1), . . . , (xH ,aH)) generated by rolling with π̂1∶H .

68

By Lemma B.4 (with i.i.d. data, B =H, and Q = Π), we have that, with probability at least 1 − δ,

∀π ∈ Π, ∑
((x1,aH),...,(xH ,aH))∈D

∑
h∈[H]

I{πh(xh) ≠ π̂(xh)} ≤ 2 ∑
h∈[H]

Pπ̂[πh(xh) ≠ π̂h(xh)]

+ 2H log(2∣Π∣/δ)
Nbc

, (101)

and

∀π ∈ Π, ∑
h∈[H]

Pπ̂[πh(xh) ≠ π̂h(xh)] ≤ 2 ∑
((x1,aH),...,(xH ,aH))∈D

∑
h∈[H]

I{πh(xh) ≠ π̂(xh)}

+ 4H log(2∣Π∣/δ)
Nbc

. (102)

Taking the infimum over π on both sides of (101) and using the definition of πbc
h in Algorithm 8 gives:

∑
((x1,aH),...,(xH ,aH))∈D

∑
h∈[H]

I{πbc
h (xh) ≠ π̂(xh)} ≤ 2 inf

π∈Π ∑
h∈[H]

Pπ̂[πh(xh) ≠ π̂h(xh)]

+ 2H log(2∣Π∣/δ)
Nbc

,

≤ 2εmis +
2H log(2∣Π∣/δ)

Nbc
,

where the last inequality follows from (99). Using this together with (102), instantiated with π ≡ πbc, we get
that with probability at least 1 − δ:

∑
h∈[H]

Pπ̂[πbc
h (xh) ≠ π̂h(xh)] ≤ 4εmis +

8H log(2∣Π∣/δ)
Nbc

.

Plugging this into (100), we get that with probability at least 1 − δ:

E[V π̂
1 (x1)] −E[V πbc

1 (x1)] ≤ 4Hεmis +
8H2 log(2∣Π∣/δ)

Nbc
≤ 4Hεmis + ε/2,

where the last inequality follows by the fact that Nbc = 16H2 log(2∣Π∣/δ)/ε. This completes the proof.

69

	Introduction
	Contributions

	Setup: Reinforcement Learning with Local Simulator Access
	Online Reinforcement Learning with Local Simulator Access
	Additional Notation

	New Sample-Efficient Learning Guarantees via Local Simulators
	Algorithm
	Main Result
	Implications for Exogenous Block MDPs

	Computationally Efficient Learning with Local Simulators
	Function Approximation and Statistical Assumptions
	Algorithm
	Main Result
	Applying RVFS to Exogenous Block MDPs

	Conclusion and Open Problems
	Additional Related Work
	Helper Lemmas
	Concentration and Probability
	Regression
	Reinforcement Learning

	I Proofs for SimGolf (Section 3)
	Preliminary Lemmas for Proof of Theorem 3.1
	Proof of Theorem 3.1

	II Proofs for RVFS (Section 4)
	Full Version of RVFS
	RVFS Pseudocode
	RVFS exo Pseudocode

	Organization
	Overview of Analysis and Preliminaries
	Benchmark Policy Class and Randomized Policies
	Additional Preliminaries

	Guarantee under V-Realizability (Proof of Theorem 4.1, Setup II)
	Analysis: Proof of Theorem 4.1 (Setup II)
	Proof of Lemma H.1 (Number of Test Failures)
	Proof of Lemma H.2 (Consequence of Passing the Tests)
	Proof of Lemma H.3 (Value Function Regression Guarantee)
	Proof of Lemma H.4 (Guarantee for Confidence Sets)
	Proof of Theorem H.1 (Main Guarantee of RVFS)
	Proof of Theorem H.2 (Guarantee of RVFS.bc)

	Guarantee under V-Realizability (Proof of Theorem 4.1, Setup I)
	Analysis: Proof of Theorem 4.1 (Setup I)
	Proof of Lemma I.1 (Relaxed V-Realizability under Gap)

	Guarantee for Weakly Correlated ExBMDPs (Proof of Theorem 4.2)
	Analysis: Proof of Theorem 4.2
	Proof of Lemma J.1 (Endogenous Benchmark Policies)
	Proof of Lemma J.2 (Snapping Probability)
	Proof of Lemma J.3 (Coverability in Weakly Correlated ExBMDP)
	Proof of Lemma J.6 (Confidence Sets)
	Proof of Lemma J.7 (Main Guarantee of RVFS exo)

	Additional Technical Lemmas
	BehaviorCloning Algorithm and Analysis

