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Abstract

The fields of effective resistance and optimal transport on graphs are filled with rich connections to

combinatorics, geometry, machine learning, and beyond. In this article we put forth a bold claim: that the

two fields should be understood as one and the same, up to a choice of p. We make this claim precise

by introducing the parameterized family of p-Beckmann distances for probability measures on graphs and

relate them sharply to certain Wasserstein distances. Then, we break open a suite of results including

explicit connections to optimal stopping times and random walks on graphs, graph Sobolev spaces, and

a Benamou-Brenier type formula for 2-Beckmann distance. We further explore empirical implications in

the world of unsupervised learning for graph data and propose further study of the usage of these metrics

where Wasserstein distance may produce computational bottlenecks.
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1 Introduction and notation

1.1 Introduction

The theory of optimal transportation (OT), which traces its roots to the Monge formulation as early as 1781

[56] as well as the Kantorovich relaxation articulated in 1942 [41], is typically framed as an optimization

problem for some convex or affine function which measures the cost of mass transportation over all feasible

plans which provide recipes for transporting some mass distribution to another. OT has received significant

attention due to its connections to geometry [85, 33], partial differential equations [7, 30, 29], applied

mathematics [63, 71, 72, 32, 69], and many other fields. For discrete measures and domains in particular,

OT and Wasserstein distance have been used and studied for a variety of purposes including document

retrieval [44], statistics [81, 61, 11], image registration [38], distance approximation [75], political redistricting

[55, 15, 1], graph neural networks [16, 17, 92], and graph Ollivier-Ricci curvature [83, 4, 70, 59].

When the underlying metric space of the transportation process is a graph, much attention has been

focused on the 1-Wasserstein metric, which can be informally set up as a linear program of the following

form:

W1pα, βq “ inf

#

ÿ

i j

πi jdpi , jq : π P Πpα, βq

+

,(1)

where Πpα, βq consists of the couplings of two generic probability distributions α, β on the nodes of a graph

and dpi , jq is the shortest path metric on the vertex set V (see Definition 1.3 for a complete description). It so

happens on graphs that this metric can also be written in a fashion often termed the Beckmann formulation:

W1pα, βq “ inf

#

ÿ

e

|Jpeq|we : J : E Ñ R, BJ “ α´ β

+

(2)

where B is the graph incidence matrix, J is any map on the edges of the graph and which is identified

as a vector in R|E|, and we is the nonnegative weight for edge e P E (see Definition 1.4 for a complete

description). This formulation is named after Martin Beckmann who studied dynamic formulations of OT

beginning in the 1950s [5], and whose models for OT in the continuous setting Eq. (2) closely mirrors in a

discrete sense. The variable J is sometimes called a feasbile flow between α and β (see Fig. 1), and as such

Eq. (2) is also sometimes deemed a flow-based formulation for OT on graphs.

Seemingly separately, effective resistance (ER) on graphs has long been studied for its metric properties

between nodes and its connections to many other problems in graph theory. Recall that for two nodes

i , j P V , and corresponding standard basis vectors δi , δj P R|V |, the ER between them is given by ri j “

pδi ´ δjq
TL:pδi ´ δjq where L: is the Moore-Penrose psuedo inverse of the graph Laplacian. Applications and

research on ER include foundational work by Spielman and Srivastava on spectral graph sparsifcation using

ER [76], as well as spectral clustering models leveraging computational advantages of ER solvers [42]. ER

has also been used for computing and studying statistics associated to random walks on graphs [25, 82, 50].

Interestingly, in the case of directed and connection graphs, the opposite is the case as random walk statistics

have been used to obtain versions of ER [78, 19]. Moreover, there exist geometric applications involving ER

as an ingredient for defining discrete Ricci curvature [22, 23]. For other references which study and utilize

effective resistance in various contexts, see, e.g., [25, 40, 34, 91, 36, 12, 18, 10].

This paper is built on an observation which seems to have not yet appeared in the field: that effective

resistance, when extended to probability measures on a graph G, can be realized as an OT distance obtained

from a Beckmann-type problem with a 2-norm penalty. The resulting metric, while removed from a conven-

tional coupling-based formulation of OT, is intricately connected to the theory of random walks on graphs,

the graph Laplacian matrix, and graph Sobolev spaces.
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Theorem 1.1 (Informal statement of Theorem 3.4). Let G “ pV, E, wq be a weighted connected graph with

Laplacian matrix L and psuedoinverse L:. Denote the oriented vertex-edge incidence matrix of G by B, and

let α, β be fixed probability measures on V regarded as vectors in R|V |. For 1 ď p ă 8, define Bppα, βq by

the following convex optimization problem:

Bppα, βqp “ inf

#

ÿ

ePE

|Jpeq|pwe : J : E Ñ R, BJ “ α´ β

+

.(3)

Then it holds:

(a) When p “ 1, B1pα, βq “W1pα, βq.

(b) When p “ 2, B2pα, βq2 “ pα´ βqTL:pα´ βq.

The metric introduced in Theorem 1.1 for p “ 2 is a (squared) norm distance, so its properties and

structures are fundamentally different from the (nonlinear) Wasserstein metric in general. However, this

metric seems to posses a rich array of properties and characterizations which demonstrate strong homophily

with the classical results in OT. This metric also shows promise for use in kernel-based learning methods

for data defined on graphs, and in terms of complexity, is significantly less expensive to compute at scale

compared to the Wasserstein metric.

Our main contributions are summarized as follows.

1. We introduce the notion of p-Beckmann distance between probability measures, and derive various

bounds between p-Beckmann distances and p-Wasserstein distances for measures on general graphs

(e.g., Corollary 2.11).

2. We provide an explicit formula for Bp on trees (Proposition 2.15).

3. We obtain a generalized commute time formula for 2-Beckmann distance, or measure effective resis-

tance, in terms of optimal access times of the simple random walk on a graph (Theorem 3.13).

4. We realize 2-Beckmann distance as a negative Sobolev-type semi-norm distance and use this property

to obtain a Benamou-Brenier type formula for 2-Beckmann distance (Theorem 3.22).

5. We apply 2-Beckmann distance to an unsupervised kernel-based clustering method involving handwrit-

ten digit data, and compare the results with the 2-Wasserstein kernel; and thereby establish empirical

evidence for the usage of a 2-Beckmann kernel on a drop-in basis in place of a 2-Wasserstein kernel

for datasets defined on graphs (Fig. 6).

1.2 Outline of this paper

In Section 1.4, we provide relevant mathematical background and notation.

In Section 2, we delve into the general properties of the p-Beckmann problem, including duality theory

in Section 2.1 and estimates between Beckmann and Wasserstein distances Section 2.2. In Section 2.3, we

highlight some specialized results in the cases of paths and trees.

In Section 3 we focus exclusively in the properties and theory of the 2-Beckmann distance. In Section 3.1

we frame the metric as effective resistance between measures and relate it to optimal stopping times and

access times between probability measures on G. In Section 3.2 we frame the metric as a negative Sobolev-

type seminorm and obtain a graph Bemaou-Brenier-type formula. Finally, in Section 3.3 we apply the

2-Beckmann distance to an unsupervised learning problem and explore various empirical observations and

implications.

Lastly, in Appendix A we provide proofs of the results mentioned in the main component of the paper.
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1.3 Related work

In this section we wish to highlight some particularly relevant works on which this paper is based in parts,

and in doing so, better situate the novelty of our contributions in a broader context.

The most relevant investigation of OT on graphs, including regularization and convex duality, appears in

work by Essid and Solomon [28] and further studies in the field can be found in [75, 74, 62, 57, 67, 49, 65].

The introduction of p-Beckmann distances in Section 2 and its study as an effective resistance metric

in Section 3.1 should be understood as extensions of the notion of p-resistances from work of Alamgir

and Luxburg [2] to general probability measures (from the case of nodes, i.e., Dirac measures). Such

generalizations of resistances and their implications in unsupervised models were also considered by Nguyen

and Hamitsuka [60], and Saito and Herbster [68] but only between nodes. The notions of measure access

times and optimal stopping times have been studied at length by Lovász, Winkler and Beveridge across

several papers [50, 51, 52, 9, 8].

Separately, the notion of using negative Sobolev distance as a linearization of quadratic Wasserstein

distance was studied by Greengard, Hoskins, Marshall, and Singer in [37] and is a homophilous framework

appearing in the continuous setting. The proof of the Benamou-Brenier-type formula for 2-Beckmann

distance is a direct discretization of the proof appearing in [35]. It is also notable that our model of 2-

Beckmann distance as a negative Sobolev distance on graphs is parallel to the works by Le, T. Nguyen,

Phung, V. A. Nguyen, and Fukumizo and appearing in [46, 47, 48]; but our definitions differ slightly from

theirs. Linearized OT and its usage in the unsupervised setting is also explored by Moosmüller and AC [58],

and results therein form a basis for our Theorem 3.25 on linear separation of measures in the 2-Beckmann

metric space.

1.4 Mathematical background

Let G “ pV, E, wq be a graph, where V “ t1, 2, . . . , nu is the set of vertices, E Ă
`

V
2

˘

is a set of undirected

edges of cardinality m ě 0, and w “ pwi jqi ,jPV is a choice of real edge weights satisfying wi j ě 0, wi j “ wj i ,

and wi j ą 0 if and only if ti , ju P E. In order to ensure the feasibility of optimal transportation problems and

simplify the exposition in places, we assume that G is finite, has no multiple edges or loops, and is connected.

For our purposes, a path in G is an ordered sequence of nodes P “ pi0, i1, . . . , ikq such that iℓ „ iℓ`1 for

0 ď ℓ ď k ´ 1. If P is a path, |P | is the (integral) length of the path, i.e., |P | “ k , and |P |w is the weighted

length of P , or the sum of the weights of edges it contains; i.e. |P |w “
řk´1
ℓ“0 wiℓiℓ`1 . For any two nodes

i , j P V , Ppi , jq is the set of all paths which begin at i and end at j .

In this paper, we will consider several different metrics on V . A metric on V is a map κ : V ˆ V Ñ R
such that

(i) (Nonnegativity) κpi , jq ě 0 for each i , j P V ,

(ii) (Definiteness) κpi , jq “ 0 if and only if i “ j ,

(iii) (Symmetry) κpi , jq “ κpj, iq for each i , j P V ,

(iv) (Triangle inequality) κpi , kq ď κpi , jq ` κpj, kq for each i , j, k P V .

We will primarily use variants of the shortest path metric on V and the metrics induced by effective resistance.

Definition 1.2. Let 1 ď p ă 8. Define the weighted p-shortest path metric on V by the formula

dppi , jq “ inf

$

&

%

˜

k´1
ÿ

ℓ“0

wpiℓiℓ`1

¸1{p

: P “ pi “ i0, i1, . . . , ik “ jq P Ppi , jq

,

.

-

(4)
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It is relatively straightforward to verify that dp satisfies the properties necessary for a metric on V for

each p, w .

We define the Adjacency matrix A P Rnˆn entrywise by

Ai j “

#

wi j if i „ j

0 otherwise
.(5)

where the notation i „ j means ti , ju P E. For each i P V we define its degree di “
ř

j„i wi j . We will

also use the diagonal degree matrix D “ diagpd1, . . . , dnq P Rnˆn and the diagonal edge weight matrix

W “ diagpwe1 , . . . , wemq P Rmˆm.

For technical purposes, we may ocassionally refer to the index-oriented and bi-oriented edge sets E1 and

E2, respectively, defined below:

E1 “ tpi , jq : i , j P V, i „ j, i ă ju(6)

E2 “ tpi , jq, pj, iq : i , j P V, i „ ju .(7)

We define the incidence matrix B P Rnˆm, with rows indexed by V and columns indexed by E1, by the

formula:

Bi ,ej “

$

’

&

’

%

1 if ej “ pi , ¨q

´1 if ej “ p¨, iq

0 otherwise

.(8)

We also occasionally use the matrix rB P Rnˆ2m, with rows indexed by V and columns indexed by E2, defined

by an identical formula as in Eq. (8). We define the Laplacian matrix L by the formula L “ D ´ A, or

L “ BWBT . Note that rBĂW rBT “ 2L, where ĂW P R2mˆ2m is the diagonal matrix of edge weights of E2.

We recall that L is symmetric, positive semi-definite, and has a set of nonnegative eigenvalues

0 “ λ0 ď λ1 ď . . . ď λn.(9)

We use Λ “ diagpλ0, λ1, . . . , λnq P Rnˆn for the diagonal matrix of eigenvalues, and U “
“

u1 u2 ¨ ¨ ¨ un
‰

for the respective orthonormal eigenvectors of L. The spectral decomposition of L is given by the equation

L “ UΛUT .

For any matrix X P Rℓˆk , we will use the notation X: P Rkˆℓ for its Moore-Penrose psuedoinverse. We

recall that X: is the unique matrix satisfying the following four properties [6]:

(i) XX:X “ X

(ii) X:XX: “ X:

(iii) pXX:qT “ XX:

(iv) pX:XqT “ X:X

where p¨qT indicates matrix transpose.

In the case of the Laplacian matrix L, we have

L: “ UΛ´1UT

where, with an abuse of notation, we write

Λ´1 “ diagpλ0 “ 0, λ´1
1 , . . . , λ

´1
n q P Rnˆn.(10)
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Similarly, we write L´1{2 “ UΛ´1{2UT .

For a finite set S, we define ℓ2pSq to be the linear space of functions f : S Ñ R with the standard

Euclidean inner product xf , gyℓ2pSq “ gT f . We identify ℓ2pV q with Rn and ℓ2pE
1q with Rm, respectively.

For a vector x P Rn and 1 ď p ă 8, we define the vector p-norm by

}x}p “

˜

n
ÿ

i“1

|xi |
p

¸1{p

.

For any finite set S, in a similar manner as before, we can define ℓppSq to be the linear linear space of

functions f : S Ñ R with the norm } ¨ }p. If in some cases we wish to refer simply to the linear space of

functions on S, such as when we employ multiple norms at once, we use the notation ℓpSq and specify the

norm or inner product in context.

If J P ℓpE1q, then we can weight the norm } ¨ }p by the edge weights as follows:

}J}w,p “

˜

ÿ

ePE1

|Jpeq|pwe

¸1{p

,(11)

and similarly for ℓpE2q. We will use the subscript of w to indicate the presence of edge weights.

As a matter of notation, functions in ℓpV q will be denoted with lowercase Latin and Greek letters (in the

case of measures), and functions in ℓpE1q and ℓpE2q will be denoted with uppercase Latin letters.

Note that the matrices B, BT , and L act on their respective function spaces by matrix multiplication.

We summarize their pointwise formulas below.

pBJqpiq “
ÿ

ePE1:e“pi ,¨q

Jpeq ´
ÿ

ePE1:e“p¨,iq

Jpeq, i P V, J P ℓpE1q(12)

pBT f qpe “ pi , jqq “ f piq ´ f pjq, e P E1, f P ℓpV q(13)

pLf qpiq “
ÿ

j„i

pf piq ´ f pjqqwi j , i P V, f P ℓpV q(14)

It is worth noting that in some contexts (e.g., [27, 26]), Bp¨q and BT p¨q are considered the graph equivalents

of the divergence and gradient operators, respectively. We will also occasionally use the Dirichlet energy

functional for f P ℓpV q, defined by the quadratic form of the Laplacian matrix:

f TLf “
ÿ

pi ,jqPE1

wi jpf piq ´ f pjqq2 “ }BT f }2w,2(15)

We define the probability measure simplex PpV q by the set

PpV q :“

#

α P ℓpV q : α ě 0,
ÿ

iPV

αpiq “ 1

+

.(16)

For i P V , δi is the Dirac or unit measure at node i , identified with the i-th standard basis vector in Rn.

The primary objects of study for this paper are two different optimal transportation distances between

probability measures on V . The first, which is classical and extensively studied on graphs, is p-Wasserstein

distance.

Definition 1.3. Let α, β P PpV q, 1 ď p ă 8, and k any metric on V . Define the set of transportation

couplings between α and β, denoted Πpα, βq, by the following set

Πpα, βq “
␣

π P Rnˆn : π ě 0, π1 “ α, 1Tπ “ βT
(

,(17)
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α

β

(a) p “ 1, B1pα, βq “W1pα, βq « 9.3.

α

β

(b) p “ 2, W2pα, βq « 1.225,

B2pα, βq « 1.499

Figure 1: A side-by-side comparison of optimal flows for the 1-Beckmann and 2-Beckmann problems on a

4 ˆ 4 hexagonal lattice graph. The masses of α, β at each node are rendered proportionally to opacity; and

similarly the optimal flow values at each edge are rendered proportionally to opacity. The arrows indicate

orientation of the flow value; i.e., ˝ Ñ ˝1 if the optimal flow J satisfies Jp˝, ˝1q ą 0 and ˝ Ð ˝1 if Jp˝, ˝1q ă 0.

where 1 P Rn is the vector containing all ones. We define the pk, pq-Wasserstein distance between two

probability measures , denoted Wk,ppα, βq by the following optimization problem:

Wk,ppα, βq “ inf

$

&

%

˜

ÿ

i ,jPV

πi jkpi , jqp

¸1{p

: π P Πpα, βq

,

.

-

.(18)

As a matter of convention, when k “ d1, that is, the weighted 1-shortest-path metric, we write Wd1,p “

Wp. The second optimal mass transportation distance is much less studied in its own right except in the

cases of p “ 1 and to a seemingly much lesser extent, p “ 2.

Definition 1.4. Let 1 ď p ă 8 and α, β P PpV q. Define the set of feasible edge flows between α and β,

denoted J pα, βq, by the affine region

J pα, βq “
␣

J P ℓ2pE
1q : BJ “ α´ β

(

.(19)

Then the p-Beckmann distance between α, β, denoted Bppα, βq is given by the following constrainted norm

optimization problem:

Bppα, βq “ inf t}J}w,p : J P J pα, βqu(20)

Note that J pα, βq ‰ ∅ for any α, β since the column space of B is exactly the mean zero functions

on V . The p-Wasserstein and p-Beckmann problems are essentially two different perspectives on optimal

transportation for measures on graphs. The “Wasserstein philosophy” being that mass transportation is

tracked between all pairs of nodes, and is accounted according to dpij . We can also think of this philosophy

as one of mass teleportation- the primal variable, or coupling, does not reveal how mass πi j moves from i to

j , only that it did so along a shortest path somewhere, or a combination of shortest paths. The “Beckmann

philosophy” is the viewpoint that mass must move along edges and the transportation should be accounted

7



in terms of edge flows, which are really just signed mass values on each oriented edge. In this formulation, the

penalty lies on |Jpeq|p, so transportation flows can often be non-sparse, or occur along weighted combinations

of shortest and non-shortest paths. Comparisons of optimal flows for values p “ 1, 2 in an example setting

are shown in Fig. 1.

Remark 1.5. A slightly different way to formulate Definition 1.4 would be through E2 with a nonnegativity

constraint. That is, let

J 2pα, βq “

!

J P ℓ2pE
2q : J ě 0, rBJ “ α´ β,

)

.(21)

and then,

Bppα, βq “ inf
␣

}J}w,p : J P J 2pα, βq
(

.(22)

It is not hard to show that these two formulations arrive at the same value. Definition 1.4 simply allows

for signed flows; for example, a flow value of ´1 along the oriented edge p1, 2q represents one unit of mass

transported from node 2 to node 1. We opt to drop the nonnegativity constraint for this paper and focus

on the former formulation as it simplifies the calculations slightly, but we may have occassion to use this

formulation instead.

In the Proposition below, we summarize two relevant properties of Wp and Bp.

Proposition 1.6. Let α, β P PpV q.

(i) The objective functions for both Wppα, βq and Bppα, βq are convex for all 1 ď p ă 8, and the infima

are always achieved.

(ii) The objective for Bppα, βq is strictly convex for p ą 1. The infimum is always achieved and is unique

in the case p ą 1.

(iii) Wp and Bppα, βq define metrics on PpV q.

Proofs of items (i) and (ii) are straightforward since the objectives are defined either by affine functions

or common norms whose convexity properties are well-understood. For (iii), a proof for Wp can be found in

[62, Ch. 2], and the case of Bp is relatively straightforward.

2 General properties of the Beckmann problem

In this section, we look at a few interesting properties of the Beckman problem Bppα, βq for general 1 ď

p ă 8. In Section 2.1 we derive the Lagrangian dual to the p-Beckmann problem, in Section 2.2 we obtain

bounds that relate certain Beckmann and Wasserstein distances, and finally, in Section 2.3, we work through

some example results on paths and trees to highlight examples of Wasserstein and Beckmann distances.

2.1 Duality theory for the p-Beckmann problem

In this subsection we study the convex duality of the p-Beckmann problem. In [2] Alamgir and Luxburg intro-

duced formulations of p-resistances, that is, generalizations of effective resistance obtained by Beckmann-type

min cost flow problems penalized by a p-norm. They studied the primal and dual forms of these problems,

and thereby obtained so-called potential-based formulations of the resistance problems. As described in

Section 1.3, the results presented in this section may be considered extensions of the results concerning

p-resistances to the case of general probability measures; namely, we understand the p-resistance between

generic nodes i , j to be p-Beckmann distance between Dirac measures at i , j . In Theorem 2.1 we obtain the

dual formulation of the p-Beckmann optimization problem, and thus generalize the Kantorovich-Rubenstein

duality on graphs to all 1 ď p ă 8 (see Remark 2.3).
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Theorem 2.1. Let α, β P PpV q and 1 ă p ă 8 be fixed. Let q be the conjugate of p so that 1p ` 1
q “ 1.

Then the dual to the p-Beckmann problem, given by

Bppα, βq “ inf
␣

}J}w,p : J P ℓpE1q, BJ “ α´ β
(

,(23)

is given by the maximization problem

Bppα, βq “ sup
!

φT pα´ βq : φ P ℓpV q,
›

›BTφ
›

›

w1´q ,q
ď 1

)

,(24)

and strong duality holds. In the special case of p “ 1 and q “ 8, we have

B1pα, βq “ inf
␣

}J}w,1 : J P ℓpE1q, BJ “ α´ β
(

“ sup
!

φT pα´ βq : φ P ℓpV q,
›

›BTφ
›

›

w´1,8
ď 1

)

(25)

We defer the proof to Appendix A.1.

Remark 2.2. If we specialize to the case where the edge weights are all unit value; i.e., G is unweighted,

then the weights can be dropped from the preceding results. In particular, the dual norm to } ¨ }p is simply

} ¨ }q and

Bppα, βq “ inf
␣

}J}p : J P ℓpE1q, BJ “ α´ β
(

“ sup
!

φT pα´ βq : φ P ℓpV q,
›

›BTφ
›

›

q
ď 1

)

(26)

Remark 2.3. The case p “ 1 and q “ 8 is the conventional Kantorovich-Rubenstein duality on graphs [89],

which can be more conventionally written as

inf

#

ÿ

ePE1

|Jpeq|we : J P ℓpE1q, BJ “ α´ β

+

“ sup
␣

φT pα´ βq : φ P ℓpV q, }φ}Lip ď 1
(

(27)

where the Lipschitz seminorm }φ}Lip “ }BTφ}w´1,8 on ℓpV q is defined by

}φ}Lip “ max
|φpiq ´ φpjq|

dpi , jq
“ max
i„j

|φpiq ´ φpjq|

wi j
.(28)

Note also that this duality occurs in a homophilous manner for Beckmann’s minimal flow problem in the

continuous setting [71, Sec 4.2], which is the namesake for the minimal flow formulations on graphs.

2.2 Comparing p-Beckmann and p-Wasserstein distances

In this section, we establish some bounds between Bp and Wp in certain situations. Section 2.2.1 introduces

a technique for obtaining an edge flow from a given coupling with some control on the cost, and uses it to

derive elementary bounds for general p; and in Section 2.2.2 we focus on the case of W1 and obtain sharp

estimates related to B2, the latter of which is of particular interest in the ensuing sections.

2.2.1 From coupling to flow

An essential ingredient in comparing the optimal values of transportation metrics is having the ability to

convert a coupling π to a feasible edge flow J, and vice-versa. In this subsection we will make use of the

bi-oriented edge flow formulation of Bp, which was discussed in Remark 1.5.

Definition 2.4. Let i , j P V . Let P P Ppi , jq be a path between i , j . Write P “ pi “ i0, i1, . . . , ik “ jq.

Define

IP “

k´1
ÿ

ℓ“0

δpiℓ,iℓ`1q P ℓpE2q.(29)

9



Proposition 2.5. Let α, β P PpV q, 1 ď p ă 8, and suppose π P Πpα, βq. For each pair of nodes i , j P V

with i ‰ j , let Pi j P Ppi , jq be a fixed path between i , j . Define the edge flow Jπ “ Jπ,pPi j q P ℓpE2q by the

expression

Jπ “
ÿ

i‰jPV

πi j IPi j(30)

Then Jπ is a feasible flow for Bppα, βq, i.e., Jπ ě 0 and BJπ “ α´ β, and the following estimate holds:

}Jπ}w,p ď
ÿ

i ,jPV

πi j}IPi j }w,p.(31)

We include a proof in Appendix A.1. We can use Proposition 1.6 to derive at least two estimates which

relate Bp to Wk,p for different choices of k . The first is somewhat brutal, but is informative for p small.

Theorem 2.6. Let α, β P PpV q, 1 ď p ă 8, and assume that wi j ě 1 for each i , j P V such that i „ j .

Then

Bppα, βq ďWppα, βqp(32)

Proof. Let π P Πpα, βq be an optimal coupling for Wppα, βq. For each i , j , let Pi j P Ppi , jq be a choice of

path which is minimal in the sense of d1, and let Jπ “ Jπ,pPi j q be the feasible flow as in Proposition 2.5.

Then

Bppα, βq ď }Jπ}w,p ď
ÿ

i ,jPV

πi j}IPi j }w,p ď
ÿ

i ,jPV

πi jd1pi , jq
p “Wppα, βqp(33)

since } ¨ }w,p ď } ¨ }
p
w,1 provided wi j ě 1.

If we allow for some flexibility when picking the underlying metric k ofWk,p, then we can provide a tighter

estimate when W is large.

Theorem 2.7. Let α, β P PpV q, 1 ă p ă 8 and let q be the conjugate of p such that 1p ` 1
q “ 1. Then

Bppα, βq ď n2{qWdp,ppα, βq.(34)

The proof of Theorem 2.7 follows mainly from Hölder’s inequality and Proposition 2.5; we provide the

proof in Appendix A.1. Note in particular that when p “ 2, we have q “ 2 and thus it holds B2pα, βq ď

nWd2,2pα, βq.

2.2.2 Estimating from the p “ 1 case

When p “ 1 and the choice of metric is k “ d1 there is a direct overlap between B1 and W1 [62, 28].

Theorem 2.8. Let α, β P PpV q. Then

B1pα, βq “W1pα, βq.

For a proof of this result, we recommend the exposition in [62, Ch. 6]. Note that for p ě 1 and J P ℓpE1q,

we have that since } ¨ }p ď } ¨ }1 in general,

}J}w,p “ }W 1{pJ}p ď }W 1{pJ}1 ď }J}w,1

ˆ

max
ePE1
w
1{p´1
e

˙

.

Thus if Cw,p “ maxePE1 w
1{p´1
e we have }J}w,p ď Cw,p}J}w,1. If J˚ is an optimal flow for B1pα, βq, we have

Bppα, βq ď }J˚}w,p ď Cw,p}J
˚}w,1 “ Cw,pB1pα, βq(35)

Therefore, we have the following two estimates for any choice of α, β and p ě 1.

10



Corollary 2.9. Let α, β P PpV q and 1 ď p ă 8. Then the following estimates hold:

Bppα, βq ď Cw,pB1pα, βq(36)

Bppα, βq ď Cw,pW1pα, βq(37)

Moreover, via similar logic as before, since } ¨ }1 ď m1´1{p} ¨ }p on ℓpE1q, where we recall m “ |E|, we

have for J P ℓpE1q,

}J}w,1 “ }WJ}1 ď m1´1{p}WJ}p ď m1´1{p}W1E1}

p´1
p

8 }J}w,p(38)

Therefore if we set Cw,m,p “ m1´1{p}W1E1}

p´1
p

8 , we have }J}w,1 ď Cw,m,p}J}w,p and using a similar argument

as before, the following corollary holds.

Corollary 2.10. Let α, β P PpV q and 1 ď p ă 8. Then the following estimates hold:

B1pα, βq ď Cw,m,pBppα, βq(39)

W1pα, βq ď Cw,m,pBppα, βq(40)

An application of this allows us to relate 2-Beckmann distance to W1, which we state as a corollary

below.

Corollary 2.11. Let α, β P PpV q. Then

B2pα, βq ď Cw,2W1pα, βq ď Cw,2Cw,m,2B2pα, βq.(41)

If in particular the graph is unweighted, then we have that Cw,2 “ 1 and Cw,m,2 “ m1{2, so that

B2pα, βq ďW1pα, βq ď m1{2B2pα, βq.(42)

Remark 2.12. Note that the bound in Corollary 2.11 is sharp without making additional assumptions on the

structure of G or α, β. Suppose G is a path on n vertices with m “ n´ 1, then the upper and lower bounds

are achieved, respectively, when we have:

(i) α “ δ1, β “ δn, so that B2pδ1, δnq “
?
n ´ 1 and W1pδ1, δnq “ n ´ 1 so W1 “ m1{2B2.

(ii) α “ δ1 and β “ δ2, so that B2 “W1 “ 1.

Proofs of these statements could be obtained directly or by way of Proposition 2.13 and Proposition 2.14,

which we discuss in the next subsection. This leads to an as-yet open question: If one constrains the structure

of G or α, β, can the bound in Corollary 2.11 be improved?

2.3 Worked examples: Paths and trees

In this subsection, we specialize to the case of the path graph Pn and derive explicit formulas for Wp and Bp
so as to illustrate their connections to optimal transportation in the setting of the real line and to elucidate

their differences when p ą 1. We also take a look at Bp on tree graphs, and obtain a closed-form solution

for all 1 ď p ă 8 which generalizes the known formula for 1-Wasserstein distance on trees. Proofs of

Proposition 2.13, Proposition 2.14, and Proposition 2.15 are all included in Appendix A.1.

Let Pn be the unweighted path graph with n nodes ordered from 1 to n, and oriented edges E1 of the

form pi , i ` 1q for 1 ď i ď n ´ 1. For α P PpV pPnqq, let pα “
řn
i“1 αpiqδi be the empirical measure on

R induced by α where, with a slight abuse of notation, δi is the Dirac measure on R at x “ i . Let F
pα

be the cumulative distribution function of pα, and let F´1
pα

be its psuedo-inverse or quantile function, i.e.,

F´1
pα

ptq “ inftx : F
pαpxq ě tu for t P r0, 1s. The proposition below is an adaptation of the classical inverse

cdf result for Wp on R to the case of path graphs; for more detail, see, e.g., [64, 71].
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(a) Illustration of two copies of P3 with arrows indi-

cating orientation of the edges. Example probability

measures α, β are shown with node color opacity pro-

portional to mass.

Kαpeq

e p1, 2q

1
2

p2, 3q

1

Kβpeq 0 1
4

(b) Illustration of two copies of P3 with arrows indicat-

ing orientation of the edges. The edge cdfs Kα and

Kβ are shown with edge color opacity proportional to

value.
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1
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pαpxq

F
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x

(c) Plots of the cdfs F
pα, Fpβ of the empirical mea-

sures pα, pβ on R. From Proposition 2.14 we have

Bppα, βqp “ 0.5p ` 0.75p.

0 0.25 0.5 0.75 1
0

1

2

3

F´1
pα

ptq

F´1
pβ

ptq

t

(d) Plots of the inverse cdfs F´1
pα

and F´1
pβ

of the

empirical measure pα, pβ on R. From Proposition 2.13

we have Wppα, βqp “ 1pp0.25q ` 2pp0.25q ` 1pp0.5q.

Figure 2: (a)-(b) Illustrations of two measures α, β and their edge cdfs Kα, Kβ for the fixed path graph

P3. (c)-(d) Plots of the empirical cdfs F
pα and F

pβ
, as well as their inverses. Note that the shaded regions

are reflections of each other; and that for p “ 1 their common area is B1pα, βq “ W1pα, βq. This also

demonstrates the divergence of the metrics for p ą 1.

Proposition 2.13. Let α, β P PpV pPnqq and 1 ď p ă 8. Then the p-Wasserstein distance Wppα, βq on Pn
is given by

Wppα, βqp “

ż 1

0

ˇ

ˇ

ˇ
F´1
pα

ptq ´ F´1
pβ

ptq
ˇ

ˇ

ˇ

p
dt.(43)

To characterize p-Beckmann distance on Pn, we introduce a bit more notation. For α P PpV q and an

oriented edge e “ pi , i ` 1q P E1, let Kα P ℓpE1q be the “edge cdf,” i.e.,

Kαpi , i ` 1q “
ÿ

jďi

αpjq.(44)

Note that, naturally, Kαpi , i ` 1q “ F
pαpiq.

Proposition 2.14. Let α, β P PpV pPnqq and 1 ď p ă 8. Then the p-Beckmann distance Bppα, βq on Pn is

given by

Bppα, βqp “ }Kα ´Kβ}pp “

ż

R
|F

pαptq ´ F
pβ
ptq|pdt.(45)
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Proposition 2.13 and Proposition 2.14 provide an alternate, albeit circuitous, proof of Theorem 2.8 on

paths by applying a change of variables. This also demonstrates why we do not expect the two families

of metrics to overlap for p ą 1. A worked example of Proposition 2.13 and Proposition 2.14 in action is

illustrated in Fig. 2.

It is also intriguing to note that much in the same way that W1, and hence B1, is determined explicitly

on trees (a result which itself has been leveraged in other applications such as computer vision and natural

language processing [79, 53, 90, 80, 31, 45]), Bp can be determined in an similar manner for general p on

trees.

Proposition 2.15. Let T “ pV, E, wq be a weighted tree, α, β P PpV q, and fix 1 ď p ă 8. For an oriented

edge e “ pi , jq P E1, define a generalized version of Eq. (44) by

Kαpe “ pi , jqq “
ÿ

kPV ˚pi ;eq

αpkq,

where V ˚pi ; eq Ă V is the set of nodes belonging to the subtree with root i obtained from T by removing

the edge e (and similarly for Kβ). Then it holds

Bppα, βq “ }Kα ´Kβ}w,p.(46)

3 The 2-Beckmann problem: Three perspectives

This section is focused entirely on B2. The foundational premise of this section is that B2, while ostensibly

a simple least squares optimization problem, actually posesses a rich supply of connections and contexts

to other notions that already exist in graph theory. In Section 3.1 we view B2 as an effective resistance

metric between measures, and connect it to the simple random walk on G and optimal stopping times for

measures. In Section 3.2, we view B2 as a negative Sobolev norm for functions on graphs, and thereby obtain

a Benamou-Brenier type formula for B2. Lastly, in Section 3.3, we view B2 as a linearized variant of W2,
prove a convex separation result, and showcase its potential application in unsupervised learning problems

for graph data.

3.1 Effective resistance between measures

In this subsection we consider B2 from the perspective of effective resistance. We begin with some sup-

plemental background on effective resistance which will be needed, and then proceed with discussion of the

main results.

3.1.1 Background on effective resistance

Definition 3.1. Let i , j P V be any two nodes. The effective resistance between i , j , denoted ri j , is given

by the formula

ri j “ pδi ´ δjq
TL:pδi ´ δjq.(47)

The effective resistance between the nodes of a graph has many different properties and representations,

many of which intersect with the simple random walk on G. We give its definition and some of its properties

below.

Definition 3.2. The simple random walk on G is the Markov chain pXtqtě0 on the state space of nodes V

with transition probability matrix D´1A; that is,

PrXt`1 “ j |Xt “ is “

#

wi j
di

if i „ j

0 otherwise
.
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Recall that Xt will admit a stationary distribution whenever G is connected and will be ergodic whenever

G is also non-bipartite. The stationary distribution, which we denote ρ, is always proportional to the degree

at each node. A useful tool is the vertex hitting time

T sj “ inf tt ě s : Xt “ ju , s ě 0, j P V.(48)

Also, let volpGq “
ř

iPV di denote the volume of the graph G.

Proposition 3.3. Let i , j P V be any two nodes. Then the following observations hold

(i) pi , jq ÞÑ ri j is a metric on V ,

(ii) pi , jq ÞÑ r
1{2
i j is a metric on V ,

(iii) ri j “ inftf TLf : Lf “ δi ´ δju,

(iv) ri j “ }L´1{2pui ´ ujq}22, where ui is the i-th orthonormal eigenvector of the graph Laplacian L.

(v) ri j “ 1
volpGq

´

ErT 0i : X0 “ js ` ErT 0j : X0 “ is
¯

, i.e., ri j is proportional to the commute time between

i , j .

For proofs of these results, see, e.g., [40, 50, 25].

3.1.2 2-Beckmann as measure effective resistance

We begin with the observation that B2pα, βq2 can be realized as a type of effective resistance for measures.

We make this precise in the theorem below.

Theorem 3.4. Let α, β P PpV q. Then

B2pα, βq2 “ pα´ βqTL:pα´ βq.(49)

Proof. We can write

B2pα, βq2 “ inft}J}2w,2 : BJ “ α´ βu(50)

“ inft}W 1{2J}22 : BJ “ α´ βu(51)

“ inft}S}22 : pBW´1{2qS “ α´ βu(52)

with S “ W 1{2J. Recall that for matrices X, x it holds that X:x “ argmint}y}2 : Xy “ xu when x belongs

to the column space of X [6], and thus we have

B2pα, βq2 “ }pBW´1{2q:pα´ βq}22(53)

“ pα´ βqT ppBW´1{2q:qT pBW´1{2q:pα´ βq(54)

“ pα´ βqTL:pα´ βq(55)

since L “ BWBT .

One immediate consequence of Theorem 3.4 is a Brenier-type theorem for graphs, which we state as

a corollary below. Based on the discussion following Eq. (12), in this theorem we opt to use the notation

BT “ ∇ to achieve homophily with the continuous setting.

Corollary 3.5. Let α, β P PpV q. The unique optimal edge flow J˚ for B2pα, βq can be written J˚ “ ∇f where
f is a mean-zero potential function of minimal ℓ2 norm satisfying the Poisson-type equation Lf “ α ´ β.

The optimal cost is }∇f }w,2.
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Proof. It is enough to write pα´ βqTL:pα´ βq “ pα´ βqTL:LL:pα´ βq and L “ BWBT . The claim then

follows from the proof of Theorem 3.4.

Based on the Theorem 3.4, we introduce the following definition and notation of effective resistance for

measures.

Definition 3.6. Let α, β P PpV q. Then we define the measure effective resistance by

rαβ “ pα´ βqTL:pα´ βq.(56)

In the subsequent sections, we will explore the properties of rαβ in its own right, with particular focus on

its relationship to optimal stopping rules of the simple random walk.

3.1.3 Measure effective resistance and optimal stopping rules

We have already argued in Theorem 3.4 that measure effective resistance can be understood as a type of

flow-based optimal transportation distance between the measures. The goal of this section is to essentially set

that aside and think about rαβ in its own right. A natural approach along these lines is to take Proposition 3.3

as a starting point. Immediately, rαβ has several analagous properties, which we state below without proof.

Proposition 3.7. Let α, β P PpV q. Then the following statements hold:

(i) pα, βq ÞÑ r
1{2
αβ is a metric on PpV q,

(ii) rαβ “ inf
␣

f TLf : Lf “ α´ β
(

,

(iii) rαβ “ }L´1{2pα´ βq}22.

To go deeper, we pose the following question along the lines of Proposition 3.3(v): To what extent can

rαβ be understood as a generalized commute time between the measures α, β? To answer this question, we

need to use results that concern stopping rules for the simple random walk.

Definition 3.8. A stopping rule is a map Γ that associates to each finite path ω “ pX0, X1, . . . , Xkq on

G a number Γpωq in r0, 1s. We can think of Γpωq as the probability that we continue a random walk given

that ω is the walk so far observed. Alternatively, Γ can be considered a random variable taking values in

t0, 1, 2, . . . u whose distribution depends only on the steps pX0, X1, . . . , XΓq.

The mean length ErΓs is the expected duration of the walk. If ErΓs ă 8 then the walk stops almost

surely in finite time, so we define XΓ to be the position of the random walk at the stopping time. Having

defined stopping rules, we can define the generalized hitting time between α, β.

Definition 3.9. Let α, β P PpV q. The access time Hpα, βq is defined as

Hpα, βq “ inf tErΓ|X0 „ αs : ErΓs ă 8, and XΓ „ βu .(57)

where for any random variable Y on V , we say Y „ α if PrY “ is “ αpiq for i P V . In other words, Hpα, βq is

the minimum mean length of walks that originate with distribution α and terminate according to a stopping

rule that achieves distribution β at stopping time. If Γ achieves the inf in Hpα, βq, then Γ is said to be an

optimal stopping rule.

Remark 3.10. It is not hard to see that the set of feasible stopping rules in Definition 3.9 is nonempty. The

so-called “näıve” stopping rule Γn can be obtained from the following construction: at the beginning of the

random walk, sample j „ β, and stop the walk when XΓn “ j . It is readily verified that XΓn „ β, and that

ErΓns “
ÿ

i ,jPV

αiβjHpi , jq

where for i , j P V , the hitting time Hpi , jq is defined by Hpi , jq “ Hpδi , δjq (or, the mean number of steps to

reach j from i).
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α

β

(a) Initial distribution α, stopping

distribution β.

α

β

(b) Initial distribution β, stopping

distribution α.

Figure 3: Two illustrations of 1000 simulated simple random walks on the dodecahedral graph with given

initial distribution, illustrated with node opacity proportional to density; and näıve stopping rule according to

the given stopping distribution, illustrated with opposite node color and opacity proportional to density. The

edges are dashed only to indicate depth, and edge opacity is proportional to the total number of times the

simulated random walks landed on each edge. The mean lengths of paths in (a) (resp. (b)) correspond to

Hnpα, βq (resp. Hnpβ,αqq.

Several examples of optimal stopping rules for general distributions are given in [52], and in particular, it

is shown thereby that any such α, β admit an optimal stopping rule provided G is connected.

The access time Hpα, βq has several notable properties, which we summarize in the Proposition below.

The proofs of these results can be found in [52].

Proposition 3.11. Let α, β P PpV q. Then the following facts hold for Hpα, βq:

(i) When β is concentrated at a node j P V , it holds Hpα, jq “
ř

iPV αiHpi , jq,

(ii) Hpα, βq “ maxj
ř

iPV pαi ´ βiqHpi , jq,

(iii) Hpα, βq is convex in both of its arguments; namely if α,α1, β, β1 P PpV q and c P r0, 1s, we have

Hpcα` p1 ´ cqα1, βq ď cHpα, βq ` p1 ´ cqHpα1, βq(58)

Hpα, cβ ` p1 ´ cqβ1q ď cHpα, βq ` p1 ´ cqHpα, β1q(59)

Beveridge [8] also established a connection between the entries of the psuedoinverse of the graph Lapla-

cian (treated as a discrete Green’s function) and the access time between nodes and the stationary distribution

of the random walk. We reproduce that formula here as a proposition, in a modified form to match our

conventional choice of Laplacian matrix.

Theorem 3.12 (Access Time Formula for the Discrete Green’s Function, Beveridge [8]). Let ρ be the

stationary distribution of the simple random walk on V . Then the i , j-th entry of L: can be expressed as

pL:qi j “
1

volpGq
pHpρ, jq ´Hpi , jqq ,(60)

where volpGq “
ř

iPV di .

For α P PpV q, define Hα P ℓpV q by Hαpiq “ Hpα, iq. We are ready to state our main result connecting

rαβ to the access time.
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Theorem 3.13 (Generalized Commute Time Formula). Let α, β P PpV q. Then

rαβ “ ´
1

volpGq
pα´ βqT pHα ´Hβq.(61)

Or, in alternative expanded forms,

rαβ “ ´
1

volpGq

ÿ

iPV

pαi ´ βiqpHpα, iq ´Hpβ, iqq(62)

“ ´
1

volpGq

ÿ

i ,kPV

pαi ´ βiqpαk ´ βkqHpi , kq.(63)

We provide the proof in Appendix A.2. The reason we term Theorem 3.13 a generalized commute time

formula is that in the case where α, β are Dirac measures, this recovers the result that ri j9pHpi , jq `Hpj, iqq,

since we have

ri j “ ´
1

volpGq
pδi ´ δjq

T pHδi ´Hδj q(64)

“ ´
1

volpGq
pHpi , iq ´Hpi , jq `Hpj, jq ´Hpj, iq(65)

“
1

volpGq
pHpi , jq `Hpj, iqq.(66)

Theorem 3.13 shows, however, that in the more general case of measures rαβ is not exactly the same as a

measure commute time Hpα, βq ` Hpβ,αq. Theorem 3.13 can be used to establish a relationship between

the measure commute time and the measure resistance, as we show below.

Corollary 3.14 (Measure Commute Time Inequalities). Let α, β P PpV q. Then rαβ satisfies the following

two inequalities:

rαβ ď
2

volpGq
maxtHpα, βq, Hpβ,αqu(67)

rαβ ď
1

volpGq
pHnpα, βq `Hnpβ,αqq(68)

where Hnpα, βq “ ErΓns (resp. Hnpβ,αq) is the expected duration of the näıve stopping rule described in

Remark 3.10 with initial distribution α (resp. β) and stopping node sampled from β (resp. α).

The proof of Corollary 3.14 is located in Appendix A.2. Note that the second half of the proof of

Corollary 3.14 actually contains a related observation regarding B2 and Wr,1, which we state as another

corollary below, without proof.

Corollary 3.15. Let α, β P PpV q, and let r be the effective resistance metric on V . Then we have

B2pα, βq ďWr,1pα, βq1{2.

A final observation that one can glean from the random walk and access time setting is an interpretation

of the transportation potential f “ L:pα´ βq mentioned in Corollary 3.5.

Proposition 3.16. Let α, β P PpV q, and let Γ be any stopping rule such that ErΓs ă 8 and XΓ „ β. Let fΓ
be the degree-weighted exit frequencies

fΓpiq “ E

«

Γ´1
ÿ

t“0

1

di
δtXt“iupiq : X0 „ α

ff

.

Then LfΓ “ α ´ β. In particular, the transportation potential L:pα ´ βq is given by the mean normalized

function fΓ ´ 1
n f
T
Γ 1n for any suitable stopping rule Γ.
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This proposition follows from applying the so-called conservation equation for exit frequencies, mentioned

in, e.g., [52, 51]. Another way of putting it is that the unique optimal flow for B2pα, βq can be realized

as the gradient of the degree-normalized exit frequencies of any finite-mean stopping rule which achieves

a stopping distribution of β, having been intialized at α (since, moreover, as discussed in [51], any two

degree-normalized exit frequencies for different stopping times differ by a constant, and thus have the same

gradient).

3.2 Sobolev norms and a graph Benamou-Brenier formula

The relationship between Sobolev spaces and optimal transportation have been explored at length in the

continuous setting [84, 63, 37, 77]. The goal of this subsection is to present the 2-Beckmann problem as an

optimization problem on a negative Sobolev space for functions defined on graphs. In this section we follow

the exposition laid out in [63] in the continuous setting by analogy to the discrete setting. As it turns out,

there are at least two results that achieve strong homophily between the graph and continuous setting.

3.2.1 Background from the continuous setting

Recall that if f : Rn Ñ R is a function with a square integrable derivative ∇f in the weak sense and µ is a

Borel probability measure which is absolutely continuous with respect to the Lebesgue measure dx ; i.e. so

that dµ “ gdx for a density function g, we can define the Sobolev-type seminorm } ¨ }29H1pµq
by

}f }29H1pµq
“

ż

Rn
}∇f }22dµ.(69)

The dot 9H1pµq serves to distinguish } ¨ }29H1pµq
from a true Sobolev norm, which include a contribution from

} ¨ }L2 . We can then define the possibly infinite dual norm to }f }29H1pµq
, denoted } ¨ } 9H´1pµq

by the following,

for any dx- absolutely continuous signed measure ν “ hdx :

}hdx} 9H´1pµq
“ sup

"
ż

Rn
f hdµ : }f } 9H1pµq

ď 1

*

.(70)

This setup leads to two results (among others) in the continuous setting, which are of interest in the graph

setting as well.

Theorem 3.17 ( 9H´1 - Linearization of W2 [63]). If µ is a Borel probability measure on Rn and dµ is an

infintesimally small perturbation of µ, then

W2pµ, µ` dµq “ }dµ} 9H´1pµq
` opdµq.

The second result which interests us is the Sobolev form of the Benamou-Brenier formula, which we

state below.

Theorem 3.18 (Benamou-Brenier formula, 9H´1 form [63]). Let µ, ν be Borel probability measures on Rn.
Then it holds:

W2pµ, νq “ inf

"
ż 1

0

}dµt} 9H´1pµtq
: µ0 “ µ, µ1 “ ν

*

.(71)

3.2.2 Graph sobolev norms

Next we transition to defining the appropriate discrete analogues of } ¨ } 9H1pµq
and } ¨ } 9H´1pµq

on the graph G.
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Definition 3.19. Let f , g P ℓpV q. We define the graph Sobolev seminorm } ¨ } 9H1pV q
by the equation

}f }29H1pV q
“

ÿ

pi ,jqPE1

wi j |∇f pi , jq|22 “
ÿ

pi ,jqPE1

wi j |f piq ´ f pjq|22.(72)

We define the (possibly infinite) dual graph Sobolev norm } ¨ } 9H´1pV q
by the supremum

}g}29H´1pV q
“ sup

!

f T g : }f } 9H1pV q
ď 1

)

.(73)

It is useful to note that for mean zero functions, } ¨ } 9H1pV q
and } ¨ } 9H´1pV q

will be true norms (in particular,

the former will be definite and the latter will be finite). The first proposition in the section elucidates the

relationship between graph Sobolev norms and the graph Laplacian matrix.

Proposition 3.20. Let f , g P ℓpV q. Then the following hold:

(i) }f }29H1pV q
“ f TLf .

(ii) If 1T g “ 0, then }g}29H´1pV q
“ gTL:g.

Proof. The first claim is straightforward. The second requires a closer look. We can work backwards and

use the proof of Theorem 2.1 to obtain

pgTL:gq1{2 “ }L´1{2g}2(74)

“ inft}f }2 : L1{2f “ gu(75)

“ sup
!

f T g : }L1{2f }2 ď 1
)

,(76)

where Lt´1{2,1{2u “ UΛt´1{2,1{2uUT as in Eq. (10). But }L1{2f }22 “ f TLf “ }f }29H1pV q
, so the claim follows.

3.2.3 2-Beckmann as a negative Sobolev distance

Since our definitions have been set up and explained properly, we can derive the following result, which follows

directly from Proposition 3.20 and Theorem 3.4. We consider this a graph analogue of Theorem 3.17 for

2-Beckmann distance.

Theorem 3.21. Let α, β P PpV q. Then

B2pα, βq “ }α´ β} 9H´1pV q
.

Thus in particular if β “ α` dα for a small perturbation dα, then B2pα,α` dαq “ }dα} 9H´1pV q
.

Note that since the 9H´1 norm depends on the operator L´1{2, the Beckmann distance B2pα,α ` dαq

can be articulated in terms of the spectral coefficients of dα; to wit, if dα “
řn
ℓ“2 cℓuℓ is the spectral

decomposition of a mean-zero perturbation dα P ℓpV q in terms of the eigenvectors uℓ of L, then

B2pα,α` dαq2 “ }L´1{2dα}22 “

n
ÿ

ℓ“2

c2ℓ
λℓ
.(77)

Therefore in general, one has B2pα,α` dαq ď λ
´1{2
2 }dα}2; but if the spectral properties of dα are known,

this estimate may be sharpened.

The next result which leverages the Sobolev norm perspective on graph optimal transport can be con-

sidered a graph analogue of the Benamou-Brenier formula. Let µt P ℓpV q for each t P r0, 1s. We say

µt P C1pr0, 1sq if the map t ÞÑ µt : r0, 1s Ñ ℓpV q is continuously differentiable as a map from r0, 1s to Rn.

Moreover, when µt admits a derivative, we write dµt “ d
dsµs

ˇ

ˇ

s“t
.
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Theorem 3.22 (Graph Benamou-Brenier Formula). Let α, β P PpV q. Then we have

B2pα, βq2 “ inf

"
ż 1

0

}dµt}
2
9H´1pV q

dt : µt P C1pr0, 1sq, µ0 “ α,µ1 “ β

*

.(78)

See Appendix A.2 for a proof, which is based on the proof appearing in the lecture notes [35]. Note

that the infimum is achieved by a linear line segment connecting α to β, which underlines the idea that B2
should be treated as a linearized variant of Wasserstein distance. We explore the linearization angle and its

implications on graph learning tasks in the next section.

3.3 A linearized optimal transportation distance

A third and final perspective on 2-Beckmann distance is from the world of clustering and classification of

graph data. We begin with a background discussion from the continuous setting, and then explore convex

separation properties for graph data as well as an application involving a handwritten digit dataset.

3.3.1 Background from the continuous setting

A typical classification scenario usually consists of some data txiu Ă Rn which one wishes to separate into

classes or clusters either without prior knowledge of the data labels (unsupervised) or with some information

about the class labels of the dataset (semi-supervised or supervised). In many applications, e.g., [20, 93, 13],

the data xi can often occur not as vectors in Rn but as distributions µi on Rn.

In such scenarios, Wasserstein distance, formulated in the Monge sense as

W2pµ, νq2 “ inf
T :T7µ“ν

ż

Rn
}T pxq ´ x}22dµpxq,(79)

where T7µ is the push-forward of µ under the map T and the inf is over all such T exhibiting desired regularity,

arises as a natural distance metric between probabilitiy measures on Rn. However, this metric can be slow

to compute at scale, and in the discrete setting can even suffer from being undefined.

One approach to resolving this issue involves the usage and study of Linearized Optimal Transport

embeddings [58, 88, 54, 43, 21], which can be summarized as follows. Given data measures tµiu, fix

a reference measure µ, and define Ti “ argminT :T7µ“µi

ş

Rn }T pxq ´ x}22dµpxq. Then the measures are

featurized in the form of the maps Ti : Rn Ñ Rn and 2-Wasserstein distance between the data measures is

then approximated by }Ti ´ Tj}L2 .

Theoretically, the ability of Linearized Optimal Transport in approximating 2-Wasserstein distance can

be captured by the following two results, the informal statements of which we restate from [58].

Theorem 3.23 (Informal Statement of Theorem 4.4 from [58]). If P “ tµiu are ϵ-perturbations of shifts

and scalings of µ, and Q “ tνiu are ϵ-perturbations of shifts and scalings of ν, and P and Q have small
minimal distance depending on ϵ and satisfy a few technical assumptions, P and Q are linearly separable in
LOT embedding space.

Theorem 3.24 (Informal Statement of Theorem 4.1 from [58]). If µ, ν are ϵ-perturbations of shifts and

scalings of one another, then

W2pµ, νq ďWLOT2 pµ, νq ďW2pµ, νq ` Cσϵ` C1
σϵ
1{2.(80)

In particular, when ϵ “ 0 and µ, ν are shifts and scalings of each other, LOT is an isometry.

It is also worth noting that in the situation where µi is some shift or scaling of µ, i.e., µi “ T7µ for an

affine combination of scaling and translation T on Rn, then the LOT embedding of µi will be the map T

itself; i.e., T is optimal in the Wasserstein cost.
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3.3.2 Linear separtation for 2-Beckmann distance

To set up the problem, suppose we have data sampled from C classes, and each class is associated to a

canonical distribution αi P PpV q so that our data may be represented in the form D “ tTαiui“1,...,C;TPT .

That is, each data point is of the form Tαi where αi is the underlying distribution of the class and the map

T : PpV q Ñ PpV q represents a perturbation of the class distribution among valid perturbations T (to be

determined).

For example, consider a hypothetical dataset of images with resolution k ˆ ℓ. In this setting, G is the

kˆ ℓ lattice graph, and after normalization each image can be understood as a distribution on G. In our data

model, we assume that each image may be expressed as a perturbation of a canonical distribution associated

to the corresponding image class.

In the unsupervised setting, we simply have D and we wish to use some clustering technique, e.g., k-

means or principal geodesic analysis, associated to a metric on PpV q. In the supervised setting, we have data

equipped with labels D1 “ tpTαi , yiqui“1,...,C;TPT so that each label depends only on the class distribution

and we seek to build some classifier, ideally linear, which facilitates predictive analysis.

We treat B2 as a linearization of W2 on graphs. In this setting, the featurization of each canonical class

distribution is given by αi ÞÑ L´1{2αi and similarly for the individual samples Tαi .

For a set of measures A “ tα1, . . . , αku Ă PpV q, define the mutual support by

MS pAq “

k
č

i“1

supppαiq Ă V,

where supppαiq is the subset of nodes in V on which α ą 0.

Theorem 3.25. Let α1 ‰ α2 P PpV q be the canonical class distributions for a binary distributional dataset

D “ tTαiui“1,2;TPT . AssumeMS ptα1, α2uq ‰ ∅ and let T be the set of affine perturbation maps defined
by

Tα “ α` dT

where dT P ℓpV q is vector which satisfies the three conditions:

(i) dT is mean zero, or 1Tn dT “ 0;

(ii) supppdT q Ă MS ptα1, α2uq; and

(iii) }dT }1 ă δ, where

δ “ min

$

&

%

1

3
}α1 ´ α2}2, min

i“1,2
kPMS ptα1,α2uq

αipkq

,

.

-

ą 0.(81)

Then the sets A1 “ tTα1uTPT and A2 “ tTα2uTPT , which belong to the metric space pPpV q,B2q, can be
isometrically embedded into ℓ2pV q under L´1{2 so that their images are linearly separable as convex sets in

Rn.

See Appendix A.2 for the proof. Note that it is not hard to extend Theorem 3.23 to the case of

C ą 2 classes, by simply requiring that the perturbations be smaller than the mutual distances between

the canonical class distributions, up to an appropriate constant, so that in the data model there are no

overlapping perturbations. The main point of this result is that L´1{2 as an embedding of measures, is

well-behaved; in the sense that as long as the original collections of measures were separable, L´1{2 will not

imbue any pathology.
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x ÞÑ x{p1T xq α ÞÑ L´1{2α

R64 PpV q ℓ2pV q

´0.05 0 0.05157.50

Figure 4: An illustration of the preprocessing pipeline for the digits data, with an example from the class

of handwritten zeros. The first step is a mass normalization to convert the pixel values into a fixed-sum

distribution viewed on the nodes V of the 8ˆ8 lattice graph. The second step is an embedding α ÞÑ L´1{2α,

such that ℓ2 distance in the target corresponds to 2-Beckmann distance in PpV q. When computing W2, we

omit the final step.

Figure 5: Using the digits dataset, and for each pair of digit classes, we computed the pairwise 2-Beckmann

and 2-Wasserstein distances for each pair of samples originating from the respective digit classes (with around

30,000 pairs of distances per pair of digit classes). Within each tile of the grid, we render a scatterplot of the

distances over the overall linear regression between B2 and W2 for the experiment given by W2 « 8.446B2.
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(a) Similarity kernel between each image is given by expt´B2p¨, ¨q2u

(b) Similarity kernel between each image is given by expt´W2p¨, ¨q2u

RI ARI MI AMI Hom Com

B2 0.940 0.685 1.782 0.783 0.774 0.797

W2 0.935 0.656 1.719 0.755 0.747 0.775

(c) Performance metrics

Figure 6: (a)-(b) Using the digits dataset, we demonstrate the results of an unsupervised clustering algorithm

with different choices of similarity kernel. Each node corresponds to an image of a digit, which we featurize

as a distribution on the 8 ˆ 8 square lattice graph. We built a k “ 42 nearest neighbor graph on the nodes

(shown), and then apply spectral clustering [87] to create predicted classes. The text labels of the nodes

correspond to the ground truth classes, i.e., digit values. The colors of the nodes on the left (resp. right)

are given by the ground truth classes (resp. predicted classes). (c) We evaluate the performance of the

unsupervised clustering alogrithm for each kernel. We compare across several metrics, including Rand index

(RI) and adjusted Rand index (ARI) [39]; mutual information (MI) and adjusted mutual information (AMI)

[86]; and homogeneity (Hom) and completeness (Com) [66]. In all such cases other than MI, a value of

1.0 corresponds to perfect clustering as compared to the ground truth. Since the predictions depend on

a random initialization in the k-means step, we simulated 100 runs of the algorithm and reported the best

result for each kernel across the six metrics.

23



3.3.3 Experimental results

To further explore the implications of our results on learning with graph data, we conducted two experiments

which illuminate some of the potential applications and underlying properties of 2-Beckmann distance be-

tween measures. Both examples make use of the “Pen-Based Recognition of Handwritten Digits” dataset

[3], accessed and processed via the Sklearn Python package [14]. The dataset contains 1797 grayscale hand-

written digits of resolution 8 ˆ 8 and pixel values ranging from 0 ´ 15. The reason for choosing this dataset

is that the 2-Wasserstein kernel is computationally prohibitive at scale without approximation, so rather than

regularize the Wasserstein metric, we opt for a lighter-weight image dataset. Specifically, if W2 is obtained

via, e.g., a Hungarian algorithm or a linear program, the time complexity to obtain a kernel matrix for N

samples, each defined on a graph of n nodes, is roughly Opn3N2q. A Beckmann kernel matrix, on the other

hand, runs Opn3 ` pn2 ` nqN2q since only a single SVD calculation of L: is required at the beginning, and

then subsequent entries of the kernel matrix are obtained through matrix-vector multiplication and pairwise

comparison. The Wasserstein metricW2pα, βq was directly evaluated for each pair of examples α, β by using

the CVXPY convex optimization Python package [24] with initialization determined by the trivial coupling

βαT . Fig. 4 illustrates the pre-processing pipeline for an example image of a handwritten zero.

The first experiment, described in detail in Fig. 5, is a comparative study of B2 andW2 in which we show

that the two metrics are well-correlated for the dataset in question. The second experiment, described in

Fig. 6, is a comparative study of B2 andW2 within the context of unsupervised learning on the digit dataset.

In this setup, we show that the two kernels perform almost identically on the dataset with respect to several

metrics (with a slight edge toward B2), and thus there is some empirical evidence for drop-in usage of B2
where W2, or perhaps Wp more generally, may present a computational bottleneck.
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[62] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Center for Research in Economics

and Statistics Working Papers, 1(2017-86), 2017.
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A.1 Proofs from section 2

Proof of Theorem 2.1. We can derive the Lagrangian dual in a fairly straightforward manner. We rewrite

the constraint BJ “ α´ β using the expresion

sup
φPℓpV q

φT pα´ βq ´ φT pBJq “

#

0 if BJ “ α´ β

`8 otherwise.
(82)

Thus the Beckmann problem may be rewritten as the following

inf
BJ“α´β

}J}w,p “ inf
J

"

}J}w,p ` sup
φ
φT pα´ βq ´ φT pBJq

*

(83)

“ sup
φ

"

φT pα´ βq ` inf
J

}J}w,p ´ φT pBJq

*

,(84)

where we exchange the sup and inf using, e.g., Sion’s minimax theorem [73] or Slater’s condition. Now we

have that, using the Legendre transform of } ¨ }p,

inf
J

}Jpeq}w,p ´ φT pBJq “ inf
J

}J}w,p ´ JT pBTφq(85)

“

#

0 if }BTφ}w1´q ,q ď 1

´8 otherwise
(86)

since the dual norm to } ¨ }w,p is } ¨ }w1´q ,q. Therefore, the Lagrangian dual becomes

sup
!

φT pα´ βq : φ P ℓpV q,
›

›BTφ
›

›

w1´q ,q
ď 1

)

(87)

The special case of p “ 1 and q “ 8 follows from the same proof, with the only change being that the dual

norm to } ¨ }w,1 is } ¨ }w´1,8, which can be shown directly or through a limiting argument.

Proof of Proposition 2.5. Let i , j P V be fixed distinct vertices. We begin by noting simply that by inspec-

tion,
rBpπi j IPi j q “ πi jpδi ´ δjq

and thus that

rB

˜

ÿ

i ,jPV

πi j IPi j

¸

“
ÿ

i ,jPV

πi jpδi ´ δjq(88)

“
ÿ

iPV

δipπ1qi ´
ÿ

jPV

δjp1
Tπqj(89)

“ α´ β.(90)

Since Jπ ě 0 by construction, Jπ is a feasible edge flow for Bppα, βq. The estimate on }Jπ}w,p follows

immediately from the triangle inequality.

Proof of Theorem 2.7. Suppose π P Πpα, βq is an optimal coupling for Wdp,ppα, βq. For each i , j , let

Pi j P Ppi , jq be a choice of path which is minimal in the sense of dp, and let Jπ “ Jπ,pPi j q be the feasible
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flow as in Proposition 2.5. Then by Hölder’s inequality,

Bppα, βq ď }Jπ}w,p(91)

ď
ÿ

i ,jPV

πi j}IPi j }w,p(92)

ď
ÿ

i ,jPV

πi jdppi , jq(93)

ď }1VˆV }q

˜

ÿ

i ,jPV

πpijdppi , jq
p

¸1{p

(94)

ď }1VˆV }q

˜

ÿ

i ,jPV

πi jdppi , jq
p

¸1{p

“ n2{qWdp,ppα, βq(95)

since πi j ď 1 and p ą 1.

Proof of Proposition 2.13. The proof of this result is straightforward and comes in two parts. First, we

observe that Wppα, βq “Wpppα, pβq where

Wpppα, pβqp “ inf

"
ż

RˆR
|x ´ y |pdπpx, yq : π P Πppα, pβq

*

.(96)

In this case, Πppα, pβq is the set of all Borel probability measures on R ˆ R with respective marginals α, β.

Equality here holds because any such π P Πppα, pβq, since it has discrete marginals, must itself be discrete and

supported on the Cartesian product t1, . . . , nu ˆ t1, . . . , nu; i.e., it can be written as a matrix. Thus, there

is a one-to-one correspondence between the feasible couplings on V ˆ V and R ˆ R, and the cost of any

such pair of corresponding couplings is identical since shortest path distance on V pPnq is |i ´ j |.

The second part of the proof is classical, and it suffices to observe that the p-Wasserstein distance

between probability measures on R is simply the p-norm distance between their inverse cdfs. For a proof we

recommend, e.g., [64].

Proof of Proposition 2.14. We note that the signed incidence matrix B, which is of shape nˆ n´ 1, must

have no kernel- for the rank of B agrees with the rank of BBT “ L, which is n ´ 1 for any connected

graph on n nodes. Therefore, for any 1 ď p ă 8, Bppα, βq is the p-norm of the unique flow J such that

BJ “ α´ β and which does not depend on p. We therefore need only show that BpKα ´Kβq “ α´ β. To

wit, if i “ 1, note that

BKαp1q “ Kαp1, 2q “ αp1q,

and if 1 ă i ă n,

BKαpiq “ Kαpi , i ` 1q ´Kαpi ´ 1, iq “ αpiq,

and lastly if i “ n,

BKαpnq “ ´Kαpn ´ 1, nq “ αpnq ´ 1.

Therefore, with a simple cancellation, it holds BpKα ´ Kβq “ α ´ β for all i P V . The first equality in the

proposition therefore follows, and the second follows immediately upon inspection.

Proof of Proposition 2.15. Once again the proof of this result is a matter of rigid feasibility: there can only

really be one feasible flow J P ℓpE1q satisfying BJ “ α´ β owing to, e.g., rank considerations for Laplacians

on trees. Thus it is enough only to establish that BpKα ´ Kβq “ α´ β. Let i P V be fixed, and suppose i

has N incoming oriented edges, and M outgoing oriented edges. At the root of each incoming oriented edge

is a subtree Iℓ, and at the head of each outgoing oriented edge is a subtree Oℓ. This setup is illustrated in
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Figure 7: A sketch of a vertex neighborhood in an oriented tree.

Fig. 7. For each 1 ď ℓ ď N, let αpIℓq be the total mass of α on that component, and similarly for αpOℓq. We

split up the argument into a few cases depending on M,N. Assume for a moment that M ě 2 and N ě 1;

then by inspection we have

pBKαqpiq “ ´pαpI1q ` αpI2q ` . . .` αpINqq(97)

`

˜

αpiq `

N
ÿ

ℓ“1

αpIℓq `
ÿ

ℓ‰1

αpOℓq

¸

` ¨ ¨ ¨ `

˜

αpiq `

N
ÿ

ℓ“1

αpIℓq `
ÿ

ℓ‰M

αpOℓq

¸

(98)

“ Mαpiq ` pM ´ 1q

N
ÿ

ℓ“1

αpIℓq ` pM ´ 1q

M
ÿ

ℓ“1

αpOℓq(99)

“ αpiq `M ´ 1.(100)

If M “ 1 and N ě 1, then pBKαqpiq “ αpiq. If M “ 0 and N ě 1, then pBKαqpiq “ αpiq ´ 1. If N “ 0,

then pBKαqpiq “ αpiq `M ´ 1, as before, since the only difference is the lack of contribution of the Iℓ’s.

Therefore, BKα “ α ` c where c P Rn is a vector which does not depend on α, and thus it holds that

BpKα ´Kβq “ α´ β. The claim follows.

A.2 Proofs from section 3

Proof of Theorem 3.13. We start by considering the pointwise value of the vector L:pα´βq. To this end,

a useful observation is that for any coupling π P Πpα, βq, we have

α´ β “
ÿ

i ,jPV

πi jpδi ´ δjq.
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With this in hand alongside Theorem 3.12, we can calculate

L:pα´ βqi “
ÿ

jPV

˜

pL:qi j

ÿ

k,ℓPV

πkℓpδkpjq ´ δℓpjqq

¸

(101)

“
1

volpGq

ÿ

j,k,ℓPV

pHpρ, jq ´Hpi , jqqπkℓpδkpjq ´ δℓpjqq(102)

“
1

volpGq

ÿ

k,ℓPV

πkℓ pHpρ, kq ´Hpi , kq ´Hpρ, ℓq `Hpi , ℓqq(103)

“
1

volpGq

ÿ

k

αkpHpρ, kq ´Hpi , kqq ´
ÿ

ℓ

βℓpHpρ, ℓq ´Hpi , ℓqq(104)

“
1

volpGq

ÿ

k

pαk ´ βkqpHpρ, kq ´Hpi , kqq(105)

“ c ´
1

volpGq

ÿ

k

pαk ´ βkqHpi , kq(106)

where by introducing the placeholder c for some c P R, we are separating the first piece of the summand

which does not depend on i and which will be eliminated in the subsequent calculation. Then, multiplying by

pα´ βqT , and using the fact that pα´ βqT1n “ 0, we get

pα´ βqTL:pα´ βq “ ´
1

volpGq

ÿ

i ,kPV

pαi ´ βiqpαk ´ βkqHpi , kq(107)

“ ´
1

volpGq

ÿ

kPV

pαk ´ βkq
ÿ

iPV

pαiHpi , kq ´ βiHpi , kqq(108)

“ ´
1

volpGq

ÿ

kPV

pαk ´ βkqpHpα, kq ´Hpβ, kqq(109)

using Proposition 3.11(i) in the final line. The claim follows.

Proof of Corollary 3.14. From the proof of Theorem 3.13 and Hölder’s inequality, we have

rαβ “ ´
1

volpGq

ÿ

i ,kPV

pαi ´ βiqpαk ´ βkqHpi , kq(110)

“
1

volpGq

ÿ

k

pβk ´ αkq
ÿ

i

pαi ´ βiqHpi , kq(111)

ď
1

volpGq
}α´ β}1

›

›

›

›

›

ÿ

i

pαi ´ βiqHpi , kq

›

›

›

›

›

8

(112)

ď
2

volpGq
maxtHpα, βq, Hpβ,αqu.(113)

where in the final line we make use of Proposition 3.11(ii). The second inequality in the Corollary follows from

the observation in the proof of Theorem 3.13 that if π P Πpα, βq is any coupling, α´β “
ř

i ,jPV πi jpδi ´ δjq.

Then since x ÞÑ }L´1{2x}22 is convex in x ,

pα´ βqTL:pα´ βq “

›

›

›
L´1{2pα´ βq

›

›

›

2

2
(114)

“

›

›

›

›

›

ÿ

i ,j

πi jL
´1{2pδi ´ δjq

›

›

›

›

›

2

2

(115)

ď
ÿ

i ,j

πi j ri j .(116)
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Thus in the special case where π “ αβT ,

rαβ ď
1

volpGq

ÿ

i ,jPV

αiβjpHpi , jq `Hpj, iqq(117)

“
1

volpGq
pHnpα, βq `Hnpβ,αqq.(118)

Proof of Theorem 3.22. Let µt P C1pr0, 1sq such that µ0 “ α and µ1 “ β. Then we estimate, using

Proposition 3.20 and the fact that L: “ L:LL:,

ż 1

0

}dµt}
2
9H´1pV q

dt “

ż 1

0

pdµtq
TL:dµtdt(119)

“

ż 1

0

pL:dµtq
TLpL:dµtqdt(120)

“

ż 1

0

ÿ

pi ,jqPE1

wi j
ˇ

ˇL:dµtpiq ´ L:dµtpjq
ˇ

ˇ

2
dt(121)

“
ÿ

pi ,jqPE1

wi j

ż 1

0

ˇ

ˇL:dµtpiq ´ L:dµtpjq
ˇ

ˇ

2
dt(122)

ě
ÿ

pi ,jqPE1

wi j

ˇ

ˇ

ˇ

ˇ

ż 1

0

pL:dµtpiq ´ L:dµtpjqqdt

ˇ

ˇ

ˇ

ˇ

2

(123)

where the final inequality follows from Jensen’s inequality. Then, focusing on the inner term and letting

e “ pi , jq P E1 we evaluate

ż 1

0

pL:dµtpiq ´ L:dµtpjqqdt “ BT
ˆ
ż 1

0

L:dµtdt

˙

peq(124)

“ BTL:

ˆ
ż 1

0

dµtdt

˙

peq(125)

“ BTL:pβ ´ αqpeq.(126)

(127)

Hence,

ÿ

pi ,jqPE1

wi j

ˇ

ˇ

ˇ

ˇ

ż 1

0

pL:dµtpiq ´ L:dµtpjqqdt

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

pi ,jqPE1

wi j
ˇ

ˇBTL:pβ ´ αqpi , jq
ˇ

ˇ

2
(128)

“ pL:pβ ´ αqqTLpL:pβ ´ αqq(129)

“ pα´ βqTL:pα´ βq,(130)

and therefore,

inf

"
ż 1

0

}dµt}
2
9H´1pV q

dt : µt P C1pr0, 1sq, µ0 “ α,µ1 “ β

*

ě pα´ βqTL:pα´ βq “ B2pα, βq2.(131)

For the reverse inequality, it is sufficient to consider the special curve µt “ p1 ´ tqα ´ tβ, which satisfies
ş1
0 }dµt}

2
9H´1pV q

dt “ pα´ βqTL:pα´ βq “ B2pα, βq2.
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Proof of Theorem 3.25. We observe first that the collection of vectors tdT uTPT Ă ℓpV q is convex; for the

first two conditions (i) and (ii) are equivalent to the intersection of a finite number of linear constraints; and

(iii) is stable under convex combinations. Since L´1{2 is a linear map, the image L´1{2Ai will be convex for

i “ 1, 2. Separately, we have for S, T P T :

}Tα1 ´ Sα2}2 “ }pα1 ´ α2q ` pdT ´ dSq}2(132)

ě |}α1 ´ α2}2 ´ }dT ´ dS}2|(133)

ě }α1 ´ α2}2 ´ 2δ ą 0.(134)

Thus,

min
S,TPT

}Tα1 ´ Sα2}2 ą 0(135)

and henceA1XA2 “ ∅. Note moreover that L´1{2 (and more generally, any power of L) will act nonsingularly

on mean zero vectors since its kernel is exactly the constant functions. Therefore, since Tα1´Sα2 is mean

zero for any T, S, and since A1 and A2 are disjoint, the sets L´1{2A1 and L´1{2A2 are disjoint as well; and

thus they are linearly separable.
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