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Abstract. Recent advances in generative visual models and neural ra-
diance fields have greatly boosted 3D-aware image synthesis and styliza-
tion tasks. However, previous NeRF-based work is limited to single scene
stylization, training a model to generate 3D-aware cartoon faces with
arbitrary styles remains unsolved. We propose ArtNeRF, a novel face
stylization framework derived from 3D-aware GAN to tackle this prob-
lem. In this framework, we utilize an expressive generator to synthesize
stylized faces and a triple-branch discriminator module to improve the
visual quality and style consistency of the generated faces. Specifically, a
style encoder based on contrastive learning is leveraged to extract robust
low-dimensional embeddings of style images, empowering the generator
with the knowledge of various styles. To smooth the training process of
cross-domain transfer learning, we propose an adaptive style blending
module which helps inject style information and allows users to freely
tune the level of stylization. We further introduce a neural rendering
module to achieve efficient real-time rendering of images with higher res-
olutions. Extensive experiments demonstrate that ArtNeRF is versatile
in generating high-quality 3D-aware cartoon faces with arbitrary styles.
Our source codes are publicly available at https://github.com/silence-
tang/ArtNeRF.

Keywords: Generative Adversarial Network · Neural Radiance Field ·
3D-Aware Image Synthesis · Neural Style Transfer.

1 Introduction

With the rise of concepts like Metaverse and Artificial Intelligence Generated
Content (AIGC), 3D stylization technology has become increasingly pivotal in
various application scenarios such as AR/VR. In this work, we address a novel
task of 3D-aware image stylization: given a latent identity code, a style image,
and multiple camera poses, the model should generate 3D-aware stylized faces
with high multi-view consistency while preserving the style characteristics of the
style image. The challenges of this task are primarily threefold: (1) How to ensure
the style consistency between the style image and the generated image. (2) How
to prevent structural information such as the pose of the reference style image
from leaking into the generated image. (3) How to guarantee high multi-view
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Fig. 1. Multi-view 3D-aware faces with arbitrary styles generated by our model. We
evenly select 5 views within a reasonable range where pitch ∈ [π

2
− 0.2, π

2
+ 0.2] and

yaw ∈ [π
2
− 0.4, π

2
+ 0.4].

consistency and visual quality of the results while achieving efficient real-time
rendering.

Many existing 2D methods [11,14,16] encode source and reference images into
content and attribution latent codes, then combine these codes for reconstruction
or style transfer. While these methods support arbitrary reference images, they
often yield results with low visual quality and inconsistent style. Additionally,
none of these 2D methods can generate 3D-aware results. More recently, [1]
proposes a domain-adaption framework and [24] presents a novel stylefield for
3D-aware image stylization. Although these methods achieve high visual quality
in 3D-aware results, they are limited to fixed styles and face challenges like high
GPU memory consumption during training owing to their 3D representations.

To overcome the limitations of existing methods, we propose ArtNeRF, a
novel 3D-aware GAN framework for generating multi-view faces with arbitrary
styles from given reference images. ArtNeRF features an expressive 3D-aware
generator paired with a triple-branch discriminator, achieving rapid and high-
quality face stylization. As for the generator, we design better implementation
practices to reliably enhance the generation quality of pi-GAN [3]. Specifically,
we design dense skip connection layers in the original backbone to strengthen the
reuse of feature maps from different semantic layers and discard the progressive
growing training strategy. We then design a neural rendering module comprising
1 × 1 convolutional layers and a skip connection mechanism for image super-
resolution and faster rendering. For style representation extraction, we leverage
a style encoder based on contrastive learning, effectively mapping reference im-
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ages to low-dimensional style codes. To address training instability stemming
from cross-domain learning discrepancies, we propose an adaptive style blending
module that dynamically adjust the blending ratio of style control vectors to en-
sure a smooth training process. Finally, our triple-branch discriminator module
consists of three discriminators with analogous architectures. The first two aid
the generator in synthesizing faces adhering to the distributions of the source
and target domains, while the third one with an embedder head is capable of
improving style consistency between synthesized faces and the reference images.
Our contributions can be summarized as follows:

- We propose a novel 3D-aware image arbitrary stylization task, where the
synthesized results should emulate the style characteristics of the style reference
image while maintaining strong multi-view consistency. Correspondingly, We de-
sign ArtNeRF, a framework based on 3D-aware GAN to realize this goal.

- We introduce a self-adaptive style blending module to inject style infor-
mation into the generator and a triple-branch discriminator to guarantee style
consistency. Incorporated with our two-stage training strategy, the cross-domain
adaption process can be smoothed and stabilized effectively.

- By designing dense skip connections between sequential layers and incorpo-
rating a neural rendering module, we boost the generator backbone of pi-GAN,
leading to efficient real-time rendering and better visual quality.

2 Related works

2.1 Style Transfer with 2D GAN

MUNIT [11], FUNIT [16], DRIT++ [14] and StarGANv2 [5] are seminal works
that focus on reference-guided image style transfer using GAN [8]. Subsequently,
several methods have been proposed to achieve style transfer in specific style
domains. CartoonGAN [4] introduces various losses suitable for general photo
cartoonization while ChipGAN [9] utilizes an adversarial loss for Chinese ink
painting style transfer with constraints on strokes and ink tone. Some recent
works combine expressive backbones with unique designs, further boosting the
artistic effects of synthesized images. BlendGAN [17] proposes a style encoder
and employs a style-conditioned discriminator to generate 2D faces with arbi-
trary styles. Pastiche Master [23] employs a dual-path style generation network
and introduces multi-stage fine-tuning strategies, achieving facial cartoonization
with fixed styles. However, none of these methods can generate vivid 3D-aware
results.

2.2 3D-aware Image Synthesis

In the realm of 3D-aware image synthesis, we mainly focus on NeRF-based meth-
ods. GRAF [22], pi-GAN [3] and GIRAFFE [21] combine GAN with NeRF [19] to
learn a 3D representation from 2D images, thereby enabling novel view synthesis.
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Other endeavors aim to narrow the gap in visual quality between 3D models and
2D GAN models. For instance, GRAM [7] introduces an implicit neural repre-
sentation based on learnable 2D manifolds, enhancing the quality of synthesized
images with reduced sampling points. EG3D [2] presents an effective tri-plane
representation for high-quality 3D-aware image synthesis. More recently, some
3d-aware stylization works like 3DAvatarGAN [1] and DeformToon3D [24] are
proposed to generate 3D-aware avatars with specific styles. Nevertheless, these
methods incur high training costs and are limited in their ability to handle ar-
bitrary styles with a single trained model.

3 Method

Given an identity code z, a reference style image Xs and camera poses p, we
aim to generate high-quality 3D-aware stylized faces which are supposed to main-
tain consistent across various views. We firstly give preliminaries in Sec 3.1. To
solve the challenges discussed in the introduction, we leverage a style encoder
to extract style embeddings of reference images in Sec 3.2, a novel generative
radiance field to achieve efficient style blending and rendering in Sec 3.3, and
a triple-branch discriminator network to supervise the 3D-aware generator and
enhance style consistency in Sec 3.4.

Fig. 2. The pipeline of the generator in ArtNeRF. Given an identity code zf

sampled from normal distribution and a style image Xs, we first extract the style
code using the style encoder Es. Subsequently, dual mapping networks are utilized to
map zf ,zs to Wf ,Ws in the W+ space. The self-adaptive SBM module then blends
Wf ,Ws based on a split index i and injects the style information into the 3D generator.
Given camera poses, real-time rendering of 3D-aware stylized faces can be achieved with
the dense skip connections and the neural rendering module.

3.1 Preliminaries

Neural Radiance Fields. A Neural Radiance Field (NeRF) implicitly repre-
sents the scene as a 5D function, enabling high-quality synthesis of novel views
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with multi-view consistency. Given a 3D point x, a radiance field gθ is employed
to map its position (x, y, z) and the viewing direction (θ, ϕ) to its RGB color c
and volume density σ. To render a pixel, a ray r(t) = o + td is cast from the
camera origin o to the 3D space along the viewing direction d, where t ∈ [tn, tf ]
represents the distance from the sampling point to the camera origin. The color
of the pixel can be rendered via volume rendering:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, T (t) = e−
∫ t
tn

σ(r(s))ds (1)

where T (t) is the cumulative transmittance from tn to t.

3.2 Self-supervised Style Encoder

Style encoder used to extract features is indispensable in style transfer tasks.
However, utilizing an VGG-based encoder with randomly initialized parameters
may lead to inconsistent styles and confusion. Moreover, since we need to gen-
erate 3D-aware images, it is crucial to prevent the leakage of pose information
from the reference images into the style latent codes. To tackle this problem, we
leverage a style encoder with strong expressive capability following [17].

Fig. 3. The architecture of the style encoder Es.

The overall structure of the style encoder is illustrated in Fig. 3. A pretrained
VGG19 is utilized to extract style features fs from input images, followed by a
compress-CNN to reduce the dimension of fs to 512. The 512-dim vectors serve
as the style codes zs. To facilitate the contrastive learning process, a projection
head is applied to further map zs to their representation vectors us. During
training, each batch contains 2N images, where Xi,Xj are positive samples
(Xi is a style image and Xj is an augmented sample via affine transformation),
and the remaining 2N−2 images serve as negative samples. We use the following
objective function to optimize the compress-CNN :

ℓCL
i,j = − log

exp(sim(ui,uj)/τ)
2N∑

k=1,k ̸=i,k ̸=j

exp(sim(ui,uk)/τ)

(2)
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where sim(·, ·) is the cosine similarity between embeddings, τ is the temperature
coefficient, and (ui,uj) represents the contrastive learning representations for
(Xi,Xj). After training, augmented samples of the same style image will have
style codes rich in style semantics but devoid of spatial structure, since they
are pushed closer in the embedding space and their original spatial features are
neutralized.

3.3 Conditional Generative Radiance Field

pi-GAN [3] is a NeRF-based 3D-aware face generation framework. We start from
pi-GAN to design our generator considering its concise and effective backbone
along with its relatively small training overhead. In this work, we extend and
enhance pi-GAN to address the 3D-aware image stylization problem. Specifically,
our improved neural generative radiance field comprises three main components:
mapping network, style blending module (SBM), and conditional radiance field
with dense skip connections.

Mapping network and SBM Module. Let zf denote the identity latent
code, and zs represent the style code obtained from the style image. We first
utilize two mapping networks with unshared parameters to respectively map z
and zs from z space to w and ws in W+ space to achieve feature decoupling.

To incorporate the two latent codes into our backbone, we design a style
blending module SBM. Since different layers are responsible for learning facial
semantic information at various levels, simply setting fixed blending weights for
each layer is not advisable, which will inevitably cause mode collapse. Inspired
by this, we first mix wf and ws using a learnable weight vector α, then feed the
mixed code into our model to achieve style mixing of facial semantic information
at multiple levels. The SBM module can be formulated as Eq.3. We omit the
batch dimension for simplicity.

Wfused = Concat(Wbb;Wnr)

Wbb = α[: k]⊙ws[: k, :] + (1−α[: k])⊙wf [: k, :]

Wnr = α[k :]⊙ Trans(ws[k :, :]) + (1−α[k :])⊙ Trans(wf [k :, :])

(3)

where bb and nr denote backbone and neural rendering, Concat(·; ·) and ⊙ de-
note channel-wise concatenation and element-wise multiplication, [:] represent
the slicing operation in PyTorch. In practice, k is the number of layers in the
backbone, α is a learnable weight vector with a shape of [n], wf and ws both
have a shape of [n, 256], where n is the number of layers requiring style mixing.
To flexibly adjust the degree of stylization, we introduce a split index i in SBM.
When i is specified, α[: i] = 1 and α[i :] remains unchanged. This strategy
ensures layers with indices less than i only affected by wf , while layers with
indices greater than i influenced by both wf and ws. Consequently, we can
perform style blending on the backbone and the neural rendering module (Sec
3.4). Note that directly injecting style vector into the neural rendering module
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may be improper as its feature space differs from the backbone. Hence, we apply
projection units to wf and ws to refine them before the injection operation.

Conditional Radiance Field with Dense Skip Connections. The pro-
posed conditional radiance field takes as input not only 3D positions x in the
camera coordinate system and a camera pose p but also a fused conditioning
latent code Wbb. Therefore, properly injecting Wbb into the backbone is crucial
for the generation performance. As is shown in Fig.2, the backbone consists of
two parts: a sequence of n FiLM layers and dense skip connections. The FiLM
layer sequence can be formulated as follows:

Φ(x) = ϕn−1 ◦ ϕn−2 ◦ ... ◦ ϕ0(x)

ϕi(xi) = sin(γi · (Wixi + bi) + βi)
(4)

where xi is the input of the i-th FiLM layer, Wi, bi are learnable parameters and
γi, βi are modulation coefficients projected from Wbb. Note that ϕn−1 also takes
the viewing direction v as input to model view-dependant appearance, we omit it
for brevity. To mitigate the ripple-like artifacts observed during training pi-GAN,
we draw inspiration from StyleGAN2’s [12] improvements to StyleGAN. We dis-
card the progressive growing training strategy used in pi-GAN and optimize the
generator with a structure featuring dense skip connections. This modification
ensures that feature maps from different layers can mutually contribute to the
final output, thereby increasing the strength of gradient back-propagation and
preventing training collapse. Optimized formulas for volume density and feature
calculation is shown in Eq.5:

σ(x) = hσ(

n−2∑
i=0

λi(Mi))

f(x) = hf (

n−1∑
i=0

µi(Mi))

(5)

where Mi represents the output of ϕi, λi is the i-th volume density prediction
layer and µi is the i-th feature prediction layer inspired by [21]. hσ, hf are used
to clamp the volume density σi ∈ R1 and the feature values fi ∈ RMf . Let
{xi}Ns

i=1 denote the Ns sampling points along a ray, with volume density σi and
feature values fi of each point, the volume rendering can be defined as follows:

πvol : (R× RMf )Ns 7→ RMf , {σi,fi}Ns
i=1 7→ f (6)

By performing volume rendering to all rays, we can rapidly obtain the com-
plete feature map F ∈ RMf×32×32 with relatively small GPU overhead. We can
intuitively consider F as a texture representation of the final image.

3.4 Neural Rendering Module

The integration of the neural rendering module can remarkably enhance the ex-
pressiveness of the generator, enabling the synthesis of high-quality images at
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Fig. 4. The architecture of the neural rendering module.

higher resolutions with faster inference speed. GIRAFFE [21] first introduces
a neural renderer composed of 2D CNNs into the model. However, EG3D [2]
indicates that overly deep 2D CNNs and excessive 3× 3 convolution operations
undermine the 3D consistency of the final results. Therefore, our neural render-
ing module is composed of shallow 1×1 convolutions. 1×1 convolutions enhance
the network’s ability to model information between channels of 2D feature maps
and help avoid the fusion of local spatial contexture in feature maps, further en-
suring multi-view consistency. The proposed neural rendering module leverages
ModConv and upsampling layers in StyleGAN2, with a to_rgb layer to facilitate
the reuse of features between adjacent blocks. Introducing ModConv allows for
the reuse of Wnr during super-resolution, which can refine the details of low-
resolution results. Given a 2D low-resolution feature map F ∈ RMf×32×32, we
can generate the final synthesized image Xsyn ∈ R3×128×128 following Fig. 4,
where the A blocks are affine transformations applied to inject Wnr into the
neural rendering module, w0 . . .w5 are weight parameters for 1×1 convolutions
and the hrgb is a clamp operation.

3.5 Triple Discriminator Network

We employ three discriminators to guide the generator to synthesize 3D-aware
stylized images decently and appropriately. Dr discriminates between fake nat-
ural faces and real natural faces, while Ds discriminates between fake stylized
faces and real ones. Together, they supervise the generator to ensure the gener-
ated images conforming to the distributions of the respective domains. In order
to further ensuring that the synthesized images match the style of the given
reference images, we treat ws as a sort of class labels inspired by [20]. The task
of generating stylized images can be naturally transformed into a cGAN prob-
lem. Therefore, we leverage a conditional discriminator Dc, which provides an
additional supervision to the generator. Specifically, we apply an embedder head
at the end of Dc. Let’s denote the output of the global sum pooling layer in Dc

as fgsp. We first map a given style code to a feature embedding femb aligned
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with fgsp, then the dot product result of fgsp and femb is added to the original
output of Dc to form the final output. The structure of Dr and Ds is similar to
Dc, but without the embedder head.

3.6 Loss Functions

Given a reference style image Xs, we extract its style code zs with Es. We then
sample an identity code zf from a normal distribution and a camera pose ξ
from a predefined distribution. On one side, we aim to synthesize fully stylized
faces with the split index i = 0 in SBM. On the other side, to ensure that
generated stylized faces retain the original face identity during cross-domain
adaption process, the generator should generate fully natural faces with i = 11
in SBM. Additionally, a style consistency loss is leveraged to guarantee that the
stylized faces share the same style as the reference images. During training, we
maintain an embedding queue Q that stores style codes from i−1-th batch. When
we process i-th batch, we first sample a code z−

s from Q as a negative sample,
we then instruct the generator to synthesize stylized face X−

s = Gi=0(zf , z
−
s ).

We feed (X−
s , z−

s ) into Dc as a pair of negative sample. The objective functions
for Ds, Dr, Dc can be formulated as follows:

Ls = Ezf ,Xs,ξ [f(Ds(Gi=0(zf , zs, ξ)))] + EXs

[
f(−Ds(Xs)) + λ∥∇Ds(Xs)∥2

]
Lr = Ezf ,ξ [f(Dr(Gi=11(zf , ξ)))] + EXr

[
f(−Dr(Xr)) + λ∥∇Dr(Xr)∥2

]
Lc = Ezf ,Xs

[
f(Dc(X

−
s , z−

s )
]
+ EXs [f(−Dc(Xs, Es(Xs)))]

(7)
where f(x) = − log(1 + e−x). We adopt the non-saturating GAN objective [21]
and R1 gradient penalty to avoid mode collapse as well as stabilize the entire
training process.

Finally, we need to ensure that all the generated faces are constrained within
the same canonical space. To this end, the discriminator should predict the cam-
era pose ξ̂ = (pitch, yaw) of the generated face and compute a pose consistency
loss between ξ̂ and the previously sampled pose ξ. We apply pose consistency
loss for both natural faces (denoted as real) and stylized faces (denoted as style):

Lreal−pose = Eξ

∥∥∥ξ̂real − ξreal

∥∥∥2
Lstyle−pose = Eξ

∥∥∥ξ̂style − ξstyle

∥∥∥2 (8)

Given λ1, λ2, λ3, which are weights to balance these objective functions, the
entire training loss of ArtNeRF is:

LD = λ1(Lreal + Lreal−pose) + λ2(Lstyle + Lstyle−pose) + λ3Lstyle−latent

LG = −LD
no−R1

(9)

where LD
no−R1 represents LD without R1 penalty term.



10 Zichen Tang and Hongyu Yang(B)

4 Experiments

Fig. 5. Qualitative comparison of style-guided face synthesis between AdaIN [10], MU-
NIT [11], FUNIT [16], DRIT++ [14], StarGANv2 [5], BlendGAN [17] and ours. Note
that our model can not only generate reasonable stylized faces, but also produces 3D-
aware results with high multi-view consistency.

Datasets. We utilize CelebA [18], containing approximately 200k faces, as
our source domain dataset. For the style domain, we employ AAHQ [17], an
artistic dataset comprising around 24k high-quality stylized faces. All the images
from the two datasets have been cropped and aligned properly, with a resolution
of 128× 128.

Implementation details. We use a two-stage strategy to train our model:
base model pre-training and fine-tuning within the style domain. We train 200k
steps for stage1 merely with Dr using CelebA and 30k steps for stage2 with
triple-branch discriminator module using both the two datasets. After stage1,
our model can sufficiently learn prior knowledge about the distribution of natural
faces. In stage 2, with the assistance of SBM module and triple-branch discrim-
inator module, the base model will be decently guided to generate stylized faces
in a cross-domain adaption manner. Our method is implemented using PyTorch
and trained on single NVIDIA RTX 2080Ti GPU for about 3 days.

4.1 Comparisons

Qualitative results. Fig. 1 displays synthesized multi-view natural faces and
their corresponding stylized faces at different levels (i = 0 and i = 3) within the
SBM module. At i = 0, the results exhibit the highest degree of stylization but
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lose some identity features. At i = 3, a balance between stylization and identity
preservation is achieved. Fig. 5 provides a qualitative comparison with baselines
(using i = 3). DRIT++ fails to learn the style consistency between generated
faces and reference images, while AdaIN struggles with identity preservation. Al-
though MUNIT and StarGANv2 produce reasonable results, they tend to overly
inherit face poses from reference images. BlendGAN performs well in identity
preservation and style consistency but lacks 3D-awareness. Our method excels
in synthesizing 3D-aware images with robust multi-view consistency, achieving
strong identity preservation and style consistency simultaneously.

Table 1. A thorough comparison of the functionality among several prevailing face
cartoonization or stylization methods.

Method Year Reference-guided Arbitrary style 3D-aware
CartoonGAN [4] CVPR18 × × ×
AniGAN [15] TMM21 ✓ × ×
AdaIN [10] ICCV17 ✓ ✓ ×
MUNIT [11] ECCV18 ✓ ✓ ×
FUNIT [16] ICCV19 ✓ ✓ ×
DRIT++ [14] IJCV20 ✓ ✓ ×
StarGANv2 [5] CVPR20 ✓ ✓ ×
BlendGAN [17] NIPS21 ✓ ✓ ×
JoJoGAN [6] ECCV22 ✓ × ×
DualStyleGAN [23] CVPR22 ✓ × ×
3DAvatarGAN [1] CVPR23 ✓ × ✓
DeformToon3D [24] ICCV23 ✓ × ✓
ArtNeRF(Ours) 2024 ✓ ✓ ✓

Quantitative results. Table 1 demonstrates our method’s capability to gen-
erate reference-guided 3D-aware faces with arbitrary styles, a task not addressed
by existing methods. We provide quantitative comparisons against reference-
guided image synthesis baselines using FID, KID, and IS metrics on 20k gen-
erated stylized images and 20k style reference images. Besides, we assess image
diversity using LPIPS. Given a specified identity code, we select 10 reference
styles randomly and generate 10 stylized faces, we then evaluate the LPIPS
scores between every 2 results. This process is repeated for 1000 identity codes
and the average of all scores constitute the final LPIPS score.BlendGAN dif-
fers from ArtNeRF in training settings and their training code is unavailable, so
we reproduce the latent-guided (an identity code and a style code is sampled)
results of BlendGAN and downsample them to 128× 128 for comparison.

Tab 2 highlights our method’s significant improvements over AdaIN, MU-
NIT, DRIT++, and StarGANv2 across quantitative metrics. Notably, we use
multi-view stylized faces for evaluation while other methods use fix-pose faces.
It manifests the 3D-aware faces generated by our method possess higher visual
quality and diversity than the baseline methods. BlendGAN is the SOTA in 2D
reference-guided image synthesis with arbitrary style and our method exhibits
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Table 2. Quantitative evaluation of style-guided face synthesis. We compare with
methods that support face stylization with arbitrary reference styles.

Method FID↓ KID↓ IS↑ LPIPS↑
AdaIN 86.87 0.084 2.14 0.237
MUNIT 56.99 0.046 1.98 0.241
DRIT++ 89.79 0.069 2.02 0.231
StarGANv2 34.24 0.022 2.50 0.389
BlendGAN 39.45 0.037 2.98 0.239
Ours(i=3) 13.80 0.0066 2.89 0.377
Ours(i=0) 12.09 0.0052 2.96 0.403

slightly inferior IS compared to BlendGAN, suggesting that there is still room for
our method to narrow the visual quality gap between 2D and 3D-aware methods.

4.2 Ablation Study

In this section, we conduct extensive ablation studies to assess the impact of
various modules on the model’s generative capability and demonstrate their
effectiveness. Experiments involving the base model (stage 1) are conducted
using the CelebA dataset, whereas experiments focusing on the final stylization
model (stage 2) are carried out using the AAHQ dataset.

Table 3. We improve the generation capability of the base model in a progressive way.
PG, DSC and NR denote progressive growing training strategy, dense skip connections
and neural rendering, respectively.

FID↓ (10k) FID↓ (20k) FID↓ (40k) FID↓ (100k)
base model 58.76 40.83 24.47 36.49
-PG 63.9 49.05 34.95 27.46
-PG, +DSC 61.59 40.39 24.61 17.28
-PG, +DSC, +NR (ours) 53.97 33.97 22.29 14.42

Generator network. In Sec 3.3, we enhance the pi-GAN baseline by omit-
ting the progressive growing strategy, integrating dense skip connections into the
backbone, and introducing a neural rendering module. These modifications lead
to a significant enhancement in synthesized image quality. We assess their ef-
fectiveness by progressively incorporating them into the baseline model in stage
1 and comparing results in Tab 3. Omitting the progressive growing strategy
initially yields a slightly higher FID at the start of training but significantly
lowers it towards the end. Adding dense skip connections further reduces the
final FID. Finally, if the neural rendering module is applied, the visual quality
of our results will be further refined during the entire training process.
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Table 4. The rendering speed (fps) with (w/) and without (w/o) neural rendering
module under different (res, ns) pairs. OOM denotes CUDA out of memory error.

ns=8 ns=16 ns=32 ns=48
w/o nr w/ nr w/o nr w/ nr w/o nr w/ nr w/o nr w/ nr

res=64 33.45 49.69 41.20 56.44 26.33 48.80 18.26 48.76
res=128 25.57 53.60 14.11 52.40 7.29 42.69 OOM 38.54
res=256 7.22 43.40 3.25 32.93 OOM 21.93 OOM 15.58

Neural rendering. The neural rendering module enhances the low-resolution
texture representation from the backbone, producing the final high-resolution
face image and substantially accelerating the inference process. We analyze how
neural rendering impacts inference speed across different resolutions (res) and
samples per ray (ns). We conduct experiments with our stylization model. As de-
tailed in Tab 4, our findings demonstrate a significant enhancement in inference
speed across nearly all (res,ns) pairs. Notably, when res = 256,ns = 16, neural
rendering improves inference speed by 10× compared to the original structure.
This capability allows the model to efficiently handle diverse (res,ns) settings,
facilitating high-quality real-time rendering essential for VR/AR applications.

5 Conclusion

In this paper, we propose a novel 3D-aware image stylization method ArtNeRF,
enabling the generation of faces with arbitrary styles. We achieve this goal by
enhancing a NeRF-GAN baseline with dense skip connections and a neural ren-
dering module, proposing an SBM module to integrate style control vectors into
the generator and leveraging a triple-branch discriminator to improve style and
multi-view consistency. Extensive experiments illustrate the effectiveness of Art-
NeRF. However, our model still has limitations. Although reasonable faces can be
generated with most camera viewpoints, our model cannot tackle with extreme
views or synthesize 360° images of human heads due to dataset constraints. Fu-
ture work will incorporate advanced 3D representations like 3D Gaussian Splat-
ting [13] to further enhance image quality and rendering speed.
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