
FEDTRANS: EFFICIENT FEDERATED LEARNING VIA MULTI-MODEL
TRANSFORMATION

Yuxuan Zhu 1 Jiachen Liu 2 Mosharaf Chowdhury 2 Fan Lai 1

ABSTRACT
Federated learning (FL) aims to train machine learning (ML) models across potentially millions of edge client
devices. Yet, training and customizing models for FL clients is notoriously challenging due to the heterogeneity
of client data, device capabilities, and the massive scale of clients, making individualized model exploration
prohibitively expensive. State-of-the-art FL solutions personalize a globally trained model or concurrently train
multiple models, but they often incur suboptimal model accuracy and huge training costs.

In this paper, we introduce FedTrans, a multi-model FL training framework that automatically produces and
trains high-accuracy, hardware-compatible models for individual clients at scale. FedTrans begins with a basic
global model, identifies accuracy bottlenecks in model architectures during training, and then employs model
transformation to derive new models for heterogeneous clients on the fly. It judiciously assigns models to
individual clients while performing soft aggregation on multi-model updates to minimize total training costs. Our
evaluations using realistic settings show that FedTrans improves individual client model accuracy by 14% - 72%
while slashing training costs by 1.6× - 20× over state-of-the-art solutions.

1 INTRODUCTION

Federated learning (FL) is an emerging machine learning
(ML) paradigm that trains ML models across potentially
millions of clients (e.g., smartphones) over hundreds of
training rounds (Bonawitz et al., 2019; Huba et al., 2022).
In each round, a (logically) centralized coordinator selects
a subset of clients and sends the global model to these
participating clients (participants). Each participant trains
the model on its local data and uploads the model update
to the coordinator. Before advancing to the next round, the
coordinator aggregates individual client updates to update
the global model. As such, federated learning circumvents
systemic privacy risks of cloud-centric ML and high costs
of data migration to the cloud (McMahan et al., 2017; Lai
et al., 2020).

Despite sharing similar goals with traditional cloud ML
(e.g., better model accuracy and less resource consumption),
FL models are often trained and later deployed on clients
with vast device and data heterogeneity (Wang et al., 2023;
Lai et al., 2021; Singapuram et al., 2023). This leads to new
systems and ML challenges to tailor models for individual

1Computer Science, University of Illinois at Urbana-
Champaign, Illinois, USA 2Computer Science and Engineering,
University of Michigan, Michigan, USA. Correspondence to: Yux-
uan Zhu <yxx404@illinois.edu>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

clients. First, the heterogeneous capabilities of client de-
vices, such as communication and computation, necessitate
FL models with different complexities aligned to clients’
hardware for better user experience (e.g., model training and
inference latency). Additionally, independently generated
data among clients results in heterogeneous data volumes
and distributions, making it challenging to train models that
fit individual client data at scale.

State-of-the-art FL solutions optimize for better model con-
vergence (Li et al., 2020), accuracy fairness (Li et al., 2019),
and faster round execution (Nguyen et al., 2022), while of-
ten focusing on the performance of a single (global) model.
This may not suit individual client’s device capability and
data (§2). Although recent work attempted to mitigate data
heterogeneity by tuning model weights within client de-
vices (Collins et al., 2021; Ozkara et al., 2021), they over-
look client system heterogeneity, leading to impractically
large models for resource-constrained clients and vice versa.
Recent multi-model approaches train models with differ-
ent weights (Liu et al., 2023) or architectures for various
clients (Diao et al., 2020; Hong et al., 2022; Dudziak et al.,
2022), but they incur high training costs and/or struggle to
identify the right model for each client.

In this paper, we propose FedTrans, a multi-model FL train-
ing framework, to automatically and efficiently train cus-
tomized models for individual clients at scale (§3). FedTrans
begins with a small model and progressively expands mod-
els in flight to produce well-trained models with different

ar
X

iv
:2

40
4.

13
51

5v
2

 [
cs

.L
G

]
 2

5
A

pr
 2

02
4

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

complexities, delivering high-accuracy models for diverse
hardware-capable clients at a low cost.

FedTrans addresses the following fundamental requirements
toward practical FL deployment (§4). First, we must cost-
efficiently maximize model accuracy for individual clients
subject to their hardware capabilities. Unlike existing meth-
ods that rely on pre-determined model architectures (Diao
et al., 2020; Hong et al., 2022) or prohibitively expensive
model exploration (He et al., 2020), FedTrans identifies
accuracy bottlenecks of the training model – model architec-
ture blocks (e.g., convolutional layers) that are incapable of
fitting on clients’ data – using training feedback (e.g., layer
gradients). It then adaptively transforms the model archi-
tecture, such as by widening or deepening the bottleneck
layers, to maximize accuracy improvement for clients with
more resources. Our transformation customizes for different
client groups and effectively warms up new model weights,
reducing training costs. Second, we must minimize the cost
of training multiple models. To this end, FedTrans identi-
fies suitable timing for generating new models to maximize
the effectiveness of warmup, and performs aggregation of
model weights across models to accelerate training conver-
gence, by exploiting model architectural similarity.

We have integrated FedTrans with FedScale1 (Lai et al.,
2022) and evaluated it across various FL tasks with real-
world workloads (§5). Compared to state-of-the-art FL
solutions (Diao et al., 2020; Hong et al., 2022; Wang et al.,
2024), FedTrans improves model accuracy by 14% - 72%
and achieves 1.6× - 20× lower training costs, while reduc-
ing manual efforts by automatically spawning models for
FL clients at scale.

Overall, we make the following contributions in this paper:

• We propose a systematic multi-model framework to train
performant models for individual clients at scale.

• We introduce a novel utility-based model transformation
mechanism to generate, train, and assign FL models.

• We evaluate FedTrans in various real-world settings to
show its resource savings and accuracy gains.

2 MOTIVATION

We start with an introduction to the challenges in FL (§2.1),
followed by the limitations of existing solutions (§2.2).

2.1 Challenges of Federated Learning

Unlike traditional cloud ML, FL trains and later deploys
models on clients with vast heterogeneities in device capabil-
ities and data. This leads to a pressing need for minimizing
costs and maximizing model accuracy for individual clients.

1https://github.com/SymbioticLab/FedScale

0 500 1000 1500
Inference Latency (ms)

0
0.

00
1

0.
00

2
0.

00
3

Fr
eq

ue
nc

y

MobileNet-V2
MobileNet-V3
EfficientNet-B4

(a) The heterogeneous device
capabilities require models with
different complexities.

0 1 2 3 4 5 6 7 8 9
Model complexity level

0

10

20

30

Cl
ie

nt
s a

ch
ie

vi
ng

 th
e

be
st

 a
cc

ur
ac

y
(%

)

(b) No single model achieves
the best accuracy for the major-
ity of clients.

Figure 1. Client system heterogeneity and accuracy variance call
for different models for individual clients.

System heterogeneity requires models with different
complexities. FL client devices often have diverse hard-
ware capabilities, requiring models of different levels of
complexity for practical training and deployment. We ana-
lyze the inference latency of three on-device models across
over 700 smartphones using the AI Benchmark (Ignatov
et al., 2019). Figure 1a shows that end-user devices im-
pose clear model complexity requirements to meet latency
constraints. For example, users with resource-constrained
devices can hardly endure seconds of inference latency from
models like MobileNet-V3 in real deployment (Lv et al.,
2022). Hence, different client groups want models of dif-
fering complexities. Furthermore, clients with the same
latency requirements can have multiple architecture choices,
as indicated by the distribution overlap (e.g., MobileNet-V3
and EfficientNet-B4). Consequently, FL developers must
carefully design model architectures for individual clients
to maximize accuracy, implying significant human effort.

Client accuracy variance implies no one-size-fits-all
model. The need for training multiple models is further
amplified by the client accuracy variance in single-model FL.
To exemplify this challenge, we experiment with seven mod-
els of varying complexities selected from the NASBench201
benchmark (Dong & Yang, 2019). Here, model complexity
is quantified by the number of multiply-accumulate (MACs)
operations, with each increase doubling this count. We
train them on the Federated-EMNIST (FEMNIST) dataset
across 3400 clients. Figure 1b reports the percentage of
clients that achieve the best accuracy on each model. We
observe that no single model achieves the best accuracy for
the majority of clients. The model that achieves the highest
accuracy varies for different clients, highlighting the need
for tailoring models to each client’s specific requirements.

2.2 Limitations of Existing Solutions

Prior FL work (Li et al., 2020; 2019; Nguyen et al., 2022)
has primarily focused on improving the performance of
a single global model, with recent strides towards multi-

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

Better

Figure 2. Existing solutions are suboptimal for FL clients.

model federated learning (Dudziak et al., 2022). However,
existing solutions exhibit shortcomings in FL training costs
and model accuracy.

Huge training costs and laboring effort. Recent FL ad-
vances design and train heterogeneous model architectures
for different clients. However, they often require man-
ually determining the model set used for training in ad-
vance (Hong et al., 2022; Alam et al., 2022; Yao et al.,
2021), a labor-intensive but ineffective process without ex-
tensive exploration. Moreover, training multiple models
concurrently and/or conducting continuous model testing
for informed client-model assignment can raise huge costs.
Figure 2 shows that even state-of-the-art multi-model so-
lutions (Hong et al., 2022; Diao et al., 2020) and dropout-
based solutions (Wang et al., 2024) result in a cost increase
of orders of magnitude compared to training a single global
model. We use multiply-accumulate operations (MACs) to
measure costs (Bannink et al., 2021).

Inferior model accuracy. Training a single global model
may reduce costs, but it struggles to accommodate individ-
ual client data (Figure 2). Conversely, existing multi-model
FL solutions, particularly those using pre-determined mod-
els, struggle to pinpoint accuracy bottlenecks in model ar-
chitectures and/or decide appropriate model assignments to
clients at scale. When we consider the cloud ML perfor-
mance as a hypothetical performance upper bound, where
the data is centralized and shuffled to be homogeneous, Fig-
ure 2 shows that existing solutions are far from achieving
this upper bound.

3 FEDTRANS OVERVIEW

We present FedTrans, a multi-model FL training framework,
to efficiently produce and train high-accuracy, hardware-
compatible models for individual clients at scale. We next
provide an overview of how FedTrans fits in the FL lifecycle.

System Components At its core, FedTrans relies on a
model abstraction, Cell, to transform the initial global model
into multiple models during FL training. The Cell is the
minimum component of the model architecture (e.g., a con-

volution layer or a ResNet block), on which FedTrans per-
forms model transformation (e.g., widen or deepen a Cell).
FedTrans enables online model transformation via three
system components:

• Model Transformer: It captures accuracy bottlenecks in
the model architecture, whereby it performs information-
preserving transformations on the model architecture to
generate new models and warm up model weights.

• Client Manager: It explores the utility of each model to
individual clients over different training rounds, consid-
ering potential accuracy gains and system constraints.
Then, it assigns the right model to each client.

• Model Aggregator: It manages the training of multiple
models and performs soft aggregation on model weights
across models to accelerate their convergence.

FedTrans Lifecycle Figure 3 illustrates the lifecycle of
FedTrans. FL developers initialize FL training with a small
model. In each training round, 1 Model Transformer lever-
ages training feedback from previous rounds (e.g., gradient
and loss) to potentially transform (e.g., widen or deepen) a
specific Cell of the model. If transformation occurs, Model
Transformer will generate a new model with the current
largest model weights to reduce training costs. 2 For each
participant, Client Manager assigns an appropriate model
among all currently available models, in terms of their utility
(e.g., training loss) and system constraints. Then partici-
pants download their models and start local training. 3
When receiving client updates, Model Aggregator aggre-
gates model weights in a weight-sharing manner to acceler-
ate convergence.

FedTrans iterates these phases in each round until exhaust-
ing the training budget, or the model architecture complexity
reaches the maximum supported by any participant and all
models converge. Note that conventional single model train-
ing is a special case of this lifecycle, where FedTrans does
not create any new model.

4 FEDTRANS DESIGN

In this section, we introduce how Model Transformer gener-
ates a suite of performant models at low training costs (§4.1),
how Client Manager assigns individual clients with the right
model (§4.2), and how Model Aggregator accelerates the
co-training of model suites (§4.3).

4.1 Model Transformer

Generating the right model for FL clients is challenging
due to the interplay among model accuracy, client system
constraints, and training costs. Intuitively, using a large
model often implies better accuracy, but it incurs high train-
ing costs, and clients may not be able to run such large

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

Mo M1 M2

Training

Training

Training

Training

Server

Clients

Client Manager ($4.2)

Round i

Round i+1

Models:

Mo M1 M2

Models:

Model Aggregator ($4.3)

Utility-Based
Model Assignment

Soft Aggregation

 Mo M1Models:

1. Analyze

M0 M1

Model Transformer ($4.1)

Keep

Widen

Deepen

M0 M1

M0 M1 M2

M0 M1 M2

Training feedback:

 M1

Bottleneck

2. Transform

Figure 3. FedTrans architecture and its lifecycle in FL deployment.

models (Wang et al., 2023). It is tempting to model it as a
Neural Architecture Search (NAS) problem in traditional
cloud ML, such as by training a super-network (Liu et al.,
2019). However, doing so in FL is suboptimal and even im-
practical due to the expensive planet-scale FL training (e.g.,
training a super-network) and massive data heterogeneity.

To strike a balance between low costs and high model accu-
racy, Model Transformer generates new models with differ-
ent system requirements by transforming, thus improving
model architectures during FL training. The key insight
is that (1) models achieving state-of-the-art performance
are often built with well-established blocks (e.g., ResNet
or Transformer blocks), so we can reduce the exploration
space of model architectures by transforming at the block
(Cell) level; and (2) model transformation, which changes
the width and depth of bottleneck Cells to generate a new
model with inherited model weights (Lai et al., 2023), can
reduce training costs by warming up new models’ training.

However, we need to tackle the following challenges:

• When to perform a model transformation?
• At which Cell of the model architecture to transform?
• How to transform (e.g., widen/deepen) the selected Cell?

Identifying the right time to transform When to trans-
form introduces a trade-off between the maturity of the
current model and the waiting time spent on training new
models. Transforming the current model too early yields
limited warmup benefits due to the current model’s low ac-
curacy, resulting in longer training of the new model. On
the other hand, transforming too late, such as when model
training converges, results in longer waiting times to start
the new model and only marginal warm-up benefits due to
the sublinear convergence speed of ML training.

To find the sweet spot, we refer to the popular elbow method
that picks the elbow of the curve to maximize benefits (Shi
et al., 2021). Here, we define the degree of convergence
(DoC) to measure the slope of the moving training loss.
Equation 1 defines the DoC at round i by averaging γ con-
secutive loss (L) slopes, where each loss slope is calculated
with a step of δ:

DoC =
1

γ

γ∑
i=1

L(i− δ)− L(i)

δ
(1)

FedTrans initiates the transformation when DoC is less than
a certain threshold, i.e., reaching the elbow of the curve.
Intuitively, a larger threshold will make FedTrans transform
models more frequently, while a larger step size tolerates
more oscillations of the training loss. Theoretically, our
DoC design draws from the positive link between loss sharp-
ness and model generalizability (Li et al., 2018; Dziugaite
& Roy, 2017). A smooth loss curve indicates robust gener-
alizability and guides optimal model transformation timing.
We also empirically evaluate the effectiveness of our DoC
design (§5.4).

Picking the right model Cell to transform Once starting
the transformation, we need to decide to transform which
model Cell can unblock model accuracy with the limited
information in practical deployment, where only the training
loss and gradients are available most of the time. In comple-
ment to existing privacy-preserving mechanisms, FedTrans
solely utilizes aggregate gradients, not the gradients of indi-
vidual clients.

Model Transformer selects the Cells with larger gradient
norms to transform. Intuitively, a large gradient implies that
Cell is under great dynamics and harder to fit, especially
given that transformation will not be activated unless the
model starts to converge, so we should transform this Cell to

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

Cell 1

Cell 2

w

Cell 3

Cell 1

Cell 3

w/2 w/2

Cell 1

Cell 3

Cell 2

Cell 4
init. to identity

Widen Deepen

Figure 4. Model transformation on a convolution Cell.

unblock model convergence (performance). In theory, our
design is motivated by transfer learning, where layers that
are actively being updated during training contribute more
to the bottleneck of model convergence (Long et al., 2015;
Wang et al., 2022), indicating the incapability of capturing
the data characteristics of certain FL clients.

FedTrans relies on the distribution of Cell activeness – mea-
sured by the gradient norm ∥∇wl∥

∥wl∥ in round update – to
decide which Cells to transform. We normalize the gradient
norm by the weight norm to mitigate the bias in selecting
cells due to gradient vanishing. Since a model can have mul-
tiple Cells blocking the performance, we transform the Cells
whose activeness exceeds α times of the largest activeness
among all Cells. By default, α is set to 0.9. We empirically
evaluate the effectiveness of α in our ablation study (§5.4).

Widening or Deepening After selecting which Cells to
transform, we may widen or deepen them. Taking Figure
4 as an example, we can widen a Cell by increasing the
number of neurons or deepen it by inserting an identity Cell,
which directly passes the input of its predecessor to the
successor. However, doing so is non-trivial. First, we need
to decide which operation to perform and enable it with
little overhead and loss of its parent model’s weights. Also,
we should carefully control the degree of transformation to
avoid growing too fast and missing the right complexity for
clients.

Inspired by the concept of compound scaling in model archi-
tecture design (Tan & Le, 2019), which emphasizes the im-
portance of balanced width and depth for efficiency, Model
Transformer alternates between widening and deepening the
Cell. Figure 5 shows the overall procedure to perform archi-
tecture transformation, wherein each operation will widen
the selected Cell by a factor or insert (deepen) a certain
number of Cell (s). By default, FedTrans widens a Cell by
two or inserts one Cell at a time. After these transforma-
tions, FedTrans generates a new training model with the
potential for better accuracy upon convergence. We empiri-
cally show that our compound scaling design achieves better
performance than its counterparts (§5.4).

Yes

Noactl* > α · max(act)

NO

YES
l is widened in

 last transformation

Keep l

Deepen l

Widen l

Cell l

Cell l

Cell l+ld

Cell lw

Figure 5. Control flow of the transformation for a Cell l.

After widening or deepening the Cell, Model Transformer
performs function-preserving weight transformation to in-
herit model weights. When deepening a Cell, we initialize
the newly inserted cell’s weights as an identity tensor. When
widening a Cell, we randomly select columns from the pre-
expanded Cell’s weights to fill the widened Cell and divide
each column by the times it is selected. This transformation,
theoretically (Chen et al., 2015; Cai et al., 2019; Lai et al.,
2023), maintains the parent model’s information, ensuring
the same tensor output for many common tensor operators
such as fully connected and convolutional layers. As a re-
sult, it allows for the transfer of model weights to warm up
new models.

4.2 Client Manager

We have discussed how to generate models in the cloud,
to account for clients with heterogeneous data and system
preferences. The following major challenge is to distribute
and train these models for individual clients at the edge. Al-
gorithm 1 outlines how FedTrans enables this model trans-
formation across numerous clients through the coordination
of Client Manager (Line 5) and Model Aggregator (Line
12). Next, we introduce how the Client Manager selects the
right model among all generated models for each client.

Utility-Based Model Assignment The design of the
model assignment should follow two criteria. First, each
client should be assigned a model whose complexity does
not exceed the client’s hardware capability to respect their
system constraints. Here, we consider the models whose
number of multiply-accumulate operations (MACs) is fewer
than the participant’s hardware capability, called compatible
models. Note that our solution can easily support other defi-
nitions of “compatible models.” Second, among compatible
models, we should assign the model that is most suitable
to that client’s data characteristics. Moreover, the design
should only leverage the information available in today’s
FL deployment to respect privacy. For example, we cannot
access the client data.

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

Algorithm 1: Pseudo-code of FedTrans runtime.
Parameter :Cell selection threshold α, DoC

threshold β
Input : initial model with k0 cells

M0 = [l01, . . . , l
0
k0
], initial model

weights W0 = [w0
1, . . . , w

0
k0
],

registered client list C, client capacity
list T , number of clients per round N

Output :a list of models trainedM
1 M← [M0],W ← [W0] // init. models & weights
2 U0 ← [0, . . . , 0],U ← [U0] // init. utilities
3 for each FL training round i = 0, 1, 2, . . . do
4 C̃ ← Select(C, N)

5 // Assigning models to clients (§4.2)
6 for each selected client c ∈ C̃ parallelly do
7 K ← ∥{M ∈M|MAC(M) ≤ Tc}∥
8 n← Sample(Uc, [0, . . . ,K − 1])
9 // Clients return weights, gradients, and loss

10 Wn,c, Gn,c, Ln,c ← ClientTrain(W[n], c)

11 U ← UpdateUtility(U , L) // Eq. (4)

12 // Inter-model weights aggregation (§4.3)
13 W ← UpdateWeight(W)

14 // Model transformation and warmup (§4.1)
15 DoC← UpdateDoC(L) // Eq. (1)
16 if DoC ≤ β then
17 M∗ ← copy the parent model’s weights
18 U∗ ← copy the parent model’s utility
19 for each Cell l∗ ∈M∗ do
20 actl∗ ← UpdateAct(G,W)
21 TransformCell(l∗, actl∗ , α)

22 add new model M∗ toM

Here, we leverage the training loss of models to approximate
their data-aware affinity to individual clients. Intuitively, a
small training loss means potentially better accuracy of that
model on client data. However, to avoid prematurely overfit-
ting to a specific model, we maintain a loss-based utility list
for each registered participant c with K compatible models:
U c = [U c

0 , . . . , U
c
K−1]. When the client participates in FL

training, the coordinator probabilistically samples a model
following the distribution of model loss, as specified in Eq.
2. Here, we take the exponential format of training loss for
its smoothness and normalize the probability by the sum of
all models’ training loss on that client (Eq. 3):

n = Sample(pc, [0, . . . ,K − 1]) (2)

pck =
exp [U c

k]∑K−1
k=0 exp [U c

k]
, k = 0, . . . ,K − 1 (3)

The utilities of each client on each model are updated using
the model performance (e.g. training loss). This soft model
assignment scheme encourages a client to explore other
models when its training performance is bad (i.e., high
training loss), while encouraging a client to stick to the
current model when its training performance is good.

Joint Utility Learning However, new models can be gen-
erated over time, and not all models are trained on that
client all the time. Updating the utility U c

k of each model
can be sporadic, and the previous utility can become stale.
To accelerate the exploration of better model assignment,
the Client Manager jointly updates the utility of compatible
models based on their architectural similarity. This is be-
cause similar models tend to exhibit similar model accuracy.
As such, after the completion of that client, the Client Man-
ager updates the utility lists of all the compatible models as
follows:

U c
k = U c

k − Lc
k · sim(Mk,M

∗) (4)

where Mk is the k-th compatible model, M∗ is the model
assigned to client c in the last round, Lc

k is the standardized
training loss of client c in the last round, and sim(·, ·) ∈
[0, 1] calculates the similarity between two models. We take
the subtractive format as a high training loss means a lower
utility. As such, the model with similar architectures would
borrow more utility information from the current model.

Here, we measure the similarity of two model architec-
tures in terms of the Cell-wise number of parameters that
we can transform, which aligns with our design of model
transformation. For each Cell l, we measure its similar-
ity score, mc(l), between the new model and the model
it transformed from (i.e., parent model). Specifically, (a)
if l is inherited from M without change, mc = 1 (i.e.a
full matching degree); (b) if l is widened from the Cell l′

of M , mc = #param(l′)/#param(l) (i.e., the portion of
inherited model weights); (c) if l is inserted to M in the
deepen operation, then mc = 0 as it does not inherit any
model weights; Otherwise, (d) mc = −1 because it loses
the weights of its parent model. Finally, we get the model
similarity, sim(Mk,M

∗), by cumulating the similarity of
all Cells.

4.3 Model Aggregator

After assigning models to clients, we concurrently train
(co-train) multiple models. Minimizing their total training
costs becomes the crux. Moreover, compared to conven-
tional single-model training, each model trains on fewer
clients due to the unbalanced model assignment and system
compatibility, which can slow down training convergence.

Historically, sharing weights among similar model architec-
tures has accelerated model convergence (Diao et al., 2020;
Mei et al., 2022; Pham et al., 2018). While this implies

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

Breakdown Dataset Avg. Accu. (%)

FedTrans FEMNIST 75.5
FedTrans (l2s) FEMNIST 60.9
FedTrans Cifar10 77.5
FedTrans (l2s) Cifar10 54.1

Table 1. Model accuracy with or without weights sharing from
large models to small models

an opportunity to leverage the similarity of models, aggre-
gating multi-model weights is non-trivial. This is because
not all models contribute equally to individual model ag-
gregation. First, FedTrans generates large models when the
small model is converging, meaning that the small model
is under fine-tuning while the large model is still under-
trained. Using large models to update small models can
lead to big noise in the convergence of small models, imped-
ing their convergence. As shown in Table 1, we compare
the accuracy performance of FedTrans on FEMNIST and
Cifar10 datasets, with and without enabling weights shar-
ing from large models to small models (l2s). Disabling l2s
significantly improves final model accuracy.

Second, when leveraging the weights of different models
to update a model, we must consider their architectural
similarity and real-time convergence.

By taking these two insights into account, we develop a soft
model aggregation mechanism that performs a weighted
average over models’ weights while considering model ar-
chitectural similarity:

wj =

∑j
i=1 η

1(i ̸=j)×tsim(Mi,Mj) · wi∑j
i=1 sim(Mi,Mj)

(5)

η1(k ̸=j)×t is the decaying factor in round t, while wj and
wi denote the weights of model Mj and Mi, respectively.
We crop wi if necessary to fit the shape of wj as in Het-
eroFL (Diao et al., 2020).

When updating model weights using Eq. (5) in each round, it
combines updates from both that model’s clients and similar
models based on their architectural similarity. Moreover, as
the model converges over rounds, η progressively reduces
the impact of other models to mitigate noise toward its
training convergence. We empirically show the effectiveness
of our soft aggregation design using realistic datasets (§5.3).

5 EVALUATION

We evaluate FedTrans on four CV and NLP datasets across
four models. We summarize the results as follows:

• FedTrans improves average model accuracy by 13.78%

- 72.15% against existing multi-model FL frameworks,
while reducing training costs by 1.6× - 20.0× (§5.2).

• FedTrans reduces manual efforts by automatically find-
ing better models for clients, wherein each component
is effective for the overall performance (§5.3).

• FedTrans improves performance over a wide range of
settings and outperforms its design counterparts (§5.4).

5.1 Methodology

Experimental Setup We conducted experiments using
FedScale (Lai et al., 2022), a widely used FL benchmarking
platform, on a cluster of 15 NVIDIA V100 GPUs. The plat-
form produces realistic FL client system speed and client
data. For each training round, we select 100 clients, each
using a batch size of 10 and performing 20 local steps. More
details are available in Appendix A.1. The initial model’s
complexity corresponds to the client with the lowest compu-
tation and communication capacities, while the maximum
model’s complexity aligns with the client possessing the
highest resource capacities. We sample client hardware ca-
pacities from FedScale, which includes the traces of 500k
real-world mobile devices. The disparity between the most
capable and least capable devices exceeds 29×.

Datasets and Models We first experiment with CIFAR-10
image classification tasks and follow existing works (Diao
et al., 2020) to partition them into non-IID datasets with
100 clients. Then, we run three real-world FL datasets of
different scales and use their realistic partitions, which are
widely used in FL benchmarking (Liu et al., 2023; Lai et al.,
2022; Li et al., 2020):

• Speech Command: a small-scale Google speech dataset
of 2,618 clients (Warden, 2018). We use ResNet18 as
the initial model to recognize 35-category commands.

• F-EMNIST: a middle-scale image classification dataset
of 3,400 clients (Cohen et al., 2017). We choose the
smallest model in NAS- Bench201 as the initial model.

• OpenImage: a large-scale image classification dataset of
14,477 clients (ope), with 1.5 million images spanning
600 categories. We start with ResNet18.

More detailed setups are available in Appendix §A.1.

Parameters We set default values for key FedTrans pa-
rameters: layer activeness threshold, α, is set to 0.9; the
number of consecutive slopes to compute DoC, γ, is 10; and
the DoC threshold for β transformation is 0.003. We show
the robustness of FedTrans benefits across these parameters
in our ablation study (§5.4). Other FL hyperparameters are
available in Appendix A.1.

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

Method Accu. (%) IQR (%) Cost (PMACs) Storage (MB) Network (MB)
C

IF
A

R
-1

0 FedTrans 78.29 5.25 0.86 6.8 1368.4
FLuID 59.81 ↑ 18.48 3.00 1.50 ↓ 1.7× 71.7 1433.4

HeteroFL 64.51 ↑ 13.78 7.00 4.31 ↓ 5.0× 45.7 1828.4
SplitMix 51.36 ↑ 26.93 6.23 4.49 ↓ 5.2× 35.4 7089.3

F
E

M
N

IS
T FedTrans 76.42 13.23 0.10 0.04 8.9

FLuID 62.52 ↑ 13.90 13.63 0.38 ↓ 3.8× 0.3 64.6
HeteroFL 61.54 ↑ 14.88 13.50 0.78 ↓ 7.8× 1.0 209.0
SplitMix 27.13 ↑ 49.29 10.60 1.29 ↓ 12.9× 1.3 9392.5

Sp
ee

ch

FedTrans 91.75 4.75 0.10 0.3 56.4
FLuID 76.50 ↑ 15.25 43.65 0.26 ↓ 2.6× 0.6 121.5

HeteroFL 73.69 ↑ 18.06 40.00 1.49 ↓ 14.9× 1.0 197.5
SplitMix 19.60 ↑ 72.15 8.89 0.60 ↓ 6.0× 1.3 5736.8

O
pe

nI
m

ag
e FedTrans 61.86 28.56 47.39 10.6 2118.9

FLuID 32.87 ↑ 28.99 51.61 76.88 ↓ 1.6× 35.5 4926.92
HeteroFL 24.53 ↑ 37.33 36.00 799.52 ↓ 16.9× 92.0 6187.7
SplitMix 35.44 ↑ 26.24 21.15 950.38 ↓ 20.1× 38.7 2468.0

Table 2. Detailed performance comparison.

0.0 0.2 0.4 0.6 0.8 1.0
Cifar10 client accuracy

Fed
Tra

ns

FLu
ID

Hete
roF

L

Spli
tM

ix

0.0 0.2 0.4 0.6 0.8 1.0
FEMNIST client accuracy

Fed
Tra

ns

FLu
ID

Hete
roF

L

Spli
tM

ix

0.0 0.2 0.4 0.6 0.8 1.0
Speech Command client accuracy

Fed
Tra

ns

FLu
ID

Hete
roF

L

Spli
tM

ix

0.0 0.2 0.4 0.6 0.8 1.0
OpenImage client accuracy

Fed
Tra

ns

FLu
ID

Hete
roF

L

Spli
tM

ix

Figure 6. FedTrans improves individual client model accuracy over state-of-the-art multi-model federated learning on four datasets.

Baselines We compare FedTrans with state-of-the-art so-
lutions for multi-model federated learning: HeteroFL (Diao
et al., 2020) and SplitMix (Hong et al., 2022), and a dropout-
based FL solution, FLuID (Wang et al., 2024).

Metrics We care about model accuracy and the total train-
ing costs to achieve them. We evaluate each client only on
its compatible models and assign it the model with the high-
est utility. We report the average accuracy of all clients. We
measure training costs using the widely used total number of
MAC operations performed by all clients (Han et al., 2015;
Bannink et al., 2021; Rapp et al., 2022).

For each experiment, we report the mean value over 3 runs.

5.2 End-to-End Performance

Table 2 summarizes the key accuracy performance and train-
ing costs on all datasets.

FedTrans improves model accuracy over state-of-the-art
solutions. FedTrans improves the average model accuracy

over HeteroFL by 13% or more (Table 2). The box plots in
Figure 6 zoom into the accuracy distribution of individual
clients. FedTrans clearly improves model accuracy for indi-
vidual clients and achieves the best average accuracy on all
four datasets. Note that HeteroFL benefits the largest model
among its trained models the most, yet results in lower accu-
racy for smaller models. As such, HeteroFL has extremely
low accuracy for clients with low hardware capacity.

FedTrans reduces training costs Table 2 also reports that
FedTrans reduces the total training costs by more than 4×.
We also notice that FedTrans has the lowest storage footprint
and the network transmission volume. Figure 7 further vali-
dates FedTrans’s benefits on cost-to-accuracy performance:
FedTrans incurs the lowest MAC costs toward achieving the
same model accuracy. This is because FedTrans begins with
smaller models and judiciously introduces additional ones.

FedTrans improves existing optimizations for FL train-
ing. We implemented FedTrans as a complementary com-
ponent to the popular optimization algorithms FedProx

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

0 1 2 3 4
Cifar Cost (MACs) 1e15

0

20

40

60

80

A
cc

ur
ac

y
(%

)

FedTrans
HeteroFL
SplitMix
FLuID

0.0 0.5 1.0
FEMNIST Cost (MACs) 1e15

0

20

40

60

80

A
cc

ur
ac

y
(%

)

FedTrans
FLuID
HeteroFL
SplitMix

0.0 0.5 1.0 1.5
Speech Command Cost (MACs) 1e15

0

20

40

60

80

A
cc

ur
ac

y
(%

)

FedTrans
FLuID
HeteroFL
SplitMix

0 2 4 6 8
OpenImage Cost (MACs) 1e17

0

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)

FedTrans
FLuID
HeteroFL
SplitMix

Figure 7. FedTrans reduces training costs over state-of-the-art multi-model federated learning on four datasets.

0.00 0.25 0.50 0.75 1.00
FEMNIST client accuracy

FedTrans
+ FedYogi

FedYogi

FedTrans
+ FedProx

FedProx

Figure 8. FedTrans comple-
ments existing FL optimizations
and improves their performance.

0 25 50 75 100
Model complexity (MMACs)

70.0

72.5

75.0

77.5

80.0

FE
M

NI
ST

 a
cc

ur
ac

y

EfficientNetV2
MobilenetV3
MobilenetV2
ResNet
FedTrans

Figure 9. FedTrans finds better
model architectures for individ-
ual clients (FEMNIST dataset).

and FedYogi. We run FedTrans with FedProx or
FedYogi on FEMNIST dataset with the NASBench201
base model as the initial model. We run FedProx and
FedYogi solely with the middle-sized model generated by
FedTrans. We report the average test accuracy and training
cost as the metrics. Figure 8 shows that FedTrans can im-
prove FedProx and FedYogi, achieving higher average
accuracy with the same training cost.

FedTrans models outperforms state-of-the-art mod-
els for clients. We compare FedTrans-generated mod-
els with state-of-the-art models on the FEMNIST dataset:
EfficientNet-V2, MobileNet-V2, MobileNet-V3, ResNet-
18, and ResNet-34. We sampled four of our transformed
architectures from FedTrans. Note that all FedTrans mod-
els are transformed from the base model of NASBench201,
and we measured their average accuracy. Figure 9 shows
that FedTrans-generated models achieve a better tradeoff
between MACs and accuracy over today’s advanced models,
owing to our heterogeneity-aware model assignment.

5.3 Performance Breakdown

We next analyze the impact of each component of FedTrans
on the final performance, in terms of average accuracy and
training costs. We have three major components in our
system: transformation-based model expansion, gradient-
based layer selection, and soft aggregation across models.

As shown in Table 3, all components contribute to the over-

Breakdown Accu. (%) Costs (MACs)

FedTrans 76.42 9.68 ×1014
FedTrans- l 73.44 9.17 ×1014
FedTrans- ls 65.16 9.75 ×1014
FedTrans- lsw 64.40 24.73 ×1014
FedTrans- lswd 55.90 3.37 ×1014

Table 3. Performance breakdown. ‘l’ means layer selection, ‘s’
means soft aggregation, ‘w’ means warm up, and ‘d’ means de-
cayed weight sharing.

all performance, indicating the effectiveness and necessity
of all FedTrans components. By replacing the gradient-
based layer selection with the random layer selection, the
accuracy witnessed an around 3% drop since random selec-
tion does not always pick the best layer to expand. If we
further disable the weight sharing among different models,
the accuracy drops by 8%. By removing the warmup trans-
formation and re-initializing the weights of larger models,
the accuracy drops, and training cost increases by 1.6×. Fi-
nally, model accuracy drops by 8% after removing the decay
factor in soft aggregation.

5.4 Ablation Study

We next analyze the impact of parameters and data hetero-
geneity on FedTrans performance. We present the results of
the FEMNIST dataset with similar trends observed on other
datasets.

Threshold of DoC to transform (β). Figure 10a shows
that as β increases, a model is more easily considered to
be ready for transformation, leading to more models trans-
formed in the whole training process and thus higher train-
ing costs. Moreover, the accuracy is higher as β increases
initially because FedTrans has more models capturing the
data characteristics of clients comprehensively. However,
the accuracy significantly drops when β is too high because
the data samples per model are too few.

Number of consecutive slops to calculate DoC (γ). Figure
10b shows that increasing γ generally increases the difficulty
of reaching a certain DoC because we are taking more con-

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

0.0
01

0.0
03

0.0
05

0.0
07

Transform DoC

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

ac
cu

ra
cy

Average accuracy

0.0

0.5

1.0

1.5

2.0

Co
st

1e14

Cost

(a) Degree of convergence (β).

2.5 5 7.5 10 12
.5 15

Window size

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

ac
cu

ra
cy

Average accuracy

0.5

1.0

1.5

2.0

Co
st

1e14

Cost

(b) #slops for DoC (γ).

Figure 10. FedTrans achieves robust performance improvement by
picking the right time to transform.

1.1 1.5 2 3 6
Widen degree

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ac
cu

ra
cy

Average accuracy

0.5

1.0

1.5

2.0

Co
st

1e14

Cost

1 2 3 4 5 10
Deepen degree

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ac
cu

ra
cy

Average accuracy

0.5

1.0

1.5

Co
st

1e15

Cost

Figure 11. FedTrans is robust to different transformation degrees.

secutive loss slopes into the average. Therefore, increasing
γ significantly decreases the training cost before the model
is transformed fewer times. On the other hand, increasing γ
can help improve the final accuracy as more data samples
are used to train one model, increasing the generality of the
model. However, if γ becomes too large, FedTrans has too
few models to capture the heterogeneity of clients’ data.

Impact of Widening and Deepening Degrees Figure 11
shows that the average test accuracy and training cost are
robust to a wide range of widening or deepening degrees. In-
tuitively, when the widening or deepening degree is slightly
larger, FedTrans trains fewer large models but earlier, which
does not change the training cost. Meanwhile, although
larger degrees decrease the total number of models trans-
formed, each model is more aggressively optimized and
gains more capability.

Method Accu. (%) Cost (MACs)

FedTrans + FedAvg 76.5 3.8×1011
FedAvg 71.5 1.09×1013

Table 4. FedTrans improves for ViT models (FEMNIST dataset).

FedTrans optimizes for a wide range of models. Prior
work is mostly limited to convolution networks (Diao et al.,
2020; Hong et al., 2022), while FedTrans is generalizable to
many model architectures, including ViT (Dosovitskiy et al.,

0.7
0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
0.9

9

Alpha

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

ac
cu

ra
cy

Average accuracy

0.5

1.0

1.5

2.0

Co
st

1e14

Cost

Figure 12. FedTrans improves
performance by picking the
right Cell to transform.

0.5 1 50 10
0

Data Heterogeneity Levels (h)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ac
cu

ra
cy

Average accuracy

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Co
st

1e14

Cost

Figure 13. Performance of Fed-
Trans under different levels of
data heterogeneities.

2020). Table 4 shows that FedTrans outperforms existing
FL optimization on ViT models with a 5% improvement of
accuracy and saving costs by orders of magnitude.

Threshold of layer activeness to transform (α). Figure
12 shows that as α increases, fewer layers are selected to
expand, making the expanded model smaller and thus de-
creasing the training cost. On the other hand, the accuracy
drops after α reaches 0.9, indicating that too few layers are
selected to expand the capability of the model sufficiently.

Impact of Data heterogeneity Figure 13 shows the change
in average accuracy and training cost while we tune the syn-
thetic data heterogeneity of the FEMNIST dataset. Similar
to the prior work (Diao et al., 2020; Alam et al., 2022), we
synthesize different data heterogeneity levels by control-
ling the label distribution with a Dirichlet distribution and
parameter h. The lower h, the higher the heterogeneity.

Under low data heterogeneity, FedTrans converges with
better accuracy using more rounds. Therefore, the train-
ing costs are seemingly high (Fig. 13). Meanwhile, the
performance of FedTrans diminishes under high data hetero-
geneity, which underscores the need for future research to
enhance the training algorithms of multi-model FL in highly
heterogeneous settings.

6 RELATED WORK

System optimizations for FL training Several studies
propose to optimize the FL training from a system schedul-
ing perspective. (Lai et al., 2021) prioritizes clients with
good data quality and hardware capability to improve effi-
ciency, while (Li et al., 2022a) further investigates the data
and system heterogeneity of selected clients to optimize
the profiling. Besides, clustering-based optimization is pro-
posed to mitigate the data heterogeneity by only aggregating
the local models of clients with similar data distribution (Liu
et al., 2023; Duan et al., 2021), while (Nguyen et al., 2022)
proposes a scalable asynchronous training scheduling algo-
rithm to address straggler issues in synchronous FL.

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

Multi-model FL Training customized models for clients
at scale is challenging due to the data and system heterogene-
ity, as well as execution costs. Weight-sharing mechanisms
have been proposed to train multiple models simultaneously
to save training costs, but their exploration of model archi-
tectures is either static (Diao et al., 2020) or tailors only the
width of the model (Li et al., 2021a; Horvath et al., 2021;
Mei et al., 2022), resulting in suboptimal performance. Sec-
ondly, previous work on applying NAS algorithms to FL
settings either uses a super-model reduction method, which
introduces an expensive search phase (He et al., 2020), or
randomly samples architectures, which are usually of low
quality (Dudziak et al., 2022). Recent work on personalized
FL uses multi-task learning (Marfoq et al., 2021; Li et al.,
2021b), meta learning (Acar et al., 2021; Fallah et al., 2020),
and other ML-based techniques (Collins et al., 2021; Ozkara
et al., 2021) to optimize the accuracy performance, while
neglecting the system heterogeneity.

Model Transformation Prior work proposes techniques
of neural network morphism (Chen et al., 2015; Wei et al.,
2016; Cai et al., 2019) to transform a neural network to a
larger one, preserving the complete functionality. Such tech-
niques have been applied to reinforcement learning (Czar-
necki et al., 2018), transfer learning (Li et al., 2022b), and
neural architecture search algorithms (Cai et al., 2018; Chen
et al., 2020) to save the costs of training new and larger mod-
els. Recent work in cloud computing leverages the model
transformation techniques to accelerate training on the cloud
without sacrificing the accuracy (Lai et al., 2023). FedTrans
further applies model transformation to distributed neural
network training in a heterogeneous and federated setting.

7 CONCLUSION

This paper introduces FedTrans, a novel multi-model FL
training framework. FedTrans employs Cell-wise model
transformation to efficiently generate models for clients
with heterogenous data and system capabilities. It uses an
adaptive model assignment mechanism to explore the right
model for individual clients during training, and performs
inter-model aggregation to minimize the costs of training
multiple models. Our evaluations using real-world datasets
show that FedTrans significantly improves model accuracy
while reducing training costs.

ACKNOWLEDGEMENT

We thank the anonymous reviewers, our shepherd Kevin
Hsieh, and SymbioticLab members for their invaluable com-
ments and suggestions, which greatly improved the quality
of the paper. We are grateful to the CloudLab team for
providing computing resources for FedTrans experiments.
Additionally, we thank Xingran Shen and Xiang Sheng for

their insight in developing FedTrans design. This work was
supported in part by NSF grant CNS-2106184 and a grant
from Cisco.

REFERENCES

Google Open Images Dataset. https://storage.
googleapis.com/openimages/web/index.
html.

Acar, D. A. E., Zhao, Y., Zhu, R., Matas, R., Mattina, M.,
Whatmough, P., and Saligrama, V. Debiasing model
updates for improving personalized federated training. In
ICML, 2021.

Alam, S., Liu, L., Yan, M., and Zhang, M. Fedrolex: Model-
heterogeneous federated learning with rolling sub-model
extraction. In NeurIPS, 2022.

Bannink, T., Hillier, A., Geiger, L., de Bruin, T., Overweel,
L., Neeven, J., and Helwegen, K. Larq compute engine:
Design, benchmark and deploy state-of-the-art binarized
neural networks. In MLSys, 2021.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Mazzocchi,
S., McMahan, B., et al. Towards federated learning at
scale: System design. In MLSys, 2019.

Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. Efficient
architecture search by network transformation. In AAAI,
2018.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-
for-all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791, 2019.

Chen, T., Goodfellow, I., and Shlens, J. Net2net:
Accelerating learning via knowledge transfer.
arxiv.org/abs/1511.05641, 2015.

Chen, X., Wang, R., Cheng, M., Tang, X., and Hsieh, C.-
J. Drnas: Dirichlet neural architecture search. In ICLR,
2020.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. EM-
NIST: an extension of MNIST to handwritten letters.
arxiv.org/abs/1702.05373, 2017.

Collins, L., Hassani, H., Mokhtari, A., and Shakkottai, S.
Exploiting shared representations for personalized feder-
ated learning. In ICML, 2021.

Czarnecki, W., Jayakumar, S., Jaderberg, M., Hasenclever,
L., Teh, Y. W., Heess, N., Osindero, S., and Pascanu, R.
Mix & match agent curricula for reinforcement learning.
In ICML, 2018.

https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

Diao, E., Ding, J., and Tarokh, V. Heterofl: Computation
and communication efficient federated learning for het-
erogeneous clients. In ICLR, 2020.

Dong, X. and Yang, Y. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In ICML,
2019.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
ICLR, 2020.

Duan, M., Liu, D., Ji, X., Wu, Y., Liang, L., Chen, X., Tan,
Y., and Ren, A. Flexible clustered federated learning for
client-level data distribution shift. IEEE Transactions on
Parallel and Distributed Systems, 2021.

Dudziak, L., Laskaridis, S., and Fernandez-Marques, J. Fe-
doras: Federated architecture search under system hetero-
geneity. arxiv.org/abs/2206.11239, 2022.

Dziugaite, G. K. and Roy, D. M. Computing nonvacuous
generalization bounds for deep (stochastic) neural net-
works with many more parameters than training data.
arxiv.org/abs/1703.11008, 2017.

Fallah, A., Mokhtari, A., and Ozdaglar, A. Person-
alized federated learning: A meta-learning approach.
arxiv.org/abs/2002.07948, 2020.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
NeurIPS, 2015.

He, C., Annavaram, M., and Avestimehr, S. Towards non-iid
and invisible data with fednas: federated deep learning
via neural architecture search. arxiv.org/abs/2004.08546,
2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Hong, J., Wang, H., Wang, Z., and Zhou, J. Efficient split-
mix federated learning for on-demand and in-situ cus-
tomization. In ICLR, 2022.

Horvath, S., Laskaridis, S., Almeida, M., Leontiadis, I.,
Venieris, S., and Lane, N. Fjord: Fair and accurate feder-
ated learning under heterogeneous targets with ordered
dropout. In NeurIPS, 2021.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. Searching for mobilenetv3. In ICCV, 2019.

Huba, D., Nguyen, J., Malik, K., Zhu, R., Rabbat, M.,
Yousefpour, A., Wu, C.-J., Zhan, H., Ustinov, P., Srinivas,
H., et al. Papaya: Practical, private, and scalable federated
learning. In MLSys, 2022.

Ignatov, A., Timofte, R., Kulik, A., Yang, S., Wang, K.,
Baum, F., Wu, M., Xu, L., and Van Gool, L. Ai bench-
mark: All about deep learning on smartphones in 2019.
In ICCV Workshop, 2019.

Lai, F., You, J., Zhu, X., Madhyastha, H. V., and Chowdhury,
M. Sol: Fast distributed computation over slow networks.
In NSDI, 2020.

Lai, F., Zhu, X., Madhyastha, H. V., and Chowdhury, M.
Oort: Efficient federated learning via guided participant
selection. In OSDI, 2021.

Lai, F., Dai, Y., Singapuram, S., Liu, J., Zhu, X., Mad-
hyastha, H., and Chowdhury, M. Fedscale: Benchmark-
ing model and system performance of federated learning
at scale. In ICML, 2022.

Lai, F., Dai, Y., Madhyastha, H. V., and Chowdhury, M.
Modelkeeper: Accelerating dnn training via automated
training warmup. In NSDI, 2023.

Li, A., Sun, J., Li, P., Pu, Y., Li, H., and Chen, Y. Hermes: an
efficient federated learning framework for heterogeneous
mobile clients. In MobiCom, 2021a.

Li, C., Zeng, X., Zhang, M., and Cao, Z. Pyramidfl: A fine-
grained client selection framework for efficient federated
learning. In MobiCom, 2022a.

Li, C., Zhuang, B., Wang, G., Liang, X., Chang, X., and
Yang, Y. Automated progressive learning for efficient
training of vision transformers. In CVPR, 2022b.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
Visualizing the loss landscape of neural nets. In NeurIPS,
2018.

Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair resource
allocation in federated learning. In ICLR, 2019.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. In MLSys, 2020.

Li, T., Hu, S., Beirami, A., and Smith, V. Ditto: Fair and
robust federated learning through personalization. In
ICML, 2021b.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable
architecture search. In ICLR, 2019.

Liu, J., Lai, F., Dai, Y., Akella, A., Madhyastha, H. V., and
Chowdhury, M. Auxo: Efficient federated learning via
scalable client clustering. In SoCC, 2023.

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

Long, M., Cao, Y., Wang, J., and Jordan, M. Learning
transferable features with deep adaptation networks. In
ICML, 2015.

Lv, C., Niu, C., Gu, R., Jiang, X., Wang, Z., Liu, B., Wu, Z.,
Yao, Q., Huang, C., Huang, P., Huang, T., Shu, H., Song,
J., Zou, B., Lan, P., Xu, G., Wu, F., Tang, S., Wu, F.,
and Chen, G. Walle: An End-to-End, General-Purpose,
and Large-Scale production system for Device-Cloud
collaborative machine learning. In OSDI, 2022.

Marfoq, O., Neglia, G., Bellet, A., Kameni, L., and Vi-
dal, R. Federated multi-task learning under a mixture of
distributions. In NeurIPS, 2021.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, 2017.

Mei, Y., Guo, P., Zhou, M., and Patel, V. Resource-adaptive
federated learning with all-in-one neural composition. In
NeurIPS, 2022.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,
M., Malek, M., and Huba, D. Federated learning with
buffered asynchronous aggregation. In AISTATS, 2022.

Ozkara, K., Singh, N., Data, D., and Diggavi, S. Quped:
Quantized personalization via distillation with applica-
tions to federated learning. In NeurIPS, 2021.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. Efficient
neural architecture search via parameters sharing. In
ICML, 2018.

Rapp, M., Khalili, R., Pfeiffer, K., and Henkel, J. Distreal:
Distributed resource-aware learning in heterogeneous sys-
tems. In AAAI, 2022.

Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., and Liu, J.
A quantitative discriminant method of elbow point for
the optimal number of clusters in clustering algorithm.
EURASIP Journal on Wireless Communications and Net-
working, 2021.

Singapuram, S. S. V., Hu, C., Lai, F., Zhang, C., and Chowd-
hury, M. Flamingo: A user-centric system for fast and
energy-efficient dnn training on smartphones. In Dis-
tributedML, 2023.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In ICML, 2019.

Wang, E., Kannan, A., Liang, Y., Chen, B., and Chowdhury,
M. Flint: A platform for federated learning integration.
In MLSys, 2023.

Wang, I., Nair, P., and Mahajan, D. Fluid: Mitigating
stragglers in federated learning using invariant dropout.
Advances in Neural Information Processing Systems, 36,
2024.

Wang, Y., Sun, D., Chen, K., Lai, F., and Chowdhury, M. Ef-
ficient dnn training with knowledge-guided layer freezing.
arxiv.org/abs/2201.06227, 2022.

Warden, P. Speech commands: A dataset for limited-
vocabulary speech recognition. arxiv.org/abs/1804.03209,
2018.

Wei, T., Wang, C., Rui, Y., and Chen, C. W. Network
morphism. In ICML, 2016.

Yao, D., Pan, W., O’Neill, M. J., Dai, Y., Wan, Y., Jin,
H., and Sun, L. Fedhm: Efficient federated learning
for heterogeneous models via low-rank factorization.
arxiv.org/abs/2111.14655, 2021.

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

A APPENDIX

A.1 Experiment settings

Comparing with baselines We choose MobileNetV3-
small ((Howard et al., 2019)) for Cifar-10, base model of
NASBench201 ((Dong & Yang, 2019)) for FEMNIST, and
modified smaller ResNet18 ((He et al., 2016)) for Speech
Command and OpenImage as initial models. The detailed
architecture of the base model of NasBench201 is shown in
Figure 14. The detailed architecture of the modified small
ResNet18 is shown in Figure 15.

To fairly evaluate the performance across different methods,
HeteroFL, SplitMix, and FLuID should use the same ar-
chitecture as FedTrans. However, HeteroFL, Splitmix, and
FLuID shrink models, which means they take a large model
and adopt some algorithm to reduce, compress, or prune it to
form multiple small models. Therefore, we give the largest
model transformed by FedTrans as the input large model
to HeteroFL, SplitMix, and FLuID. Since HeteroFL and
SplitMix do not support convolutional layer with groups,
we convert the grouped convolution layer to non-grouped
one, which potentially increases the complexity of the layer.

The hyperparameter setting for FedTrans is shown in Table
7. The training is considered complete when either the max-
imum number of training rounds is reached or the validation
accuracy converges, which is defined as the accuracy not
improving by more than 1% over 10 consecutive rounds.
The hyperparameter settings for HeteroFL, SplitMix, and
FLuID are the same as those in their paper.

Quality of transformed models To evaluate the quality of
transformed models (Fig. 9), we fine-tune each transformed
model on all the clients. We use the default FedAvg (McMa-
han et al., 2017) setting for this evaluation part, which means
we remove the hardware capacity constraints and disable
the transformation, adaptive model assignment, and soft
aggregation.

B COMPUTATION AND COMMUNICATION
OVERHEADS ANALYSIS

Due to the challenge of data heterogeneity and the nature
of distributed computing, FL training itself is expensive.
Therefore, FedTrans introduces minimal computation and
communication overhead compared with standard FedAvg.

Clients The local training on the client is the same as
FedAvg, with no computation overhead. After the local
training, clients are required to upload the model weights,
model gradient, and training loss back to the coordinator.
However, the updated model weights can be easily derived
from the model gradient and the model weights of the last
round. Therefore, only the training loss is considered as

Overhead Estimated value

client’s computation 0
client’s communication rpc
coordinator’s computation r(mn+ 1)c+ |W |c
coordinator’s communication 0

Table 5. Computation and communication overheads analysis for
m registered clients, p participated clients, n models, r rounds,
where c is a small constant and |W | is the average size of the
model weights.

Method Avg. (s) Std. (s)

FedTrans + FedAvg 134.5 237.1
FedAvg 226.3 325.6

Table 6. Round completion time comparison.

communication overhead for clients. Overall, on the side of
clients, there is no computational overhead and negligible
(i.e.. a floating number) communication overhead.

Coordinator After receiving the updates from clients,
the coordinator is scheduled to do four steps of computa-
tion, which are (1) updating utilities, (2) updating local
weights, (3) updating the degree of convergence (DoC), and
(4) model transformation. Among these steps, updating util-
ities, updating the degree of convergence, and model trans-
formation are computational overhead. Given m clients and
n models, the coordinator needs to do m×n times of utility
updating operations. For each utility update, the coordinator
needs to calculate the standardized loss and the subtraction,
which are considered to have constant complexity. Updating
DoC calculates the average of loss slopes, which is consid-
ered to have constant complexity. We consider the model
transformation happens at constant times. For each model
transformation, the coordinator calculates the layer active-
ness and applies the widening and/or deepening operations,
whose complexity is considered to be proportional to the
size of model weights. As for communication, FedTrans
does not introduce any overhead on the side of the coor-
dinator. Overall, the computational and communication
overhead analysis is summarized in Table 5.

C FEDTRANS MITIGATES THE STRAGGLER
ISSUE.

In synchronous federated learning, slow clients could slow
down the training process if clients are given the same work-
load, which is referred to as the straggler issue. FedTrans
can mitigate the straggler issue as we assume each client
has a hard requirement for the model complexity (MACs).
As shown in Table 6, FedTrans improves FedAvg both in
the average and the std of the round completion time among
clients on FEMNIST dataset compared with FedAvg.

FedTrans: Efficient Federated Learning Over Heterogeneous Clients via Model Transformation

Hyperparameters Cifar-10 FEMNIST Speech Command OpenImage

of participants per round 10 100 100 100
maximum number of training rounds 1000 2000 1500 2000
step size to calculate the loss slope (δ) 20 30 100 50
local training steps 20
batch size 10
learning rate 0.05
decay factor 0.98
of consecutive gradient to calculate activeness (T) 5

Table 7. Hyperparameters

Figure 14. Base model of NASBench201

Figure 15. Modified smaller ResNet18

